波分复用器详细解释..

合集下载

光波导芯片_波分复用_解释说明

光波导芯片_波分复用_解释说明

光波导芯片波分复用解释说明1. 引言1.1 概述光通信作为一种高速、大容量的数据传输技术,已成为现代信息社会中不可或缺的基础设施。

然而,在面对日益增长的带宽需求和传输距离要求时,传统的电路板和金属导线等传输介质已经显得力不从心。

因此,光波导芯片作为一种新型的光学器件应运而生。

1.2 文章结构本文将首先介绍光波导芯片的定义、原理、结构和特点。

随后,我们将重点讨论波分复用技术,并详细解释其原理、基础概念以及相关设备和组成要素。

然后,我们将探讨光波导芯片在波分复用中的应用,包括其在光传输中的作用机制解析、在波分复用系统中关键功能的介绍,以及一些实际应用中的效果与案例分享。

最后,我们将总结主要观点和发现,并展望光波导芯片和波分复用技术未来发展方向。

1.3 目的本文旨在通过对光波导芯片和波分复用技术进行详细说明,帮助读者深入了解光通信领域中的重要概念和技术。

同时,通过介绍光波导芯片在波分复用中的应用,使读者对该技术在实际场景中的应用效果有更全面的认识。

最后,我们将展望未来光波导芯片和波分复用技术的发展方向,为相关研究和工程领域提供参考和启示。

2. 光波导芯片:2.1 定义和原理:光波导芯片是一种集成光学器件,其通过特殊的材料结构和工艺制作而成。

它利用高折射率的核心层将光信号引导在其表面附近传输,形成一条或多条光波导路径。

这些路径类似于管道,可以将光信号有效地控制、传播和分配。

光波导芯片原理基于总反射和电磁波的耦合效应。

当光线传入具有高折射率的核心层时,由于介质折射率的差异,部分能量会被全内反射并沿着波导路径传输。

在光波导芯片中,可以通过调整核心层和包围层之间的折射率差异来改变传播模式、控制波导路径和操纵光信号。

2.2 结构和特点:通常情况下,光波导芯片由三个主要组成部分构成:核心层、包围层和衬底。

核心层是最重要的部分,用于引导光信号;包围层则用于限制光信号的传播区域,并保持其在核心层内传输;衬底则为光波导芯片提供支撑和稳定性。

波分复用

波分复用

新闻网页贴吧知道MP3图片视频百科文库波分复用进入词条搜索词条帮助设置首页 自然文化地理历史生活社会艺术人物经济 科学体育核心用户 NBA百科名片开放分类:波分复用波分复用(WND)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplex er)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。

