牛顿第二定律高考题型归纳
高考物理牛顿第二定律题
高考物理牛顿第二定律题牛顿第二定律是经典力学中的一个重要定律,它描述了物体所受合外力与物体质量和加速度之间的关系。
牛顿第二定律为力的定量表达提供了基础,是力学研究的核心。
牛顿第二定律可以用数学公式表示为:F = ma式中,F代表物体所受的合外力,m代表物体的质量,a代表物体的加速度。
下面我们来通过几个高考物理的题目,来深入理解牛顿第二定律。
题目1:一个质量为2kg的物体,在受到5N的合外力作用下,其产生的加速度为多少?解答:根据牛顿第二定律的公式F=ma,我们可以将已知的数据代入公式中计算。
F = 5N,m = 2kg所以,5N = 2kg × a解得,a = 2.5 m/s²所以该物体的加速度为2.5 m/s²。
题目2:一个质量为1kg的物体,在受到一个合外力作用下,产生的加速度为2m/s²。
求施加在物体上的力大小。
解答:同样利用牛顿第二定律公式进行计算。
F = ma已知的数据为m = 1kg,a = 2m/s²所以,F = 1kg × 2m/s²解得,F = 2N所以施加在物体上的力为2N。
除了上述两个基础的题目之外,我们再来看两个稍微复杂一些的例题。
题目3:一个质量为5kg的物体,斜坡上有一个与斜坡面接触的摩擦力,斜坡的角度为30°。
一带有6N的力的物块斜坡上的摩擦力为多少?解答:首先我们需要知道物体在斜坡上的重力分解有两个力,一个是垂直于斜坡的分力F⊥,一个是平行于斜坡的分力F∥。
根据牛顿第二定律,我们可以求出F∥。
F∥ = m × g × sinθ其中,m = 5kg,g ≈ 9.8m/s²,θ = 30°所以,F∥ = 5kg × 9.8m/s² × sin30°解得,F∥ ≈ 24.5N题目4:一个质量为2kg的物体,被放置在水平桌面上。
牛顿第二定律典型题型
牛顿第二定律典型题型题型1:矢量性:加速度的方向总是与合外力的方向相同。
在解题时,可以利用正交分解法进行求解。
1、如图所示,物体A放在斜面上,与斜面一起向右做匀加速运动,物体A受到斜面对它的支持力和摩擦力的合力方向可能是 ( )A.斜向右上方 B.竖直向上C.斜向右下方 D.上述三种方向均不可能1、A 解析:物体A受到竖直向下的重力G、支持力F N和摩擦力三个力的作用,它与斜面一起向右做匀加速运动,合力水平向右,由于重力没有水平方向的分力,支持力F N和摩擦力F f的合力F一定有水平方向的分力,F在竖直方向的分力与重力平衡,F向右斜上方,A正确。
2、如图所示,有一箱装得很满的土豆,以一定的初速度在摩擦因数为的水平地面上做匀减速运动,(不计其它外力及空气阻力),则其中一个质量为m的土豆A受其它土豆对它的总作用力大小应是 ( )A.mg B.mgC.mg D.mg2、C 解析:像本例这种物体系的各部分具有相同加速度的问题,我们可以视其为整体,求关键信息,如加速度,再根据题设要求,求物体系内部的各部分相互作用力。
选所有土豆和箱子构成的整体为研究对象,其受重力、地面支持力和摩擦力而作减速运动,且由摩擦力提供加速度,则有mg=ma,a=g。
而单一土豆A的受其它土豆的作用力无法一一明示,但题目只要求解其总作用力,因此可以用等效合力替代。
由矢量合成法则,得F总=,因此答案C正确。
例3、如图所示,电梯与水平面夹角为300,当电梯加速向上运动时,人对梯面压力是其重力的6/5,则人与梯面间的摩擦力是其重力的多少倍?拓展:如图,动力小车上有一竖杆,杆端用细绳拴一质量为m的小球.当小车沿倾角为30°的斜面匀加速向上运动时,绳与杆的夹角为60°,求小车的加速度和绳中拉力大小.题型2:必须弄清牛顿第二定律的瞬时性牛顿第二定律是表示力的瞬时作用规律,描述的是力的瞬时作用效果—产生加速度。
物体在某一时刻加速度的大小和方向,是由该物体在这一时刻所受到的合外力的大小和方向来决定的。
牛顿第二定律的综合应用(解析版)-高中物理
牛顿第二定律的综合应用1.高考真题考点分布题型考点考查考题统计计算题动力学两类基本问题2022年浙江卷选择题连接体问题2024年全国甲卷计算题传送带模型2024年湖北卷选择题、计算题板块模型2024年高考新课标卷、辽宁卷2.命题规律及备考策略【命题规律】高考对动力学两类基本问题、连接体问题、传送带和板块模型考查的非常频繁,有基础性的选题也有难度稍大的计算题。
【备考策略】1.利用牛顿第二定律处理动力学两类基本问题。
2.利用牛顿第二定律通过整体法和隔离法处理连接体问题。
3.利用牛顿第二定律处理传送带问题。
4.利用牛顿第二定律处理板块模型。
【命题预测】重点关注牛顿第二定律在两类基本问题、连接体、传送带和板块模型中的应用。
一、动力学两类基本问题1.已知物体的受力情况求运动情况;2.已知物体的运动情况求受力情况。
二、连接体问题多个相互关联的物体由细绳、细杆或弹簧等连接或叠放在一起,构成的系统称为连接体。
(1)弹簧连接体:在弹簧发生形变的过程中,两端连接体的速度不一定相等;在弹簧形变最大时,两端连接体的速率相等。
(2)物物叠放连接体:相对静止时有相同的加速度,相对运动时根据受力特点结合运动情景分析。
(3)轻绳(杆)连接体:轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等,轻杆平动时,连接体具有相同的平动速度。
三、传送带模型1.模型特点传送带问题的实质是相对运动问题,这样的相对运动将直接影响摩擦力的方向。
2.解题关键(1)理清物体与传送带间的相对运动方向及摩擦力方向是解决传送带问题的关键。
(2)传送带问题还常常涉及临界问题,即物体与传送带达到相同速度,这时会出现摩擦力改变的临界状态,对这一临界状态进行分析往往是解题的突破口。
四、板块模型1.模型特点:滑块(视为质点)置于木板上,滑块和木板均相对地面运动,且滑块和木板在摩擦力的相互作用下发生相对滑动。
2.位移关系:如图所示,滑块由木板一端运动到另一端的过程中,滑块和木板同向运动时,位移之差Δx=x1 -x2=L(板长);滑块和木板反向运动时,位移之和Δx=x2+x1=L。
牛顿第二定律十大题型分类汇总(详解版)
牛顿第二定律十大题型分类汇总(带详解)一、牛顿第二定律与斜面结合1.如图所示,一足够长的固定在水平面上的斜面,倾角37θ= ,斜面BC 与水平面AB 平滑连接,质量2kg m =的物体静止于水平面上的M 点,M 点与B 点之间的距离9m L =,物体与水平面和斜面间的动摩擦因数均为0.5μ=,现物体受到一水平向右的恒力14N F =作用,运动至B 点时撤去该力,B 点有一小圆弧,使得物体经过B 点时只有速度方向发生改变,速度大小不变,重力加速度210m/s g =,则:(1)物体到达B 点时的速度大小;(2)物体沿斜面向上滑行的最远距离。
(3)物体从开始运动到最后停止运动的总时间。
