初一数学下册平面直角坐标系知识点+例题

合集下载

东营市胜利第一中学七年级数学下册第七章【平面直角坐标系】知识点总结(含解析)

东营市胜利第一中学七年级数学下册第七章【平面直角坐标系】知识点总结(含解析)

一、选择题1.已知点32,)6(M a a -+.若点M 到两坐标轴的距离相等,则a 的值为( ) A .4 B .6- C .1-或4 D .6-或232.在平面直角坐标系中,将三角形各顶点的纵坐标都加上3,横坐标保持不变,所得图形的位置与原图形相比( )A .向上平移3个单位B .向下平移3个单位C .向右平移3个单位D .向左平移3个单位3.如图,点A 的坐标是()3,1-将四边形ABCD 先向左平移3个单位,再向上平移2个单位,那么点A 的对应点A '的坐标是( )A .()0,1B .()6,1C .()0,3-D .()6,3-4.在平面直角坐标系中,点A 的坐标为(-4,3),AB ∥y 轴,AB=5,则点B 的坐标为( ) A .(1,3)B .(-4,8)C .(-4,8)或(-4,-2)D .(1,3)或(-9,3)5.若点P (x, y )在第二象限,且2,3x y ==,则x + y =( )A .-1B .1C .5D .-56.若实数a ,b 2(2)30a b +-=,则点P(a ,b)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 7.已知点A 坐标为()2,3-,点A 关于x 轴的对称点为A ',则A '关于y 轴对称点的坐标为( )A .()2,3--B .()2,3C .()2,3-D .以上都不对 8.点()P 3,2-在平面直角坐标系中所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 9.如图,在直角坐标系中,边长为2的等边三角形12OA A 的一条边2OA 在x 的正半轴上,O 为坐标原点;将12OA A △沿x 轴正方向依次向右移动2个单位,依次得345A A A △,678A A A ……则顶点2019A 的坐标是( )A .()2690,0B .()2692,0C .()2694,0D .无法确定 10.在平面直角坐标中,点()1,2P 平移后的坐标是)3(3,-'P ,按照同样的规律平移其它点,则以下各点的平移变换中( )符合这种要求.A .()3,24(,2)→-B .()(104),5,--→-C .(1.2,5)→(-3.2,6)D .122.5, 1.5,33⎛⎫⎛⎫-→- ⎪ ⎪⎝⎭⎝⎭11.如图所示,某战役缴获敌人防御工事坐标地图碎片,依稀可见,一号暗堡的坐标为(4,2),四号暗堡的坐标为(2,4)-,原有情报得知:敌军指挥部的坐标为(0,0),你认为敌军指挥部的位置大约是( )A .A 处B .B 处C .C 处D .D 处二、填空题12.下列四个命题中:①对顶角相等;②如果两条直线被第三条直线所截,那么同位角相等;③如果两个实数的平方相等,那么这两个实数也相等;④当0m ≠时,点()2,P m m -在第四象限内.其中真命题有________(填序号).13.若点A (m +2,﹣3)与点B (﹣4,n +5)在二四象限角平分线上,则m +n =_____. 14.直角坐标系内,一动点按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),……,按这样的运动规律,动点第2021次运动到的点的坐标为____________.15.在平面直角坐标系中,点A ,B 的坐标分别为(1,0),(0,2),若将线段AB 平移到A 1B 1,点A 1,B 1的坐标分别为(2,a),(b ,3),则a 2-2b 的值为______.16.在平面直角坐标系中,若点3(1)M ,与点()3N x ,的距离是8,则x 的值是________ 17.在平面直角坐标系中,对于任意三点A 、B 、C 的“矩面积”,给出如下定义:水平底a 为任意两点的横坐标差的最大值,铅垂高h 为任意两点的纵坐标差的最大值,则“矩面积”S =ah .若A (1,2),B (﹣2,1),C (0,t )三点的“矩面积”是18,则t 的值为_____. 18.如图,已知点A 的坐标为(−2,2),点C 的坐标为(2,1),则点B 的坐标是____.19.在平面直角坐标系中,对于平面内任一点(),a b ,若规定以下三种变换:①()(),,a b a b ∆=-;②(),a b O (),a b =--;③()(),,a b a b Ω=-按照以上变换例如:()()()1,21,2∆O =-,则()()2,5O Ω等于__________.20.如果点P (a ﹣1,a +2)在x 轴上,则a 的值为_____.21.把所有正整数从小到大排列,并按如下规律分组:(1)、(2,3)、(4,5,6)、(7,8,9,10)、……,若A n =(a ,b )表示正整数n 为第a 组第b 个数(从左往右数),如A 7=(4,1),则A 20=______________. 三、解答题22.如图,在平面直角坐标系中,四边形OABC 各顶点的坐标分别是()0,0O ,()0,12A ,()10,8B -,()14,0C -,求四边形OABC 的面积.23.在平面直角坐标系xOy 中,△ABC 的位置如图所示.(l )分别写出△ABC 各个顶点的坐标.(2)请在图中画出△ABC 关于y 轴对称的图形△A'B'C'.(3)计算出△ABC 的面积.24.平面直角坐标系中有点A (m +6n ,-1),B (-2,2n -m ),连接AB ,将线段AB 先向上平移,再向右平移,得到其对应线段A 'B '(点A '和点A 对应,点B '和点B 对应),两个端点分别为A '(2m +5n ,5),B '(2,m +2n ).分别求出点A '、B '的坐标.25.正方形的边长为220),并写出另外三个顶点的坐标.一、选择题1.在直角坐标系中,ABC 的顶点()1,5A -,()3,2B ,()0,1C ,将ABC 平移得到A B C ''',点A 、B 、C 分别对应A '、B '、C ',若点()1,4A ',则点'C 的坐标( ) A .()2,0- B .()2,2- C .()2,0 D .()5,12.第24届冬季奥林匹克运动会将于2022年由北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是( )A .离北京市200千米B .在河北省C .在宁德市北方D .东经114.8°,北纬40.8°3.太原植物园是山西省唯一集科学研究、科普教育、园艺观赏和文化旅游于一体的综合性植物园.其标志性建筑为热带植物馆、沙生植物馆、主题花卉馆三个展览温室,远远望去犹如镶嵌在湖边的3颗大小不一的“露珠”(图1).若利用网格(图2)建立适当的平面直角坐标系,表示东门的点的坐标为()3,2A ,表示热带植物馆入口的点的坐标为()3,3B -,那么儿童游乐园所在的位置C 的坐标应是( )A .()5,1-B .()2,4--C .()8,3--D .()5,1-- 4.在平面直角坐标系中,点A 的坐标为(21a +,3-),则点A 在( )A .第一象限B .第二象限C .第三象限D .第四象限 5.如图,在ABC ∆中,90ACB ∠=︒,AC BC =,点C 的坐标为()2,0-,点B 的坐标为()1,4,则点A 的坐标为( )A .()6,3-B .()3,6-C .()4,3-D .()3,4- 6.如图,一个粒子在第一象限内及x 轴,y 轴上运动,第一分钟内从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),而后它接着按图中箭头所示的与x 轴,y 轴平行的方向来回运动,且每分钟移动1个长度单位,那么,第2017分钟时,这个粒子所在位置的坐标是( )A .(7,44)B .(8,45)C .(45,8)D .(44,7) 7.在平面直角坐标系中,点P 的坐标为(3,﹣1),那么点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限 8.下列说法正确的是( )A .若0ab =,则点(,)P a b 表示原点B .点(1,)a 在第三象限C .已知点(3,3)A -与点(3,3)B ,则直线//AB x 轴D .若0ab >,则点(,)P a b 在第一或第三象限9.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4…,这样依次得到点A 1,A 2,A 3,…,A n ,若点A 1的坐标为(3,1),则点A 2019的坐标为( ) A .(0,﹣2) B .(0,4) C .(3,1) D .(﹣3,1) 10.若点P (﹣m ,﹣3)在第四象限,则m 满足( )A .m >3B .0<m≤3C .m <0D .m <0或m >3 11.如图,线段OA ,OB 分别从与x 轴和y 轴重合的位置出发,绕着原点O 顺时针转动,已知OA 每秒转动45︒,OB 的转动速度是每秒转动30,则第2020秒时,OA 与OB 之间的夹角的度数为( )A .90︒B .145︒C .150︒D .165︒二、填空题12.定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点(至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若(1,1)P -,(2,3)Q ,则P ,Q 的“实际距离”为5,即5PS SQ +=或5PT TQ +=.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为(2,2)A ,(4,2)B -,(2,4)C --,若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为______.13.如图,将边长为1的正方形OABP 沿x 轴正方向连续翻转,点P 依次落在点1P ,2P ,3P ,4P ,…的位置,那么2016P 的坐标是________.14.如图点 A 、B 的坐标分别为(1,2)、(3,0),将△AOB 沿 x 轴向右平移,得到△CDE . 已知点 D 在的点 B 左侧,且 DB =1,则点 C 的坐标为 ____ .15.已知点M 在y 轴上,纵坐标为4,点P (6,﹣4),则△OMP 的面积是__. 16.在平面直角坐标系中,有点A (a ﹣2,a ),过点A 作AB ⊥x 轴,交x 轴于点B ,且AB =2,则点A 的坐标是___.17.如图,在平面直角坐标系上有点1,0A ,点A 第一次跳动至点()11,1A -,第二次点1A 向右跳到()22,1A ,第三次点2A 跳到()32,2A -,第四次点3A 向右跳动至点()43,2A ,…,依此规律跳动下去,则点2019A 与点2020A 之间的距离是___________.18.已知点 P(b+1,b-2)在x 轴上,则P 的横坐标值为____19.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.那么点A 2020的坐标是________.20.已知点P 在第四象限,且到x 轴的距离是1,到y 轴的距离是3,则P 的坐标是______. 21.如图,直线BC 经过原点O ,点A 在x 轴上,AD BC ⊥于D .若A (4,0),B (m ,3),C (n ,-5),则AD BC =______.三、解答题22.在平面直角坐标系中,有A(﹣2,a +1),B(a ﹣1,4),C(b ﹣2,b )三点.(1)当点C 在y 轴上时,求点C 的坐标;(2)当AB ∥x 轴时,求A ,B 两点间的距离;(3)当CD ⊥x 轴于点D ,且CD =1时,求点C 的坐标.23.正方形的边长为2,建立适当的直角坐标系,使它的一个顶点的坐标为(2,0),并写出另外三个顶点的坐标.24.如图,平面直角坐标系中,已知点A (-3,3),B (-5,1),C (-2,0),P ( )是△ABC 的边AC 上任意一点,△ABC 经过平移后得到△A 1B 1C 1,点P 的对应点为 P 1 ( a +6,b+2 )(1)直接写出点A 1,B 1,C 1的坐标;(2)在图中画出△A 1B 1C 1;(3)求△ABC 的面积.25.已知()4,0A ,点B 在x 轴上,且5AB =.(1)直接写出点B 的坐标;(2)若点C 在y 轴上,且10ABC S =△,求点C 的坐标. (3)若点()3,2D a a -+,且15ABD S =,求点D 的坐标.一、选择题1.第24届冬季奥林匹克运动会将于2022年由北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是( )A .离北京市200千米B .在河北省C .在宁德市北方D .东经114.8°,北纬40.8°2.在平面直角坐标系中,点()2,1-关于x 轴对称的点的坐标是( )A .()2,1B .()2,1-C .()2,1--D .()2,1- 3.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,……按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,0B .()2020,1C .()2021,1D .()2021,2 4.点A (n+2,1﹣n )不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限 5.点(,)M x y 在第二象限,且230,40x y -=-=,则点M 的坐标是( )A .(3,2)-B .(3,2)-C .(2,3)-D .(2,3)- 6.如图,在直角坐标系中,边长为2的等边三角形12OA A 的一条边2OA 在x 的正半轴上,O 为坐标原点;将12OA A △沿x 轴正方向依次向右移动2个单位,依次得345A A A △,678A A A ……则顶点2019A 的坐标是( )A .()2690,0B .()2692,0C .()2694,0D .无法确定 7.如图,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(0,1),将线段AB 平移,使其一个端点到C (3,2),则平移后另一端点的坐标为( )A .(1,3)B .(5,1)C .(1,3)或(3,5)D .(1,3)或(5,1) 8.如图,一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)()()()()()1,01,11,22,13,0....→→→→→→,则2018分钟时粒子所在点的横坐标为( )A .900B .946C .990D .8869.若点(1,)A n -在x 轴上,则点(1,1)B n n +-在( ).A .第一象限B .第二象限C .第三象限D .第四象限 10.已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在x 轴的上方,则点P 的坐标为( )A .(2,3)B .(3,2)C .(2,3)或(-2,3)D .(3,2)或(-3,2)11.如图,△ABC 的顶点坐标分别为A(1,0),B(4,0),C(1,4),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( )A .4B .8C .82D .16二、填空题12.如图所示,点1,0A 、B(-1,1)、()2,2C ,则ABC 的面积是_________.13.若电影票上座位是12排5号可记为(12,5),则(5,6)表示_______________. 14.若点P 位于x 轴上方,y 轴左侧,距离x 轴4个单位长度,距离y 轴2个单位长度,则点P 的坐标是_____________.15.写一个第三象限的点坐标,这个点坐标是_______________.16.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如()1,0,()2,0,()2,1,()1,1,1,2,()2,2根据这个规律,第2020个点的坐标为______.17.在平面直角坐标系中,将点A (5,﹣8)向左平移得到点B (x +3,x ﹣2),则点B 的坐标为_____.18.若P(2-a ,2a+3)到两坐标轴的距离相等,则点P 的坐标是____________________. 19.如图,已知点A 的坐标为(−2,2),点C 的坐标为(2,1),则点B 的坐标是____.20.已知点()24,1P m m +-.()1若点P 在x 轴上,则点P 的坐标为________;()2若点P 在第四象限,且到y 轴的距离是2,则点P 的坐标为________.21.在平面直角坐标系中,点()3,1A -在第______象限.三、解答题22.在平面直角坐标系中,点P(2﹣m ,3m +6).(1)若点P 与x 轴的距离为9,求m 的值;(2)若点P 在过点A(2,﹣3)且与y 轴平行的直线上,求点P 的坐标.23.如图,已知火车站的坐标为()2,1,文化宫的坐标为()1,2-.(1)请你根据题目条件,画出平面直角坐标系;(2)写出体育馆、市场、超市、宾馆的坐标;(3)请将原点O ,宾馆C 和文化宫B ,看作三点用线段连起来,将得OBC ,然后将此三角形向下平移3个单位长度,画出平移后的111O B C ,并求出其面积.24.如图,∠ABC 在建立了平面直角坐标系的方格纸中,方格纸中的每个小方格都是边长为1个单位长度的正方形.(1)请写出三角形ABC 各顶点的坐标;(2)直接写出三角形ABC 的面积;(3)把三角形ABC 平移得到A B C '''∆,点B 经过平移后对应点为()6,5B ',请在图中画出A B C '''∆.25.如图1,在平面直角坐标系中,A (a ,0),C (b ,4),且满足(a+5)2+5-b =0,过C 作CB ⊥x 轴于B .(1)a = ,b = ,三角形ABC 的面积= ;(2)若过B 作BD //AC 交y 轴于D ,且AE ,DE 分别平分∠CAB ,∠ODB ,如图2,求∠AED 的度数;(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等?若存在,求出P 点坐标;若不存在,请说明理由.。

初一数学平面直角坐标系30道必做题(含答案和解析及考点)

初一数学平面直角坐标系30道必做题(含答案和解析及考点)