这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。

介绍指在同一根光纤中同时让两个或两个以上的光波长信号通过不同光信道各自传输信息,称为光波分复用技术,简称WDM 。

光波分复用包括频分复用和波分复用。

光频分复用(FDM)技术和光波分复用(WDM)技术无明显区别,因为光波是电磁波的一部分,光的频率与波长具有单一对应关系。

通常也可以这样理解,光频分复用指光频率的细分,光信道非常密集。

光波分复用指光频率的粗分,光倍道相隔较远,甚至处于光纤不同窗口。

光波分复用一般应用波长分割复用器和解复用器(也称合波/分波器)分别置于光纤两端,实现不同光波的耦合与分离。

这两个器件的原理是相同的。

光波分复用器的主要类型有熔融拉锥型,介质膜型,光栅型和平面型四种。

其主要特性指标为插入损耗和隔离度。

通常,由于光链路中使用波分复用设备后,光链路损耗的增加量称为波分复用的插入损耗。

当波长11,l2通过同一光纤传送时,在与分波器中输入端l2的功率与11输出端光纤中混入的功率之间的差值称为隔离度。

光波分复用的技术特点与优势如下:(1)充分利用光纤的低损耗波段,增加光纤的传输容量,使一根光纤传送信息的物理限度增加一倍至数倍。

目前我们只是利用了光纤低损耗谱(1310nm-1550nm)极少一部分,波分复用可以充分利用单模光纤的巨大带宽约25TH z,传输带宽充足。

波分复用器及其优缺点

波分复用器及其优缺点

WDM市场应用状况
光波分复用器未来主要向着以下四个方向发展: 结构集成化、光纤化 性能灵活、动态可调 光电混合集成 新应用、新技术、新材料、新工艺
马赫—泽德干涉型(Mach-Zehnder interleaver,MZI)波分复用器
该种波分复用器的滤波单元是马赫-曾德干涉仪(Mach-Zehnder interleaver,MZI),如上图所示,它由两个3dB耦合器级联而成, 利用两耦合器间的两干涉臂长差可以使不同的波长在不同的输出 臂输出。其实现形式可以是在两条相同的单模光纤上连续熔拉两 个耦合器而成,也可以由基于平板光波导的集成光学元件实现。
多波长的MDTFF波分复用器工作原理
图中所有的透镜都是用梯度折射率材料做成的自聚焦透镜,作用 是将极小入射角射入的光束聚焦成平行光输出。
MDTFF型波分复用器主要优点: 插入损耗较低 信号通带比较平坦 与光纤参数无关,可以实现结构稳定的小型化器件 温度特性很好
缺点:加工复杂,但目前的工艺已经比较成熟 适用于16通道以下
TFF与AWG结构示意图
基于TFF 的复用/解复用器:
技术成熟,具有温度稳定性好、偏振不敏感、信道隔离度高、信 道间隔可以不规则设置、系统升级容易等优点,但也有每个 TFF 需单 独设计、通道损耗依滤波顺序递增、器件成本与通道数成正比、装配
时间长等缺点,因此一般只应用于系统中通道数小于 16 的情况。
熔锥型波分复用器优缺点: 优点:波长可控(通过耦合长度)、插入损耗低,偏振相关损耗低、封
装相对容易、可靠性高、制造工艺简单、大批量生产可降低成本。 缺点:器件尺寸较大、相邻通道间串扰较大、信道数少一般不在DWDM
中使用。
光纤布拉格光栅型波分复用器
光纤光栅是近几年正着力研究、探索其机理的一种新型的全光纤 器件。它是利用紫外激光诱导光纤纤芯折射率分布呈周期性变化的机 理。当折射率的周期变化能满足布拉格光栅的条件时,该光栅相应波 长的光就会产生全反射,而且其余波长的光会顺利通过,相当于一个 带阻滤波器。

波分复用器详细解释

波分复用器详细解释

处理原理
处理性能
光信号处理技术基于光学的非线 性效应和干涉原理,通过改变光 信号的相位、幅度、频率或偏振 态等参数,实现信号的逻辑运算、 调制解调及频率转换等功能。
光信号处理技术的性能指标包括 处理速度、精度和稳定性等。这 些性能指标直接影响波分复用系 统的传输速率、频谱效率和系统 可靠性等方面。
04
数据中心中的应用
总结词
波分复用器在数据中心中用于提高光网络的带宽利用率和传输性能。
详细描述
随着数据中心规模的扩大和业务量的增长,对带宽的需求也在不断增加。波分复用器可以将多个低速率的光信号 复用到一根光纤中,实现高速数据传输,提高了带宽利用率和传输性能。这有助于降低数据中心的运营成本,并 满足不断增长的业务需求。
波分复用器详细解释

CONTENCT

• 波分复用器概述 • 波分复用器的工作原理 • 波分复用器的关键技术 • 波分复用器的优势与挑战 • 波分复用器的应用案例
01
波分复用器概述
定义与特点
定义
波分复用器是一种将多个不同波长的光信号复用 到同一根光纤中进行传输的设备。
灵活扩展性
可根据需要增加波长数量,实现网络的灵活扩展 。
智能交通系统中的应用
总结词
波分复用器在智能交通系统中用于实现 车联网和交通监控系统的快速数据传输 。
VS
详细描述
智能交通系统中包含大量的车辆和交通监 控设备,需要实现快速、实时的数据传输 。波分复用器可以将多个设备的数据复用 到同一根光纤中进行传输,提高了数据传 输的效率和可靠性。这有助于实现智能交 通系统的智能化管理和安全运行。
03
波分复用器的关键技术
光学滤波技术
01

第6章_波分复用.

第6章_波分复用.

2.OXC
(2) OXC ① 基于WDM技术和空分复用技术的OXC ② 基于空分技术和可调光滤波器技术的OXC ③ 基于分送耦合开关的第一类和第二类OXC ④ 基于平行波长的开关的OXC ⑤ 完全基于波长交换的OXC
2.OXC
• 图6-25 OXC的一般结构
2.OXC
• 图6-26 WDM技术和空分复用技术相结合的 OXC的结构
(1) (2)
2.网络生存性策略——保护和 恢复 (1)保护恢复技术分类 • 按网络中所使用的协议层次进行划分:
– – – – IP层恢复技术 ATM SDH层恢复技术 光层恢复技术
• WDM网络的恢复方案又可分为保护倒换和利用 OXC
2.网络生存性策略——保护和 恢复 (2) • 冗余度是指网络中总的空闲容量与总工作容量 • 恢复率是指已恢复的通道数占原来失效的总通
6.2 光波分复用技术
6.2.1 WDM、DWDM和CWDM 6.2.2 WDM的特点 6.2.3 WDM与光纤 6.2.4 WDM对光源和光电检测器的要求
6.2.1 WDM、DWDM和CWDM
• DWDM和CWDM技术实际上它们是同一种技术, 只是通道间隔不同。 • WDM系统的通道间隔为几十纳米以上,例如最 早的1310/1550nm两波长系统,它们之间的波 长间隔达两百多纳米,这是在当时技术条件下 所能实现的WDM • 随着技术的发展,特别是EDFA(掺铒光纤放大 器)的商用化,使WDM系统的应用进入了一个 新的时期。
6.2.4 WDM对光源和光电检测器 的要求 • 图6-5 波长反馈控制原理示意图
6.3 波分复用系统
6.3.1 波分复用系统结构 6.3.2 WDM系统的基本应用形式 6.3.3 WDM系统中的光监控信道