解得212m/s a =由M 到B 有212B v a L=解得6m/sB v =(2)沿斜面上滑时,根据牛顿第二定律得2sin37cos37mg mg ma μ︒+︒=解得2210m/s a =沿斜面运动的最远距离为(3)从M 点运动到B 点的时间为从B点运动到斜面最高点的时间为沿斜面下滑时的加速度为3sin37cos37mg mg ma μ︒-︒=解得232m/s a =沿斜面下滑的时间为解得下滑到B点时的速度为在水平面上运动的加速度大小为4mg ma μ=解得245m/s a =从B点到静止的时间为物体从开始运动到最后停止运动的总时间为1234t t t t t =+++解得2.一质量m =2kg 小物块从斜面上A 点由静止开始滑下,滑到斜面底端B 点后沿水平面再滑行一段距离停下来。
若物块与斜面、水平面间的动摩擦因数均为μ=0.25。
斜面A、B 两点之间的距离s =18m,斜面倾角θ=37°(sin37°=0.6;cos37°=0.8)斜面与水平面间平滑连接,不计空气阻力,g =10m/s 2。
求:(1)物块在斜面上下滑过程中的加速度大小;(2)物块滑到B 点时的速度大小;(3)物块在水平面上滑行的时间。
牛顿第二定律典型题型归纳
牛顿第二定律典型题型归纳二. 学习目标:1、掌握牛顿第二定律解题的基本思路和方法。
2、重点掌握牛顿第二定律习题类型中典型题目的分析方法如瞬时问题、临界问题及传送带问题。
考点地位:牛顿第二定律的应用问题是经典物理学的核心知识,是高考的重点和难点,突出了与实际物理情景的结合,出题形式多以大型计算题的形式出现,从近几年的高考形式上来看,2007年江苏单科卷第15题、上海卷第21题、上海卷第19B、2006年全国理综Ⅰ卷、Ⅱ卷的第24题、2005年全国理综Ⅰ卷的第14题、第25题均以计算题目的形式出现,2007年全国理综Ⅰ卷第18题以选择题的形式出现。
三. 重难点解析:1. 动力学两类基本问题应用牛顿运动定律解决的问题主要可分为两类:(1)已知受力情况求运动情况。
(2)已知运动情况求受力情况。
分析解决这两类问题的关键是抓住受力情况和运动情况之间联系的桥梁——加速度。
基本思路流程图:基本公式流程图为:2. 动力学问题的处理方法(1)正确的受力分析。
对物体进行受力分析,是求解力学问题的关键,也是学好力学的基础。
(2)受力分析的依据。
①力的产生条件是否存在,是受力分析的重要依据之一。
②力的作用效果与物体的运动状态之间有相互制约的关系,结合物体的运动状态分析受力情况是不可忽视的。
③由牛顿第三定律(力的相互性)出发,分析物体的受力情况,可以化难为易。
3. 解题思路及步骤(1)由物体的受力情况求解物体的运动情况的一般方法和步骤。
①确定研究对象,对研究对象进行受力分析,并画出物体的受力图。
②根据力的合成与分解的方法,求出物体所受合外力(包括大小和方向)③根据牛顿第二定律列方程,求出物体的加速度。
④结合给定的物体运动的初始条件,选择运动学公式,求出所需的运动参量。
(2)由物体的运动情况求解物体的受力情况。
解决这类问题的基本思路是解决第一类问题的逆过程,具体步骤跟上面所讲的相似,但需特别注意:①由运动学规律求加速度,要特别注意加速度的方向,从而确定合力的方向,不能将速度的方向与加速度的方向混淆。
牛顿第二定律25种题型
牛顿第二定律25种题型牛顿第二定律是一个非常重要的物理定律,可以应用到各种不同的题型中。
以下是一些可能的题型:1. 计算给定物体的质量和加速度,求解作用力的大小。
2. 给定物体的质量和作用力的大小,求解加速度。
3. 给定物体的质量和加速度,求解作用力的方向。
4. 考虑多个作用力作用在物体上,求解物体的加速度。
5. 考虑摩擦力对物体运动的影响,求解加速度。
6. 考虑空气阻力对物体自由落体的影响,求解加速度。
7. 考虑弹簧力对物体振动的影响,求解加速度。
8. 考虑物体在斜面上的运动,求解加速度。
9. 考虑物体在圆周运动中的加速度。
10. 考虑物体的质量随时间变化,求解加速度。
11. 考虑非惯性系中的物体运动,求解加速度。
12. 考虑相对论效应对物体运动的影响,求解加速度。
13. 考虑电磁力对带电粒子的影响,求解加速度。
14. 考虑磁场对带电粒子的影响,求解加速度。
15. 考虑引力对天体运动的影响,求解加速度。
16. 考虑光子动量对物体的影响,求解加速度。
17. 考虑量子力学效应对微观粒子的影响,求解加速度。
18. 考虑弯曲时空对物体运动的影响,求解加速度。
19. 考虑黑洞的引力对物体的影响,求解加速度。
20. 考虑物体受到辐射的影响,求解加速度。
21. 考虑物体在非常高温或低温环境中的运动,求解加速度。
22. 考虑物体在高速运动中的加速度。
23. 考虑物体在微重力环境中的运动,求解加速度。
24. 考虑物体受到外部激励力的影响,求解加速度。
25. 考虑物体在复杂场景中的运动,求解加速度。
这些题型涵盖了牛顿第二定律在不同情景下的应用,从基本的直线运动到相对论和量子力学等高级领域。
每种题型都需要根据具体情况进行分析和计算,以求得正确的加速度。
牛顿第二定律高考题型归纳
牛顿第二定律〔1〕已知受力情况求运动情况根据牛顿第二定律,已知物体的受力情况,可以求出物体运动的加速度;再根据物体的初始条件(初位置和初速度),应用运动学公式,求出物体的运动情况,即求出物体在任意时刻的速度、位置,也就是求出了物体的运动情况.可用程序图表示如下:例1.风洞实验室中可产生水平向左、大小可调节的风力.现将一套有一小球的细直杆放入风洞实验室.小球孔径略大于细杆直径,小球与杆间的滑动摩擦因数μ=,如下列图所示.保持小球所受风力F=不变,使杆与水平方向间夹角为37°并固定,则小球从静止开始在细杆上滑下距离所需时间为多少?(g取g=10 m/s2,sin 37°=,cos 37°=0.8)解析:设杆对小球的支持力为FN,摩擦力为Ff,对这些力进行正交分解,如下图.在x轴上,由牛顿第二定律,有:mgsin θ+Fcos θ-Ff=ma 在y轴上,由平衡条件,有:FN+Fsin θ-mgcos θ=0 又Ff=μFN解上述三式得:a=7.5 m/s2 又由运动学公式s=at2,由以上各式解得小球从静止出发在细杆上滑下距离s所需时间为t=0.8 s 答案:0.8 s●题型训练●1.如下图,质量m=4.0 kg的物体与地面间的动摩擦因数为μ=0.50.物体在与地面成θ=37°的恒力F=54.5 N作用下,由静止开始运动,t1=0.20 s撤去F,则再经过多长时间物体停下来?(g=10 m/s2,sin 37°=,cos 37°=0.8)解析:物体受到恒力F作用时受力如右图所示,设物体此时加速度为a1,对这些力进行正交分解,根据牛顿运动定律有:N′+Fsin θ-mg=0① Fcos θ-f′=ma1②又因为f′=μN′③①②③联立解得:a1=10 m/s2由v=at,得v=a1t1=2.0 m/s撤去F后物体的受力如右图所示,设物体此时加速度为a2,物体停下来经过时间为t2,根据牛顿运动定律有:f=ma2④ N-mg=0⑤又因为f=μN⑥④⑤⑥联立解得:a2=5.0 m/s2由0=v-at,得t2==0.4 s.答案:0.4 s〔2〕已知运动情况求受力情况根据物体的运动情况,应用运动学公式求出加速度,再根据牛顿第二定律求出物体所受的合外力,从而求出未知的力,或与力相关的某些物理量.如:动摩擦因数、劲度系数等.