初一数学平面直角坐标系30道必做题(含答案和解析及考点)1、如图是小刚画的一张脸,他对妹妹说“如果我用(1,3)表示左眼,用(3,3)表示右眼,那么嘴的位置可以表示成.答案:(2,1).解析:略.考点:函数——平面直角坐标系——点的位置与坐标.2、如图所示,小颖从家到达莲花中学要穿过一个居民小区,若小区的道路均是正南或正东方向,小颖走下面哪条线路不能到达学校().A.(0,4)(0,0)(4,0)B.(0,4)(4,4)(4,0)C.(0,4)(1,4)(1,1)(4,1)(4,0)D.(0,4)(3,4)(4,2)(4,0)答案:D.解析:(3,4)(4,2)所走路线为斜线,不符合题意,不能正常到达学校.考点:函数——平面直角坐标系.3、如图,围棋盘放置在某个平面直角坐标系内,白棋②的坐标为(-7,-4),白棋④的坐标为(-6,-8),那么,黑棋的坐标应该分别是.答案:(-6,-6),(-4,-7).解析:黑棋①的坐标是(-6,-6),黑棋③的坐标是(-4,-7).考点:函数——平面直角坐标系——点的位置与坐标.4、如果点A(x,y)在第三象限,则点B(-x,y-1)在().A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案: D.解析:∵点A(x,y)在第三象限,∴{x<0y<0.∴-x>0,y-1<0.∴点B(-x,y-1)在第四象限.考点:函数——平面直角坐标系——点的位置与坐标.5、如图的坐标平面上有P、Q两点,其坐标分别为(5,a)、(b,7).根据图中P、Q两点的位置,判断点()落在第象限.答案:四.解析:由图象可知,b<5,a<7.∴6-b>0,a-10<0.∴点(6-b,a-10)落在第四象限.考点:函数——平面直角坐标系——点的位置与坐标.6、已知A(-2,0),B(a,0)且AB=5,则B点坐标为.答案:(3,0)或(-7,0).解析:由题知︱a+2︱=5,∴a=3或-7.∴B点坐标为(3,0)或(-7,0).考点:函数——平面直角坐标系——坐标与距离.7、若点A(-2,n)在x轴上,则点B(n-1,n+1)在().A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:B.解析:略.考点:函数——平面直角坐标系——点的位置与坐标.8、点P(m+3,m+1)在直角坐标系的x轴上,则点P的坐标为().A.(1,-2)B.(2,0)C.(4,0)D.(0,-4)答案:B.解析:∵点P(m+3,m+1)在直角坐标系的轴上.∴m+1=0.∴m=-1.∴点P的坐标为(2,0).考点:函数——平面直角坐标系——点的位置与坐标.9、已知点M(3a-8,a-1).(1)若点M在第二象限,并且a为整数,则点M的坐标为.(2)若点N的坐标为(3,-6),并且直线MN∥x轴,则点M的坐标为.答案:(1)(-2,1).(2)(-23,-6).解析:(1)若点M在第二象限,3a<0,a-1>0.∴1<a<8,又a为整数.3∴a=2.∴M(-2,1).(2)若点N的坐标为(3,-6),并且直线MN∥x轴.∴a-1=-6,即a=7.∴点M(-23,-6).考点:函数——平面直角坐标系——点的位置与坐标.10、若点P(-1,a),Q(b,2),且PQ∥x轴,则a ,b .答案:a=2.b≠-1.解析:∵PQ∥x轴.∴PQ两点的纵坐标相同.∴a=2.又∵P、Q应为不重合的两点.∴b≠-1.考点:函数——平面直角坐标系——点的位置与坐标.11、点P(a,b)是平面直角坐标系内的点,请根据点的坐标判断点P的特征:(1)若a=b,则P点在.(2)若a+b=0,则P点在.答案:(1)一三象限坐标轴夹角平分线上.(2)二四象限坐标轴夹角平分线上.解析:(1)略.(2)略.考点:函数——平面直角坐标系——点的位置与坐标.12、若点M在第一、三象限的角平分线上,且点M到x轴的距离为2,则点M的坐标是().A.(2,2)B.(-2,-2)C.(2,2)或(-2,-2)D.(2,-2)或(-2,2)答案:C.解析:略.考点:函数——平面直角坐标系——坐标与距离.13、已知点(3-2k2,4k-3)在第一象限的角平分线上,则k= .答案:1.解析:略.考点:函数——平面直角坐标系——点的位置与坐标.14、若点M(5-a,2a-6)在第四象限,且点M到x轴与y轴的距离相等,试求(a-2)2014-a-2015的值.答案:0.解析:由题意得,5-a+2a-6=0.解得a=1.所以,(a-2)2014-a-2015=(1-2)2014-1-2015=1-1=0.考点:函数——平面直角坐标系——坐标与距离.15、若点P位于y轴左方,距y轴3个单位长,位于x轴上方,距x轴四个单位长,则点P的坐标是.答案:(-3,4).解析:略.考点:函数——平面直角坐标系——特殊点的坐标.16、在平面直角坐标系中,点P(-3,6)关于y轴的对称点的坐标为.答案:(3,6).解析:根据关于谁对称,谁不变,可知,点P(-3,6)关于y轴的对称点的坐标为(3,6). 考点:几何变换——图形的对称——关于x轴、y轴对称的点的坐标.17、在平面直角坐标系中,点P(-1,2)关于y轴的对称点为.答案:(1,2).解析:由关于谁对称谁不变,可知点P(-1,2)关于y轴的对称点为(1,2).考点:几何变换——图形的对称——关于x轴、y轴对称的点的坐标.18、在平面直角坐标系中,点P(-1,2)关于x轴的对称点在第象限.答案:三.解析:点P(-1,2)满足点在第二象限的条件.关于x轴的对称点的横坐标与P点的横坐标相同,是-2.纵坐标互为相反数,是-3.则P关于x 轴的对称点是(-2,-3),在第三象限.考点:几何变换——图形的对称——关于x轴、y轴对称的点的坐标.19、平面直角坐标系中,将线段OA向左平移2个单位,平移后,点O 、A的对应点分别为点O1 、A1,则点O1 、A1的坐标分别是().A.(0,0),(1,4)B.(0,0),(3,4)C.(-2,0),(1,4)D.(-2,0),(-1,4)答案:D.解析:∵线段OA向左平移2个单位,点O(0,0),A(1,4).∴点O1,A1的坐标分别是(-2,0),(-1,4).考点:几何变换——图形的平移——坐标与图形变化:平移.20、已知三角形的三个顶点坐标分别是(-2,1),(2,3),(-3,-1),把△ABC运动到一个确定位置,在下列各点坐标中,()是平移得到的.A.(0,3),(0,1),(-1,-1)B.(-3,2),(3,2),(-4,0)C.(1,-2),(3,2),(-1,-3)D.(-1,3),(3,5),(-2,1)答案:D.解析:由(-2,1)→(-1,3),(2,3)→(3,5),(-3,-1)→(-2,1)可以看作点向右平移1个单位长度,向上平移2个单位长度,而图形的平移是相同的,所以D对,A、B、C错.考点:函数——平面直角坐标系——点的位置与坐标.几何变换——图形的平移——点的平移.21、线段CD是由线段AB平移得到的,点A(-1,4)的对应点为,则点B(-4,-1)的对应点D坐标为().A.(2,9)B.(5,3)C.(1,2)D.(-9,-4)答案:C.解析:略.考点:函数——平面直角坐标系——点的位置与坐标.22、已知点A(0,0),B(3,0),点C在y轴上,且△ABC的面积为6,则点C的坐标是.答案:(0,4)或(0,-4).解析:由题意可知1AC·AB=6.2∴AC=4.∴点C的坐标是(0,4)或(0,-4).考点:函数——平面直角坐标系——坐标与面积.23、如图所示,半圆AB平移到半圆CD的位置时所扫过的面积为().A.3B.3+πC.6D.6+π答案:C.解析:扫过面积即为矩形ABDC的面积.∴扫过面积=2×3=6.考点:函数——平面直角坐标系——坐标与面积.24、在正方形网格上有一个△ABC ,网格上最小正方形的边长为1.(1) 把△ABC 平移,使点A 移动到点A’的位置,画出平移后的△A’B’C’,写出结论:__________.(2)△A’B’C’的面积为__________.(3)若点A 的坐标是(-5,2),点C’为坐标是(0,-2),在图中画出平面直角坐标系,点B’的坐标是__________.答案:(1) 结论:A’B’∥AB (答案不唯一).(2)△A’B’C’的面积是为5. (3)点B’的坐标是(-3,-3).解析:(1)平移后的△A’B’C’如图所示,结论:A’B’∥AB (答案不唯一).(2)观察图形可知,△A’B’C’内接在一个长为4,宽为3的长方形中.S △A’B’C’=4×3 −12×1×3−12×1×3−12×2×4=5. ∴△A’B’C’的面积是为5.(3)平面直角坐标系如图所示,点B’的坐标是(-3,-3).考点:三角形——三角形基础——三角形面积及等积变换.几何变换——图形的平移——平移的性质——坐标与图形变化:平移——作图:平移变换.25、定义:f (a,b )=(b,a ),g (m,n )=(-m,-n ).例如f (2,3)=(3,2),g (-1,-4)=(1,4).则g[f (-5,6)] 等于 . 答案:(-6,5).解析:根据所给定义,g[f (-5,6)]=g (6,-5)=(-6,5). 考点:式——探究规律——定义新运算.函数——平面直角坐标系.26、在平面直角坐标系中,对于平面内任一点(m ,n ),规定以下两种变换①f (m ,n )=(m ,-n ),如f (2,1)=(2,-1);②g (m ,n )=(-m ,-n ),如g (2,1)=(-2,-1).按照以上变换有:f[g (3,4)]=f (-3,-4)=(-3,4),那么g[f (-3,2)] 等于( ). A.(3,2) B.(3,-2) C.(-3,2) D.(-3,-2) 答案:A.解析:∵f (-3,2)=(-3,-2).∴g[f (-3,2)]=g (-3,-2)=(3,2). 考点:式——探究规律——定义新运算.27、观察下列有规律的点的坐标:A 1(1,1),A 2(2,-4),A 3(3,4),A 4(4,-2),A 5(5,7),A 6(6,−43),A 7(7,10),A 8(8,-1)依此规律,A 11的坐标为 ,A 12的坐标为 . A.(12,16),(12,−23) B.(11,15),(11,−23)C.(11,16),(11,−23) D.(11,16),(12,−23)答案:D. 解析:略.考点:函数——平面直角坐标系——点的位置与坐标.28、如图,边长为1,2的长方形ABCD 以右下角的顶点为中心旋转90°,此时A 点的坐标为 ;依次旋转2011次,则顶点A 的坐标为 . A.(3,3),(3027,0) B.(3,3),(3017,0) C.(3,2),(3027,0) D.(3,2),(3017,0) 答案:D. 解析:略.考点:式——探究规律.方程与不等式.函数——平面直角坐标系.29、一个粒子在第一象限内及x 轴、y 轴上运动,在第1min 内它从原点运动到(1,0),而后接着按如图所示方式在与x 轴、y 轴平行的方向上来回运动,且每分钟移动1个单位长度,那么,在2011min 后,求这个粒子所处的位置坐标.A.(41,13)B.(41,14)C.(44,13)D.(44,14) 答案:C.解析:弄清粒子的运动规律,并求出靠近2011min 后粒子所在的特殊点的坐标,最后确定所求点的坐标.对于这种运算数较大的题目,我们首先来寻找规律,先观察横坐标与纵坐标相同的点:(0,0),粒子运动了0min. (1,1),粒子运动了1×2=2(min ),向左运动. (2,2),粒子运动了2×3=6(min ),向下运动.(3,3),粒子运动了3×4=12(min),向左运动.(4,4),粒子运动了4×5=20(min),向下运动.……于是点(44,44)处粒子运动了44×45=1980(min).这时粒子向下运动,从而在运动了2011后,粒子所在的位置是(44,44-31),即(44,13).考点:函数——平面直角坐标系.30、在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图所示.①填写下列各点的坐标:A1(,),A3(,),A12(,).②写出点A4n的坐标为(是正整数).③指出蚂蚁从点A100到A101的运动方向为.A. ①(1,1),(1,0),(5,0);②(2n,0);③ 从下到上.B. ①(1,1),(1,0),(6,0);②(2n,0);③ 从上到下.C. ①(0,1),(1,0),(5,0);②(2n,0);③ 从上到下.D. ①(0,1),(1,0),(6,0);②(2n,0);③ 从下到上.答案:D.解析:略.考点:函数——平面直角坐标系——点的位置与坐标——坐标与距离.。

第1课时平面直角坐标系七年级数学下册考点知识清单+例题讲解+课后练习(人教版)(原卷版)

第1课时平面直角坐标系七年级数学下册考点知识清单+例题讲解+课后练习(人教版)(原卷版)

第1课时—平面直角坐标系(答案卷)知识点一:有序数对:1.有序数对的概念:由两个数a与b组成的数对。

记做。

2.有序数对的应用:利用有序数对可以表示物体的位置。

表示方法有:定位法;定位法;定位法;定位法。

【类型一:有序数对的理解】1.张明同学的座位位于第2列第5排,李丽同学的座位位于第4排第3列,若张明的座位用有序数对表示为(2,5),则李丽的座位用的有序数对表示为()A.(4、3)B.3,4C.(3,4)D.(4,3)2.如图是小唯关于诗歌《望洞庭》的书法展示,若“湖”的位置用有序数对(2,3)表示,那么“螺”的位置可以表示为()A.(5,8)B.(5,9)C.(8,5)D.(9,5)3.如图,在围棋棋盘上有3枚棋子,如果黑棋❶的位置用有序数对(0,﹣1)表示,黑棋❷的位置用有序数对(﹣3,0)表示,则白棋③的位置可用有序数对表示为()A.(2,1)B.(﹣1,2)C.(﹣2,1)D.(1,﹣2)【类型二:用有序数对表示位置】4.以下能够准确表示渠县地理位置的是()A.离达州市主城区73千米B.在四川省C.在重庆市北方D.东经106.9°,北纬30.8°5.下列不能确定点的位置的是()A.东经122°,北纬43.6°B.礼堂6排22号C.地下车库负二层D.港口南偏东60°方向上距港口10海里6.下列数据不能确定物体位置的是()A.某小区3单元406室B.南偏东30°C.淮海路125号D.东经121°、北纬35°7.嘉嘉乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的小艇A,B,C的位置如图所示,每相邻两个圆之间距离是1km(小圆半径是1km).若小艇B相对于游船的位置可表示为(﹣60°,2),小艇C相对于游船的位置可表示为(0°,﹣1)(向东偏为正,向西偏为负),下列关于小艇A相对于游船的位置表示正确的是()A.小艇A(30°,3)B.小艇A(﹣30°,3)C.小艇A(30°,﹣3)D.小艇A(60°,3)8.如图是一台雷达探测相关目标得到的部分结果,若图中目标A的位置为(2,90°),用方位角和距离可描述为:在点O正北方向,距离O点2个单位长度.下面是嘉嘉和琪琪用两种方式表示目标B,则判断正确的是()嘉嘉:目标B的位置为(3,210°);琪琪:目标B在点O的南偏西30°方向,距离O点3个单位长度.A.只有嘉嘉正确B.只有淇淇正确C.两人均正确D.两人均不正确知识点二:平面直角坐标系:1.平面直角坐标系的概念:如图:平面内,两条相互,且的数轴组成平面直角坐标系。

