人教版高二选修2—1 2.2椭圆及其标准方程(第1课时)

合集下载

高二数学选修2-1 椭圆的标准方程(第1课时) ppt

高二数学选修2-1 椭圆的标准方程(第1课时) ppt

x
由椭圆的定义得,限制条件:| MF 1 | | MF 2 | 2a 代入坐标 | MF1 | ( x c) 2 y 2 , | MF2 | ( x c) 2 y 2
得方程 ( x c) 2 y 2 ( x c) 2 y 2 2a
(问题:下面怎样化简?)
x2 y2 (1) 1 (4)9 x 2 25 y 2 225 0 16 16 2 2 x2 y2 ( 5 ) 3 x 2 y 1 ( 2) 1 25 16 x2 y2 x2 y2 1 (3) 2 2 1 (6) 24 k 16 k m m 1
?
练习2.求适合下列条件的椭圆的标准方程:
(1)a=
6
,b=1,焦点在x轴上;
x2 6
y 1
2
(2)焦点为F1(0,-3),F2(0,3),且a=5; 25 16 (3)两个焦点分别是F1(-2,0)、F2(2,0),且过 P(2,3)点; x y 1
2 2
y2
x2
1
16
12
(4)经过点P(-2,0)和Q(0,-3).
x 2 y2 + =1 4 9
小结:求椭圆标准方程的步骤: ①定位:确定焦点所在的坐标轴; ②定量:求a, b的值.
x2 y2 1 ,请填空: 练习3. 已知椭圆的方程为: 25 16 (1) a=__ ___________ 、(3,0) ,焦距等于__. 6 4 ,c=__ 5 ,b=__ 3 ,焦点坐标为(-3,0)

♦ 求动点轨迹方程的一般步骤: 坐标法 (1)建立适当的坐标系,用有序实数对(x,y) 表示曲线上任意一点M的坐标; (2)写出适合条件 P(M) ; (3)用坐标表示条件P(M),列出方程 ; (4)化方程为最简形式; (5)证明以化简后的方程为所求方程(可以省略 不写,如有特殊情况,可以适当予以说明)

高二数学人教A版选修2-1课件:2.2.2 椭圆的简单几何性质 第1课时 椭圆的简单几何性质

高二数学人教A版选修2-1课件:2.2.2 椭圆的简单几何性质 第1课时 椭圆的简单几何性质
心一定是原点吗? y
F1 o
F2
x
说明椭圆的对称性不随位置的改变而改变.
3.顶点与长短轴: 椭圆与它的对称轴的四个 交点——椭圆的顶点. 椭圆顶点坐标为:
A1(-a,0),A2(a,0),
B1(0,-b),B2(0,b).
回顾: 焦点坐标(±c,0)
x2 a2
y2 b2
=1(a>b>0)
y
B2(0,b)
固化
模式
拓展
小思 考
TIP1:听懂看到≈认知获取;
TIP2:什么叫认知获取:知道一些概念、过程、信息、现象、方法,知道它们 大 概可以用来解决什么问题,而这些东西过去你都不知道;
TIP3:认知获取是学习的开始,而不是结束。
为啥总是听懂了, 但不会做,做不好?
高效学习模型-内外脑 模型
2
内脑- 思考内化
学习知识的能力 (学习新知识 速度、质量等)
长久坚持的能力 (自律性等)
什么是学习力-常见错误学 习方式
案例式
学习
顺序式 学习
冲刺式 学习
什么是学习力-高效学习必
备习惯
积极
以终
主动
为始
分清 主次
不断 更新
高效学习模型
高效学习模型-学习的完
整过程
方向
资料
筛选
认知
高效学习模型-学习的完
整过程
消化
思维导图& 超级记忆法& 费曼学习法
1
外脑- 体系优化
知识体系& 笔记体系
内外脑高效学习模型
超级记忆法
超级记忆法-记忆 规律
记忆前
选择记忆的黄金时段
前摄抑制:可以理解为先进入大脑的信息抑制了后进 入大脑的信息

(完整版)《椭圆及其标准方程》(第一课时)教学设计

(完整版)《椭圆及其标准方程》(第一课时)教学设计

《椭圆及其标准方程》(第一课时)教学设计一、教学内容分析教材选自人教A版《普通高中课程标准实验教科书》数学选修2-1.《椭圆及其标准方程》是继学习圆以后运用“曲线与方程”思想解决二次曲线问题的又一实例。

椭圆的标准方程是圆锥曲线方程研究的基础,它的学习方法对整个这一章具有导向和引领作用。

一方面,它是对前面所学的运用“代数方法研究几何问题”的又一次实际演练,同时它也是进一步研究椭圆几何性质和双曲线、抛物线的基础;另一方面,教科书以椭圆作为学习圆锥曲线的开始和重点,并依此来介绍求圆锥曲线方程和利用方程讨论几何性质的一般方法,为我们后面研究双曲线、抛物线这两种圆锥曲线提供了基本模式和方法。