波分复用器详细解释

波分复用器详细解释

回忆一下分路器的主要作用是什么? 对同一波长的光功率进行分配。
WDM常见的两种: 1、熔融拉锥型:用拉锥机(含电脑监控系统)进行高 温熔融拉锥两根光纤后达到1310nm与1550nm的波分复 用目的。 2、滤波片式:通过透镜及滤波片进行贴片式的封装后 达到波分复用目的。
3
拉锥型WDM原理
外观与熔融拉锥分路器一样。
32mm
8
FWDM原理
FWDM参数
10
简析DWDM
密集波分复用器(DWDM)—Dense Wavelength Division Multiplexing
DWDM技术是利用单模光纤的带宽以及低损耗的特性,采用多个波长作为载波,允许各 载波信道在光纤内同时传输,与通用的单信道系统相比,DWDM不仅极大地提高了网络 系统的通信容量,充分利用了光纤的带宽,而且它具有扩容简单和性能可靠等诸多优点, 前景十分光明。
λ1 λ2 λ3 λx λy λz
. . .
复用器
几十公里的一根光纤
分波器
λ1 λ2 λ3
. . .
光信号传输
λx λy λz
链路中间还有一些中继放大器、监控系统等器件用于保证光信号正常传输。
波分复用器 WDM:Wavelength-Division Multiplexing
作用:对不同波长进行合成或分离。
DWDM的信道间隔一般是0.2nm~1.2nm,而CWDM是20 nm。
CWDM和DWDM的主要区别。 1. CWDM载波通道间隔较宽,因此,同一根光纤上只能复用最多18个波长的光波,“粗” 与“密集”称谓的差别就由此而来; 2. CWDM调制激光采用非冷却激光,而DWDM采用的是冷却激光。冷却激光采用温度 调谐,非冷却激光采用电子调谐。由于在一个很宽的波长区段内温度分布很不均匀, 因此温度调谐实现起来难度很大,成本也很高。CWDM避开了这一难点,因此大幅降 低了成本,整个CWDM系统成本只有DWDM的30%。

WDM波分复用器详解

WDM波分复用器详解

WDM波分复用器详解波分的概念波分复用,指在同一根光纤中,同时让两个或两个以上的光波长信号通过不同光信道各自传输信息,称为光波分复用技术,简称WDM。

简介波分复用波分复用(WND)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。

这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。

概述光纤通信飞速发展,光通信网络成为现代通信网的基础平台。

光纤通信系统经历了几个发展阶段,从80年代末的PDH系统,90年代中期的SDH系统,WDM系统,光纤通信系统快速地更新换代。

双波长WDM(1310/1550nm)系统80年代在美国AT&T网中使用,速率为2×17Gb/s。

90年代中期,WDM系统发展速度并不快,主要原因在于:(1)TDM(时分复用)技术的发展,155Mb/s-622Mb/s-2.5Gb/sTDM技术相对简单。

据统计,在2.5Gb/s系统以下(含2.5Gb/s系统),系统每升级一次,每比特的传输成本下降30%左右。

因此在系统升级中,人们首先想到并采用的是TDM技术。

(2)波分复用器件不成熟。

波分复用器/解复用器和光放大器在90年代初才开始商用化,1995年开始WDM技术发展很快,特别是基于掺铒光纤放大器EDFA的1550nm窗口密集波分复用(DWDM)系统。

Ciena推出了16×2.5Gb/s系统,Lucent公司推出8×2.5Gb/s系统,目前试验室已达Tb/s速率。

发展迅速的主要原因在于:(1)光电器件的迅速发展,特别是EDFA的成熟和商用化,使在光放大器(1530~1565nm)区域采用WDM技术成为可能;(2)利用TDM 方式已接近硅和镓砷技术的极限,TDM已无太多的潜力,且传输设备价格高;(3)已敷设G.652光纤1550nm窗口的高色散限制了TDM10Gb/s系统的传输,光纤色散的影响日益严重。

波分复用

波分复用

四、光滤波器与光波分复用器
波分复用系统的核心部件是波分复用器件,即光复用 器和光解复用器(有时也称合波器和分波器),实际上均 为光学滤波器,其性能好坏在很大程度上决定了整个系统 的性能。
λ λ λ
1 2
WDM
……
n
λ 1,λ 2…λ
n
(a)合波器
λ 1,λ 2…λ
n
WDM
λ λ …… λ
1 2
n
(b)分波器
光波分复用器的种类有很多,大致可以分 为四类: 干涉滤光器型 光纤耦合器型 光栅型 阵列波导光栅(AWG)型 阵列波导光栅(AWG)型
2N
光源λ
2N
2N
单纤双向WDM传输方式允许单根光纤携带全双工通路,通常可以比单向传 单纤双向WDM传输方式允许单根光纤携带全双工通路,通常可以比单向传 输节约一半的光纤器件,由于两个方向传输的信号不交互产生FWM(四波混 输节约一半的光纤器件,由于两个方向传输的信号不交互产生FWM(四波混 频)产物,因此其总的FWM产物比双纤单向传输少很多 频)产物,因此其总的FWM产物比双纤单向传输少很多
三、WDM技术的主要特点 三、WDM技术的主要特点
1.充分利用光纤的巨大带宽资源 1.充分利用光纤的巨大带宽资源
使一根光纤的传输容量很快的扩大几倍至几十倍. 使一根光纤的传输容量很快的扩大几倍至几十倍.
2.同时传输多种不同类型的信号 2.同时传输多种不同类型的信号
由于同一光纤中传输的信号波长彼此独立, 由于同一光纤中传输的信号波长彼此独立, 因此可以 传输特性和速率完全不同的信号, 传输特性和速率完全不同的信号,完成各种电信业务的综 合和分离. 合和分离.
二、WDM传输系统的基本结构 二、WDM传输系统的基本结构