七年级数学下册第七章平面直角坐标系知识点总结全面整理

七年级数学下册第七章平面直角坐标系知识点总结全面整理

(名师选题)七年级数学下册第七章平面直角坐标系知识点总结全面整理单选题1、如图,点A1(1,1)向上平移1个单位长度,再向右平移2个单位长度,得到点A2;将点A2向上平移2个单位长度,再向右平移4个单位长度,得到点A3;将点A3向上平移4个单位长度,再向右平移8个单位长度,得到A4,…,按照这个规律平移得到的点A2022,则点A2022的横坐标为()A.22021B.22022−1C.22022D.22022+1答案:B分析:先求出点A1,A2,A3,A4的横坐标,再从特殊到一般探究出规律,然后利用规律即可解决问题.解:点A1的横坐标为1=21-1,点A2的横坐标为1+2=3=22-1,点A3的横坐标为1+2+4=7=23-1,点A4的横坐标为1+2+4+8=15=24-1,…按这个规律平移得到点An的横坐标为1+2+4+8+⋯+2n−1=2n−1,∴点A2022的横坐标为22022-1,故选:B.小提示:本题考查坐标与图形变化-平移、规律型问题等知识,解题的关键是学会探究规律的方法.2、在某游乐场,以中心广场为观测点,若有序数对(500,20°)表示图中“太阳神车”的位置,有序数对(400,340°)表示图中“雪域金翅”的位置,则与图中“天地双雄”位置对应的有序数对为()A.(500,60°)B.(500,120°)C.(500,100°)D.(400,20°)答案:B分析:根据“太阳神车”与“雪域金翅”的位置结果找到位置的表示方法,即可求解.∵“太阳神车”的位置为(500,20°),“雪域金翅”的位置为(400,340°),∴可知有序数对的第一个值为:目标距离观测点中心广场的距离,第二个值为:目标与观测点中心广场的连线与正东方向的旋转角度度数,∴根据图形可知,“天地双雄”距离观测点中心广场的距离为:500,天地双雄”与观测点中心广场的连线与正东方向的旋转角度度数为120°,即有序数对为(500,120°),故选:B.小提示:本题考查了用有序数对表示位置的知识,理解题意是解答本题的关键.3、在平面直角坐标系中,点(2,﹣5)到y轴的距离是()A.2B.﹣2C.5D.﹣5答案:A分析:直角坐标系中的点可以表示为(x,y),到y轴的距离可以表示为|x|,根据题意代入数据,此题得解.解:点(2,−5)到y轴的距离为|2|=2,故选:A.小提示:能够正确的理解点与直角坐标系之间的关系,以及能够画出草图,可以提高解题效率,本题易错选C.4、在平面直角坐标系中,将点(2,l)向右平移3个单位长度,则所得的点的坐标是()A.(0,5)B.(5,1)C.(2,4)D.(4,2)答案:B分析:在平面直角坐标系中,将点(2,l)向右平移时,横坐标增加,纵坐标不变.将点(2,l)向右平移3个单位长度,则所得的点的坐标是(5,1).故选B.小提示:本题运用了点平移的坐标变化规律,关键是把握好规律.5、举世瞩目的2022北京冬季奥运会由北京市和河北省张家口市联合举办,以下表述能够准确表示张家口市地理位置的是().A.位于东经114.8°,北纬40.8°B.位于中国境内河北省C.西边和西南边与山西省接壤D.距离北京市180千米答案:A分析:根据点的坐标的定义,确定一个位置需要两个数据解答即可.解:能够准确表示张家口市这个地点位置的是:东经114.8°,北纬40.8°.故选:A.小提示:本题考查了坐标确定位置,理解坐标的定义是解题的关键.6、下列说法不正确的是()A.点A(−a2−1,|b|+1)一定在第二象限B.点P(−2,3)到y轴的距离为2C.若P(x,y)中xy=0,则P点在x轴上D.若x+y=0,则点P(x,y)一定在第二、第四象限角平分线上答案:C分析:根据各象限角平分线上点的坐标特征,坐标轴上点的坐标特征以及点到y轴的距离等于横坐标的长度对各选项分析判断即可得解.解:A、因为−a2−1<0,|b|+1>0,所以点A(−a2−1,|b|+1)一定在第二象限,说法正确,故此选项不符合题意.B、点P(−2,3)到y轴的距离是2,说法正确,故此选项不符合题意;C、若P(x,y)中xy=0,则P点在x轴或y轴上,说法不正确,故此选项符合题意;D、若x+y=0,则x、y互为相反数,点P(x,y)一定在第二、四象限角平分线上,说法正确,故此选项不符合题意;故选:C.小提示:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).7、在平面直角坐标系中,点A(−2,1),B(2,3),C(a,b),若BC∥x轴,AC∥y轴,则点C的坐标为()A.(−2,1)B.(2,−3)C.(2,1)D.(−2,3)答案:D分析:根据已知条件即可得到结论.解:∵点A,B的坐标分别是(-2,1),(2,3).AC∥y轴,BC∥x轴,∴点C的横坐标与点A的横坐标相同,a为-2,点C的纵坐标与点B的纵坐标相同,b为3,∴点C的坐标为(-2,3),故选:D.小提示:本题考查了坐标与图形性质,正确的理解题意是解题的关键.8、若y轴负半轴上的点P到x轴的距离为2,则点P的坐标为()A.(0,2)B.(2,0)C.(﹣2,0)D.(0,﹣2)答案:D分析:点P在y轴上则该点横坐标为0,据此解答即可.∵y轴负半轴上的点P到x轴的距离为2,∴点P的坐标为(0,﹣2).故选:D.小提示:本题考查了点的坐标,解决本题的关键是掌握好坐标轴上的点的坐标的特征,y轴上的点的横坐标为0.9、如图,直角坐标平面xOy内,动点P按图中箭头所示方向依次运动,第1次从点(−1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,−2),…,按这样的运动规律,动点P第2022次运动到点的坐标是A.(2021,1)B.(2020,1)C.(2021,0)D.(2020,0)答案:C分析:观察图形可知,每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2022除以4,然后根据商和余数的情况确定运动后点的坐标即可.解:点P的运动规律是每运动四次向右平移四个单位,∵2022=505×4+2,∴动点P第2022次运动时向右505×4+2=2022个单位,∴点P此时坐标为(2021,0),故选:C.小提示:本题为平面直角坐标系下的规律探究题,解答时注意探究动点的运动规律,又要注意动点的坐标的象限符号.10、家长会前,四个孩子分别向家长描述自己在班里的座位,家长能准确找到自己孩子座位的是()A.小明说他坐在第1排B.小白说他坐在第3列C.小清说她坐在第2排第5列D.小楚说他的座位靠窗答案:C分析:直接利用坐标确定位置需要两个量,进而分析得出答案.解:A.小明说他坐在第1排,无法确定座位位置,故此选项不合题意;B.小白说他坐在第3列,无法确定座位位置,故此选项不合题意;C.小清说她坐在第2排第5列,可以确定座位位置,故此选项符合题意;D.小楚说他的座位靠窗,无法确定座位位置,故此选项不合题意;故选:C.小提示:本题主要考查了坐标确定位置,掌握具体位置确定需两个量是解题关键.11、通过平移把点A(2,−1)移到点A1(2,2),按同样的平移方式,点B移动到点B1(−3,1),则点B的坐标是_________.答案:(−3,−2)分析:根据已知条件找到平移规律:横坐标不变,纵坐标加3,即可解题.解:把点A(2,−1)移到点A1(2,2),只需要将点A向上平移3个单位长度,即横坐标不变,纵坐标加3,∴按同样的平移方式,点B移动到点B1(−3,1),即B1(−3,1)向下平移3个单位长度可得点B,∴点B的坐标是(−3,−2).小提示:本题考查了点的平移,属于简单题,找到平移规律是解题关键,注意平移前后坐标的变化.12、已知AB∥x轴,A(-2,4),AB5,则B点横纵坐标之和为______.答案:-3或7分析:由AB∥x轴可知B点的纵坐标和A点的纵坐标相同,再根据线段AB的长度为5,B点在A点的左边或右边,分别求出B点的坐标,即可得到答案.解:∵AB∥x轴,∴B点的纵坐标和A点的纵坐标相同,都是4,又∵A(-2,4),AB5,∴当B点在A点左侧的时候,B(-7,4),此时B点的横纵坐标之和是-7+4=-3,当B点在A点右侧的时候,B(3,4),此时B点的横纵坐标之和是3+4=7;所以答案是:-3或7.小提示:本题考查了与坐标轴平行的线上点的坐标特征以及分情况讨论的思想,要注意根据B点位置的不确定得出两种情况分别求解.13、在平面直角坐标系xOy中,若点P在第四象限,且点P到x轴和y轴距离分别为5和4,则点P的坐标为________________.答案:(4,﹣5)分析:根据点的坐标的几何意义及第四象限内的点的坐标符号的特点即可得出.解:∵点P在第四象限,且点P到x轴和y轴的距离分别为5,4,∴点P的横坐标是4,纵坐标是﹣5,即点P的坐标为(4,﹣5).所以答案是:(4,﹣5).小提示:本题主要考查了点在第四象限时点的坐标的符号,以及横坐标的绝对值就是到y轴的距离,纵坐标的绝对值就是到x轴的距离.14、将自然数按图规律排列:如果一个数在第m行第n列,那么记它的位置为有序数对(m,n),例如:数2在第2行第1列,记它的位置为有序数对(2,1).按照这种方式,(1)位置为有序数对(4,5)的数是______;(2)数√70位置为有序数对______.答案:√22(9,6)分析:根据题意,找出题目的规律,(2,2)中含有4个数,(3,3)中含有9个数,(4,4)中含有16个数,……,(8,8)中含有64个数,且奇数行都是从左边第一个数开始,然后根据这个规律即可得出答案.解:根据题意,如图:∴有序数对(4,5)的数是√22;由图可知,(2,2)中含有4个数,(3,3)中含有9个数,(4,4)中含有16个数;……∴(8,8)中含有64个数,且奇数行都是从左边第一个数开始,∵√70>√64,∴√70是第九行的第6个数;∴数√70位置为有序数对是(9,6).所以答案是:√22;(9,6).小提示:此题考查数字的变化规律,找出数字之间的联系,得出运算规律,解决问题.15、如图,在平面直角坐标系中,△ABC的顶点B、C的坐标分别是(−1,0),(5,0),点D、E分别是AB、AC的中点,点D的坐标为(1,2),则点A、E的坐标分别是______.答案:(3,4)、(4,2)分析:已知点A和点D的坐标,且D为AB的中点,由中点坐标公式可求出点A的坐标,由点E为AC的中点,同理由中点坐标公式可求得点E的坐标.解:设A(a,b)∵点B(-1,0),点D(1,2),且点D为AB的中点,∴−1+a2=1,0+b2=2解得,a=3,b=4∴A(3,4)又点C(5,0),点E为AC的中点,设C(x,y),则有:x=5+32=4,y=0+42=2∴点E的坐标为(4,2)故答案是:(3,4)、(4,2).小提示:本题主要考查了坐标与图形的性质,熟练运用中点坐标公式是解答本题的关键.解答题16、在直角坐标平面内,已点A(3,0)、B(−5,3),将点A向左平移6个单位到达C点,将点B向下平移6个单位到达D点.(1)写出C点、D点的坐标:C ______ ,D ______ ;(2)把这些点按A−B−C−D−A顺次连接起来,这个图形的面积是______ .答案:(1)(-3,0)(-5,-3);(2)18分析:(1)根据平移的性质,结合A、B坐标,点A向左平移6个单位到达C点,横坐标减6,坐标不变;将点B向下平移6个单位到达D点,横坐标不变,纵坐标减6,即可得出;(2)根据各点坐标画出图形,然后,计算可得.(1)∵点A向左平移6个单位到达C点,将点B向下平移6个单位到达D点,∴得C(−3,0),D(−5,−3);(2)如图,S 四边形ABCD =S △ABC +S △ACD =12×3×6+12×3×6=18. 17、如图,A 、B 两点的坐标分别为(2,3)、(4,1).(1)求△ABO 的面积;(2)把△ABO 向下平移3个单位后得到一个新三角形△O′A′B′,求△O′A′B′的3个顶点的坐标.答案:(1)S △ABO =5;(2)A′(2,0),B′(4,-2),O′(0,-3).试题分析:(1)利用面积的割补法求解,(2)根据点的平移规律,向下平移,横坐标不变,纵坐标减去平移得单位长度即可求解.试题解析:(1)如图所示:S △ABO =3×4-12×3×2-12×4×1-12×2×2=5,(2)A ′(2,0),B ′(4,-2),O ′(0,-3).18、在如图所示的直角坐标系中,解答下列问题:(1)已知A(2,0),B(-1,-4),C(3,-3)三点,分别在坐标系中找出它们,并连接得到△ABC;(2)将△ABC向上平移4个单位,得到△A1B1C1;(3)求四边形A1B1BA的面积.答案:(1)见解析(2)见解析(3)12分析:(1)先确定三个点的位置,再依次连接起来即可.(2)根据平移规律,画图即可.(3)合理分割图形计算面积即可.(1)因为A(2,0),B(-1,-4),C(3,-3),画图如下:(2)因为A(2,0),B(-1,-4),C(3,-3),根据向上平移4个单位,横坐标不变,纵坐标分别加上4,得A1(2,4),B1(-1,0),C1(3,1),画图如下:.(3)根据题意,得B1B=0−(−4)=4,AB1=2−(−1)=3,∴S四边形A1B1BA =2S△B1BA=2×12×3×4=12..小提示:本题考查了坐标系中确定点的位置,平移的规律,坐标系中图形的面积计算,熟练掌握平移的规律,利用割补法求图形的面积是解题的关键.。

《常考题》初中七年级数学下册第七单元《平面直角坐标系》习题(含答案解析)

《常考题》初中七年级数学下册第七单元《平面直角坐标系》习题(含答案解析)

一、选择题1.已知点A (0,-6),点B (0,3),则A ,B 两点间的距离是( )A .-9B .9C .-3D .32.如图,将一颗小星星放置在平面直角坐标系中第二象限内的甲位置,先将它绕原点O 旋转180︒到乙位置,再将它向上平移2个单位长到丙位置,则小星星顶点A 在丙位置中的对应点A '的坐标为( )A .()3,1-B .()1,3C .()3,1D .()3,1- 3.已知P(a ,b )满足ab=0,则点P 在( ) A .坐标原点 B .X 轴上 C .Y 轴上 D .坐标轴上 4.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的坐标分别为(2,1)A -和(2,3)B --,那么第一架轰炸机C 的坐标是( )A .(2,3)-B .(2,1)-C .(2,1)--D .(3,2)- 5.若点P (x, y )在第二象限,且2,3x y ==,则x + y =( )A .-1B .1C .5D .-5 6.点A(-π,4)在第( )象限 A .第一象限 B .第二象限 C .第三象限 D .第四象限 7.如图,在ABC ∆中,90ACB ∠=︒,AC BC =,点C 的坐标为()2,0-,点B 的坐标为()1,4,则点A 的坐标为( )A .()6,3-B .()3,6-C .()4,3-D .()3,4- 8.若某点A 位于x 轴上方,距x 轴5个单位长,且位于y 轴的左边,距y 轴10个单位长,则点A 的坐标是( )A .(510)-,B .(510)-,C .(105)-,D .(105)-,9.如图是医院、公园和超市的平面示意图,超市B 在医院O 的南偏东25︒的方向上,且到医院的距离为300m ,公园A 到医院O 的距离为400m .若∠90AOB =︒,则公园A 在医院O 的( )A .北偏东75︒方向上B .北偏东65︒方向上C .北偏东55︒方向上D .北偏西65°方向上10.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为( )A .(5,4)B .(4,5)C .(3,4)D .(4,3)11.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2021次运动后,动点P 的坐标是( )A .(2021,0)B .(2020,1)C .(2021,1)D .(2021,2) 12.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m 其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,…第n 次移动到n A .则32020OA A △的面积是( )A .2504.5mB .2505mC .2505.5mD .21010m 13.如图所示,某战役缴获敌人防御工事坐标地图碎片,依稀可见,一号暗堡的坐标为(4,2),四号暗堡的坐标为(2,4)-,原有情报得知:敌军指挥部的坐标为(0,0),你认为敌军指挥部的位置大约是( )A .A 处B .B 处C .C 处D .D 处14.如图,线段OA ,OB 分别从与x 轴和y 轴重合的位置出发,绕着原点O 顺时针转动,已知OA 每秒转动45︒,OB 的转动速度是每秒转动30,则第2020秒时,OA 与OB 之间的夹角的度数为( )A .90︒B .145︒C .150︒D .165︒ 15.已知点M (12,﹣5)、N (﹣7,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( )A .相交、相交B .平行、平行C .垂直相交、平行D .平行、垂直相交 二、填空题16.如图,平面直角坐标系xOy 中,点A(4,3),点B(3,0),点C(5,3),OAB ∆沿AC 方向平移AC 长度的到ECF ∆,四边形ABFC 的面积为_________.17.如图,一只甲虫在55⨯的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B .C .D 处的其它甲虫,规定:向上向右走为正,向下向左走为负、如果从A 到B 记为:(1,4)A B →++,从B 到A 记为:(1,4)B A →--,其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A C →(______,______),B C →(______,______),C →______(1+,______);(2)若图中另有两个格点M .N ,且M A →(3,4)a b --,M N →(5,2)a b --,则N A →应记为______.18.在平面直角坐标系中,若点(1, 2)M m m -+与点(23, 2)N m m ++之间的距离是5,则m =______.19.若电影票上座位是12排5号可记为(12,5),则(5,6)表示_______________. 20.如图,有A ,B ,C 三点,如果A 点用()1,1表示,B 点用()2,3表示,则C 点的坐标为_______.21.如图,在平面直角坐标系中,已如点A (1,1),B (-1,1),C (-1,-2),D (1,-2),把一根长为2019个单位长度没有弹性的细线(线的相细忽略不计)的一端固定在A 处,并按A B C D A →→→→的规律紧绕在四边形ABCD 的边上,则细线的另一端所在位置的点的坐标是__________.22.已知点(1,0)A 、(0,2)B ,点P 在x 轴上,且PAB △的面积为5,则点P 的坐标为__________.23.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,-1),…,按照这样的运动规律,点P 第17次运动到的点的坐标为__________.24.已知P (a,b ),且ab <0,则点P 在第_________象限.25.若点A (-2,n )在x 轴上,则点B(n-2,n+1)在第_____象限 .26.如图,直线BC 经过原点O ,点A 在x 轴上,AD BC ⊥于D .若A (4,0),B (m ,3),C (n ,-5),则AD BC =______.三、解答题27.在平面直角坐标系中,已知点M 的坐标为()23,1m m +-.(1)若点M 在x 轴上,求m 的值;(2)已知点N 的坐标为(3,2)-,且直线MN x ⊥轴,求线段MN 的长.28.如图,在平面直角坐标系中,△ABC 的顶点C 的坐标为(1,3).(1)请直接写出点A 、B 的坐标.(2)若把△ABC 向上平移3个单位,再向右平移2个单位得△A′B′C′,画出△A′B′C′; (3)直接写出△A′B′C′各顶点的坐标;(4)求出△ABC 的面积29.如图,已知平面直角坐标系中,点A 在y 轴上,点B 、C 在x 轴上,S △ABO =8,OA =OB ,BC =10,点P 的坐标是(-6,a )(1)求△ABC 三个顶点A 、B 、C 的坐标;(2)连接PA 、PB ,并用含字母a 的式子表示△PAB 的面积(a ≠2);(3)在(2)问的条件下,是否存在点P ,使△PAB 的面积等于△ABC 的面积?如果存在,请求出点P 的坐标;若不存在,请说明理由.30.画图并填空:如图,方格纸中每个小正方形的边长都为1,在方格纸内将ABC经过''',图中标出了点B的对应点B'.请利用网格点和直尺画图或计一次平移后得到A B C算:''';(1)在给定方格纸中画出平移后的A B C(2)画出AB边上的中线CD及高线CE;(3)在上述平移中,边AB所扫过的面积为.。

(必考题)初中七年级数学下册第七单元《平面直角坐标系》知识点(答案解析)