因此本节课有承前启后的作用,是本章和本节的重点内容。

椭圆是通过描述椭圆形成过程进行定义的,作为椭圆本质属性的揭示和椭圆方程建立的基石,这是本节课的一个教学重点;而坐标法是解析几何中的重要数学方法,椭圆方程的推导是利用坐标法求曲线方程的很好应用实例,让学生亲身经历椭圆概念形成的数学化过程,并通过探究得到椭圆的标准方程,有利于培养学生观察分析、抽象概括的能力。

学生对“曲线与方程”的内在联系仅在“圆的方程”一节中有过一次感性认识,并未真正有所感受。

通过本节学习,学生一方面认识到椭圆与圆的区别与联系,另一方面也为利用方程研究椭圆的几何性质以及为学生类比椭圆的研究过程和方法,学习双曲线、抛物线奠定了基础。

根据以上分析,确定本课时的教学难点和教学重点分别是:教学重点:掌握椭圆的定义及标准方程,体会坐标法的应用。

教学难点:椭圆概念的深入理解及选择不同的坐标系推导椭圆的标准方程。

二、学生学情分析在学习本节课前,学生已经学习了直线与圆的方程,对曲线和方程的思想方法有了一些了解和运用的经验,对坐标法研究几何问题也有了初步的认识。

因此,学生已经具备探究有关点的轨迹问题的知识基础和学习能力。

而本节课要求学生通过自己动手亲自作出椭圆并且还要利用曲线方程的知识推导出方程,与前面学生熟悉的圆相比,对学生的抽象、分析、实践的能力要求比较高,可能困难要大一点,导致学生在学习中可能出现的困难是:学生动手作图慢;用尺规作图的思路可能出现障碍;受教材的影响,学生选择坐标系的思维可能受到限制;方程的化简也是一个难点。

人教版高中数学选修2-1椭圆及其标准方程教案

人教版高中数学选修2-1椭圆及其标准方程教案

椭圆及其标准方程(1)1.从具体情境中抽象出椭圆的模型;2.掌握椭圆的定义;3.掌握椭圆的标准方程.3840,文P 32~ P 34找出疑惑之处)复习1:过两点(0,1),(2,0)的直线方程 .复习2:方程22(3)(1)4x y -++= 表示以 为圆心, 为半径的 .二、新课导学※ 学习探究取一条定长的细绳,把它的两端都固定在图板的同一个点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个 .如果把细绳的两端拉开一段距离,分别固定在图板的两个点处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线?思考:移动的笔尖(动点)满足的几何条件是什么? 经过观察后思考:在移动笔尖的过程中,细绳的 保持不变,即笔尖 等于常数.新知1: 我们把平面内与两个定点12,F F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距 .反思:若将常数记为2a ,为什么122a F F >?当122a F F =时,其轨迹为 ;当122a F F <时,其轨迹为 .试试:已知1(4,0)F -,2(4,0)F ,到1F ,2F 两点的距离之和等于8的点的轨迹是 .小结:应用椭圆的定义注意两点:①分清动点和定点;②看是否满足常数122a F F >.新知2:焦点在x 轴上的椭圆的标准方程()222210x y a b a b+=>> 其中222b a c =-若焦点在y 轴上,两个焦点坐标 ,则椭圆的标准方程是 .※ 典型例题例1 写出适合下列条件的椭圆的标准方程:⑴4,1a b ==,焦点在x 轴上;⑵4,a c =y 轴上;⑶10,a b c +==.变式:方程214x y m+=表示焦点在x 轴上的椭圆,则实数m 的范围 .新 课 标第 一网小结:椭圆标准方程中:222a b c =+ ;a b > .例2 已知椭圆两个焦点的坐标分别是()2,0-,(2,0),并且经过点53,22⎛⎫- ⎪⎝⎭,求它的标准方程 .变式:椭圆过点 ()2,0-,(2,0),(0,3),求它的标准方程.小结:由椭圆的定义出发,得椭圆标准方程 .※ 动手试试练1. 已知ABC ∆的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则ABC ∆的周长是( ).A .B .6C .D .12练2 .方程219x y m-=表示焦点在y 轴上的椭圆,求实数m 的范围.三、总结提升※ 学习小结1. 椭圆的定义:2. 椭圆的标准方程:※ 知识拓展1997年初,中国科学院紫金山天文台发布了一条消息,从1997年2月中旬起,海尔·波普彗星将逐渐接近地球,过4月以后,又将渐渐离去,并预测3000年后,它还将光临地球上空1997年2月至3月间,许多人目睹了这一天文现象天文学家是如何计算出彗星出现的准确时间呢?原来,海尔·波普彗星运行的轨道是一个椭圆,通过观察它运行中的一些有关数据,※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1.平面内一动点M 到两定点1F 、2F 距离之和为常数2a ,则点M 的轨迹为( ).A .椭圆B .圆C .无轨迹D .椭圆或线段或无轨迹2.如果方程222x ky +=表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ).A .(0,)+∞B .(0,2)C.(1,)+∞D.(0,1)3.如果椭圆22110036x y+=上一点P到焦点1F的距离等于6,那么点P到另一个焦点2F的距离是().A.4 B.14 C.12 D.84.椭圆两焦点间的距离为16,且椭圆上某一点到两焦点的距离分别等于9和15,则椭圆的标准方程是.5.如果点(,)M x y在运动过程中,10=,点M的轨迹是,它的方程是.1. 写出适合下列条件的椭圆的标准方程:⑴焦点在x轴上,焦距等于4,并且经过点(3,P-;⑵焦点坐标分别为()()0,4,0,4-,5a=;⑶10,4a c a c+=-=.2. 椭圆2214x yn+=的焦距为2,求n的值.。