可用程序图表示如下:例2.如下图,电梯与水平面夹角为30°,电梯从初速度为零开始加速启动,当速度到达1 m/s 时,一个质量为50 kg的人踏上第一级(不计这一级的宽度),然后跟电梯一起加速向上运动,到达电梯终点时已经过4 s,电梯的终点离地面高度为10 m.求这个过程中人对梯面压力和人与梯面间的静摩擦力.(g=10m/s2)解析:以人为研究对象,人运动的初速度为v0=1 m/s,位移为s=h/sin 30°=20 m,时间为t=4 s. 根据运动学公式:s=v0t+ at2 代入数据解得:a=2 m/s2 对人进行受力分析,人受重力mg、竖直向上的支持力FN、水平向右的静摩擦力Fμ(摩擦力方向一定与接触面平行),为了便于研究,取水平向右为x轴正方向,竖直向上为y轴正方向,建立直角坐标系(如左下列图).此时只需分解加速度,其中ax=acos 30°,ay=asin 30° (如右下列图)根据牛顿第二定律有X方向:Fμ=max=macos 30°①Y方向:FN-mg=may=masin 30°②由①式解得:Fμ=87 N 由②式解得:FN=550 N根据牛顿第三定律可知,人对梯面压力等于550 N,方向竖直向下.而人与梯面间的静摩擦力等于87 N,方向水平向右.答案:人对梯面压力等于550 N,方向竖直向下;人与梯面间的静摩擦力等于87 N,方向水平向右传送带在自动输送各种粮食起很大作用,如下图.而该模型可分为以下三类:(1)水平传送带当传送带水平运动时,应特别注意摩擦力的突变和物体运动状态的变化.摩擦力的突变,常常导致物体的受力情况和运动性质的突变.静摩擦力到达最大值,是物体恰好保持相对静止的临界状态;滑动摩擦力存在于发生相对运动的物体之间,因此两物体的速度到达相同时,滑动摩擦力要发生突变(摩擦力为零或为静摩擦力).(2)倾斜传送带当传送带倾斜运动时,除了要注意摩擦力的突变和物体运动状态的变化外,还要注意物体与传送带之间的动摩擦因数μ和传送带倾斜角度θ的关系,从而正确判断物体的速度和传送带速度相等时物体运动的性质.(3)组合传送带组合传送带是水平传送带和倾斜传送带连接在一起传送物体.例3.如下图,传送带与地面的倾角θ=37°,从A到B的长度为16 m,传送带以v0=10 m/s 的速度逆时针转动.在传送带上端无初速的放一个质量为m=0.5 kg的物体,它与传送带之间的动摩擦因数μ=,求物体从A运动到B所需的时间是多少?(sin37°=,cos37°=,g =10 m/s2)解析:物体放在传送带上后,开始阶段,传送带的速度大于物体的速度,传送带给物体一沿斜面向下的滑动摩擦力,物体由静止开始加速下滑,受力分析如图(a)所示;当物体加速至与传送带速度相等时,由于μ<tan θ,物体在重力作用下将继续加速,此后物体的速度大于传送带的速度,传送带给物体沿传送带向上的滑动摩擦力,但合力沿传送带向下,物体继续加速下滑,受力分析如图(b)所示.综上可知,滑动摩擦力的方向在获得共同速度的瞬间发生了“突变”.开始阶段由牛二定律:mgsin θ+μmgcos θ=ma1所以:a1=gsin θ+μgcos θ=10 m/s2物体加速至与传送带速度相等时需要的时间t1=v/a1=1 s发生的位移:s= a1t12=5 m<16 m物体加速到10 m/s 时仍未到达B点.第二阶段,有:mgsin θ-μmgcos θ=ma2所以:a2=2 m/s2设第二阶段物体滑动到B 的时间为t2 则:LAB+s=vt2+ a2t22解得:t2=1 s,t′2=-11 s(舍去)故物体经历的总时间t=t1+t 2 =2 s.答案:2 s点评:从上述例题可以总结出,皮带传送物体所受摩擦力可能发生突变,不管是其大小的突变,还是其方向的突变,都发生在物体的速度与传送带速度相等的时刻.●题型训练●2.如下图为一平直传送带,A、B两处间的距离为L,传送带的运动速度恒为v.有一工件轻轻从A处放上传送带,已知工件与传送带间的动摩擦因数为μ和当地的重力加速度为g,且认为传送带的形状及速率不受影响.求传送带将该工件由A处送到B处可能的时间间隔Δt及相应的条件.(即题中给出量之间应满足的关系).解析:该工件放上传送带,受到水平向右的摩擦力f=μmg;由牛顿第二定律,可得: a=f/m=μg;该工件加速到v所需时间:t=v/a=v/μg;此过程中,工件运动的位移:x= at2=v2/2μg①假设v2/2μg≥L,则工件一直匀加速直到B,可得: at2=L,得Δt=②假设v2/2μg<L,则工件先匀加速至速度v后做匀速运动直到B,故Δt=t+=+ .答案:①假设v2/2μg≥L,则Δt=;②假设v2/2μg<L,则Δt=+ .3.整体法与隔离法1.当研究问题中涉及多个物体组成的系统时,通常把研究对象从系统中“隔离”出来,单独进行受力及运动情况的分析.这叫隔离法.2.系统中各物体加速度相同时,我们可以把系统中的物体看做一个整体.然后分析整体受力,由F=ma求出整体加速度,再作进一步分析.这种方法叫整体法.3.解决连接体问题时,经常要把整体法与隔离法结合起来应用.在连接体问题中,如果不要求知道各个运动物体之间的相互作用力,并且各个物体具有大小和方向都相同的加速度,就可以把它们看成一个整体〔当成一个质点〕,分析受到的外力和运动情况,应用牛顿第二定律求出加速度〔或其他未知量〕;如果需知道物体之间的相互作用力,就需要把物体从系统中隔离出来将内力转化为外力,分析物体的受力情况和运动情况,并分别应用牛顿第二定律列出方程,隔离法和整体法是互相依存,互相补充的,两种方法互相配合交替应用,常能更有效地解决有关连接体的问题。
牛顿第二定律题型
3 传送带间动摩擦因数 , g=10m/s2,试求 6
物体从A 运动到底部B 的时间 tAB 。 ①受力分析 ②会下滑吗?如何判定?
C
D
针对训练:如图所示,轻弹簧下端固定,
竖立在水平面上。其正上方A位置有一 只小球。小球从静止开始下落,在B位 置接触弹簧的上端,在C位置小球所受 弹力大小等于重力,在D位置小球速度 减小到零。试分析小球下降阶段的运 动情况。
题型二:连接体问题
(1)整体法:把整个系统作为一个研究 对象来分析 (2)隔离体法:把系统中某一部分隔离出 来作为一个单独的研究对象来分析
N
f
③会达到共速吗?
mg
【解答】 由 tan 可知物体始终做匀加速直线运动
由牛顿第二定律: mg sin mg cos ma 得:a 2.5m / s 2
1 2 由L at AB得: 2
t AB
2L 2( s ) a
【例题3】如图所示,传送带以v= 10m/s的速度 逆时针转动,与水平面夹角θ=300,传送带A 端到 B端距离L=16m。在传送带顶部A 端静止释放一 小物体,物体与传送带间动摩擦因数 g=10m/s2.试求物体从A运动到底部B的时间 t AB 。
整体法和隔离法
可以用整体法的条件:加速度相等
1、相对静止 2、一静止一匀速 3、都匀速 4、以相同加速度做匀加速运动
例2:两个质量相同的物体A和B紧 靠在一起,放在光滑的水平桌面上, 如果他们分别受到水平推力F1和F2 作用,而且F1>F2,则A施于B的作用 力是多少?