(必考题)初中七年级数学下册第七单元《平面直角坐标系》知识点(答案解析)

一、选择题1.在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为(1,1)A --,(1,2)B ,平移线段AB ,得到线段A B '',已知A '的坐标为(3,1)-,则点B '的坐标为( )A .(4,2)B .(5,2)C .(6,2)D .(5,3) 2.一只跳蚤在第一象限及x 、y 轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)→(0,1)→(1,1)→(1,0)→……,每次跳一个单位长度,则第2021次跳到点( )A .(3,44)B .(4,45)C .(44,3)D .(45,4) 3.在平面直角坐标系中,点(2,1)A -关于y 轴对称的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限 4.下列各点中,在第二象限的是( ) A .()1,0 B .()1,1 C .()1,1- D .()1,1- 5.在平面直角坐标系中,点Q 的坐标是()35,1m m -+.若点Q 到x 轴的距离与到y 轴的距离相等,则m 的值为( )A .3B .1C .1或3D .2或3 6.如图,在棋盘上建立平面直角坐标系,若使“将”位于点(-1,-2),“象”位于点(4,-1),则“炮”位于点( )A .(2,-1)B .(-1,2)C .(-2,1)D .(-2,2) 7.点A(-π,4)在第( )象限 A .第一象限 B .第二象限 C .第三象限 D .第四象限 8.下列说法正确的是( )A .若0ab =,则点(,)P a b 表示原点B .点(1,)a 在第三象限C .已知点(3,3)A -与点(3,3)B ,则直线//AB x 轴D .若0ab >,则点(,)P a b 在第一或第三象限9.在平面直角坐标系中,点()3,4-在( )A .第一象限B .第二象限C .第三象限D .第四象限 10.将点()1,2P 向左平移3个单位后的坐标是( )A .()2,2-B .()1,1-C .()1,5D .()1,1-- 11.如图,在一单位长度为1cm 的方格纸上,依如所示的规律,设定点1A 、2A 、3A 、4A 、5A 、6A 、7A 、n A ,连接点O 、1A 、2A 组成三角形,记为1∆,连接O 、2A 、3A 组成三角形,记为2∆,连O 、n A 、1n A +组成三角形,记为n ∆(n 为正整数),请你推断,当n 为50时,n ∆的面积=( )2cmA .1275B .2500C .1225D .125012.如图,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(0,1),将线段AB 平移,使其一个端点到C (3,2),则平移后另一端点的坐标为( )A .(1,3)B .(5,1)C .(1,3)或(3,5)D .(1,3)或(5,1) 13.如图,线段OA ,OB 分别从与x 轴和y 轴重合的位置出发,绕着原点O 顺时针转动,已知OA 每秒转动45︒,OB 的转动速度是每秒转动30,则第2020秒时,OA 与OB 之间的夹角的度数为( )A .90︒B .145︒C .150︒D .165︒ 14.若把点A (-5m ,2m -1)向上平移3个单位后得到的点在x 轴上,则点A 在( ) A .x 轴上 B .第三象限 C .y 轴上 D .第四象限 15.如图,将点A 0(-2,1)作如下变换:作A 0关于x 轴对称点,再往右平移1个单位得到点A 1,作A 1关于x 轴对称点,再往右平移2个单位得到点A 2,…,作A n -1关于x 轴对称点,再往右平移n 个单位得到点A n (n 为正整数),则点A 64的坐标为( )A .(2078,-1)B .(2014 ,-1)C .(2078 ,1)D .(2014 ,1)二、填空题16.如图,()3,3A -,()1,2P -,P 关于直线OA 的对称点为1P ,1P 关于x 轴的对称点为2P ,2P 关于y 轴的对称点为3P ,3P 关于直线OA 的对称点为4P ,4P 关于x 轴的对称点为5P ,5P 关于y 轴的对称点为6P ,6P 关于直线OA 的对称点为7P ,…,则2020P 的坐标是__________.17.定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点(至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若(1,1)P -,(2,3)Q ,则P ,Q 的“实际距离”为5,即5PS SQ +=或5PT TQ +=.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为(2,2)A ,(4,2)B -,(2,4)C --,若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为______.18.对于平面直角坐标系xOy中的点P(a,b),若点P的坐标为(a+kb,ka+b)(其中k 为常数,且k≠0),则称点P为点P的“k属派生点”,例如:P(1,4)的“2属派生点”为P (1+2×4,2×1+4),即P′(9,6).若点P在x轴的正半轴上,点P的“k属派生点”为点P′,且线段PP′的长度为线段OP长度的5倍,则k的值为___.19.直角坐标系内,一动点按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),……,按这样的运动规律,动点第2021次运动到的点的坐标为____________.20.如图,已知A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1),…,则坐标为(﹣505,﹣505)的点是______.21.如图,在平面直角坐标系中,已如点A(1,1),B(-1,1),C(-1,-2),D(1,-2),把一根长为2019个单位长度没有弹性的细线(线的相细忽略不计)的一端固定在A →→→→的规律紧绕在四边形ABCD的边上,则细线的另一端所处,并按A B C D A在位置的点的坐标是__________.22.已知点M 在y 轴上,纵坐标为4,点P (6,﹣4),则△OMP 的面积是__. 23.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,2),且|a ﹣c|+8b -=0,将线段PQ 向右平移a 个单位长度,其扫过的面积为24,那么a+b+c 的值为_____. 24.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.则点2019A 的坐标是_________.25.如图,在平面直角坐标系中,()()()()1,1,1,1,1,2,1,2A B C D ----,把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处, 并按 A B C D A ----⋯的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是 ____.26.如果点P (a ﹣1,a +2)在x 轴上,则a 的值为_____.三、解答题27.在直角坐标系中,ABC 顶点C 的坐标为()1m ,.90C ∠=︒,//BC x 轴,直线//l y 轴,,BC a AC b ==,ABC 与111A B C △关于直线l 对称,222A B C △与111A B C △关于y 轴对称,333A B C △与222A B C △关于x 轴对称.(1)问ABC 与222A B C △通过平移能重合吗?若不能说明其理由,若能请你说出一个平移方案(平移的单位数用m 、a 表示):(2)试写出点33A B 、坐标(注:结果可用含a 、b 、m 的代数式表示).28.如图是我国南沙群岛中某个小岛的平面示意图,小明建立了平面直角坐标系后,营房的坐标为(2,5)-,哨所2的坐标为(2,2)-.(1)请将小明所做的坐标系在图上画出,并写出雷达,码头,停机坪,哨所1的坐标. (2)如果平移直角坐标系,使营房为坐标原点,值班士兵从营房出发,沿着(3,3),(1,6),(4,8),(4,7),(5,2),(1,10)---的路线巡逻,请依次写出他所经过的地方.29.如图,三角形ABC 三个顶点坐标分别是()4,3A ,()3,1B ,()1,2C ,三角形ABC 内任意一点(),M m n .(1)将三角形ABC 平移得到三角形111A B C ,点C 的对应点为()14,4C ,请画出三角形111A B C 并写出1A 的坐标;(2)若三角形PQR 是三角形ABC 经过某种变换后得到的图形.点A 的对应点为P ,点B 的对应点为Q ,点C 的对应点为R .观察变换前后各对应点之间的关系,若点M 经过这种变换后的对应为N,则点N的坐标为(______,______)(用含m,n的式子表示)30.如图,已知五边形 ABCDE 各顶点坐标分别为A(-1,-1),B(3,-1),C(3,1),D(1,3),E(-1,3)(1)求五边形 ABCDE 的面积;(2)在线段 DC 上确定一点 F,使线段 AF 平分五边形 ABCDE 的面积,求 F 点的坐标.。

七年级数学(下)《平面直角坐标系》知识点总结及练习题含答案

七年级数学(下)《平面直角坐标系》知识点总结及练习题含答案

七年级数学(下)《平面直角坐标系》知识点总结及练习题要点感知1 在平面内画两条__________、__________的数轴,组成平面直角坐标系.水平的数轴称为__________或__________,竖直的数轴称为__________或__________,两坐标轴的交点为平面直角坐标系的__________.预习练习1-1如图,在平面直角坐标系中,点E的坐标是__________.要点感知2在坐标平面内,x轴和y轴把坐标平面分成四个部分,分别叫做__________、__________、__________、__________.各象限内点的坐标符号分别为________,________)、(________,________)、(________,________)、(_______,________).坐标轴上的点不属于任何象限.x轴上的点的__________为0,y轴上点的__________为0,原点坐标为__________. 预习练习2-1(2014·玉林)在平面直角坐标系中,点(-4,4)在第__________象限.要点感知3__________的点与有序实数对一一对应.同一个点在不同坐标系下,所对应的有序数对不一样.预习练习3-1 点P在第三象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为( )A.(-4,3)B.(-3,-4)C.(-3,4)D.(3,-4)知识点1 认识平面直角坐标系1.点P(1,-2)在平面直角坐标系中所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限2.在平面直角坐标系中,点P(2,x2)在( )A.第一象限B.第四象限C.第一或者第四象限D.以上说法都不对3.点P(4,-3)到x轴的距离是__________个单位长度,到y轴的距离是__________个单位长度.4.平面直角坐标系内有一点P(x,y),若点P在横轴上,则__________;若点P在纵轴上,则__________;若P为坐标原点,则__________.5.写出图中A,B,C,D,E,F,O各点的坐标.知识点2 在坐标系中描点6.一个正方形在平面直角坐标系中三个顶点的坐标为(-2,-3),(-2,1),(2,1),则第四个顶点的坐标为( )A.(2,2)B.(3,2)C.(2,-3)D.(2,3)7.如图所示的平面直角坐标系中,把以下各组点描出来,并顺次连接各点.(0,-4),(3,-5),(6,0),(0,-1),(-6,0),(-3,-5),(0,-4).8.将边长为1的正方形ABCD放在直角坐标系中,使C的坐标为(12,12).请建立直角坐标系,并求其余各点的坐标.9.在平面直角坐标系中描出点A(-3,3),B(-3,-1),C(2,-1),D(2,3),用线段顺次连接各点,看它是什么样的几何图形?并求出它的面积.10.如果点P(m+3,m+1)在直角坐标系的x轴上,那么P点坐标为( )A.(0,2)B.(2,0)C.(4,0)D.(0,-4)11.已知坐标平面内点M(a,b)在第三象限,那么点N(b,-a)在( )A.第一象限B.第二象限C.第三象限D.第四象限12.点A的坐标(x,y)满足(x+3)2+|y+2|=0,则点A的位置在( )A.第一象限B.第二象限C.第三象限D.第四象限13.平面直角坐标系内AB∥y轴,AB=5,点A坐标为(-5,3),则点B坐标为( )A.(-5,8)B.(0,3)C.(-5,8)或(-5,-2)D.(0,3)或(-10,3)14.已知P点坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是__________.15.已知AB∥x轴,A点的坐标为(3,2),并且AB=5,则B点的坐标为__________.16.已知点A(-5,0),点B(3,0),点C在y轴上,△ABC的面积为12,则点C的坐标为__________.17.已知点P(m,n)到x轴的距离为3,到y轴的距离等于5,则点P的坐标是__________.18.如图,已知A,B两村庄的坐标分别为(2,2),(7,4),一辆汽车在x轴上行驶,从原点O出发.(1)汽车行驶到什么位置时离A村最近?写出此点的坐标;(2)汽车行驶到什么位置时离B村最近?写出此点的坐标.19.如图所示,写出其中标有字母的各点的横坐标和纵坐标.20.在直角坐标系内描出各点,并依次用线段连接各点:(4,4),(3,3),(4,3),(2,1),(4,1),(72,0),(92,0),(4,1),(6,1),(4,3),(5,3),(4,4).观察得到的图形,你觉得该图形像什么?求出所得到图形的面积.挑战自我21.如图,在直角坐标系中第一次将△OAB变换成△OA1B1,第二次又变换成△OA2B2,第三次变换成△OA3B3,已知:A(1,3),A1(-2,-3),A2(4,3),A3(-8,-3);B(2,0),B1(-4,0),B2(8,0),B3(-16,0).(1)观察每次变化前后的三角形有何变化,找出其中的规律,按此变化规律变换成△OA4B4,则点A4的坐标为__________,点B4的坐标为__________.(2)若按(1)中找到的规律将△OAB进行了n次变换,得到△OA n B n,推测点A n坐标为__________,点B n坐标为__________.参考答案课前预习要点感知1 互相垂直原点重合x轴横轴y轴纵轴原点预习练习1-1(1,2)要点感知2第一象限第二象限第三象限第四象限+ + - + - - + -纵坐标横坐标(0,0)预习练习2-1二要点感知3坐标平面内预习练习3-1 B当堂训练1.D2.D3.3 44.y=0 x=0 x=y=05.观察图,A(2,3),B(3,2),C(-2,1),D(-1,-2),E(2.5,0),F(0,-2),O(0,0).6.C7.图略.8.图略,A(-12,-12),B(12,-12),D(-12,12).9.图略,所得图形为长方形.∵AB=|3|+|-1|=4,BC=|-3|+|2|=5.∴S长方形ABCD=AB·BC=4×5=20(平方单位).课后作业10.B 11.B 12.C 13.C 14.(3,3)或(6,-6) 15.(8,2)或(-2,2) 16.(0,3)或(0,-3)17.(5,3)或(-5,3)或(5,-3)或(-5,-3)18.(1)汽车行驶到点A与x轴的垂线段的垂足处时,离A村最近,此点的坐标为(2,0);(2)汽车行驶到点B与x轴的垂线段的垂足处时离B村最近,此点的坐标为(7,0).19.A(0,6),B(-4,2),C(-2,2),D(-2,-6),E(2,-6),F(2,2),G(4,2).20.图略:像宝塔松.图形的面积为:12×1×1+12×4×2+12×2×1=12+4+1=112.21.(1)(16,3) (32,0)(2)[(-2)n,(-1)n×3][-(-2)n+1,0]。