选修2-1:椭圆及其标准方程(第一课时)

选修2-1:椭圆及其标准方程(第一课时)

M x
F2
由椭圆的定义, 椭圆的定义,
得方程 ( x + c)2 + y 2 + ( x − c)2 + y 2 = 2a
(想一想:下面怎样化简?) 想一想:下面怎样化简?) 化简
y
P

x y + 2 2 =1 2 a a −c
2
2
b
a c
x
观察左图, 你能从中找出表示 观察左图, c 、 a 的线段吗? 的线段吗? a2-c2 有什么几何意义? 有什么几何意义?
a = b + c,
2 2 2
大小不确定. 其中 a > b > 0, a > c > 0, b 和 c 大小不确定.
(四)尝试应用
1、下列方程哪些表示的是椭圆,如果是,判断它的焦点 、下列方程哪些表示的是椭圆,如果是,
在哪个坐标轴上? 在哪个坐标轴上?
x2 y2 (1 ) + = 1 25 16
o
令| O |= a( + 2 =1 a > b > 0) 2 a b
2
2
2、椭圆的标准方程: 椭圆的标准方程:
焦点在x 焦点在x轴:
x2 y 2 + 2 = 1(a > b > 0) 2 a b
F 1
y
M
o
y
F2
F2 x
F1(-c,0)、F2(c,0) 焦点在y 焦点在y轴:
(1)平面曲线 (2)到两定点F1,F2的距离等于定长 到两定点F (3)定长﹥|F1F2| 定长﹥
绳长= F1 F2
绳长< F1 F2
理解定义的 内涵和外延
注:定长 2a > F1F2 定长 2a = F1F2 定长 2a < F1F2