波分复用器的作用

波分复用器的作用

波分复用器的作用一、引言波分复用技术是一种将多路信号通过不同波长的光纤进行传输的技术,可以实现光纤网络的高速、大容量传输。

而波分复用器则是实现波分复用技术的重要设备之一。

二、什么是波分复用器波分复用器(Wavelength Division Multiplexer,简称WDM)是一种将多路信号通过不同波长的光纤进行传输的设备。

它可以把多个不同波长的光信号合并到一个光纤中进行传输,也可以将一个光纤中的多个不同波长的光信号拆分成单独的信号输出。

同时,由于每个波长可以携带独立的信息流,在保证带宽利用率和数据传输速度的同时,还可以提高网络容量和可靠性。

三、波分复用器的作用1. 带宽利用率提高在传统通信系统中,每根光纤只能承载一个信道,因此需要铺设大量光缆才能满足通信需求。

而采用波分复用技术后,不同波长之间互相独立,可以在同一根光纤上同时传输多个信道,从而大大提高了光纤的带宽利用率。

2. 提高网络容量由于采用波分复用技术后,每个波长可以携带独立的信息流,因此可以在同一根光纤上传输多个信道,从而提高了网络的容量。

同时,随着科技的不断发展,波分复用器的通道数也在不断增加,从最初的几个通道到现在的数百个通道,进一步提高了网络容量。

3. 数据传输速度提高采用波分复用技术后,每个波长可以携带独立的信息流,在保证带宽利用率和数据传输速度的同时,还可以提高网络容量和可靠性。

因此,在同等条件下,采用波分复用技术比传统通信系统具有更快的数据传输速度。

4. 网络可靠性提高由于采用波分复用技术后,每个波长之间互相独立,在某一个信道出现故障时,并不会影响其他信道的正常运行。

因此,在保证数据传输速度和网络容量的同时,还能够提高网络的可靠性。

四、波分复用器的分类1. 分束式波分复用器(CWDM)分束式波分复用器是一种使用多个窄带滤波器将不同波长的信号分别分离出来的设备。

它通常用于较小规模的网络中,可以支持2-18个通道,适用于短距离传输。

波分复用器(第八章光波分复用技术及关键器件)

波分复用器(第八章光波分复用技术及关键器件)

阵列波导光栅
1 2 3 4 1 2 3 4 星形耦合器
1
.
..
2
N 输出
AWG: 规则排列的波
导,相邻波导的长度相 差固定值DL
D2neffDL
1 2 3 4
AWG器件实物样品
1010 AWG器件樣品
55 AWG器件樣品
阵 列 波 导 光 栅 (AWG) , 也 称 作 相 位 阵 列(Phased Array),是WDM 通信系统中 的关键器件,除了可作为波分复用/解复用 器外, 它还是光互连器件的关键组成部分, 已经成为WDM系统中不可缺少的核心器 件。
WDM系统的基本构成主要有以下两种形式: 双纤单向传输和单纤双向传输。
(1) 双纤单向传输 单向WDM传输:指所有光通路同时在一根光纤上沿 同一方向传送; 由于各信号是通过不同光波长携带 的,彼此之间不会混淆; 在接收端通过光解复用器将不同波 长的信号分开,完成多路光信号传 输的任务。
双纤单向传输
(2) 单纤双向传输
双向WDM传输:指光通路在一根光纤上同时向两个不同的 方向传输。所用波长相互分开,以实现双 向全双工的通信。
1 光发射机1
光接收机 1


n 光发射机n
1′ 光接收机
复用/解复用器
1…n
光纤 放大器
n+1… 2n
光接收机 n
复用/解复用器 n+1
光发射机
1′


n′ 光接收机
单纤双向WDM传输
射光反射光
折射率
高 低 高 低 高
1,透 2,3 射 光光 纤 2
滤波器 滤1波器2
1,2,3
2,3
3
1
2

波分复用器

波分复用器

从图中可以看出这种WDM器件有四端,形成一个X型耦合器,即 双光纤四端耦合器。通过设计熔锥区的锥度,控制拉锥速度,使其中一
个波长的光在直通臂有接近100%的输出,而对波长为的光输出接近为
零;使耦合臂对波长为的光有接近100%输出,而对的光输出接近为 零,这样当两个不同波长和的光信号由输入臂端口同时输入该耦合器 时,和的光信号则分别从直通臂和耦合臂输出,因而实现了分波功能。 反之,当直通臂和耦合臂分别有和的光信号输入时,也能将其合并从一
2…λ N的FBG级联起来,如图所示,图中有多个FBG和环形器组成,多
个波长依次通过各个FBG从而把相应的布拉格波长的光反射回来,然 后通过环形器把该波长分离出来。
阵列波导光栅波分复用器
AWG由荷兰代尔夫特理工大学(Delft Univnt Smit、NTT(Nippon Telegraphy and Telephone Corp
封装容易、具有成熟的制造工艺、制造成本低、适合高速 多波道DWDM系统采用
缺点:温度稳定性差、工艺复杂
研究热点:
1. 2. 3. 4.
超小尺寸EDG 频谱平坦化设计 偏振不敏感性 增强刻蚀面反射率设计
多层介质膜滤光片型(MDTFF)波分复用器
多层介质膜滤光片是一种多层高反射膜,膜层数目可多达数十层, 交替由较高折射率 和较低折射率 的两种电介质材料组成,与滤光片基 底和空气相邻的膜层具有较高折射率。 原理:利用几十层不同的介质薄膜组合起来,组成具有特定波长选择特 性的干涉滤波器,就可以实现将不同的波长分离或合并。
基于纳米Si光波导的新型交叠型AWG结构
AWG结构: 至少一条输入波导/输出波导 输入/输出自由传输区(FPR) 阵列波导区域 FPR为罗兰圆结构 AWG需满足的衍射方程:

波分复用器研究报告

波分复用器研究报告

波分复用器研究报告波分复用器是目前通信领域中非常重要的一种技术,其具有将多路通信信号在一个光纤上进行同时传输的能力,从而提高光纤资源的利用率、降低通信成本等诸多优点。

以下是关于波分复用器的研究报告:一、波分复用器的原理波分复用器是将不同波长的光信号通过独立的通道同时发送到光纤中,然后再将这些信号解复用出来,实现多信道的通信。

其核心是光栅,能够将输入光束解析成一系列频率不同的光束,从而实现波分复用的功能。

二、波分复用器的分类1、分束式波分复用器:是在输入端将多路光信号分别输入不同的波导,再通过光栅将这些波导的输出信号复用在一个波导中。

2、反射式波分复用器:是通过将不同波长光信号反射到不同位置的光栅上,实现光信号的分离和合并。

3、光纤带通滤波器式波分复用器:其原理是通过光纤中的吸收、散射和反射等现象,在不同波长处形成谐振腔,将特定波长信号通过,而将其他波长信号反射回去。

三、波分复用器的应用波分复用器的应用非常广泛,主要包括以下方面:1、长途光通信:波分复用技术能够将大量的信号在一个光纤内进行高效传输,提高光纤资源利用率、降低通信成本。

2、数据中心互联:波分复用技术能够在数据中心中实现服务器之间高速通信。

3、卫星通信:波分复用技术能够实现卫星通信的高速、高密度传输,提高传输效率和可靠性。

四、波分复用器的发展趋势1、高速化:波分复用技术将向更高速度、更大容量的方向发展,以满足不断增长的通信需求。

2、智能化:波分复用技术将向自适应、智能化的方向发展,能够更好地适应不同信道的变化。

3、微型化:波分复用技术将向微型化、集成化方向发展,能够更好地适应各种应用场景的需求。

以上是有关波分复用器的研究报告,该技术能够提高通信效率和资源利用率,并在通信、数据中心互联、卫星通信等方面得到广泛应用,其发展趋势是向高速化、智能化和微型化方向发展。

波分复用器(FWDM)技术规格

波分复用器(FWDM)技术规格
参 数
透射 射通道波长 反射 射通道 1 波长 反射 射通道 2 波长 插入 入损耗 插入 入损耗波动 隔离 离度 回波 波损耗 温度 度敏感度 偏振 振相关损耗 偏振 振模色散损耗 方向 向性 最大 大注入功率 工作 作温度 存储 储温度 光纤 纤类型 出纤 纤类型 封装 装尺寸 透射通道 反射通道 透射通道 反射通道 透射通道 反射通道
备注 备注:以上数据均 据均为不含连接器 接器的数据。 编辑 辑日期:2013 3-10-15
本文 文由科海光器件公司提 提供!
波分 分复用器(FWDM M)技术规 规格
简 介: 简
三端口波分 分复用器专指 指固定三个特 特定波长的波 波分复用器件 件。 在光纤通信网络中, 利 利用三端口波 波分复用器可 可以 实现 现语音、视频 频、数据的双 双向传输,最 最常用的是 1310&1490 1 三 分复用器。三 三端口波分复 复用 &1550nm 三波长的波分 器采 采用滤波片(filter)原理 理以及准直器 器原理相互结 结合的封装后 后,可以定制 制出任意三种 种波长。这种 种器件一般需 需要 经过 过二十四小时 时高低温循环 环及跌落试验 验,以保证产 产品质量可靠 靠稳定。
FWD DM-5/34
1550±10 1310±40 1490±10
FWD DM-4/35
1490± ±10 1310± ±40 1550± ±10 <0.60 <0.60 ≤0.30 ≤0.30 ≥40 ≥20 >50 <0.005 <0.10 <0.10 50 500 -20~+70 -40~+85 SMF-28e
FWD DM-34/5
1310± ±40 1490± ±10 1550± ±10

光波分复用(WDM)技术

光波分复用(WDM)技术

光波分复用(WDM)技术一、波分复用技术的概念波分复用(WDM)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,D emultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。

这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。

通信系统的设计不同,每个波长之间的间隔宽度也有不同。

按照通道间隔的不同,WDM可以细分为CWDM(稀疏波分复用)和DWDM(密集波分复用)。

CWDM 的信道间隔为20nm,而DWDM的信道间隔从0.2nm 到1.2nm,所以相对于DWDM,CWDM称为稀疏波分复用技术。

CWDM和DWDM的区别主要有二点:一是CWDM载波通道间距较宽,因此,同一根光纤上只能复用5到6个左右波长的光波,“稀疏”与“密集”称谓的差别就由此而来;二是CWDM调制激光采用非冷却激光,而DWDM采用的是冷却激光。