七年级数学(下)《平面直角坐标系》考点复习及测试题

七年级数学(下)《平面直角坐标系》考点复习及测试题

七年级数学(下)《平面直角坐标系》考点复习及测试题考点一确定字母的取值范围【例1】若点P(a,a-2)在第四象限,则a的取值范围是( )A.-2<a<0B.0<a<2C.a>2D.a<0【分析】根据每个象限内的点的坐标特征列不等式(组)求解.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).【解答】根据第四象限内的点横坐标为正,纵坐标为负,得0,20,aa>-<⎧⎨⎩解得0<a<2.故选B.【方法归纳】解答此类题的关键是根据平面直角坐标系内点的特征,列出一次不等式(组)或者方程(组),解所列出的不等式(组)或者方程(组),得到问题的解.1.如果m是任意实数,那么点P(m-4,m+1)一定不在( )A.第一象限B.第二象限C.第三象限D.第四象限2.点P(2a,1-3a)是第二象限内的一个点,且点P到两坐标轴的距离之和为4,则点P的坐标是__________.考点二用坐标表示地理位置【例2】2008年奥运火炬在我省传递(传递路线:昆明—丽江—香格里拉),某校学生小明在我省地图上设定临沧位置点的坐标为(-1,0),火炬传递起点昆明位置点的坐标为(1,1).如图,请帮助小明确定出火炬传递终点香格里拉位置点的坐标__________.【分析】因为设定临沧位置点的横坐标为-1,昆明位置点的横坐标为1,所以可以得到每个小方格的边长为1,且y轴在这两座城市之间的竖直直线上;同理得到x轴在临沧所在的水平线上,从而得到如右图的平面直角坐标系,利用平面直角坐标系得出香格里拉所在位置点的坐标.【解答】(-1,4)【方法归纳】在平面内如果已知两点的坐标求第三个点的坐标时,通常根据已知两点的横坐标和纵坐标分别确定y轴和x轴的位置,从而建立平面直角坐标系,然后求出第三个点的坐标.3.如图,如果用(0,0)表示梅花的中心O,用(3,1)表示梅花上一点A,请用这种方式表示梅花上点B为( )A.(1,-3)B.(-3,1)C.(3,-1)D.(-1,3)4.如图是小刚画的一张脸,他对妹妹说“如果我用(0,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成( )A.(1,0)B.(-1,0)C.(-1,1)D.(1,-1)5.中国象棋的走棋规则中有“象飞田字”的说法,如图,象在点P处,走一步可到达的点的坐标记作__________.考点三图形的平移与坐标变换【例3】已知△ABC在平面直角坐标系中的位置如图所示,将△ABC向下平移5个单位,再向左平移2个单位,则平移后C点的坐标是( )A.(5,-2)B.(1,-2)C.(2,-1)D.(2,-2)【解析】由△ABC在平面直角坐标系中的位置可知点C的坐标为(3,3),将△ABC向下平移5个单位,再向左平移2个单位后,点C的横坐标减2,纵坐标减5,所以平移后C点的坐标是(1,-2).故选B.【方法归纳】在平面直角坐标系中点P(x,y)向右(或左)平移a个单位后的坐标为P(x+a,y)[或P(x-a,y)];点P(x,y)向上(或下)平移b个单位后的坐标为P(x,y+b)[或P(x,y-b)].6.如图,在边长为1的正方形网格中,将△ABC向右平移两个单位长度,再向下平移三个单位长度得到△A′B′C′,则点B′的坐标是( )A.(0,-1)B.(1,2)C.(2,-1)D.(1,-1)7.如图,A,B的坐标分别为(1,0),(0,2),若将线段AB平移至A1B1,A1,B1的坐标分别为(2,a),(b,3),则a+b=__________.考点四直角坐标系内图形的面积【例4】在平面直角坐标系xOy中,若A点坐标为(-3,3),B点坐标为(2,0),则△ABO的面积为( )A.15B.7.5C.6D.3【解析】∵点A到x轴的距离为3,而OB=2,∴S△ABO=12×2×3=3.故选D.【方法归纳】求平面直角坐标系中平面图形的面积时,常常利用平行于坐标轴的线段当底,点的横或者纵坐标的绝对值当高.不规则图形的面积常常通过割补法转化为几个规则图形的面积求解.8.已知:点A、点B在平面直角坐标系中的位置如图所示,则:(1)写出这两点坐标:A__________,B__________;(2)求△AOB的面积.考点五规律探索型【例5】如图,已知A1(1,0)、A2(1,1)、A3(-1,1)、A4(-1,-1)、A5(2,-1)、….则点A2 015的坐标为__________.【解析】要求A2 015的坐标,可先从简单的点的坐标开始探究,发现其中的规律.从各点的位置可以发现:A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1);A5(2,-1),A6(2,2),A7(-2,2),A8(-2,-2);A9(3,-2),A10(3,3),A11(-3,3),A12(-3,-3);….因为A3(-1,1),A7(-2,2),观察坐标系可知:A11(-3,3),A15(-4,4),其横、纵坐标互为相反数.把A3、A7、A11、A15右下角的数字提出来,可整理为:3=3+4×0;A3(-1,1)7=3+4×1;A7(-2,2)11=3+4×2;A11(-3,3)15=3+4×3 A15(-4,4)…………因为2 015=3+4×503,所以A2 015(-504,504).【方法归纳】规律探究题往往是从个例、特殊情况入手,发现其中的规律,从而推广到一般情况,用适当的式子表示出来即可,这是近几年来考试的一个热点.9.一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )A.(4,0)B.(5,0)C.(0,5)D.(5,5)复习测试一、选择题(每小题3分,共30分)1.把点A(-2,1)向上平移2个单位长度,再向右平移3个单位长度后得到点B,点B的坐标是( )A.(-5,3)B.(1,3)C.(1,-3)D.(-5,-1)2.在平面直角坐标系中,点(-1,m2+1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限3.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比( )A.向右平移了3个单位B.向左平移了3个单位C.向上平移了3个单位D.向下平移了3个单位4.在平面直角坐标系中,△ABC的三个顶点坐标分别是A(4,5),B(1,2),C(4,2),将△ABC向左平移5个单位后,A点的对应点A′的坐标是( )A.(0,5)B.(-1,5)C.(9,5)D.(-1,0)5.如图是中国象棋的一盘残局,如果用(4,0)表示“帅”的位置,用(3,9)表示“将”的位置,那么“炮”的位置应表示为( )A.(8,7)B.(7,8)C.(8,9)D.(8,8)6.已知A(-4,3),B(0,0),C(-2,-1),则三角形ABC的面积为( )A.3B.4C.5D.67.如图,与①中的三角形相比,②中的三角形发生的变化是( )A.向左平移3个单位B.向左平移1个单位C.向上平移3个单位D.向下平移1个单位8.若定义:f(a,b)=(-a,b),g(m,n)=(m,-n),例如f(1,2)=(-1,2),g(-4,-5)=(-4,5),则g[f(2,-3)]=( )A.(2,-3)B.(-2,3)C.(2,3)D.(-2,-3)9.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么点A4n+1(n是自然数)的坐标为( )A.(1,2n)B.(2n,1)C.(n,1)D.(2n-1,1)10.如图,点A1,A2,A3,A4是某市正方形道路网的部分交汇点.某人从点A1出发,规定向右或向下行走,那么到达点A3的走法共有( )A.4种B.6种C.8种D.10种二、填空题(每小题4分,共20分)11.若点P(x,y)的坐标满足x+y=xy,则称点P为“和谐点”.请写出一个“和谐点”的坐标为__________.12.若点A(x,y)的坐标满足(y-1)2+|x+2|=0,则点A在第__________象限.13.在平面直角坐标系中,已知线段MN的两个端点的坐标分别是M(-4,-1)、N(0,1),将线段MN平移后得到线段M′N′(点M、N分别平移到点M′、N′的位置),若点M′的坐标为(-2,2),则点N′的坐标为__________.14.如图是一组密码的一部分.为了保密,许多情况下可采用不同的密码,请你运用所学知识找到破译的“钥匙”.目前,已破译出“今天考试”的真实意思是“努力发挥”.若“今”所处的位置为(x,y),你找到的密码钥匙是__________,破译“正做数学”的真实意思是__________.15.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2 015次运动后,动点P的坐标是__________.三、解答题(共50分)16.(8分)如图,是某学校的平面示意图.A,B,C,D,E,F分别表示学校的第1,2,3,4,5,6号楼.(1)写出A,B,C,D,E的坐标;(2)位于原点北偏东45°的是哪座楼,它的坐标是多少?17.(8分)如图是某市市区几个旅游景点示意图(图中每个小正方形的边长为1个单位长度),如果以O为原点建立平面直角坐标系,用(2,2.5)表示金凤广场的位置,用(11,7)表示动物园的位置.根据此规定:(1)湖心岛、光岳楼、山陕会馆的位置如何表示?(2)(11,7)和(7,11)是同一个位置吗?为什么?18.(8分)某地为了城市发展,在现有的四个城市A,B,C,D附近新建机场E.试建立适当的直角坐标系,写出点A,B,C,D,E的坐标.19.(12分)如图,三角形ABC三个顶点坐标分别为A(3,-2),B(0,2),C(0,-5),将三角形ABC沿y轴正方向平移2个单位,再沿x轴负方向平移1个单位,得到三角形A1B1C1.(1)画出三角形A1B1C1,并分别写出三个顶点的坐标;(2)求三角形的面积A1B1C1.20.(14分)如图,四边形ABCD各个顶点的坐标分别为A(-2,8),B(-11,6),C(-14,0),D(0,0).(1)确定这个四边形的面积,你是怎么做的?(2)如果把原来四边形ABCD各个顶点的纵坐标保持不变,横坐标增加2,所得的四边形面积又是多少?参考答案变式练习1.D2.(-65,145) 3.B 4.A 5.(0,2),(4,2) 6.D 7.28.(1)(-1,2) (3,-2)(2)S△AOB=12×1×1+12×1×3=2.9.B复习测试1.B2.B3.D4.B5.A6.C7.A8.B9.B 10.B11.答案不唯一,如:(2,2)或(0,0) 12.二13.(2,4) 14.(x+1,y+2) “祝你成功”15.(2 015,2)16.(1)A(2,3)、B(5,2)、C(3,9)、D(7,5)、E(6,11);(2)在原点北偏东45°的点是点F,其坐标为(12,12).17.(1)湖心岛(2.5,5)、光岳楼(4,4)、山陕会馆(7,3).(2)不是,因为根据题目中点的位置确定可知水平数轴上的点对应的数在前,竖直数轴上的点对应的数在后,是有序数对.18.答案不唯一.如以点A作为坐标原点,经过点A的水平线作为x轴,经过点A的竖直线作为y轴,每个小方格的边长作为1单位长,建立平面直角坐标系,图略,A(0,0)、B(8,2)、C(8,7)、D(5,6)、E(1,8).19.(1)图略,△A1B1C1即为所求,三个顶点的坐标A1(2,0),B1(-1,4),C1(-1,-3).(2)由题意可得出:三角形的面积A1B1C1与△ABC面积相等,则三角形A1B1C1的面积为:1 2×3×7=212.20.(1)将四边形分割成长方形、直角三角形,图略,可求出各自的面积:S长方形①=9×6=54,S直角三角形②=12×2×8=8,S直角三角形③=12×2×9=9,S直角三角形④=12×3×6=9.所以四边形的面积为80.(2)如果把原来四边形ABCD各个顶点的纵坐标保持不变,横坐标增加2,所得的四边形就是将原来的四边形向右平移两个单位长度形成的,所以其面积不变,还是80.。

(完整版)初一数学下册平面直角坐标系知识点+例题

(完整版)初一数学下册平面直角坐标系知识点+例题

平面直角坐标系一、本章的主要知识点(一)有序数对:有顺序的两个数a与b组成的数对。

1、记作(a ,b);2、注意:a、b的先后顺序对位置的影响。

(二)平面直角坐标系1、历史:法国数学家笛卡儿最早引入坐标系,用代数方法研究几何图形;2、构成坐标系的各种名称;3、各种特殊点的坐标特点。

(三)坐标方法的简单应用1、用坐标表示地理位置;2、用坐标表示平移。

二、平行于坐标轴的直线的点的坐标特点:平行于x轴(或横轴)的直线上的点的纵坐标相同;平行于y轴(或纵轴)的直线上的点的横坐标相同。

三、各象限的角平分线上的点的坐标特点:第一、三象限角平分线上的点的横纵坐标相同;第二、四象限角平分线上的点的横纵坐标相反。

四、与坐标轴、原点对称的点的坐标特点:关于x轴对称的点的横坐标相同,纵坐标互为相反数关于y轴对称的点的纵坐标相同,横坐标互为相反数关于原点对称的点的横坐标、纵坐标都互为相反数五、特殊位置点的特殊坐标:六、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:•建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;•根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;二、经典例题知识一、坐标系的理解例1、平面内点的坐标是( )A 一个点B 一个图形C 一个数对D 一个有序数对学生自测1.在平面内要确定一个点的位置,一般需要________个数据; 在空间内要确定一个点的位置,一般需要________个数据.2、在平面直角坐标系内,下列说法错误的是( )A 原点O 不在任何象限内B 原点O 的坐标是0C 原点O 既在X 轴上也在Y 轴上D 原点O 在坐标平面内知识二、已知坐标系中特殊位置上的点,求点的坐标点在x 轴上,坐标为(x,0)在x 轴的负半轴上时,x<0, 在x 轴的正半轴上时,x>0 点在y 轴上,坐标为(0,y )在y 轴的负半轴上时,y<0, 在y 轴的正半轴上时,y>0 第一、三象限角平分线上的点的横纵坐标相同(即在y=x 直线上);坐标点(x ,y )xy>0 第二、 四象限角平分线上的点的横纵坐标相反(即在y= -x 直线上);坐标点(x ,y )xy<0 平行于x 轴(或横轴)的直线上的点的纵坐标相同;平行于y 轴(或纵轴)的直线上的点的横坐标相同。

(完整版)新人教版七年级数学下册《平面直角坐标系》知识点归纳及例题

(完整版)新人教版七年级数学下册《平面直角坐标系》知识点归纳及例题

平面直角坐标系知识点概括1 、 在平面内,两条相互垂直且有公共原点的数轴构成了平面直角坐标系;2 、 坐标平面上的随意一点P 的坐标,都和唯一的一对有序实数对 ( a,b )一一对应;此中, a 为横坐标, b 为纵坐标坐标;3 、 x 轴上的点,纵坐标等于 0 ; y 轴上的点,横坐标等于0 ;Y坐标轴上的点 不属于 任何象限;b P(a,b)4 、四个象限的点的坐标拥有以下特点:1象限横坐标 x纵坐标 y-3-2 -1 0 1ax-1 第一象限正 正 -2 第二象限负正-3第三象限 负 负 第四象限正负小结:( 1 )点 P ( x, y )所在的象限 横、纵坐标 x 、 y 的取值的正负性;( 2 )点 P ( x, y )所在的数轴横、纵坐标 x 、 y 中必有一数为零;y 5 、在平面直角坐标系中,已知点P (a,b) ,则a点 P 到 x 轴的距离为bP ( a, b )(1 ) b ; ( 2 )点 P 到 y 轴的距离为 a ;(3 ) 点 P 到原点 O 的距离为 PO =a 2b 2b6 、平行直线上的点的坐标特点:Oaxa) 在与 x 轴平行的直线上,全部点的纵坐标相等;YA B点 A 、 B 的纵坐标都等于 m ;mXb)在与 y 轴平行的直线上,全部点的横坐标相等;YC点 C 、 D 的横坐标都等于n ;nDX7 、对称点的坐标特点:a)点 P (m, n)对于x轴的对称点为P1(m, n),即横坐标不变,纵坐标互为相反数;b)点 P (m, n)对于y轴的对称点为P2( m, n),即纵坐标不变,横坐标互为相反数;c) 点 P (m, n)对于原点的对称点为P3 ( m, n) ,即横、纵坐标都互为相反数;y y yPn P2 n P n PO mX mmm XO m X OnP1n P3对于 x 轴对称对于 y 轴对称对于原点对称8 、两条坐标轴夹角均分线上的点的坐标的特点:a) 若点 P(m,n)在第一、三象限的角均分线上,则m n ,即横、纵坐标相等;b) 若点 P(m,n)在第二、四象限的角均分线上,则m n ,即横、纵坐标互为相反数;y yn P P nO m X m O X在第一、三象限的角均分线上在第二、四象限的角均分线上习题1、在平面直角坐标系中,线段BC∥x轴,则()A.点 B 与 C的横坐标相等 B .点 B与 C的纵坐标相等C.点 B 与 C的横坐标与纵坐标分别相等 D .点 B与 C的横坐标、纵坐标都不相等2.若点 P ( x, y) 的坐标知足xy 0 则点 P 必在()A.原点 B . x 轴上 C . y 轴上 D . x 轴或y轴上3.点 P 在x轴上,且到 y 轴的距离为 5,则点 P 的坐标是()A.(5,0) B .(0,5) C .(5,0) 或 (-5,0) D .(0,5) 或 (0,-5)4. 平面上的点 (2,-1) 经过上下平移不可以与之重合的是()A.(2,-2) B .(-2,-1) C . (2,0) D .2,-3)5.将△ ABC各极点的横坐标分别减去 3,纵坐标不变,获得的△ A' B' C'相应极点的坐标,则△ A' B' C'可以看作△ ABC()A.向左平移 3 个单位长度获得B.向右平移三个单位长度获得C.向上平移 3 个单位长度获得D.向下平移3个单位长度获得6.线段 CD是由线段 AB平移获得的,点 A(-1,4) 的对应点为 C(4,7), 则点 B(-4,-1) 的对应点 D 的坐标是A . (2,9) B.(5,3)C.(1,2)D.(-9,-4)7.在座标系内,点P( 2, -2)和点 Q(2,4 )之间的距离等于 ________个单位长度,线段PQ和中点坐标是 ____________8.将点 M(2,-3) 向左平移 2 个单位长度,再向下平移 1 个单位长度,获得的点的坐标为_______9.在直角坐标系中,若点 P(a 2,b 5)在 y 轴上,则点 P 的坐标为 ____________10.已知点 P( 2,a) ,Q ,且 PQ∥x轴,则a_________, b ___________ (b,3)11.将点 P( 3, y) 向下平移 3 个单位,并向左平移 2 个单位后获得点 Q ,则( x, 1)xy=_________12.则坐标原点 O(0,0 ),A(-2,0 ),B(-2,3) 三点围成的△ ABO的面积为 ____________ 13.点 P( a,b)在第四象限,则点 Q(b, a)在第 ______象限14.已知点 P 在第二象限两坐标轴所成角的均分线上,且到x轴的距离为 3,则点 P 的坐标为____________15.在同一坐标系中,图形 a 是图形b 向上平移 3 个单位长度获得的,假如在图形 a 中点A 的坐标为 (5, 3) ,则图形 b 中与A 对应的点A'的坐标为 __________16.在平面直角坐标系中,将坐标为(0,0),(2,0),(3,4),(1,4) 的点用线段挨次连结起来形成一个图像,并说明该图像是什么图形。

初一数学七下平面直角坐标所有知识点总结和常考题型练习题

初一数学七下平面直角坐标所有知识点总结和常考题型练习题

一、平面直角坐标系 1、平面直角坐标系、平面直角坐标系①在平面内画两条互相垂直且有公共原点的数轴,就组平面直角坐标系。

①在平面内画两条互相垂直且有公共原点的数轴,就组平面直角坐标系。

②水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

③把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

④注意:x 轴和y 轴上的点,不属于任何象限。

轴上的点,不属于任何象限。

2、点的坐标的概念、点的坐标的概念点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。

平面内点的坐标是有序实数对,当b a ¹时,(a ,b )和(b ,a )是两个不同点的坐标。

)是两个不同点的坐标。

二、不同位置的点的坐标的特征 1、关于x 轴、y 轴或原点对称的点的坐标的特征轴或原点对称的点的坐标的特征①点P 与点p ’关于x 轴对称Û横坐标相等,纵坐标互为相反数。