选修2-1:椭圆及其标准方程(一)教案案

选修2-1:椭圆及其标准方程(一)教案案

一、教案背景1、面向学生:高中学科:高二数学2、课时:1课时3、学生课前准备:(1)预习课本,思考:椭圆的定义及标准方程及其推导方法.(2)思考:椭圆定义中应该注意那些.(3)思考:标准方程是如何推导的.二、教学课题:《椭圆及其标准方程》第一课时1、理解椭圆的定义,明确焦点、焦距的概念,掌握椭圆的标准方程的推导及椭圆的标准方程;2、进一步学习类比、数形结合的数学思想方法,理解坐标法及其应用.3、重点:椭圆的定义、椭圆的标准方程、坐标化的基本思想难点:椭圆标准方程的推导与化简,坐标法的应用关键:含有两个根式的等式化简三、教材分析1、本节教材整体来看是两大块内容:意识椭圆的定义;二是椭圆的标准方程.椭圆是圆锥曲线这一章所要研究的三种圆锥曲线中首先遇到的,所以教材把用坐标法对椭圆的研究放在了重点位置上.学好椭圆对于学生学好圆锥曲线是非常重要的.2、这节课的重点是椭圆的定义、椭圆的标准方程、坐标化的基本思想;难点是椭圆标准方程的推导与化简,坐标法的应用;标准方程推导的关键是含有两个根式的等式化简.四、教学方法1、用模型结合多媒体课件演示椭圆,再给出椭圆的定义,最后加以强调,加强概念的形成过程教学.2、对椭圆的标准方程的推导,可采用观察、分析、归纳、抽象、概括、自主探究、合作交流的教学方法,调动学生参与课堂教学的主动性和积极性.3、本节课坚持推行“学案引导——自主学习——合作探究——精讲点拨——巩固练习”的课堂教学模式,按照“创设情境——学生活动——意义建构——数学理论——数学应用——回顾反思——巩固提高”的程序设计教学过程,并以多媒体手段辅助教学,使学生经历实践、观察、猜想、论证、交流、反思等理性思维的基本过程,切实改进学生的学习方式,使学生真正成为学习的主人.五、教学过程课前预习,搜寻问题1、椭圆的定义及注意事项:2、椭圆的标准方程的推导:3、椭圆的标准方程有那几种形式:课内探究,答疑解惑一、创设情景、引入概念首先用多媒体演示“神州七号”飞船绕地球旋转运行的画面,并描绘出运行轨迹图.★问一:“神州七号”飞船绕地球旋转的轨迹是什么图形?二、尝试探究、形成概念学生实验:按课本上介绍的方法,学生用一块纸板,两个图钉,一根无弹性的细绳尝试画椭圆.实验探究:保持绳长不变,改变两个图钉之间的距离,画出的椭圆有什么变化?思考:根据上面探究实践回答,椭圆是满足什么条件的点的轨迹?椭圆的定义:找定义的关键处:①平面曲线;②任意一点到两个定点的距离的和等于常数;③常数大于| F1F2|.三、标准方程的推导归纳求曲线方程的一般步骤:建系→设点→列出方程→化简方程.建系一般应遵循简单、优化的原则.★问二:怎样建立坐标系,才能使求出的椭圆方程最为简单?推导过程:思考:观察右图,能从中找出表示,a c12222=+byax.(0a b>>)此即为椭圆的标准方程.它所表示的椭圆的焦点在x轴上,焦点是)0,()0,(21cFcF-,中心在坐标原点的椭圆方程.M2F1F★问三:如果椭圆的焦点F 1,F 2在y 轴上,线段F 1F 2的垂直平分线为x 轴,a ,b ,c 意义同上,椭圆的方程形式又如何?注意理解以下几点:① 在椭圆的两种标准方程中,都有0>>b a 的要求;② 在椭圆的两种标准方程中,由于22a b >,所以可以根据分母的大小来判定焦点在哪一个坐标轴上;③ 椭圆的三个参数,,a b c 之间的关系是222a b c =+,其中0,0,a b a c b c >>>>和 大小不确定.四、尝试应用1、下列方程哪些表示的是椭圆,如果是,判断它的焦点在哪个坐标轴上?2、 写出适合下列条件的椭圆的标准方程:两个焦点的坐标分别是()04,-、()04,,椭圆上一点到两焦点距离的和等于10;变式一:将上题焦点改为(0,-4)、(0,4), 结果如何?变式二:将上题改为两个焦点的距离为8,椭圆上一点P 到两焦点的距离和等于10,结果如何?五、典例分析:例:写出适合下列条件的椭圆的标准方程两个焦点的坐标分别是()20-,、()20,,并且经过点P ⎪⎭⎫⎝⎛-2523,. 11)4(2222=++m y m x 123)3(22-=--y x 0225259)2(22=--y x 11625)1(22=+y x六、课堂练习1.写出适合下列条件的椭圆的标准方程:(1)a =4,b =3,焦点在x 轴; (2)a =5,c =2,焦点在y 轴上.2.椭圆191622=+y x 的焦距是 ,焦点坐标为 ;若CD 为过左焦点1F 的弦,则CD F 2∆的周长为 .课后反思,巩固练习1、课后反思与体验<1>、本节课我学到了哪些知识,是用什么方法学会的?<2>、我还有什么知识没有掌握,是什么原因导致的?<3>、我从老师和同学那儿学到了哪些好的学习方法?<4>、通过上述的回顾评价一下自己本节课的表现。

人教版A版高中数学选修2-12.2.1 椭圆及其标准方程(1)

人教版A版高中数学选修2-12.2.1 椭圆及其标准方程(1)

设计意图:强化学生对所学知识的理解、消 化和灵活运用
课堂小结
问题:本节课学习的主要知识是什么?在解题方法上你有什 么收获? 活动方式: 教师提出问题——学生归纳概括——师生共同完善
• 小结 :“一、二、一” • 具体为: • 一个定义(椭圆的定义) • 二类方程(焦点分别在x轴、y轴的上的两个标准方程) • 一种方法(待定系数法)
设计意图:加深学生对本节知识的整体认识,提高学生概括能 力.
教材分析 教学目标 教法分析 学法指导 教学过程 教学评价
课题引入 归纳总结 探索交流 点拨示范 巩固训练 总结作业
布置作业:
1、 习题2.1 A组 1、2(任选一题) 2、 思 考题: ( 1)化 简 (x -1)2 y 2 (x 1)2 y 2 6 (2)解 方程 x2 6x 10 x2 6x 10 10
生充分发挥的空间。
x2 a2

y2 b2
1a

b 0
y2 a2

x2 b2
1a

b

0
课题引入 归纳总结 探索交流 揭示规律 巩固训练 总结作业
标准方程
x2 y2 a2 + b2 = 1(a > b > 0)

y
同 图形 点
o
x
y2 a2
+
x2 b2
= 1(a
y
>
b
>
0)
ox
焦点坐标 F1(-c,0)、F2(c,0) F1(0,-c)、F2(0,c)
设计意图
当2a= 2c 当2a< 2c
线段 不存在
通过改变两图 钉间距离,让 学生体会条件 2a>2c的内含及 享受由图形变 换所带来的数 学美