牛顿第二定律应用的常见题型
牛顿第二定律应用的常见题型以牛顿第二定律为核心的动力学是力学的重要组成部分,也是高考中的考查热点,学习时我们一定要深刻理解牛顿第二定律,并能熟练应用牛顿第二定律求解相关问题,下面介绍牛顿第二定律应用的几类典型问题。
一、连接体问题此类问题高考仅限于几个物体的加速度相同的情形,求解此类问题需灵活运用整体法和隔离法。
求解“内力”问题通常先对整体运用牛顿第二定律,求出系统的加速度,再用隔离法研究连接体中一个物体,即可求出物体间的相互作用力;求解“外力”问题,需先分析连接体中的一个物体,确定系统的加速度,再对整体运用牛顿第二定律,即可求出“外力”。
例l. 如下图所示,质量为2m的物体A与水平地面的摩擦可忽略不计,质量为m 物块B与地面间的动摩擦因数为,在已知水平推力F作用下,AB一起做加速运动,A和B间的作用力为______________。
解析:先把AB看作一个整体,系统受到的合外力为,系统的加速度为,再对物体B分析,由牛顿第二定律有,解得。
二. 瞬时问题牛顿第二定律反映了物体所受合外力与加速度的瞬时对应关系,当物体所受外力突然发生变化时,物体的加速度也会随之变化。
求解此类问题,需分别分析物体受力变化前和变化后的受力情况,确定物体受力是如何发生突变的,再分别应用牛顿第二定律列式求解。
例2. 木块A、B的质量分别为。
两木块之间用一轻弹簧相连接后放在光滑水平桌面上,用F=10N的水平恒力沿AB连线方向拉A,使A和B 沿桌面滑动,如下图所示,滑动中A、B具有相同的加速度时突然撤去拉力F,求撤去拉力F的瞬间,A和B的加速度各多大?解析:撤去拉力F时,A和B有相同加速度,对A、B整体分析,由牛顿第二定律有,得;研究木块B,它受到的弹力为,撤去拉力F的瞬间,轻弹簧的形变量没有变化,木块B受力不变,此时B的加速度与原来相同仍为;撤去拉力F的瞬间,木块A受弹簧拉力大小仍为6N,此时A的加速度为,方向向左。
三. 临界与极值问题当物体从一种物理现象转变为另一种物理现象,或从一个物理过程转入另一个物理过程,此时往往有一个临界状态,而极值问题也伴随临界问题的出现而出现。
牛顿第二定律牛顿定律怎么考?看看这五大基本考察题型!
牛顿第二定律牛顿定律怎么考?看看这五大基本考察题型!牛顿第二定律的考察方式主要分为这样的5个,今天为大家仔细地将五大考点分类汇总,并为大家找到相应的经典习题。
请大家好好地做哦!预计阅读时间:27分钟1力与运动关系的定性分析【例1】如图所示,如图所示,轻弹簧下端固定在水平面上。
一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。
在小球下落的这一全过程中,下列说法中正确的是A.小球刚接触弹簧瞬间速度最大B.从小球接触弹簧起加速度变为竖直向上C.从小球接触弹簧到到达最低点,小球的速度先增大后减小D.从小球接触弹簧到到达最低点,小球的加速度先减小后增大解析:小球的加速度大小决定于小球受到的合外力。
从接触弹簧到到达最低点,弹力从零开始逐渐增大,所以合力先减小后增大,因此加速度先减小后增大。
当合力与速度同向时小球速度增大,所以当小球所受弹力和重力大小相等时速度最大。
选CD。
【例2】如图所示.弹簧左端固定,右端自由伸长到O点并系住物体m.现将弹簧压缩到A点,然后释放,物体一直可以运动到B 点.如果物体受到的阻力恒定,则A.物体从A到O先加速后减速B.物体从A到O加速运动,从O到B减速运动C.物体运动到O点时所受合力为零D.物体从A到O的过程加速度逐渐减小解析:物体从A到O的运动过程,弹力方向向右.初始阶段弹力大于阻力,合力方向向右.随着物体向右运动,弹力逐渐减小,合力逐渐减小,由牛顿第二定律可知,此阶段物体的加速度向右且逐渐减小,由于加速度与速度同向,物体的速度逐渐增大.所以初始阶段物体向右做加速度逐渐减小的加速运动.当物体向右运动至AO间某点(设为O′)时,弹力减小到等于阻力,物体所受合力为零,加速度为零,速度达到最大.此后,随着物体继续向右移动,弹力继续减小,阻力大于弹力,合力方向变为向左.至O点时弹力减为零,此后弹力向左且逐渐增大.所以物体从O′点后的合力方向均向左且合力逐渐增大,由牛顿第二定律可知,此阶段物体的加速度向左且逐渐增大.由于加速度与速度反向,物体做加速度逐渐增大的减速运动.正确选项为A、C.点评:(1)解答此题容易犯的错误就是认为弹簧无形变时物体的速度最大,加速度为零.这显然是没对物理过程认真分析,靠定势思维得出的结论.要学会分析动态变化过程,分析时要先在脑子里建立起一幅较为清晰的动态图景,再运用概念和规律进行推理和判断.(2)通过此题,可加深对牛顿第二定律中合外力与加速度间的瞬时关系的理解,加深对速度和加速度间关系的理解.譬如,本题中物体在初始阶段,尽管加速度在逐渐减小,但由于它与速度同向,所以速度仍继续增大.2牛顿第二定律的瞬时性【例3】(2001年上海高考题)如图(1)所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态。
牛顿第二定律各种典型题型
牛顿第二定律牛顿第二定律11.内容物体加速度的大小跟它受到的作用力成正比、跟它的质量成反比,加速度的方向跟作用力的方向相同。
2.表达式F=ma。
3.“五个”性质1.一般思路:分析物体该时的受力情况—由牛顿第二定律列方程一瞬时加速度2.两种模型(1)刚性绳(或接触面):一种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,弹力立即改变或消失,不需要形变恢复时间,一般题目中所给的细线、轻杆和接触面在不加特殊说明时,均可按此模型处理。
(2)弹簧(或橡皮绳):当弹簧的两端与物体相连(即两端为固定端)时,由于物体有惯性,弹簧的长度不会发生突变,所以在瞬时问题中,其弹力的大小认为是不变的,即此时弹簧的弹力不突变。
[例](多选)(2014 •南通第一中学检测)如图所示,A、B球的质量相等,弹簧的质量不计,倾角为B的斜面光滑,系统静止时,弹簧与细线均平行于斜面,在细线被烧断的瞬间,下列说法正确的是()A.两个小球的瞬时加速度均沿斜面向下,大小均为85吊eB.B球的受力情况未变,瞬时加速度为零C. A球的瞬时加速度沿斜面向下,大小为2gsin eD.弹簧有收缩的趋势,B球的瞬时加速度向上,A球的瞬时加速度向下,瞬时加速度都不为零[例](2013吉林模拟)在动摩擦因数U =0.2的水平面上有一个质量为m=2 kg 的小球, 小球与水平轻弹簧及与竖直方向成0=45°角的不可伸长的轻绳一端相连,如图所示,此时 小球处于静止平衡状态,且水平面对小球的弹力恰好为零。
当剪断轻绳的瞬间,取g=10 m/s 2,以下说法正确的是()若剪断弹簧,则剪断的瞬间小球的加速度大小为10巾〃2,方向向右针对练习:(2014 •苏州第三中学质检)如图所示,质量分别为m 、2m 的小球A 、B,由 轻质弹簧相连后再用细线悬挂在电梯内,已知电梯正在竖直向上做匀加速直线运动,细线中 的拉力为F,此时突然剪断细线。