(a ,b )和(a ,-b ) ②点P 与点p ’关于y 轴对称Û纵坐标相等,横坐标互为相反数。

(a ,b )和(-a ,b )③点P 与点p ’关于原点对称Û横、纵坐标均互为相反数。

(a ,b )和(-a ,-b ) 2、点到坐标轴及原点的距离、点到坐标轴及原点的距离点P(x,y)到坐标轴及原点的距离:到坐标轴及原点的距离: (1)点P(x,y)到x 轴的距离等于y (2)点P(x,y)到y 轴的距离等于x (3)点P(x,y)到原点的距离等于22y x +三、坐标的平移三、坐标的平移坐标轴上 点P (x ,y ) 连线平行于坐标轴的点 点P (x ,y )在各象限 的坐标特点 象限角平分线上 的点X 轴Y 轴原点原点平行X 轴平行Y 轴第一象限第二象限 第三象限 第四象限 第一、第一、 三象限三象限 第二、四象限象限 (x,0) (0,y) (0,0) 纵坐标相同横坐标不同 横坐标相同纵坐标不同 x >0y >0x <0 y >0x <0 y <0x >0 y <0(m,m)(m,-m)P (x ,y )P (x ,y -a )P (x -a ,y )P (x +a ,y )P (x ,y +a )向上平移a 个单位向下平移a 个单位向右平移a 个单位向左平移a 个单位一、选择题一、选择题1.气象台为预报台风,首先要确定它的位置,下列说法能确定台风位置的是(气象台为预报台风,首先要确定它的位置,下列说法能确定台风位置的是( ) A.西太平洋西太平洋 B.北纬26º,东经133º C.距台湾300海里海里 D.台湾与冲绳之间台湾与冲绳之间2.右图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图。

新人教版七年级数学下册《平面直角坐标系》知识点归纳及例题(K12教育文档)

新人教版七年级数学下册《平面直角坐标系》知识点归纳及例题(K12教育文档)

(直打版)新人教版七年级数学下册《平面直角坐标系》知识点归纳及例题(word 版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)新人教版七年级数学下册《平面直角坐标系》知识点归纳及例题(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)新人教版七年级数学下册《平面直角坐标系》知识点归纳及例题(word版可编辑修改)的全部内容。

平面直角坐标系知识点归纳1、 在平面内,两条互相垂直且有公共原点的数轴组成了平面直角坐标系;2、 坐标平面上的任意一点P 的坐标,都和惟一的一对 有序实数对(b a ,)一一对应;其中,a 为横坐标,b 为纵坐标坐标;3、x 轴上的点,纵坐标等于0;y 轴上的点,坐标轴上的点不属于任何象限;4、 四个象限的点的坐标具有如下特征:小结:(1)点P (y x ,)所在的象限横、纵坐标x 、y 的取值的正负性; (2)点P (y x ,)所在的数轴 横、纵坐标x 、y 中必有一数为零;5、 在平面直角坐标系中,已知点P ),(b a ,则(1) 点P 到x 轴的距离为b ; (2)点P 到y (3) 点P 到原点O 的距离为PO = 22b a6、 平行直线上的点的坐标特征:a) 在与x 轴平行的直线上, 所有点的纵坐标相等;点A 、B 的纵坐标都等于m ;b) 在与y 轴平行的直线上,所有点的横坐标相等;点C 、D 的横坐标都等于n ;XX7、 对称点的坐标特征:a) 点P ),(n m 关于x 轴的对称点为),(1n m P -, 即横坐标不变,纵坐标互为相反数; b) 点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数; c) 点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;关于x 轴对称关于原点对称8、 两条坐标轴夹角平分线上的点的坐标的特征:a) 若点P (n m ,)在第一、三象限的角平分线上,则n m=,即横、纵坐标相等;b) 若点P (n m ,)在第二、四象限的角平分线上,则n m -=,即横、纵坐标互为相反数;在第一、三象限的角平分线上 在第二、四象限的角平分线上 习题1、在平面直角坐标系中,线段BC ∥x 轴,则 ( ) A .点B 与C 的横坐标相等 B .点B 与C 的纵坐标相等C .点B 与C 的横坐标与纵坐标分别相等D .点B 与C 的横坐标、纵坐标都不相等2.若点P ),(y x 的坐标满足0=xy 则点P 必在 ( ) A .原点 B .x 轴上 C .y 轴上 D .x 轴或y 轴上3.点P 在x 轴上 ,且到y 轴的距离为5,则点P 的坐标是 ( ) A .(5,0) B .(0,5) C .(5,0)或(—5,0) D .(0,5)或(0,—5)4。

人教版初中七年级数学下册第七单元《平面直角坐标系》经典题(含答案解析)(1)

人教版初中七年级数学下册第七单元《平面直角坐标系》经典题(含答案解析)(1)

一、选择题1.一只跳蚤在第一象限及x 、y 轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)→(0,1)→(1,1)→(1,0)→……,每次跳一个单位长度,则第2021次跳到点( )A .(3,44)B .(4,45)C .(44,3)D .(45,4) 2.已知两点(,5)A a ,(1,)B b -且直线//AB x 轴,则( )A .a 可取任意实数,5b =B .1a =-,b 可取任意实数C .1a ≠-,5b =D .1a =-,5b ≠ 3.已知P(a ,b )满足ab=0,则点P 在( ) A .坐标原点 B .X 轴上 C .Y 轴上 D .坐标轴上 4.如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示.如果小球起始时位于(1,0)处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是(0,1),那么小球第2020次碰到球桌边时,小球的位置是( )A .(3,4)B .(5,4)C .(7,0)D .(8,1) 5.点A 到x 轴的距离是3,到y 轴的距离是6,且点A 在第二象限,则点A 的坐标是( )A .(-3,6)B .(-6,3)C .(3,-6)D .(8,-3) 6.点()1,3P --向右平移3个单位,再向上平移5个单位,则所得到的点的坐标为( ) A .()4,2- B .()2,2 C .()4,8-- D .()2,8- 7.在平面直角坐标系中,点P 在第二象限,且点P 到x 轴的距离为3个单位长度,到y 轴的距离为4个单位长度,则点P 的坐标是( )A .()3,4B .()3,4--C .()4,3-D .()3,4- 8.点A(-π,4)在第( )象限 A .第一象限 B .第二象限 C .第三象限 D .第四象限 9.若某点A 位于x 轴上方,距x 轴5个单位长,且位于y 轴的左边,距y 轴10个单位长,则点A 的坐标是( )A .(510)-,B .(510)-,C .(105)-,D .(105)-,10.点()1,3M m m ++在x 轴上,则M 点坐标为( )A .()0,4-B .()4,0C .()2,0-D .()0,2- 11.在平面直角坐标系中,点()3,4-在( )A .第一象限B .第二象限C .第三象限D .第四象限 12.将点()1,2P 向左平移3个单位后的坐标是( )A .()2,2-B .()1,1-C .()1,5D .()1,1-- 13.如图,在直角坐标系中,边长为2的等边三角形12OA A 的一条边2OA 在x 的正半轴上,O 为坐标原点;将12OA A △沿x 轴正方向依次向右移动2个单位,依次得345A A A △,678A A A ……则顶点2019A 的坐标是( )A .()2690,0B .()2692,0C .()2694,0D .无法确定 14.在平面直角坐标系中,点A (0,a ),点B (0,4﹣a ),且A 在B 的下方,点C (1,2),连接AC ,BC ,若在AB ,BC ,AC 所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,那么a 的取值范围为( )A .﹣1<a ≤0B .0<a ≤1C .1≤a <2D .﹣1≤a ≤1 15.如图,将点A 0(-2,1)作如下变换:作A 0关于x 轴对称点,再往右平移1个单位得到点A 1,作A 1关于x 轴对称点,再往右平移2个单位得到点A 2,…,作A n -1关于x 轴对称点,再往右平移n 个单位得到点A n (n 为正整数),则点A 64的坐标为( )A .(2078,-1)B .(2014 ,-1)C .(2078 ,1)D .(2014 ,1)二、填空题16.到x 轴距离为2,到y 轴距离为3的点的坐标为___________.17.如果点()3,1P m m ++在坐标轴上,那么P 点坐标为_________.18.在平面直角坐标系中,与点A (5,﹣1)关于y 轴对称的点的坐标是_____. 19.在电影院内找座位,将“4排3号”简记为(4,3),则(8,7)表示______20.若不在第一象限的点(),22A x x -+到两坐标轴距离相等,则A 点坐标为 _________. 21.已知两点A(-2,m),B(n ,-4),若AB//y 轴,且AB=5,则m=_______;n=_______________.22.在平面直角坐标系中,有点A (a ﹣2,a ),过点A 作AB ⊥x 轴,交x 轴于点B ,且AB =2,则点A 的坐标是___.23.如图,已知1(1,0)A ,2(1,1)A ,3(1,1)A -,4(1,1)A --,5(2,1)A -,则2020A 的坐标为_______.24.如果点P (a ﹣1,a +2)在x 轴上,则a 的值为_____.25.把所有正整数从小到大排列,并按如下规律分组:(1)、(2,3)、(4,5,6)、(7,8,9,10)、……,若A n =(a ,b )表示正整数n 为第a 组第b 个数(从左往右数),如A 7=(4,1),则A 20=______________.26.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,按这样的运动规律,经过第1000次运动后,动点P 的坐标是_______;经过第2019次运动后,动点P 的坐标是_______.三、解答题27.在平面直角坐标系xOy 中,△ABC 的位置如图所示.(l)分别写出△ABC各个顶点的坐标.(2)请在图中画出△ABC关于y轴对称的图形△A'B'C'.(3)计算出△ABC的面积.28.在如图的平面直角坐标系中表示下面各点,并在图中标上字母:A(0,3);B(﹣2,4);C(3,﹣4);D(﹣3,﹣4).(1)点A到原点O的距离是,点B到x轴的距离是,点B到y轴的距离是;(2)连接CD,则线段CD与x轴的位置关系是.29.如图,在平面直角坐标系中,△ABC的顶点C的坐标为(1,3).(1)请直接写出点A、B的坐标.(2)若把△ABC向上平移3个单位,再向右平移2个单位得△A′B′C′,画出△A′B′C′;(3)直接写出△A′B′C′各顶点的坐标;(4)求出△ABC的面积30.如图1,一只甲虫在55⨯的方格(每一格的边长均为1)上沿着网格线运动它从A 处出发去看望B ,C ,D 处的其他甲虫,规定:向上向右为正,向下向左为负.例如:从A 到B 记为()1,4A B →++;从C 到D 记为()1,2C D →+-(其中第一个数表示左右方向,第二个数表示上下方向).(1)填空:A D →(_______,_______);C B →(_______,______).(2)若甲虫的行走路线为A B C D A →→→→,甲虫每秒钟行走2个单位长度,请计算甲虫行走的时间.(3)若这只甲虫去P 处的行走路线为()2,0A E →+,()2,1E F →++,()1,2F M →-+,()2,1M P →-+.请依次在图2上标出点E ,F ,M ,P 的位置.。

七年级数学平面直角坐标系重点题型及知识点

七年级数学平面直角坐标系重点题型及知识点

七年级数学平面直角坐标系重点题型及知识点单选题1、如图,将线段 AB 先向右平移 5 个单位,再将所得线段绕原点按顺时针方向旋转 90°,得到线段A′B′,则点 B 的对应点B′的坐标是()A.(-4 , 1)B.(-1, 2)C.(4 ,- 1)D.(1 ,- 2)答案:D解析:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度;图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.将线段AB先向右平移5个单位,点B(2,1),连接OB,顺时针旋转90°,则B'对应坐标为(1,-2),故选D.小提示:本题考查了图形的平移与旋转,熟练运用平移与旋转的性质是解题的关键.2、如图,若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为( )A.(2,3)B.(0,3)C.(3,2)D.(2,2)答案:D解析:解:若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为(2,2).故选D.3、已知x是整数,当|x−√30|取最小值时,x的值是( )A.5B.6C.7D.8答案:A解析:根据绝对值的意义,找到与√30最接近的整数,可得结论.解:∵√25<√30<√36,∴5<√30<6,且与√30最接近的整数是5,∴当|x−√30|取最小值时,x的值是5,故选A.小提示:本题考查了算术平方根的估算和绝对值的意义,熟练掌握平方数是关键.4、如图为某停车场的平面示意图,若“奥迪”的坐标是(-2,-1),“奔驰”的坐标是(1,-1),则“东风标致”的坐标是()A.(-3,2)B.(3,2)C.(-3,-2)D.(3,-2)答案:D解析:由题意,先建立平面直角坐标系,确定原点的位置,即可得到“东风标致”的坐标.解:∵“奥迪”的坐标是(−2,−1),“奔驰”的坐标是(1,−1),∴建立平面直角坐标系,如图所示:∴“东风标致”的坐标是(3,−2);故选:D.小提示:本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.5、课间操时,小华、小军、小刚的位置如图所示,小军对小刚说,如果我的位置用(–1,0)表示,小华的位置用(–3,–1)表示,那么小刚的位置可以表示成()A.(1,2)B.(1,3)C.(0,2)D.(2,2)答案:A解析:如图,根据题意作出直角坐标系,即可得出小刚的位置.如图,小刚的位置可以表示为(1,2)小提示:此题主要考查直角坐标系的定义,解题的关键是根据题意画出直角坐标系.6、下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.答案:B解析:A、∵AB//CD,∴∠1+∠2=180°.故本选项错误.B、如图,∵AB//CD,∴∠1=∠3.∵∠2=∠3,∴∠1=∠2.故本选项正确.C、∵AB//CD,∴∠BAD=∠CDA,不能得到∠1=∠2.故本选项错误.D、当梯形ABDC是等腰梯形时才有,∠1=∠2.故本选项错误.故选:B.7、如图,小明从家到达学校要穿过一个居民小区,小区的道路均是正南或正东方向,则小明走下列线路不能到达学校的是()A.(0,4)→(0,0)→(4,0)B.(0,4)→(4,4)→(4,0)C.(0,4)→(3,4)→(4,2)→(4,0)D.(0,4)→(1,4)→(1,1)→(4,1)→(4,0)答案:C解析:根据点的坐标的定义结合图形对各选项分析判断即可得解.A、(0,4)→(0,0)→(4,0)都能到达,故本选项错误;B、(0,4)→(4,4)→(4,0)都能到达,故本选项错误;C、(3,4)→(4,2)不都能到达,故本选项正确;D、(0,4)→(1,4)→(1,1)→(4,1)→(4,0)都能到达,故本选项错误.故选C.小提示:本题考查了坐标确定位置,熟练掌握点的坐标的定义并准确识图是解题的关键.8、如图,将“笑脸”图标向右平移4个单位,再向下平移2个单位,点P的对应点P'的坐标是()A.(﹣1,2)B.(﹣9,6)C.(﹣1,6)D.(﹣9,2)答案:A解析:根据平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减即可解决问题;由题意P(﹣5,4),向右平移4个单位,再向下平移2个单位,点P的对应点P'的坐标是(﹣1,2),故选:A.小提示:本题考查坐标与平移,解题的关键是记住平移规律:坐标,右移加,左移减;纵坐标,上移加,属于中考常考题型.填空题9、如图,这是台州市地图的一部分,分别以正东、正北方向为x轴、y轴的正方向建立直角坐标系,规定一个单位长度表示1 km.甲、乙两人对着地图如下描述路桥区A处的位置.则椒江区B处的坐标是___.答案:(10,8√3)解析:根据题意建立如图所示的直角坐标系,则OA=2,AB=16,∠ABC=30°,所以AC=8,BC=8√3,则OC=OA+AC=10,所以B(10,8√3),故答案为(10,8√3).10、观察下列各式:√1+13=2√13,√2+14=3√14,√3+15=4√15,……请你将发现的规律用含自然数n(n≥1)的等式表示出来__________________.答案:√n+1n+2=(n+1)√1n+2(n≥1)解析:观察分析可得√1+13=(1+1)√11+2,√2+14=(2+1)√12+2,√3+15=(3+1)√13+2,则将此规律用含自然数n(n≥1)的等式表示出来是√n+1n+2=(n+1)√1n+2(n≥1)解:根据题意得:√1+13=(1+1)√11+2,√2+14=(2+1)√12+2,√3+15=(3+1)√13+2,……,发现的规律用含自然数n(n≥1)的等式表示出来是√n+1n+2=(n+1)√1n+2(n≥1).所以答案是:√n+1n+2=(n+1)√1n+2(n≥1)小提示:本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n表示的等式即可.11、在平面直角坐标系中,将点(-b,-a)称为点(a,b)的“关联点”(例如点(-2,-1)是点(1,2)的“关联点”).如果一个点和它的“关联点”在同一象限内,那么这一点在第_______象限.答案:二、四.解析:试题解析:根据关联点的特征可知:如果一个点在第一象限,它的关联点在第三象限.如果一个点在第二象限,它的关联点在第二象限.如果一个点在第三象限,它的关联点在第一象限.如果一个点在第四象限,它的关联点在第四象限.故答案为二,四.12、如图是玉渊潭公园部分景点的分布示意图,在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,当表示西桥的点的坐标为(−6,1),表示中堤桥的点的坐标为(1,2)时,表示留春园的点的坐标为___.答案:(9,-1)解析:根据表示西桥的点的坐标为(−6,1),表示中堤桥的点的坐标为(1,2)建立平面直角坐标系,确定坐标原点的位置,进而可确定表示留春园的点的坐标.解:根据题意可建立如下所示平面直角坐标系,则表示留春园的点的坐标为(9,−1),故答案为(9,−1).小提示:此题考查坐标确定位置,解题的关键就是确定坐标原点和x,y轴的位置.13、将点P(2,−3)向右平移4个单位得到点P′,则点P′的坐标为__________.答案:(6,−3)解析:根据平移中点的变化规律(横坐标右移加,左移减;纵坐标上移加,下移减)求解.解:将点P(2,﹣3)向右平移4个单位长度得点P′,则点P′的坐标为(6,﹣3).所以答案是:(6,﹣3).小提示:本题考查了坐标与图形变化-平移,熟练掌握平移中点的变化规律(横坐标右移加,左移减;纵坐标上移加,下移减)是解题的关键.解答题14、如图,用(−1,−1)表示A点的位置,用(3,0)表示B点的位置.(1)画出直角坐标系.(2)点E的坐标为______.(3)△CDE的面积为______.答案:(1)见解析;(2)(3,2);(3)3.5.解析:(1)根据坐标与象限的关系,建立直角坐标系,将(−1,−1)、(3,0)表示在直角坐标系中即可;(2)根据坐标与象限的关系,点E在第一象限,横坐标、纵坐标均为正数,据此解题(3)由割补法解题,△CDE的面积等于梯形面积减去两个直角三角形面积即可解题.(1)如图所示,即为所求(2)点E在第一象限,横坐标、纵坐标均为正数,∴E(3,2)所以答案是:(3,2);(3)S△CDE=(1+3)2×3−12×1×3−12×1×2=3.5所以答案是:3.5.小提示:本题考查坐标与图形,是重要考点,难度较易,掌握相关知识是解题关键.15、在如图所示的平面直角坐标系中表示下面各点A(0,3),B(1,-3),C(3,-5),D(-3,-5),E(3,5),F(5,6),G(5,0)根据描点回答问题:(1)A点到原点的距离是________.(2)将点C向x轴的负方向平移6个单位,它与点______重合.(3)连接CE,则直线CE与坐标轴是什么关系?(4)在以上七个点中,任意两点所形成的直线中,直接写出互相垂直的直线.答案:(1)3;(2)D;(3)与y轴平行,与x轴垂直;(4)直线CD与CE垂直,直线CD与FG垂直.解析:(1)根据A点坐标可得出A点在y轴上,即可得出A点到原点的距离;(2)根据点的平移的性质得出平移后的位置;(3)利用图形性质得出直线CE与坐标轴的位置关系;(4)利用图形性质得出互相垂直的直线.解:由题意得,如图所示:(1)A点到原点的距离是3.(2)将点C向x轴的负方向平移6个单位,它与点D重合.(3)直线CE与y轴平行,与x轴垂直;(4)直线CD与CE垂直,直线CD与FG垂直.故答案为(1)3;(2)D;(3)垂直;(4)直线CD与CE垂直,直线CD与FG垂直.小提示:此题主要考查了点的坐标性质以及平移的性质,根据坐标系得出各点的位置是解题关键.。