椭圆及其标准方程(第一课时)

椭圆及其标准方程(第一课时)





椭圆
双曲线
抛物线
想一想
在我们实际生活中, 同学们见过椭圆吗? 能举出一些实例吗?
椭 圆 相 框
椭圆形钻戒
椭 圆 拱 桥
油罐车
生活中有椭圆, 生活中用椭圆。
探究 :椭圆有什么几何特征?
活动1:动手试一试
动画演示
1、椭圆的定义:
M
F1
F2
平面内到两个定点F1、F2的距离之和等于 常数(大于|F1F2|)的点的轨迹叫做椭圆。
2. 在椭圆 x2 y2 1中, a=___,b=___, 74
焦点位于____轴上,焦点坐标是__________.
3.在椭圆 16x2 7 y2 112中,a=___, b=___,
焦点位于____轴上,焦点坐标是__________.
椭圆的标准方程应用(课堂练习)
2.选择题
1. F1, F2是定点,且 F1F2 6 , 动点M满足 MF1 MF2 6 , 则点M的轨迹是 ( )
椭圆定义及其标 准方程推导
(20分钟)
新课讲解 师生共同探究
椭圆定义及其 标准方程应用
(17分钟)
共同小结 知识回顾
课堂小结 课后作业 (2分钟) 巩固提高
布置作业 (1分钟)
用一个平面去截一个圆锥面,当平面经过圆锥
面的顶点时,可得到两条相交直线;当平面与圆锥面 的轴垂直时,截线(平面与圆锥面的交线)是一个 圆.当改变截面与圆锥面的轴的相对位置时,观察截 线的变化情况,并思考: ● 用平面截圆锥面还能得到哪些曲线?这些曲线具 有哪些几何特征?
2.椭圆标准方程:
x 焦点在
轴上:x a
2 2

2.2.1椭圆及其标准方程

2.2.1椭圆及其标准方程
第二章 2.2 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
P 是椭圆1x22 +y32=1 上的一点,F1、F2为两个焦点,若∠F1PF2
=60°,则△F1PF2 的面积为( )
Aபைடு நூலகம்2 3
B. 3
C.4
D.2
[答案] B
第二章 2.2 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
第二章 2.2 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
注意挖掘隐含条件 △ABC 的三边 a,b,c(a>b>c)成等差数列,A、
C 两点的坐标分别是(-1,0),(1,0),求顶点 B 的轨迹. [错解] 设点 B 的坐标为(x,y). ∵a、b、c 成等差数列,∴a+c=2b,即|BC|+|BA|=2|AC|,
第二章 2.2 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
椭圆的标准方程
根据下列条件,写出椭圆的标准方程. (1)两个焦点坐标分别是(0,5)、(0,-5),椭圆上一点 P 到 两焦点的距离和为 26,________. (2)经过点 P(1,32),两焦点间的距离为 2,焦点在 x 轴上, ________. [答案] (1)1y629+1x424=1 (2)x42+y32=1
第二章 2.2 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
(2)设椭圆的标准方程为ax22+by22=1, ∵焦点在 x 轴上,2c=2,∴a2=b2+1,
9 又椭圆经过点 P(1,32),∴b2+1 1+b42=1, 解之得 b2=3,∴a2=4. ∴椭圆的标准方程为x42+y32=1.

《2.2.1椭圆及其标准方程》教学设计

《2.2.1椭圆及其标准方程》教学设计

教学设计数学选修2-1《椭圆及其标准方程(第一课时)》巨野县第一中学谷建荣《2.2.1椭圆及其标准方程》教学设计巨野县第一中学谷建荣一、教材及学情分析本节课时《普通高中课程标准试验教科书数学》(人民教育出版社课程教材研究所,中学数学课程教材研究室开发中心编著)选修2---1第二章第二节《椭圆及其标准方程》第一课时,本节继续采用坐标法来探究椭圆的几何特征,建立它们的方程,通过方程研究它们的简单性质,并用坐标法解决一些与椭圆有关的简单几何问题和实际问题,进一步感受数形结合思想的魅力。

本节是直线,圆的进一步加深,也是为学习后面双曲线,抛物线知识而奠基,椭圆是圆在某一方向上的拉伸或压缩,故在学习椭圆时学生并非感到很突然,而是一种似曾相识的感觉,让学生在相似中找到不同,在不同中发现问题探索新知。