在线断的瞬间,弹簧的弹力的大小和小琳的加速度的大小分别为( 4. (2014•宁夏银川一中一模)如图所示,A 、B 两小球分别连在轻线两端,B 球另一端解决两类动力学问题两个关键点 ⑴把握“两个分析”“一个桥梁”两个分析:物体的受力分析和物体的运动过程分析。
牛顿第二定律专题(含经典例题)
牛顿第二定律专题1.考纲解读2.考点整合考点一牛顿第二定律1.定律内容:物体的加速度跟物体成正比,跟物体的成反比,加速度的方向跟合外力的方向 .2.牛顿第二定律的矢量性、瞬时性、独立性.“矢量性”是指加速度的方向取决,“瞬时性”是指加速度和合外力存在着关系,合外力改变,加速度相应改变,“独立性”是指作用在物体上的每个力都独立的产生各自的加速度,合外力的加速度即是这些加速度的矢量和.3.牛顿第二定律的分量式:ΣFx=max,ΣFy=may[特别提醒]:F是指物体所受到的合外力,即物体所有受力的合力.加速度与合外力是瞬时对应关系,即有合外力就有加速度,没有合外力就没有加速度.【例1】如图所示,小车上固定着三角硬杆,杆的端点固定着一个质量为m的小球.当小车水平向右的加速度逐渐增大时,杆对小球的作用力的变化(用F1至F4变化表示)可能是下图中的(OO'沿杆方向)【解析】对小球进行受力分析,小球受重力和杆对小球的弹力,弹力在竖直方向的分量和重力平衡,小球在水平方向的分力提供加速度,故C正确.【答案】C【方法点评】本题考查牛顿第二定律,只要能明确研究对象,进行受力分析,根据牛顿第二定律列方程即可.考点二力、加速度和速度的关系在直线运动中当物体的合外力(加速度)与速度的方向时,物体做加速运动,若合外力(加速度)恒定,物体做运动,若合外力(加速度)变化,则物体做运动,当物体的合外力(加速度)方向与速度的方向时,物体做减速运动.若合外力(加速度)恒定,物体做运动,若合外力(加速度)变化,则物体做运动.[特别提醒]:要分析清楚物体的运动情况,必须从受力着手,因为力是改变运动状态的原因,求解物理问题,关键在于建立正确的运动情景,而这一切都必须从受力分析开始.[例2] 如图3-12-1所示,自由下落的小球下落一段时间后,与弹簧接触,从它接触弹簧开始,到弹簧压缩到最短的过程中,小球的速度、加速度的变化情况如何?最低点的加速度是否比g大?(实际平衡位置,等效成简谐运动)图3-12-1[解析]小球接触弹簧后受两个力,向下的重力mg和向上的弹力.(如图3-12-2(a)所示刚开始时,当<mg时,小球合力向下,,合力不断变小,因而加速度减小,由于a方向与v0同向,因此速度继续变大.当=mg时,如图3-12-2(b)所示,合力为零,加速度为零,速度达到最大值.之后小球由于惯性仍向下运动,继续压缩弹簧,但>mg,合力向上,由于加速度的方向和速度方向相反,小球做加速度增大的减速运动,因此速度减小到零弹簧被压缩到最短.如图3-12-2(c)所示[答案]小球压缩弹簧的过程,合外力的方向先向下后向上,大小是先变小至零后变大,加速度的方向也是先向下后向上,大小是先变小后变大,速度的方向始终向下,大小是先变大后变小. (还可以讨论小球在最低点的加速度和重力加速度的关系)[方法技巧]要分析物体的运动情况一定要从受力分析着手,再结合牛顿第二定律进行讨论、分析.对于弹簧类问题的求解,最好是画出弹簧的原长,现在的长度,这样弹簧的形变长度就一目了然,使得求解变得非常的简单明了.考点三瞬时问题瞬时问题主要是讨论细绳(或细线)、轻弹簧(或橡皮条)这两种模型.细绳模型的特点:细绳不可伸长,形变,故其张力可以,弹簧(或橡皮条)模型的特点:形变比较,形变的恢复需要时间,故弹力 .[特别提醒]求解瞬时问题,首先一定要分清类型,然后分析变化之前的受力,再分析变化瞬间的受力,这样就可以很快求解.[例3]如图5所示,质量为m的小球被水平绳AO和与竖直方向成θ角的轻弹簧系着处于静止状态,现用火将绳AO烧断,在绳AO烧断的瞬间,下列说法正确的是()A.弹簧的拉力B.弹簧的拉力C.小球的加速度为零D.小球的加速度[解析]烧断OA之前,小球受3个力,如图所示,烧断细绳的瞬间,绳子的张力没有了,但由于轻弹簧的形变的恢复需要时间,故弹簧的弹力不变,A正确。
牛顿第二定律25种题型
牛顿第二定律25种题型牛顿第二定律是物理学中的基本定律之一,它描述了物体受力时的加速度与力的关系。
下面将详细介绍牛顿第二定律的25种题型。
1. 计算物体的加速度:根据牛顿第二定律,加速度与物体所受力成正比,与物体的质量成反比。
因此,可以通过已知的力和质量来计算物体的加速度。
2. 计算物体所受的力:根据牛顿第二定律,力与物体的质量和加速度成正比。
因此,可以通过已知的质量和加速度来计算物体所受的力。
3. 计算物体的质量:根据牛顿第二定律,质量与力和加速度的比值成正比。
因此,可以通过已知的力和加速度来计算物体的质量。
4. 计算物体的重力:根据牛顿第二定律,物体所受的重力与物体的质量成正比。
因此,可以通过已知的质量和加速度(通常为重力加速度)来计算物体的重力。
5. 计算物体所受的摩擦力:根据牛顿第二定律,物体所受的摩擦力与物体的质量和加速度成正比。
因此,可以通过已知的质量和加速度来计算物体所受的摩擦力。
6. 计算物体所受的弹力:根据牛顿第二定律,物体所受的弹力与物体的质量和加速度成正比。
因此,可以通过已知的质量和加速度来计算物体所受的弹力。
7. 计算物体所受的拉力:根据牛顿第二定律,物体所受的拉力与物体的质量和加速度成正比。
因此,可以通过已知的质量和加速度来计算物体所受的拉力。
8. 计算物体所受的斜面力:当物体沿斜面运动时,可以通过分解力的成分来计算物体所受的斜面力。
9. 计算物体所受的空气阻力:当物体在空气中运动时,可以通过已知的速度和物体的形状来计算物体所受的空气阻力。
10. 计算物体所受的浮力:当物体浸没在液体中时,可以通过已知的液体密度、物体的体积和重力加速度来计算物体所受的浮力。
11. 计算物体所受的离心力:当物体在旋转的平台上运动时,可以通过已知的物体质量、旋转半径和角速度来计算物体所受的离心力。
12. 计算物体所受的引力:当两个物体之间存在引力时,可以通过已知的物体质量和距离来计算物体所受的引力。
牛顿第二定律题型归类
牛顿定律类型题归类一、瞬时性问题1、刚性绳模型(细钢丝、细线等):认为是一种不发生明显形变即可产生弹力的物体,它的形变的发生和变化过程历时极短,在物体受力情况改变(如某个力消失)的瞬间,其形变可随之突变为受力情况改变后的状态所要求的数值。
2、轻弹簧模型(轻弹簧、橡皮绳、弹性绳等):此种形变明显,其形变发生改变需时间较长,在瞬时问题中,其弹力的大小可看成是不变。
例题分析:例1.如图所示,小球 A 、B 的质量分别 为m 和 2m ,用轻弹簧相连,然后用 细线悬挂而静止,在剪断弹簧的瞬间,求 A 和 B 的加速度各为多少? 例2.如图所示,木块A 和B 用一弹簧相连,竖直放在木板C 上,三者静止于 地面,它们的质量比是1:2:3,设所有接触面都是光滑的,当沿水平方向迅 速抽出木块C 的瞬时,A 和B 的加速度 a A = ,a B = 。