冷却激光采用温度调谐,非冷却激光采用电子调谐。

由于在一个很宽的波长区段内温度分布很不均匀,因此温度调谐实现起来难度很大,成本也很高。

CWDM避开了这一难点,因而大幅降低了成本,整个CWDM系统成本只有DWDM的30%。

CW DM是通过利用光复用器将在不同光纤中传输的波长结合到一根光纤中传输来实现。

在链路的接收端,利用解复用器将分解后的波长分别送到不同的光纤,接到不同的接收机。

二、波分复用技术的优点WDM技术之所以在近几年得到迅猛发展是因为它具有下述优点:(1) 传输容量大,可节约宝贵的光纤资源。

对单波长光纤系统而言,收发一个信号需要使用一对光纤,而对于WDM系统,不管有多少个信号,整个复用系统只需要一对光纤。

例如对于16个2.5Gb/s系统来说,单波长光纤系统需要32根光纤,而WDM系统仅需要2根光纤。

波分复用器技术与原理分析

波分复用器技术与原理分析
波分复用器的技术和原理分析
光栅型波分复用器(三)
用于WDM中的主要是闪耀光栅,它的刻槽具有一定的 形状,如图所示,当光纤阵列中某根输入光纤中的光信号 经透镜准直后,以平行光束射向闪耀光栅。由于光栅的衍 射作用,不同波长的光信号以方向略有差异的各种平行光 束返回透镜传输,再经透镜聚焦后,以一定规律分别注入 输出光纤之中。
波分复用器的技术和原理分析
宽带波分复用器 WDM
WDM-T1550R1310/1490可实现1550,1490/1310两通 信窗光信号的合波(复用)与分波(解复用),使单根光纤 传输容量倍增,还可实现单纤双向通信,广泛应用于光纤网 络升级、扩容或引入综合新业务(广播电视、电信、互联网 三网合一)等方面。
波分复用器的技术和原理分析
熔融拉锥型波分复用器(一)
当2根单模光纤的纤芯充分靠近时,单模光纤中 的2个机模会通过瞬逝波产生相互耦合,在一定的耦 合系数和耦合长度下,便可以造成不同波长成分的 波道分离,而实现分波效果。
波分复用器的技术和原理分析
介质膜型波分复用器(二)
介质膜型波分复用器的基本单元由玻璃衬底上交替地镀 上折射率不同的两种光学薄膜制成,它实际上就是光学仪器 中广泛应用的增透膜。图下所示:
波分复用器的技术和原理分析
滤波片型波分复用器
*宽带波分复用器 WDM *三网合一 WDM-PON *粗波分复用器CWDM—Coarse Wavelength Division
Multiplexing *细波分复用器DWDM—Dense Wavelength Division
Multiplexing *OADM光分插复用器—Optical Add/Drop Multiplexer •特殊波长波分复用器
波分复用器的技术和原理分析

波分复用器原理

波分复用器原理

波分复用器原理波分复用 (Wavelength Division Multiplexing,WDM) 是一种光传输方式,它可以将多个光信号在同一根光纤中传输,从而提高光纤的利用率。