人教版七年级数学下册第七章 平面直角坐标系习题(含答案)

人教版七年级数学下册第七章 平面直角坐标系习题(含答案)

第七章 平面直角坐标系一、单选题1.在平面直角坐标系中,点A (﹣2,4)位于( )A .第一象限B .第二象限C .第三象限D .第四象限 2.点M (m +1,m +3)在y 轴上,则点M 的坐标为( )A .(0,−4)B .(4,0)C .(−2,0)D .(0,2)3.根据下列表述,能确定位置的是( )A .万达影城电影院5排B .怀远路,C .北偏东46°D .东经116°,北纬36°4.若点P(x,y)在第四象限,且2x =,3y = ,则x+y 等于:A .-1B .1C .5D .-55.生态园位于县城东北方向5千米处,如图中表示准确的是( )A .B .C .D . 6.如图,棋盘上若“将”位于(2,﹣2),“象”位于(4,﹣2),则“炮”位于( )A .(﹣2,1)B .(﹣1,2)C .(﹣1,1)D .(﹣2,2) 7.如图,A 、B 的坐标为(2,0)、(0,1),若将线段AB 平移至11A B ,则+a b 的值为( )A .3B .2C .5D .48b 20-=,则点(a ,b)在( )A .第一象限B .第二象限C .第三象限D .第四象限 9.点P 位于x 轴下方,y 轴左侧,距离x 轴4个单位长度,距离y 轴2个单位长度,那么点P 的坐标是( )A .(4,2)B .(-2,-4)C .(-4,-2)D .(2,4)10.在坐标平面内有一点P(x ,y),若xy =0,那么点P 的位置在( )A .原点B .x 轴上C .y 轴上D .坐标轴上二、填空题11.点P (a ,8)到两坐标轴的距离相等,则a =_____.12.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A (﹣2,1)和B (﹣2,﹣3),那么第一架轰炸机C 的平面坐标是_____.13.通过平移将点()7,6A -移到点()2,2A '-,若按同样的方法移动点()3,1B 到点B ',则点B '的坐标是______.14.在电影票上如果将“8排4号”记作(8,4),那么“3排5号”记作_____.三、解答题15.在平面直角坐标系中,已知点()1,3M a +-,()3,21N a +.(1)若点M 在y 轴上,求点N 的坐标;(2)若MN x P 轴,求a 的值.16.已知平面直角坐标系中有一点M(m -1,2m +3).(1)当m 为何值时,点M 到x 轴的距离为1?(2)当m 为何值时,点M 到y 轴的距离为2?17.如图,三角形BCO 是三角形BAO 经过某种变换得到的.(1)写出A ,C 的坐标;(2)图中A 与C 的坐标之间的关系是什么?(3)如果三角形AOB 中任意一点M 的坐标为(x ,y),那么它的对应点N 的坐标是什么?18.已知:△ABC 与△''A B C 在平面直角坐标系中的位置如图.(1)分别写出B、'B的坐标:B;'B;A B C内的对应点'P的坐标为(2)若点P(a,b)是△ABC内部一点,则平移居△''(3)求△ABC的面积答案1.B 2.D 3.D 4.A 5.B 6.C 7.A 8.B9.B10.D11.±812.(2,-1).13.(8,-3)14.(3,5)15.(1)()3,1N -;(2)2a =-.16.(1)m =-1或m =-2.(2)m =3或m =-1. 17.(1)A(5,3),C(5,-3)(2)关于x 轴对称(3)N(x ,-y)18.(1)(2,0),(2,2)--;(2)(4,2)a b --;(3)2。

七年级数学下册平面直角坐标系知识总结与练习

七年级数学下册平面直角坐标系知识总结与练习

一、本章的主要知识点:①第一象限内的点:横、纵坐标都大于0.0、纵坐标大于0.③第三象限内的点:横、纵坐标都小于0.0、纵坐标小于0.(注:一、三象限内的点纵横坐标的符号相同,二、四象限内的点纵横坐标的符号相反;x轴,y轴上的点及坐标 ( 注:原点坐标(0,0))轴的距离等于纵坐标的绝对值轴的距离等于横坐标的绝对值轴对称的点的横坐标相同,纵坐标互为相反数轴对称的点的纵坐标相同,横坐标互为相反数③关于原点对称的点的横坐标、纵坐标都互为相反数的直线上的点的纵坐标相同;的直线上的点的横坐标相同①第一、三象限角平分线上的点的横纵坐标相同;②第二、四象限角平分线上的点的横纵坐标相反。

平面直角坐标系中点的平移口诀“右加左减,上加下减”(注:左右平移在横坐标上加减,上下平移在纵坐标上加减)轴上方,则点P在第象限;若点P(a,b)在第三象限,○例点A在第二象限,它到x轴、y轴的距离分别是3、2则点○例点P(-1,2)关于x轴的对称点的坐标是,关于点的对称点的坐标是;○例已知点A(m,-2),点B(3,m-1),且直线AB∥x轴,则○例已知点P(x2-3,1)在一、三象限夹角平分线上,则x= . ○例线段CD是由线段AB平移得到的,点A(-1,3)的对应点C(○例将△ABC沿x轴正方向平移2个单位长度,再沿y轴沿负方向平移(1)求△DEF的三个顶点坐标。

(2)求△DEF的面积。

第 1 页共 3 页第 2 页 共 3 页图3相帅炮)在第二象限,则点M 的坐标是( ) ,-4) D 、(5,-4) )两点的直线一定( )、平行于x 轴 D 、与x 轴、y 轴平行则○炮位于点( ) )上,○相位于点(3,-2)上,(-2,2)、一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1)、(-1,2)、(3,-1), 、(2,3) 的坐标为( )(0,3) D 、(0,3)或(0,–3) 的可能位置是( )轴上的点的全体 C .y 轴上所有的点 D .除去原点后y 轴上的点的全体 轴的距离相等,那么这两个点的坐标必须满足( )横坐标的绝对值相等 D 纵坐标的绝对值相等 )的对应点为C (4,7),则点B (– 4,– 1)的对应点D 的 D.(– 9,– 4),1),(-4,-1),现将这三个点先向右平移2个单位长度,个单位长度,则平移后三个顶点的坐标是( ),(4,3),(1,7) (3,3),(1,7)、在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比( )3个单位 3个单位12、若点P()n m ,在第二象限,则点Q ()n m --,在( )A .第一象限 B .第二象限 C .第三象限 D 13、已知点A (2,-2),如果点A 关于x 轴的对称点是B ,点A .(2,2) B .(-2.2) C .(-1,-1) D .(14、已知点A ()b a 2,3在x 轴上方,y 轴的左边,则点A 到A .3a,-2b B .-3a,2b C .2b,-3a D .-2b,3a15、若点P (a ,b )到x 轴的距离是2,到y 轴的距离是A.1个 B.2个 C.3个 D.4个16、点(x ,x-1)不可能在 ( )A .第一象限B .第二象限C .第三象限D 17、如果点P (-m ,3)与点P 1(-5,n )关于y 轴对称,则A .3,5=-=n m B .3,5==n mC .二、填空题:(每空2分,共54分)1、按下列条件确定点P (x ,y )的位置:⑴x =0,y <0,则点__;⑶|x |+|y |=0,则点P 在_____;⑷若2、己知点P (x ,y )位于第二象限,并且满足y ≤x +4,__。

七年级数学下册第七章平面直角坐标系总结(重点)超详细

七年级数学下册第七章平面直角坐标系总结(重点)超详细

(名师选题)七年级数学下册第七章平面直角坐标系总结(重点)超详细单选题1、小李、小王、小张、小谢原有位置如图(横为排、竖为列),小李在第2排第4列,小王在第3排第3列,小张在第4排第2列,小谢在第5排第4列.撤走第一排,仍按照原有确定位置的方法确定新的位置,下列说法正确的是().A.小李现在位置为第1排第2列B.小张现在位置为第3排第2列C.小王现在位置为第2排第2列D.小谢现在位置为第4排第2列答案:B分析:由于撤走一排,则四人所在的列数不变、排数减一,据此逐项排除即可.解:A. 小李现在位置为第1排第4列,故A选项错误,不符合题意;B. 小张现在位置为第3排第2列,故B选项正确,符合题意;C. 小王现在位置为第2排第3列,故C选项错误,不符合题意;D. 小谢现在位置为第4排第4列,故D选项错误,不符合题意.故选:B.小提示:本题考查了位置的确定,根据题目信息、明确行和列的实际意义是解答本题的关键.2、在平面直角坐标系内有一点A,若点A到x轴的距离为3,到y轴的距离为1.且点A在第二象限,则点A坐标为()A.(1,3)B.(−1,3)C.(−3,−1)D.(−3,1)答案:B分析:根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答..解:点A到x轴的距离为3,到y轴的距离为1.且点A在第二象限,所以横坐标为−1,纵坐标为3,∴A(−1,3).故选B.小提示:本题考查了点到坐标轴的距离,第二象限点的坐标特征,掌握各象限点的坐标特征是解题的关键.3、若点P(x,y)的坐标满足|x|=5,y2=9,且xy>0,则点P的坐标为( )A.(5,3)或(-5,3)B.(5,3)或(-5,-3)C.(-5,3)或(5,-3)D.(-5,3)或(-5,-3)答案:B根据象限的特点,由|x|=5,y2=9,所以x=5或-5;y=3或-3,又因为xy>0,即∶x与y同号,所以当x=5时,y=3;当x=-5时,y=-3,即点P的坐标为:(5,3)或(-5,-3).故选:B.小提示:本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4、点(3,−2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限答案:D分析:根据平面直角坐标系中,各象限内的点坐标的符号规律即可得.解:因为点(3,−2)的横坐标为3>0,纵坐标为−2<0,所以点(3,−2)所在的象限是第四象限,故选:D.小提示:本题考查了点所在的象限,熟练掌握平面直角坐标系中,各象限内的点坐标的符号规律是解题关键.5、某班级第3组第4排位置可以用数对(3,4)表示,则数对(1,2)表示的位置是()A.第2组第1排B.第1组第1排C.第1组第2排D.第2组第2排答案:C分析:根据前一个数表示组,后一个数表示排进行判断即可∵第3组第4排位置为(3,4),∴前一个数表示组,后一个数表示排,∴数对(1,2)表示第一组第二排,故选:C.小提示:本题考查数对,理解数对的含义是解题的关键.6、在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到An.则△OA2A2018的面积是()A.504m2B.10092m2C.10112m2D.1009m2答案:A分析:由OA4n=2n知OA2017=20162+1=1009,据此得出A2A2018=1009-1=1008,据此利用三角形的面积公式计算可得.解:由题意知OA4n=2n,∴OA2016=2016÷2=1008,即A2016坐标为(1008,0),∴A2018坐标为(1009,1),则A2A2018=1009-1=1008(m),∴S△OA2A2018=12×A2A2018×A1A2=12×1008×1=504(m2).故选:A.小提示:本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.7、若M(x,y)满足2xy=1,点M所在的象限是()A.第一、二象限B.第一、三象限C.第二、四象限D.不能确定答案:B>0,则x,y同号,从而可得答案.分析:由条件可得xy=12解:∵2xy=1,>0,∴xy=12∴x,y同号,∴M(x,y)在第一或第三象限,故选B小提示:本题考查了平面直角坐标系内点的坐标问题,求出x、y同号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8、△ABC的顶点分别位于正方形网格的格点上,建立如图所示的平面直角坐标系,已知点C(﹣1,1),将△ABC先沿x轴方向向右平移3个单位长度,再沿y轴方向向下平移2个单位长度,得到△A′B′C′,则点A的对应点A′的坐标是()A.(﹣6,6)B.(0,2)C.(0,6)D.(﹣6,2)答案:B分析:根据坐标系写出点A的坐标,根据坐标平移规律解答即可.解:由平面直角坐标系可知,点A的坐标为(﹣3,4),沿x轴方向向右平移3个单位长度,得到(0,4),再沿y轴方向向下平移2个单位长度得到(0,2),则点A的对应点A′的坐标(0,2),故选:B.小提示:本题主要考查点的坐标平移,熟练掌握点的坐标平移规律是解题的关键.9、点M(a,a+3)向右平移1个单位后与x轴上点N重合,则点N的坐标为()A.(﹣1,0)B.(﹣2,0)C.(﹣3,0)D.(﹣4,0)答案:B分析:根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点N的坐标.解:点M(a,a+3)向右平移1个单位,得到点N的坐标是(a+1,a+3),∴a+3=0,∴a=﹣3,∴a+1=﹣3+1=﹣2,∴N(﹣2,0),故选:B.小提示:本题主要考查了点的平移,准确计算是解题的关键.10、如图,在平面直角坐标系中,四边形ABCD是平行四边形,A(−1,3)、B(1,1)、C(5,1).规定“把▱ABCD先沿x轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2022次变换后,▱ABCD的顶点D的坐标变为()A.(−2019,3)B.(−2019,−3)C.(−2020,3)D.(2020,−3)答案:A分析:先利用平行四边形的性质求出点D的坐标,再将前几次变换后D点的坐标求出来,观察规律即可求解.解:∵四边形ABCD是平行四边形,A(-1,3)、B(1,1)、C(5,1),∴D(3,3),把▱ABCD先沿x轴翻折,再向左平移1个单位后,∴D(2,-3),观察,发现规律:D0(3,3),D1(2,-3),D2(1,3),D3(0,-3),D4(-1,3)……∴对于横坐标,每次变换减一,对于纵坐标,奇数次变换为-3,偶数次变换为3.∴经过2022次变换后,D(-2019,3).故选:A.小提示:本题考查翻折变换,点的坐标——规律性,平行四边形的性质等知识点,解题的关键是先求出D的坐标,再利用变换的规律求解.填空题11、如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1、2、3、4、5、6、7、8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始、按顺时针方向、取与三角形外箭头方向一致的一侧序号),如点A的坐标可表示为(1,2,5),点B的坐标可表示为(4,3,1),按此方法,若点C的坐标为(3,m,m−1),则m=__________.答案:3分析:根据题目中定义的新坐标系中点坐标的表示方法,求出点C坐标,即可得到结果.解:根据题意,点C的坐标应该是(3,3,2),∴m=3.故答案是:3.小提示:本题考查新定义,解题的关键是理解题目中新定义的坐标系中点坐标的表示方法.12、如图,点A在射线OX上,OA等于2cm,如果OA绕点O按逆时针方向旋转30°到OA′,那么点A′的位置可以用(2,30°)表示.若OB=3cm,且OA′⊥OB,则点B的位置可表示为 _____.答案:(3,120°)分析:根据题意得出坐标中第一个数为线段长度,第二个数是逆时针旋转的角度,进而得出B点位置即可.解:∵OA等于2cm,如果OA绕点O按逆时针方向旋转30°到OA′,那么点A′的位置可以用(2,30°)表示,∵OA′⊥OB,∴∠BOA=90°+30°=120°,∴∵OB=3cm,∴点B的位置可表示为:(3,120°).所以答案是:(3,120°).小提示:此题主要考查了用有序数对表示位置,解决本题的关键是理解所给例子的含义.13、若已知点P(a﹣2,2a+3)在y轴上,则点P到原点的距离是______.答案:7分析:让横坐标为0求得a的值,进而根据到原点的距离为点的纵坐标的绝对值求解即可.解:∵点P(a﹣2,2a+3)在y轴上,∴a﹣2=0,a=2,∴点P的坐标为(0,7),∴点P到原点的距离是7,故答案为7.小提示:考查点的坐标的相关知识;用到的知识点为:在y轴上的点的横坐标为0;在y轴上的点到原点的距离为点的纵坐标的绝对值.14、如图,在平面直角坐标系中,一动点沿箭头所示的方向,每次移动一个单位长度,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,−1),P5(2,−1),…,则P2022的坐标是______.答案:(674,0)分析:该点按6次一循环的规律移动,用2022除以6,再确定商和余数即可.解:由题意该点按“上→右→下→下→右→上”的方向每6次一循环移动的规律移动,且每移动一个循环向右移动2个单位长度可得,2022÷6=337,∴点P2022的横坐标为2×336+2=674,点P2022的纵坐标是0,所以答案是:(674,0).小提示:此题考查了点的坐标方面规律问题的解决能力,关键是能准确理解题意确定出点移动的规律.15、观察如图所示的象棋棋盘,若“兵”所在的位置用(1,3)表示,“炮”所在的位置用(6,4)表示,那么“帅”所在的位置可表示为 _____.答案:(4,1)分析:直接利用已知点坐标得出原点位置进而得出答案.解:如图所示:“帅”所在的位置:(4,1),所以答案是:(4,1).小提示:本题主要考查了坐标确定位置,正确得出原点位置是解题的关键.解答题16、在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示.(1)填写下列各点的坐标:A4(______,______),A8(______,______);(2)写出点A4n的坐标(n是正整数)A4n(______,______);(3)求出A2022的坐标.答案:(1)2,0,4,0(2)2n,0(3)(1011,1)分析:(1)观察图形,即可求解;(2)观察图形,由(1)发现规律,即可求解;(3)由(1)发现规律:A4n(2n,0),A4n+1(2n,1),A4n+2(2n+1,1),即可求解.(1)观察图形得∶A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),A7(3,0),A8(4,0),所以答案是:2,0,4,0;(2)由(1)发现规律:A4n(2n,0),所以答案是:2n,0;(3)解:由(1)发现规律:A4n(2n,0),A4n+1(2n,1),A4n+2(2n+1,1),∵2022=4×505+2,∴A2022的坐标为A2022(1011,1).小提示:本题主要考查规律型:点的坐标,读懂题意,准确找出点的坐标规律是解答此题的关键.17、如图,在平面直角坐标系中,ΔABC的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格点上.(1)画出ΔABC关于x轴的对称图形ΔA1B1C1;(2)将ΔA1B1C1,沿x轴方向向左平移3个单位、再沿y轴向下平移1个单位后得到ΔA2B2C2,写出A2,B2,C2顶点的坐标.答案:(1)作图见解析;(2)作图见解析A2(﹣3,﹣2),B2(0,﹣3),C2(﹣2,﹣5).分析:(1)关于x轴的两点横坐标相同,纵坐标互为相反数,分别画出各点,然后顺次进行连接得出图形;(2)根据平移的法则画出图形,得出各点的坐标.解:(1)、如图所示:△A1B1C1,即为所求;(2)、如图所示:△A2B2C2,即为所求,点A2(﹣3,﹣2),B2(0,﹣3),C2(﹣2,﹣5)小提示:本题考查了利用轴对称变换作图,利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.18、如图,长方形OABC的顶点O为平面直角坐标系的原点,点A和点C分别在x轴和y轴的正半轴上,点B的坐标为(a,b),且|a−b+2|+√3a+2b−19=0.(1)求点B的坐标;(2)点D是线段AB的中点,求△OAD的面积;答案:(1)B(3,5)(2)S△OAD=154分析:(1)由绝对值和算术平方根的非负性质得{a−b+2=03a+2b−19=0,即可得出结论;(2)由矩形的性质得到∠OAB=90°,OA=3AB=5,再求出AD的长,即可解决问题.(1)解:∵|a−b+2|+√3a+2b−19=0,∴{a−b+2=0 3a+2b−19=0解得{a=3b=5,∴B(3,5);(2)解:∵B(3,5),四边形OABC是矩形,∴∠OAB=90°,OA=3,AB=5,∵点D是线段AB的中点,∴AD=12AB=52,∴S△OAD=12×3×52=154.小提示:本题主要考查矩形的性质,绝对值和算术平方根的非负性,二元一次方程组的解法,熟练掌握矩形的性质是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面直角坐标系一、本章的主要知识点(一)有序数对:有顺序的两个数a 与b 组成的数对。