例3.如图质量为m 的小球用水平弹簧系住,并用倾角为30°的光滑木板AB 托住,小球恰好处于静止状态.当木板AB 突然向下撤离的瞬间,小球的加速度【 】 A .0B .大小为233g ,方向竖直向下C .大小为233g ,方向垂直于木板向下D .大小为33g ,方向水平向右 【练习】:1.如图所示,质量为M 的框架放在水平地面上,一轻弹簧上端固定一个质量为m 的小球,小球上下振动时,框架始终没有跳起.当框架对地面压力为零瞬间,小球的加速度大小为:【 】 A.g B.mmM - g C.0 D.mmM +g2.如图所示,A 、B 两小球质量分别为M A 和M B 连在弹簧两端, B 端用细线固定在倾角为30°的光滑斜面上,若不计弹簧质量,在线被剪断瞬间,A 、B 两球的加速度分别为:【 】 A.都等于2g B. 2g和0 C.2g M M M B B A ⋅+和0 D.0和2g M M M B B A ⋅+图3 ABC图2-81题图 图2-92题图 图1B A3.一根轻弹簧上端固定同上端挂一质量为m o 的平盘,盘中有一质量为m 的物体(如图3-3-13)当盘静止时,弹簧的长度比其自然长度伸长为l ,今向下拉盘使弹簧再伸长∆l 后停止,然后松手放开,则刚松手时盘对物体的弹力等于(设弹簧处在弹性限度以内):【 】A .mg l l )1(Λ+B .g m m l l))(1(+∆+ C .mg l l ∆ D .g m m ll )(+∆4.如图所示,质量相同的木块A 、B ,用轻质弹簧连接处于静止状态,现用水平恒力推木块A ,则弹簧在第一次压缩到最短的过程中 :【 】 A .A 、B 速度相同时,加速度a A = a B B .A 、B 速度相同时,加速度a A >a BC .A 、B 加速度相同时,速度υA <υBD .A 、B 加速度相同时,速度υA >υB5.如图所示,小球质量为m,被三根质量不计的弹簧A 、B 、C 拉住,弹簧间的夹角均为1200,小球平衡时, A 、B 、C 的弹力大小之比为3:3:1,当剪断C 瞬间,小球的加速度大小及方向可能为:【 】A .g/2,竖直向下;B .g/2,竖直向上;C .g/4,竖直向下;D .g/4,竖直向上;6.如图4-20所示,A 、B 、C 、D 、E 、F 六个小球分别用弹簧、细绳和细杆联结,挂于水平天花板上,若某一瞬间同时在a 、b 、c 处将悬挂的细绳剪断,比较各球下落瞬间的加速度,下列说法中正确的是( )A .所有小球都以g 的加速度下落B .A 球的加速度为2g ,B 球的加速度为gC . C 、D 、E 、F 球的加速度均为g D .E 球的加速度大于F 球的加速度7:如图所示,一质量为m 的物体系于长度分别为l 1、l 2的两根细线上,l 1的一端悬挂在天花板上,与竖直方向夹角为θ, l 2水平拉直,物体处于平衡状态,现将l 2线剪断 (1)求剪断瞬时物体的加速度.(2)若将上图中的细线l 1改变为长度相同、质量不计的轻弹簧,如图所示,其他条件不变,现将l 2剪断,求剪断瞬时物体的加速度.二、动态分析问题1、速度变化叛断:若速度与加速度方向相同则速度增大,反之减小。
牛顿定律高中全题型归纳(全)
题型3:动力学的两类基本问题1.已知物体的受力情况求物体的运动情况根据物体的受力情况求出物体受到的合外力,然后应用牛顿第二定律F=ma 求出物体的加速度,再根据初始条件由运动学公式就可以求出物体的运动情况––物体的速度、位移或运动时间。
2.已知物体的运动情况求物体的受力情况根据物体的运动情况,应用运动学公式求出物体的加速度,然后再应用牛顿第二定律求出物体所受的合外力,进而求出某些未知力。
求解以上两类动力学问题的思路,可用如下所示的框图来表示: 第一类 第二类在匀变速直线运动的公式中有五个物理量,其中有四个矢量v 0、v 1、a 、s ,一个标量t 。
在动力学公式中有三个物理量,其中有两个矢量F 、a ,一个标量m。
运动学和动力学中公共的物理量是加速度a 。
在处理力和运动的两类基本问题时,不论由力确定运动还是由运动确定力,关键在于加速度a ,a 是联结运动学公式和牛顿第二定律的桥梁。
例1.如图所示,物体从斜坡上的A 点由静止开始滑到斜坡底部B 处,又沿水平地面滑行到C 处停下,已知斜坡倾角为θ,A 点高为h 求B 、C 间的距离。
例 2.风洞实验室中可产生水平方向的、大小可调节的风力,现将一套有小球的细直杆放入风洞实验室,小球孔径略大于细杆直径。
(如图)(1)当杆在水平方向上固定时,调节风力的大小,使小球在杆上匀速运动。
这时小球所受的风力为小球所受重力的0.5倍,求小球与杆间的动摩擦因数。
(2)保持小球所受风力不变,使杆与水平方向间夹角为37°并固定,则小球从静止出发在细杆上滑下距离s 所需时间为多少?(sin37°=0.6,cos37°=0.8)【例3】蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目.一个质量为60 kg 的运动员,从离水平网面3.2 m 高处自由下落,着网后沿竖直方向蹦回离水平网面 5.0 m 高处.已知运动员与网接触的时间为1.2s.若把在这段时间内网对运动员的作用力当作恒力处理,求此力的大小.(g =10 m/s 2)例 4.、在跳马运动中,运动员完成空中翻转的动作,能否稳住是一个得分的关键,为此,运动员在脚接触地面后都有一个下蹲的过程,为的是减小地面对人的冲击力.某运动员质量为m ,从最高处下落过程中在空中翻转的时间为t ,接触地面时所能承受的最大作用力为F (视为恒力),双脚触地时重心离脚的高度为h ,能下蹲的最大距离为s ,若运动员跳起后,在空中完成动作的同时,又使脚不受伤,则起跳后重心离地的高度H 的范围为多大?练习:1.以24.5m/s 的速度沿水平面行驶的汽车上固定一个光滑的斜面,如图所示,汽车刹车后,经2.5s 停下来,欲使在刹车过程中物体A 与斜面保持相对静止,则此斜面的倾角应为 ,车的行驶方向应向。
牛顿第二定律题型总结