波分复用器可以实现波分复用技术。

接下来我们将对波分复用器的原理进行介绍。

一、波分复用器的基本概念波分复用器是一种光学器件,可以将多个信号的不同波长分别定向传输,通过光波分离和光波合成实现多信号的同时传输。

波分复用器的特点是在同一根光纤中可以传输多个信号,从而提高光纤的利用率。

二、波分复用器的结构波分复用器通常由分波器、合波器和滤波器三个主要部分组成。

1. 分波器:分波器可以将多路信号分离成不同波长的信号,并将每路信号导入不同通道,实现波长的复用。

2. 合波器:合波器则将不同波长的信号从各个通道中合成为一个信号,并将其输出。

3. 滤波器:滤波器可以滤掉非目标波长的光信号,使目标波长的信号通过。

三、波分复用器的工作原理波分复用器的工作原理可以分为两个步骤:波长分离和波长合成。

1. 波长分离:首先,波分复用器将传输过来的多路信号通过分波器分离成不同波长的光信号,然后导入不同的通道中,在光纤中互不干扰地传输。

2. 波长合成:在接收端,波分复用器将各个通道中的信号通过合波器合成为一个信号,然后输出。

在这个过程中,滤波器可以滤掉非目标波长的光信号,使目标波长的信号通过。

四、波分复用器的应用波分复用技术广泛应用于光传输领域。

主要应用于长距离通信、光纤传感、光纤放大器、光波谱分析仪等领域。

同时,波分复用技术也是未来光纤通信网络发展的一个重要方向。

综上所述,波分复用器是一种光学器件,主要由分波器、合波器和滤波器三个部分组成。

波分复用器的工作原理是通过波长分离和波长合成实现多路信号的同时传输。

波分复用技术被广泛应用于光传输领域。

光波分复用器的原理

光波分复用器的原理

光波分复用器的原理
光波分复用器(Wavelength Division Multiplexer,WDM)是一种利用不同波长的光信号在同一光纤中传输的技术。

它的主要原理是将多个不同波长的光信号合并到一个光纤中,同时也可以将这些信号从光纤中分离出来。

WDM的主要组成部分包括光源、分离器和复用器。

在WDM中,光源会发射出不同波长的光信号,这些信号经过调制后会分别进入复用器。

复用器会将这些信号合并为一个光信号,然后通过光纤传输。

在接收端,分离器会将不同波长的光信号分离出来,并送到相应的接收器中进行处理。

WDM技术的优点在于它可以大大提高光纤的传输能力。

通过将多个信号合并到一个光纤中,可以使光纤的带宽得到充分利用,从而提高传输速率和网络容量。

此外,WDM技术还可以减少光纤的数量和复杂度,从而降低网络的成本和维护难度。

波分复用器及其优缺点

波分复用器及其优缺点

研究热点: 1. 超小尺寸AWG:硅和二氧化硅:的高折射率差(~2.0)为
实现纳米光波导和超小尺度的集成光波导器件提供了可 能,这是近几年的研究热点。 2. 频谱平坦化设计:在WDM系统中,器件的通道带宽是 一个非常重要的参数。(主要有MMI,Y分支等特殊结构) 3.偏振不敏感性
相比AWG,EDG由于只具有一个自由传输区域,所以具有潜在 的尺寸优势。另外,由于增加光栅齿面的数目要比增加阵列波导数目 更容易,所以随着器件通道数量的增加,EDG的尺寸变化不如AWG 那么迅速。但是,EDG的主要缺点来自于制作工艺上。由于光栅齿 面的形成需要高质量的深刻蚀,垂直度要求高,并且表面粗糙度也要 尽可能低,这些都对刻蚀工艺提出了较高的要求。同时,为了能提高 光栅的反射效率,在光栅齿背面镀金属是一种较常见的办法。这样就 进一步增加了工艺的复杂度,不利于器件的实用化。
波分复用器概述
WDM技术是指将两种或多种 不同波长的光载波信号在发送端 经过复用器(或称合波器,Multip lexer)汇合在一起,并耦合到光 线路中的同一根光纤中进行传输 的技术:在接收端,混合信号再 经过解复用器(或称分波器,Dem ultiplexer)将各种波长的光载波 分离,然后由光接收机进一步处 理恢复原信号。
波分复用器概述 波分复用器的原理 波分复用器的应用与发展
波分复用器的原理
熔锥型波分复用器
20世纪80年代初,人们开始用光纤熔融拉锥法制作单模 光纤耦合器,至今已形成了实用的理论模型和成熟的工艺。 目前,熔锥型波分复用器以其极低的插入损耗(最大值小于 0.5dB,典型值为O.2dB)、结构简单、无需波长选择器、 较高的光通路带宽、良好的环境稳定性、工艺简单、制作成 本低廉、适于批量生产等优点,已经成为两波复用WDM系 统和EDFA中使用最多的波分复用器件。