根据学习的最近发展区理论,在熟悉中发现问题并解决问题是数学学习动力的主要来源。

高二的学生探究问题的意识加强、好胜,抓住这个心理、生理特点,在教学中注意探究的应用,授人以鱼,不如授人以渔,让学生去发现问题并解决问题。

二、教学目标1、知识与技能目标(1)、理解椭圆的定义(2)、掌握椭圆的标准方程,在化简椭圆方程的过程中提高学生的运算能力2、过程与方法目标(1)、通过探究点的运动情况经历椭圆概念的形成过程,学习在问题中发现数量关系,提炼数学概念的能力,由具体到抽象,从个别到一般的数学归纳的方法,逐步掌握数学概念形成的本质,提高学生的抽象概括能力。

(2)、学会动点轨迹问题的求解思路--------转移关系法(3)、对学生进行发现问题,解决问题的方法指导,培养学生的数学素养3、情感态度价值观目标(1)、发挥学生的主体地位,让学生在试验中通过观察,思考,尝试,归纳,反思,改进最终形成概念增强学生的问题意识,(2)、重视学生的知识获得过程,知其然更知其所以然,让他们在经历知识产生过程中找到学习数学的乐趣,激发学习数学的热情。

三、教学重点难点(1)、教学重点:椭圆的定义及其标准方程,标准方程的推导(2)、教学难点:椭圆定义核心的发现,标准方程的化简及建系不同的速写方程(3)、难点的突破方法:通过试验演示,突破定义理解难题。

新课标人教A版高中数学选修2-1 椭圆的标准方程(第一课时)

新课标人教A版高中数学选修2-1 椭圆的标准方程(第一课时)
因|MF1|+|MF2|=6>|F1F2|=4,故点M的轨迹为椭圆。 (2)到F1(0,-2)、F2(0,2)的距离之和为4的点的轨迹。 因|MF1|+|MF2|=4=|F1F2|=4,故点M的轨迹不是椭圆
(是线段F1F2)。 (3)到F1(0,-2)、F2(0,2)的距离之和为3的点的轨迹。
因|MF1|+|MF2|=4<|F1F2|=4,故点M的轨迹不存在。 (4)到F1(-2,0)、F2(0,2)的距离之和为3的点的轨迹。
x y (3) 2 2 1 m m 1
2
2
(4)9 x 2 25 y 2 225 0
x2 y2 (6) 1 9k k 3
(5) 3x 2 2 y 2 1
三、椭圆的标准方程的应用
例2. 课本42页第2题
探究1: ABF2的周长?
y
A
F1
O
F2
x
B
探究2:焦点三角形
不 同 点


F1
O
F2
x
O
x
F1
焦点坐标
F1 -c , 0 ,F2 c , 0
F1 0,- c ,F2 0,c
相 同 点
定 义
平面内到两个定点F1,F2的距离的和等 于常数(大于F1F2)的点的轨迹
a 2 = b2 + c 2
a、b、c 的关系
焦点位置的判断
分母哪个大,焦点就在哪个轴上
y
M ( x, y)
(c,0)
(c, 0)
O
F1
F2
x
探究2:焦点三角形
y
M ( x, y)
(c,0)
b

高中数学选修2-1 第二章 第二节《2.2椭圆》全套教案

高中数学选修2-1 第二章 第二节《2.2椭圆》全套教案

2.2椭圆课时分配:1.第一课椭圆及其标准方程1个课时2.第二课椭圆的简单几何性质1个课时2.2.1椭圆及其标准方程【教材分析】圆锥曲线被安排在第二章中,以“圆锥曲线与方程”的标题出现,其包含曲线与方程、椭圆、双曲线、抛物线四部分内容。

本节是整个解析几何部分的重要基础知识。

椭圆的定义与初中时学生学习的圆的定义具有相通之处,就是“点动成线”的原理。

通过学习,让学生理解当点运动的规则(遵循的几何关系)发生变化的时候,则画出的曲线的形状也会不同。

高中阶段,在《直线和圆的方程》的学习过程中,学生对坐标法(解析法)思想有了一定程度的认识;在“曲线与方程”和“方程与曲线”的概念中,学生进一步明确了坐标法及其研究曲线的方程的一般步骤。

从本节课开始,又将研究曲线的方法拓展到椭圆,又是继续学习椭圆几何性质的基础,同时还为后面学习双曲线和抛物线作好研究方法和研究思想的准备。

它的学习方法对整个这一章具有导向和引领作用,所以椭圆是学生学习解析几何由浅入深的一个台阶,它在整章中具有承前启后的作用。

【教学目标】知识与技能目标: 1.准确理解椭圆的定义,明确焦点、焦距的概念,掌握椭圆的标准方程及其推导过程;2.根据条件确定椭圆的标准方程;过程与方法目标: 1.通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义;在探索椭圆标准方程的过程中,培养学生观察、辨析、归纳和抽象概括问题的能力.2.提高运用坐标法解决几何问题的能力和运算求解和数据处理的能力。

情感态度与价值观目标:通过提炼归纳椭圆的定义的过程,让学生学会将问题抽象成数学问题,并透过运动的现象把握事物的本质;通过经历椭圆方程的化简,增强学生战胜困难的意志品质并体会数学的简洁美、对称美。