牛顿运动定律的应用(王老师)一、知识归纳:1、牛顿第二定律(1)定律内容:物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同.(2)定义式:F 合=ma2、对牛顿第二定律的理解(1)瞬时性.根据牛顿第二定律,对于质量确定的物体而言,其加速度的大小和方向完全由物体受到的合外力的大小和方向所决定.加速度和物体所受的合外力是瞬时对应关系,即同时产生、同时变化、同时消失,保持一一对应关系.(2)矢量性.F =ma 是一个矢量式.力和加速度都是矢量,物体的加速度的方向由物体所受合外力的方向决定.已知F 合的方向,可推知a 的方向,反之亦然.(3)同体性:a =m F 合各量都是属于同一物体的,即研究对象的统一性.(4)独立性:F 合产生的a 是物体的合加速度,x 方向的合力产生x 方向的加速度,y 方向的合力产生y 方向的加速度.牛顿第二定律的分量式为F x =ma x ,F y =ma y .(5)相对性:公式中的a 是相对地面的而不是相对运动状态发生变化的参考系的. 特别提醒:(1)物体的加速度和合外力是同时产生的,不分先后,但有因果性,力是产生加速度的原因,没有力就没有加速度.(2)不能根据m =m F 得出m ∝F ,m ∝a1的结论.物体的质量m 与物体受的合外力和运动的加速度无关. 3、合外力、加速度、速度的关系(1)物体所受合外力的方向决定了其加速度的方向,合外力与加速度的大小关系是F =ma ,只要有合外力,不管速度是大还是小,或是零,都有加速度,只要合外力为零,则加速度为零,与速度的大小无关.只有速度的变化率才与合外力有必然的联系.(2)合力与速度同向时,物体做加速运动,反之减速.(3)力与运动关系:力是改变物体运动状态的原因,即力→加速度→速度变化(运动状态变化),物体所受到的合外力决定了物体加速度的大小,而加速度的大小决定了单位时间内速度变化量的大小,加速度的大小与速度大小无必然的联系.(4)加速度的定义式与决定式:a =t v ∆∆是加速度的定义式,它给出了测量物体的加速度的方法,这是物理上用比值定义物理量的方法;a =m F 是加速度的决定式,它揭示了物体产生加速度的原因及影响物体加速度的因素.特别提醒:物体的加速度的方向与物体所受的合外力是瞬时对应关系,即a 与合力F 方向总是相同,但速度v 的方向不一定与合外力的方向相同.4、力的单位(1)当物体的质量是m =1kg ,在某力的作用下它获得的加速度是a =1m/s 2时,那么这个力就是1牛顿,符号N 表示.(2)比例系数k 的含义:根据F =kma 知,k =F/ma ,因此k 在数值上等于使单位质量的物体产生单位加速度的力的大小.k 的大小由F 、m 、a 三者的单位共同决定,三者取不同的单位k 的数值不一样,在国际单位制中,k =1.由此可知,在应用公式F =ma 进行计算时,F 、m 、a 的单位必须统一为国际单位制中相应的单位.讨论点二:在牛顿第二定律的数学表达式F =kma 中,有关比例系数k 的说法,正确的是A .k 的数值由F 、m 、a 的数值决定B .k 的数值由F 、m 、a 的单位决定C .在国际单位制中,k =1D .在任何情况下k 都等于15、应用牛顿第二定律解题的一般步骤(1)确定研究对象(有时选取合适的研究对象,可使解题大为简化)(2)分析研究对象的受力情况,画出受力分析图(3)选定正方向或建立适当的正交坐标系(4)求合力,列方程求解(5)对结果进行检验或讨论牛顿第二定律典型题型题型1:必须弄清牛顿第二定律的矢量性牛顿第二定律F=ma 是矢量式,加速度的方向与物体所受合外力的方向相同。
牛顿第二定律高考题型归纳
牛顿第二定律1.通过牛顿第二定律将力学与运动学结合(1)已知受力情况求运动情况根据牛顿第二定律,已知物体的受力情况,可以求出物体运动的加速度;再根据物体的初始条件(初位置和初速度),应用运动学公式,求出物体的运动情况,即求出物体在任意时刻的速度、位置,也就是求出了物体的运动情况.可用程序图表示如下:例1.风洞实验室中可产生水平向左、大小可调节的风力.现将一套有一小球的细直杆放入风洞实验室.小球孔径略大于细杆直径,小球与杆间的滑动摩擦因数μ=0.5,如下图所示.保持小球所受风力F=0.5mg不变,使杆与水平方向间夹角为37°并固定,则小球从静止开始在细杆上滑下距离2.4m所需时间为多少?(g取g=10 m/s2,sin 37°=0.6,cos 37°=0.8)解析:设杆对小球的支持力为FN,摩擦力为Ff,对这些力进行正交分解,如图所示.在x轴上,由牛顿第二定律,有:mgsin θ+Fcos θ-Ff=ma 在y轴上,由平衡条件,有:FN+Fsin θ-mgcosθ=0 又Ff=μFN解上述三式得:a=7.5 m/s2 又由运动学公式s=at2,由以上各式解得小球从静止出发在细杆上滑下距离s所需时间为t=0.8 s 答案:0.8 s●题型训练●1.如图所示,质量m=4.0 kg的物体与地面间的动摩擦因数为μ=0.50.物体在与地面成θ=37°的恒力F=54.5 N作用下,由静止开始运动,t1=0.20 s撤去F,则再经过多长时间物体停下来?(g=10 m/s2,sin 37°=0.6,cos37°=0.8)解析:物体受到恒力F作用时受力如右图所示,设物体此时加速度为a1,对这些力进行正交分解,根据牛顿运动定律有:N′+Fsin θ-mg=0① Fcos θ-f′=ma1②又因为f′=μN′③①②③联立解得:a1=10 m/s2由v=at,得v=a1t1=2.0 m/s撤去F后物体的受力如右图所示,设物体此时加速度为a2,物体停下来经过时间为t2,根据牛顿运动定律有:f=ma2④N-mg=0⑤又因为f=μN⑥④⑤⑥联立解得:a2=5.0 m/s2由0=v-at,得t2==0.4 s.答案:0.4 s(2)已知运动情况求受力情况根据物体的运动情况,应用运动学公式求出加速度,再根据牛顿第二定律求出物体所受的合外力,从而求出未知的力,或与力相关的某些物理量.如:动摩擦因数、劲度系数等.可用程序图表示如下:例2.如图所示,电梯与水平面夹角为30°,电梯从初速度为零开始加速启动,当速度达到1 m/s时,一个质量为50 kg的人踏上第一级(不计这一级的宽度),然后跟电梯一起加速向上运动,到达电梯终点时已经过4s,电梯的终点离地面高度为10 m.求这个过程中人对梯面压力和人与梯面间的静摩擦力.(g=10m/s2)解析:以人为研究对象,人运动的初速度为v0=1 m/s,位移为s=h/sin 30°=20 m,时间为t=4 s. 根据运动学公式:s=v0t+ at2 代入数据解得:a =2 m/s2对人进行受力分析,人受重力mg、竖直向上的支持力FN、水平向右的静摩擦力Fμ(摩擦力方向一定与接触面平行),为了便于研究,取水平向右为x轴正方向,竖直向上为y轴正方向,建立直角坐标系(如左下图).此时只需分解加速度,其中ax=acos 30°,ay=asin 30° (如右下图)根据牛顿第二定律有X方向:Fμ=max=macos 30°①Y方向:FN-mg=may=masin 30°②由①式解得:Fμ=87 N 由②式解得:FN=550 N根据牛顿第三定律可知,人对梯面压力等于550 N,方向竖直向下.而人与梯面间的静摩擦力等于87 N,方向水平向右.答案:人对梯面压力等于550 N,方向竖直向下;人与梯面间的静摩擦力等于87 N,方向水平向右2.牛顿运动定律在传送带问题中的应用传送带在自动输送各种粮食起很大作用,如图所示.而该模型可分为以下三类:(1)水平传送带当传送带水平运动时,应特别注意摩擦力的突变和物体运动状态的变化.摩擦力的突变,常常导致物体的受力情况和运动性质的突变.静摩擦力到达最大值,是物体恰好保持相对静止的临界状态;滑动摩擦力存在于发生相对运动的物体之间,因此两物体的速度达到相同时,滑动摩擦力要发生突变(摩擦力为零或为静摩擦力).