1、记作(a ,b );2、注意:a 、b 的先后顺序对位置的影响。

(二)平面直角坐标系1、历史:法国数学家笛卡儿最早引入坐标系,用代数方法研究几何图形 ;2、构成坐标系的各种名称;3、各种特殊点的坐标特点。

(三)坐标方法的简单应用 1、用坐标表示地理位置; 2、用坐标表示平移。

二、平行于坐标轴的直线的点的坐标特点:平行于x 轴(或横轴)的直线上的点的纵坐标相同; 平行于y 轴(或纵轴)的直线上的点的横坐标相同。

三、各象限的角平分线上的点的坐标特点:第一、三象限角平分线上的点的横纵坐标相同; 第二、四象限角平分线上的点的横纵坐标相反。

四、与坐标轴、原点对称的点的坐标特点:关于x 轴对称的点的横坐标相同,纵坐标互为相反数 关于y 轴对称的点的纵坐标相同,横坐标互为相反数 关于原点对称的点的横坐标、纵坐标都互为相反数 五、特殊位置点的特殊坐标:六、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:• 建立坐标系,选择一个适当的参照点为原点,确定x 轴、y 轴的正方向; • 根据具体问题确定适当的比例尺,在坐标轴上标出单位长度; • 在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。

七、用坐标表示平移:见下图二、经典例题知识一、坐标系的理解坐标轴上 点P (x ,y ) 连线平行于 坐标轴的点 点P (x ,y )在各象限 的坐标特点象限角平分线上 的点X 轴 Y 轴 原点 平行X 轴 平行Y 轴 第一象限 第二象限 第三象限 第四象限 第一、 三象限 第二、四象限 (x,0)(0,y )(0,0)纵坐标相同,横坐标不同横坐标相同,纵坐标不同x >0 y >0 x <0 y >0 x <0 y <0 x >0 y <0(m,m) (m,-m)P (x ,y ) P (x ,y -a ) P (x -a ,y ) P (x +a ,y ) P (x ,y +a ) 向上平移a 个单位向下平移a 个单位向右平移a 个单位向左平移a 个单位例1、平面内点的坐标是( )A 一个点B 一个图形C 一个数对D 一个有序数对练习1.在平面内要确定一个点的位置,一般需要________个数据;2、在平面直角坐标系内,下列说法错误的是( )A 原点O 不在任何象限内B 原点O 的坐标是0C 原点O 既在X 轴上也在Y 轴上D 原点O 在坐标平面内知识二、已知坐标系中特殊位置上的点,求点的坐标点在x 轴上,坐标为(x,0)在x 轴的负半轴上时,x<0, 在x 轴的正半轴上时,x>0 点在y 轴上,坐标为(0,y )在y 轴的负半轴上时,y<0, 在y 轴的正半轴上时,y>0 第一、三象限角平分线上的点的横纵坐标相同(即在y=x 直线上);坐标点(x ,y )xy>0 第二、 四象限角平分线上的点的横纵坐标相反(即在y= -x 直线上);坐标点(x ,y )xy<0 平行于x 轴(或横轴)的直线上的点的纵坐标相同;平行于y 轴(或纵轴)的直线上的点的横坐标相同。

例1 点P 在x 轴上对应的实数是-3,则点P 的坐标是 ,若点Q 在y 轴上 ,对应的实数是31,则点Q 的坐标是 , 例2 点P (a-1,2a-9)在x 轴上,则P 点坐标是 。

练习1、点P(m+2,m-1)在y 轴上,则点P 的坐标是 . 2、已知点A (m ,-2),点B (3,m-1),且直线AB ∥x 轴,则m 的值为 。

3、 已知:A(1,2),B(x,y),AB ∥x 轴,且B 到y 轴距离为2,则点B 的坐标是 . 4.平行于x 轴的直线上的点的纵坐标一定( )A .大于0B .小于0C .相等D .互为相反数 (3)若点(a ,2)在第二象限,且在两坐标轴的夹角平分线上,则a= . (3)已知点P (3-x ,1)在一、三象限夹角平分线上,则x= . 5.过点A (2,-3)且垂直于y 轴的直线交y 轴于点B ,则点B 坐标为( ). A .(0,2) B .(2,0) C .(0,-3) D .(-3,0) 6.如果直线AB 平行于y 轴,则点A ,B 的坐标之间的关系是( ). A .横坐标相等 B .纵坐标相等 C .横坐标的绝对值相等 D .纵坐标的绝对值相等知识点三:点符号特征。

点在第一象限时,横、纵坐标都为 ,点在第二象限时,横坐标为 ,纵坐标为 ,点有第三象限时,横、纵坐标都为 ,点在第四象限时,横坐标为 ,纵坐标为 ;y 轴上的点的横坐标为 ,x 轴上的点的纵坐标为 。

例1 .如果a -b <0,且ab <0,那么点(a ,b)在( )A 、第一象限B 、第二象限C 、第三象限,D 、第四象限.例2、如果xy<0,那么点P (x ,y )在( ) (A) 第二象限 (B) 第四象限 (C) 第四象限或第二象限 (D) 第一象限或第三象限 练习1.点P的坐标是(2,-3),则点P在第 象限.2、点P (x ,y )在第四象限,且|x|=3,|y|=2,则P 点的坐标是 。

3.点 A 在第二象限 ,它到 x 轴 、y 轴的距离分别是3、2,则A 坐标是 ;4. 若点P(x ,y )的坐标满足xy ﹥0,则点P在第 象限;若点P(x ,y )的坐标满足xy ﹤0,且在x 轴上方,则点P在第 象限.若点P (a ,b )在第三象限,则点P '(-a ,-b +1)在第 象限;5.点(x ,1 x )不可能在 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 知识四:求一些特殊图形,在平面直角坐标系中的点的坐标。

过点作x 轴的 线,垂足所代表的 是这点的横坐标;过点作y 轴的垂线,垂足所代表的实数,是这点的 。

点的横坐标写在小括号里第一个位置,纵坐标写小括号里的第 个位置,中间用 隔开。

例1、X 轴上的点P 到Y 轴的距离为2.5,则点P的坐标为( )A(2.5,0) B (-2.5,0) C(0,2.5) D(2.5,0)或(-2.5,0) 例2、已知三点A (0,4),B (—3,0),C (3,0),现以A 、B 、C 为顶点画平行四边形,请根据A 、B 、C 三点的坐标,写出第四个顶点D 的坐标。

y练习1、点A(2,3)到x 轴的距离为 ;点B(-4,0)到y 轴的距离为 ;点C 到x 轴的距离为1,到y 轴的距离为3,且在第三象限,则C 点坐标是 。

2.若点A的坐标是(-3,5),则它到x 轴的距离是 ,到y 轴的距离是 .3.点P到x 轴、y 轴的距离分别是2、1,则点P的坐标可能为 。

4.已知点M 到x 轴的距离为3,到y 轴的距离为2,则M 点的坐标为( ).A .(3,2)B .(-3,-2)C .(3,-2)D .(2,3),(2,-3),(-2,3),(-2,-3)5.若点P (a ,b )到x 轴的距离是2,到y 轴的距离是3,则这样的点P 有 ( ) A.1个 B.2个 C.3个 D.4个6.对于边长为6的正△ABC ,建立适当的直角坐标系,并写出各个顶点的坐标.7.在平面直角坐标系中,A ,B ,C 三点的坐标分别为(0,0),(0,-5),(-2,-2),•以这三点为平行B CA42-2-4-55DD DC B A四边形的三个顶点,则第四个顶点不可能在第_______象限.8.直角坐标系中,一长方形的宽与长分别是6,8,对角线的交点在原点,两组对边分别与坐标轴平行,求它各顶点的坐标.9.(本小题11分)在图5的平面直角坐标系中,请完成下列各题: (1)写出图中A ,B ,C ,D 各点的坐标;(2)描出E (1,0),F (1-,3),G (3-,0),H (1-,3-);(3)顺次连接A ,B ,C ,D 各点,再顺次连接E ,F ,G ,H ,围成的两个封闭图形分别是什么图形? 知识点五:对称点的坐标特征。

关于x 轴对称的点,横坐标不 ,纵坐标互为 ;关于y 轴对称的点, 坐标不变, 坐标互为相反数;关于原点对称的点,横坐标 ,纵坐标 。

例1. 已知A(-3,5),则该点关于x 轴对称的点的坐标为_________;关于y 轴对的点的坐标为____________;关于原点对称的点的坐标为___________;关于直线x=2对称的点的坐标为____________。

例2. 将三角形ABC 的各顶点的横坐标都乘以1-,则所得三角形与三角形ABC 的关系( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .将三角形ABC 向左平移了一个单位练习1在第一象限到x 轴距离为4,到y 轴距离为7的点的坐标是______________;在第四象限到x 轴距离为5,到y 轴距离为2的点的坐标是________________; 2.若点A(m,-2),B(1,n)关于原点对称,则m= ,n= .3.点P(1-,2)关于x 轴的对称点的坐标是 ,关于y 轴的对称点的坐标是 ,关于原点的对称点的坐标是 ;4.已知0=mn ,则点(m ,n )在 ;5.点A(3-,4)关于x 轴对称的点的坐标是 ( ) A.(3,4-) B. (3-,4-) C . (3, 4) D. (4-, 3-)6.点P(1-,2)关于原点的对称点的坐标是 ( )图6A.(1,2-) B (1-,2-) C (1,2) D. (2,1-) 7.若一个点的横坐标与纵坐标互为相反数,则此点一定在( )A .原点B.x 轴上 C .两坐标轴第一、三象限夹角的平分线D .两坐标轴第二、四象限夹角的平分线上 知识点六:利用直角坐标系描述实际点的位置。

需要根据具体情况建立适当的平面直角坐标系,找出对应点的坐标。

练习:1.课间操时,小华、小军、小刚的位置如下图左,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( ) A .(5,4) B .(4,5) C .(3,4) D .(4,3)2.(2008双柏县) 如上右图,小明从点O 出发,先向西走40米,再向南走30米到达点M ,如果点M 的位置用(-40,-30)表示,那么(10,20)表示的位置是( ) A 、点A B 、点B C 、点C D 、点D知识点七:平移、旋转的坐标特点。

图形向左平移m 个单位,纵坐标不变,横坐标 m 个单位;图形向右平移m 个单位,纵坐标不变,横坐标 m 个单位;图形向上平移个单位,横坐标 ,纵坐标增加n 个单位;向下平移n 个单位, 不变, 减小n 个单位。

旋转的情形,同学们自己归纳一下。

例1. 三角形ABC 三个顶点A 、B 、C 的坐标分别为A(2,-1)、B(1,-3)、C(4,-3.5).把三角形A 1B 1C 1向右平移4个单位,再向下平移3个单位,恰好得到三角形ABC ,试写出三角形A 1B 1C 1三个顶点的坐标,并在直角坐标系中描出这些点;在平面直角坐标系中,将点M (1,0)向右平移3个单位,得到点1M ,则点1M 的坐标为________ .练习1.(本小题10分)矩形ABCD 在坐标系中的位置如图3所示,若矩形的边长AB 为1,AD 为2,则点A ,B ,C ,D 的坐标依次为________;把矩形向右平移3个单位,得矩形A B C D '''',A B C D '''',,,的坐标为________.2.小华若将平面直角坐标系中一只猫的图案向右平移了3个单位长度,而猫的形状,大小都不变,则她图案上的各点坐标_______ 。

相关文档
最新文档