通过讨论椭圆方程推导的过程中养成学生扎实严谨的科学态度。

教学重点和难点1.重点:体会椭圆的形成过程,感受求曲线方程的基本方法,掌握椭圆的标准方程及其推导方法。

2.难点:椭圆标准方程的推导(尤其是遇到的根式化简的过程与方法)法与学法(一)教法为了使学生更主动地参与到课堂教学中,体现以学生为主体的探究性学习和因材施教的原则,故采用自主探究法。

高中数学人教课标版选修2-1《椭圆及其标准方程(第1课时)》课件

高中数学人教课标版选修2-1《椭圆及其标准方程(第1课时)》课件

画一画:①将一条绳子的两端固定在同一个定点上,用笔尖
勾起绳子的中点使绳子绷紧,围绕定点旋转,笔尖形成的轨 迹是什么? ②将绳子的两端分别固定在两个定点上,笔尖勾直绳子,移 动笔尖,得到的是轨迹是什么? 提出问题:①作图过程中,哪些量没有变?哪些量变了? ②为什么要求作图过程中笔尖要绷紧? ③笔尖所对应的动点M到定点的距离有什么长度之间的关系? 总结:笔尖对应的动点M到直线两个端点的长度之和固定不变.
知识回顾
问题探究
课堂小结
随堂检测
●活动③ 互动交流、初步实践 判定下列椭圆的标准方程在哪个轴上,并写出焦点的坐标. (1)
(2)
(3)
(1) (在x轴上,焦点为 (2) (在y轴上,焦点为 (3) (在y轴上,焦点为
) ) )
知识回顾
问题探究
课堂小结
随堂检测
●活动④ 巩固基础、检查反馈
例1.已知
椭圆及其标准方程 (第1课时)
名师:杨军君
知识回顾
问题探究
课堂小结
随堂检测
(1)圆的方程的定义; (2)直线、圆的位置关系; (3)判断直线与圆位置关系的方法:代数法与几何法
检测下预习效果: 点击“随堂训练” 选择“《椭圆及其标准方程(第1课时)》预习自测”
知识回顾
问题探究
课堂小结
随堂检测
探究一 创设情景,认识椭圆 ●活动① 归纳提炼概念
A. C.

B. D.
,则椭圆的标准方程为(D)
或 或
【解题过程】由

.
【思路点拨】通过焦点的位置判断方程.
知识回顾
问题探究
课堂小结
随堂检测
例2 椭圆
上一点P到一个焦点的距离为 2,则

《椭圆及其标准方程》人教版高二数学选修2-1PPT课件(第1课时)

《椭圆及其标准方程》人教版高二数学选修2-1PPT课件(第1课时)

焦点坐标为: (0,-1)、(0,1) ,焦距
等于__2___;
若曲线上一点M到左焦点F1的距离为3,则
点M到另一个焦点F2的距离等于_2___5____3_, 则∆F1MF2的周长为___2___5____2_ |MF1|+|MF2|=2a
y
F2
x O
F1
M
课堂练习
x2 y2
(2)已知椭圆的方程为:
人教版高中数学选修2-1
第2章 圆锥曲线与方程
2.2.1椭圆及其标准方程第一课时
PEOPLE'S EDUCATION PRESS HIGH SCHOOL MATHEMATICS ELECTIVE 2-1
讲解人: 时间:2020.6.1
复习检测
(1)两点间的距离公式:
| AB | (x2 x1)2 (y2 y1)2 (2)圆的定义:
(a,0)、(-a,0)、(0,b)、(0,-b)
(c,0)、(-c,0)
x2 y2 b2 a2 1(a b 0)
|x|≤ b,|y|≤ a 同前
(b,0)、(-b,0)、(0,a)、(0,-a) (0 , c)、(0, -c)
长半轴长为a,短半轴长为b. a>b
e c a
同前 同前
a2=b2+c2
新知探究
数学实验 • (1)取一条细绳,绳长2a • (2)把它的两端固定在板上的两个定点F1、F2, • (3)用铅笔尖(M)把细绳拉紧,在板上慢慢移动
看看画出的 图形 1.在椭圆形成的过程中,细绳的两端的位置是固定的还是运动的? 2.在画椭圆的过程中,绳子的长度变了没有?说明了什么? 3.在画椭圆的过程中,绳子长度与两定点距离大小有怎样的关系?