波分复用原理

波分复用原理

波分复用原理波分复用简介波分复用(Wavelength Division Multiplexing,简称WDM)是一种常用于光纤通信中的数据传输技术。

它通过同时传输多个光信号,将它们分别分配到不同的光波长上,从而增加了光纤传输的容量。

波分复用是一种高效的传输技术,可以大大提高光纤的利用率,实现更快、更稳定的数据传输。

在本文中,我们将深入探讨波分复用的原理与应用。

1. 单波长与多波长传输•单波长传输:传统的光纤通信中,一根光纤只能传输一路信号,光信号在传输时通过波长不同来区分。

•多波长传输:波分复用技术允许在一根光纤中传输多个信号,每个信号通过不同的波长来区分。

2. 波分复用的原理波分复用的原理基于光的波长特性。

光信号可以看作是由不同波长的光波组成的。

而光纤作为传输介质,具有对不同波长光波的传输能力。

波分复用通过使用光的波长作为信号区分的方式,将多个不同波长的光信号合并到一根光纤中传输。

传输的端点再根据波长选择器将光信号分别提取出来,以恢复原始信号。

3. 波分复用的实现波分复用实现的关键是波分复用器。

波分复用器是一种光学器件,它可以将多个不同波长的光信号合并为一路信号,并将其送入光纤中进行传输。

常见的波分复用器包括多通道光纤光栅(FBG)和星型波导交叉耦合器。

多通道光纤光栅是一种光纤中的光栅结构,利用其对不同波长的散射衍射特性实现波分复用。

星型波导交叉耦合器则通过光波在波导中的传播和耦合过程将多个信号合并。

4. 波分复用的优势波分复用技术带来了许多优势,包括:•大容量传输:波分复用允许同时传输多个信号,大幅提升了光纤的传输容量。

•灵活性:波分复用器可以根据需求进行配置和组合,满足不同信号的传输需求。

•低成本:波分复用技术可以节省光纤资源,减少系统成本。

•高可靠性:波分复用技术可以实现信号的冗余传输,提高通信系统的可靠性。

5. 波分复用的应用波分复用技术广泛应用于光纤通信领域,包括:•长距离通信:波分复用技术使得在一根光纤中同时传输多个信号成为可能,实现了长距离通信。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
粗(稀疏)波分复用器(CWDM)—Coarse Wavelength Division Multiplexing 滤波片式波分复用器(FWDM) —Filter Wavelength Division Multiplexing
FWDM是众多CWDM原理中的其中一种,并通常称为三端口波分复用器。
2002年, ITU-T建议 G.694.2定义了18个从1270nm到1610nm 的 CWDM标称中心波长,波长间隔为20nm。后来,考虑到无源器件滤波特性 (如复用器)几乎不随温度变化,一般认为无源器件标称中心波长应该对准激 光器35℃时的输出信号波长,因为35℃在整个工作温度范围的中间(激光 器的工作温度范围是-5℃~+70℃)。(也就是说,无源器件标称中心波长应该是*o加 上激光器输出从23℃到35℃的波长漂移值,即*o+0.08nm/℃×(35℃-23℃) = *o+1nm。)为了 解决激光器波长标称温度与实际工作温度不同造成的波长差异问题。ITU则 建议G.694.2波长上移1nm(为1271nm/1291nm/…/1611nm),从而使激 光器波长在实际环境刚好工作在(1270nm/1290nm/…/1610nm)。
培训内容
波分复用器 CWDM/FWDM
波分复用器
波分复用(WDM): 发射端:将两种或多种不同波长的光载波信号在发送端经复用器(亦称合波器,Multiplexer)汇 合在一起,并耦合到光线路的同一根光纤中进行传输的技术; 接收端:经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然 后由光接收机作进一步处理以恢复原信号。 总结:这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。
拓展认知:可见光的不同波长的电磁波,引起人眼的 颜色感觉不同,如下: 760~622nm,红色; 622~597nm,橙色; 597~577nm,黄色; 577~492nm,绿色; 492~455nm,蓝靛色; 455~380nm,紫色。
光纤通信用波段 800~1700nm
FWDM封装
∮5.5mm
3.
CWDM具低成本、低功耗、小尺寸等特征。
PLCS、CWDM等产品符合Telcordia GR-1221-CORE标准
您的优质光纤通信供应商
CWDM波段:1270~1610nm
1270~1610 1270~1610nm 1270 1290 1310 1330 1350 1370 1390 1410 1430 1450 1470 1490 1510 1530 1550 1570 1590 1610
O波段
E波段
S波段
C波段
L波段
根据光纤的物理特性以及在不同波长处使用光纤放大器的性能,ITU将 1260~1670nm的波长区域划分为6个频谱波段,如下所示 O波段(原始波段,Original Band):1260~1360nm E波段(扩展波段,Extended Band):1360~1460nm S波段(短波段,Short Band):1460~1530nm C波段(常规波段,Conventional Band):1530~1565nm L波段(长波段,Long Band):1565~1625nm U波段(超长波段,Ultralong Band):1625~1670nm 可见光范围 是 380~760nm。 1~380nm的 是紫外线
0.9出纤拉锥型
3.0/2.0出纤拉锥型 1310波长
1310/1550两波 长 1310/1550两波 长
4
1550波长
拉锥型WDM参数及封装形式
60mm
3 ∮
90mm 20mm 9.5mm
类型-1:出纤为裸纤或0.9松套管型
类型-2:出纤为2.0/3.0套管型
20mm
CWDM:实现多个波长在同一根光纤上传输 CWDM/FWDM
回忆一下分路பைடு நூலகம்的主要作用是什么? 对同一波长的光功率进行分配。
WDM常见的两种: 1、熔融拉锥型:用拉锥机(含电脑监控系统)进行高 温熔融拉锥两根光纤后达到1310nm与1550nm的波分复 用目的。 2、滤波片式:通过透镜及滤波片进行贴片式的封装后 达到波分复用目的。
3
拉锥型WDM原理
外观与熔融拉锥分路器一样。
λ1 λ2 λ3 λx λy λz
. . .
复用器
几十公里的一根光纤
分波器
λ1 λ2 λ3
. . .
光信号传输
λx λy λz
链路中间还有一些中继放大器、监控系统等器件用于保证光信号正常传输。
波分复用器 WDM:Wavelength-Division Multiplexing
作用:对不同波长进行合成或分离。
DWDM的信道间隔一般是0.2nm~1.2nm,而CWDM是20 nm。
CWDM和DWDM的主要区别。 1. CWDM载波通道间隔较宽,因此,同一根光纤上只能复用最多18个波长的光波,“粗” 与“密集”称谓的差别就由此而来; 2. CWDM调制激光采用非冷却激光,而DWDM采用的是冷却激光。冷却激光采用温度 调谐,非冷却激光采用电子调谐。由于在一个很宽的波长区段内温度分布很不均匀, 因此温度调谐实现起来难度很大,成本也很高。CWDM避开了这一难点,因此大幅降 低了成本,整个CWDM系统成本只有DWDM的30%。
32mm
8
FWDM原理
FWDM参数
10
简析DWDM
密集波分复用器(DWDM)—Dense Wavelength Division Multiplexing
DWDM技术是利用单模光纤的带宽以及低损耗的特性,采用多个波长作为载波,允许各 载波信道在光纤内同时传输,与通用的单信道系统相比,DWDM不仅极大地提高了网络 系统的通信容量,充分利用了光纤的带宽,而且它具有扩容简单和性能可靠等诸多优点, 前景十分光明。
相关文档
最新文档