高中数学选修2-1第二章第一节《椭圆及其标准方程》说

高中数学选修2-1第二章第一节《椭圆及其标准方程》说

课题:椭圆及其标准方程(—)教材: 人教版高中数学选修2-1第二章第一节《椭圆及其标准方程》一、教材分析(一) 教材的地位和作用圆锥曲线是一个重要的几何模型,有许多几何性质,这些性质在日常生活、生产和科学技术中有着广泛的应用。

同时,圆锥曲线也是体现数形结合思想的重要素材。

在本章中,椭圆的学习为后面研究双曲线、抛物线提供基本模式和理论基础。

因此这节课有承前启后的作用,是本章和本节的重点内容之一。

(二) 教学目标1. 知识与技能目标:掌握椭圆的定义和标准方程,理解椭圆标准方程的推导。

2. 过程与方法目标:通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、归纳问题的能力。

3. 情感态度与价值观目标:通过实验、观察、推理、类比、归纳等教学活动,使学生体验到数学学习活动充满着探索和创造,提高了学生的学习热情并体会数学的简洁美、对称美。

(三) 教学的重点与难点1. 教学重点:椭圆的定义及其标准方程。

2. 教学难点:椭圆标准方程的推导。

在学习本课《椭圆及其标准方程》前,学生已学习了直线与圆的方程,对曲线和方程的概念有了一些了解与运用的经验,用坐标法研究几何问题也有了初步的认识。

但由于学生学习解析几何时间还不长、学习程度也较浅,学生对坐标法解决几何问题掌握还不够。

另外,学生对含有两个根式之和(差)等式化简的运算生疏,去根式的策略选择不当等是导致“标准方程的推导”成为学习难点的直接原因。

二、学情分析学生对曲线和方程的思想方法有了一些了解和运用的经验,对坐标法研究几何问题也有了初步的认识,因此,学生已经具备探究有关点的轨迹问题的知识基础和学习能力,但由于学生学习解析几何时间还不长、学习程度也较浅,并且还受到高二这一年龄段学习心理和认知结构的影响,在学习过程中难免会有些困难.如:由于学生对运用坐标法解决几何问题掌握还不够,因此从研究圆到椭圆,学生思维上会存在障碍.三、教法和学法(一) 教法:在教法上,主要采用探究性教学法和启发式教学法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版高二选修2—1 2.2椭圆及其标准方程(第1课时)
[教学目标]
知识目标:1.掌握椭圆的定义,掌握椭圆标准方程的两种形式及其推导过程;
2.根据条件确定椭圆的标准方程;
3.熟练运用这两个公式解决问题。

能力目标:渗透数形结合和等价转化的数学思想、方程思想;一题多变等方法;提高
运用坐标法解决几何问题的能力。

德育目标:1.发现事物间的相互联系的规律;
2.提高数学学习的兴趣和创新精神。

[教学重点] 椭圆的定义及其标准方程的两种形式。

[教学难点] 椭圆标准方程的建立和推导。

[教学流程]
一、知识引入
由“生活中的椭圆”以及“圆的伸缩”引出椭圆,得到本研究课题。

二、探索研究
由动画演示分析椭圆,得出不同情形时的不同轨迹。

得到椭圆的定义后,研究①定义的要点,②定义的数学表达式。

复习得到曲线方程的步骤,同时寻求椭圆的标准方程的两种形式。

三、课堂练习
练习以熟悉椭圆的标准方程并掌握用定义法得到椭圆的标准方程。

1.判定下列椭圆的焦点在?轴,并指明a 2、b 2,写出焦点坐标:
221144169
x y +=,2212516x y +=,22
2211x y m m +=+。

2.判断正误:
椭圆m2x2+(m2+1)y2=1的焦点在y 轴上;
到两定点距离之和等于定长的点的轨迹式椭圆;
椭圆22
221(,0)y x a b a b
+=≠的焦点坐标为(。

3.写出适合下列条件的椭圆的标准方程:
a=4,b=1,焦点在 x 轴;
a=4,c=2,焦点在 y 轴上;
两个焦点的坐标是(-2,0)和(2,0)并且经过点(2.5,-1.5);
例:平面内有两个定点的距离是8,写出到这两个定点的距离的和是10的点的轨迹方程。

练习:已知三角形ABC 的一边 BC 长为6,周长为16,求顶点A 的轨迹
方程
变式1:已知B(-3,0),C(3,0),CA,BC,AB 的长组成一个等差数列,求点A 的轨迹方程。

变式2:在△ABC 中, B(-3,0),C(3,0),sin sin 2sin C B A +=,求A 点的轨迹方程。

练习:将22
12516
x y +=所表示的椭圆绕原点旋转90度,所得轨迹的方程是什么?
思考1:10这
类方程的化简结果?
思考2:圆有参数方程,能想到椭圆的参数方程吗?
四、总结提炼
椭圆的定义及标准方程;
椭圆的标准方程有两个;标准方程中,,a b c 的关系;
掌握判断焦点的方法;
22Ax By C +=在一定的条件之下可以表示椭圆,有时利于解题; 如何来求椭圆方程?
五、课外作业
巩固作业
复习书本92页至95页
书面作业
习题8.1节 2,3(3),4
自主作业
绿色通道144 第7题
预习作业
预习教课书95页例3。

相关文档
最新文档