(2)倾斜传送带当传送带倾斜运动时,除了要注意摩擦力的突变和物体运动状态的变化外,还要注意物体与传送带之间的动摩擦因数μ和传送带倾斜角度θ的关系,从而正确判断物体的速度和传送带速度相等时物体运动的性质.(3)组合传送带组合传送带是水平传送带和倾斜传送带连接在一起传送物体.ﻩﻩﻩﻩﻩﻩﻩ例3.如图所示,传送带与地面的倾角θ=37°,从A到B的长度为16 m,传送带以v0=10 m/s的速度逆时针转动.在传送带上端无初速的放一个质量为m=0.5 kg的物体,它与传送带之间的动摩擦因数μ=0.5,求物体从A运动到B所需的时间是多少?(sin37°=0.6,cos37°=0.8,g=10 m/s2)解析:物体放在传送带上后,开始阶段,传送带的速度大于物体的速度,传送带给物体一沿斜面向下的滑动摩擦力,物体由静止开始加速下滑,受力分析如图(a)所示;当物体加速至与传送带速度相等时,由于μ<tan θ,物体在重力作用下将继续加速,此后物体的速度大于传送带的速度,传送带给物体沿传送带向上的滑动摩擦力,但合力沿传送带向下,物体继续加速下滑,受力分析如图(b)所示.综上可知,滑动摩擦力的方向在获得共同速度的瞬间发生了“突变”.开始阶段由牛二定律:mgsin θ+μmgcosθ=ma1所以:a1=gsin θ+μgcos θ=10 m/s2物体加速至与传送带速度相等时需要的时间t1=v/a1=1 s发生的位移:s= a1t12=5 m<16 m物体加速到10m/s时仍未到达B点.第二阶段,有:mgsin θ-μmgcos θ=ma2所以:a2=2 m/s2设第二阶段物体滑动到B 的时间为t2 则:LAB+s=vt2+ a2t22解得:t2=1s,t′2=-11 s(舍去)故物体经历的总时间t=t1+t 2 =2s.答案:2 s点评:从上述例题可以总结出,皮带传送物体所受摩擦力可能发生突变,不论是其大小的突变,还是其方向的突变,都发生在物体的速度与传送带速度相等的时刻.●题型训练●2.如图所示为一平直传送带,A、B两处间的距离为L,传送带的运动速度恒为v.有一工件轻轻从A处放上传送带,已知工件与传送带间的动摩擦因数为μ和当地的重力加速度为g,且认为传送带的形状及速率不受影响.求传送带将该工件由A处送到B处可能的时间间隔Δt及相应的条件.(即题中给出量之间应满足的关系).解析:该工件放上传送带,受到水平向右的摩擦力f=μmg;由牛顿第二定律,可得:a=f/m=μg;该工件加速到v所需时间:t=v/a=v/μg;此过程中,工件运动的位移:x= at2=v2/2μg①若v2/2μg≥L,则工件一直匀加速直到B,可得: at2=L,得Δt=②若v2/2μg<L,则工件先匀加速至速度v后做匀速运动直到B,故Δt=t+ = + .答案:①若v2/2μg≥L,则Δt= ;②若v2/2μg<L,则Δt= + .3.整体法与隔离法1.当研究问题中涉及多个物体组成的系统时,通常把研究对象从系统中“隔离”出来,单独进行受力及运动情况的分析.这叫隔离法.2.系统中各物体加速度相同时,我们可以把系统中的物体看做一个整体.然后分析整体受力,由F=ma求出整体加速度,再作进一步分析.这种方法叫整体法.3.解决连接体问题时,经常要把整体法与隔离法结合起来应用.在连接体问题中,如果不要求知道各个运动物体之间的相互作用力,并且各个物体具有大小和方向都相同的加速度,就可以把它们看成一个整体(当成一个质点),分析受到的外力和运动情况,应用牛顿第二定律求出加速度(或其他未知量);如果需知道物体之间的相互作用力,就需要把物体从系统中隔离出来将内力转化为外力,分析物体的受力情况和运动情况,并分别应用牛顿第二定律列出方程,隔离法和整体法是互相依存,互相补充的,两种方法互相配合交替应用,常能更有效地解决有关连接体的问题。
应用牛顿第二定律解题的几种题型
应用牛顿第二定律解题的几种题型牛顿第二定律是一个重要的物理学定律,用于解释物体运动中加速度变化的原理。
它主要用于描述物体受外力时会发生的加速或减速过程,可用来解决许多实际问题。
本文将介绍应用牛顿第二定律解题的几种典型题型,以及如何解答这些题型。
一、牛顿运动速度题第一种典型题目是根据牛顿第二定律求解运动速度的题型。
例如:一个物体从原点出发,受一个匀加速度a作用,在t时刻后,距离原点s米。
请求出t时刻物体的速度v?解题思路:物体由v0开始加速,到t时刻,它的速度是v=v0+at。
由于物体从原点出发,则v0=0。
所以,在t时刻,物体的速度是v=at。
二、牛顿运动加速度题第二种典型题目是根据牛顿第二定律求解加速度的题型。
例如:一个物体从原点出发,在t时刻后,距离原点s米,且物体的速度为v米/秒。
请求出加速度a?解题思路:由于物体从原点出发,则v0=0。
根据牛顿第二定律,v=v0+at,即v=at。
解出a=v/t。
三、牛顿运动时间题第三种典型题目是根据牛顿第二定律求解运动时间的题型。
例如:一个物体从原点出发,受一个匀加速度a作用,距离原点s米。
请求出物体从原点出发到s米的运动时间t?解题思路:根据牛顿第二定律,v=v0+at,解出t=v/a。
由于物体从原点出发,则v0=0,即t=s/a。
四、牛顿运动位移题第四种典型题目是根据牛顿第二定律求解位移的题型。
例如:一个物体从原点出发,受一个匀加速度a作用,在t时刻后,其速度是v米/秒。
请求出物体从原点出发到t时刻时的位移s?解题思路:根据牛顿第二定律,s=v0t+at^2/2。
由于物体从原点出发,则v0=0,即s=at^2/2。
到此,本文介绍了应用牛顿第二定律解题的几种典型题型,以及解答这些题型的解题思路。
熟练掌握牛顿第二定律,并灵活运用,可以很好地解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛顿第二定律1.通过牛顿第二定律将力学与运动学结合(1)已知受力情况求运动情况根据牛顿第二定律,已知物体的受力情况,可以求出物体运动的加速度;再根据物体的初始条件(初位置和初速度),应用运动学公式,求出物体的运动情况,即求出物体在任意时刻的速度、位置,也就是求出了物体的运动情况.可用程序图表示如下:例1.风洞实验室中可产生水平向左、大小可调节的风力.现将一套有一小球的细直杆放入风洞实验室.小球孔径略大于细杆直径,小球与杆间的滑动摩擦因数μ=0.5,如下图所示.保持小球所受风力F=0.5mg不变,使杆与水平方向间夹角为37°并固定,则小球从静止开始在细杆上滑下距离2.4m所需时间为多少?(g取g=10 m/s2,sin 37°=0.6,cos 37°=0.8)解析:设杆对小球的支持力为FN,摩擦力为Ff,对这些力进行正交分解,如图所示.在x轴上,由牛顿第二定律,有:mgsin θ+Fcos θ-Ff=ma 在y轴上,由平衡条件,有:FN+Fsin θ-mgcos θ=0 又Ff=μFN解上述三式得:a=7.5 m/s2 又由运动学公式s=at2,由以上各式解得小球从静止出发在细杆上滑下距离s所需时间为t=0.8 s 答案:0.8 s题型训练1.如图所示,质量m=4.0 kg的物体与地面间的动摩擦因数为μ=0.50.物体在与地面成θ=37°的恒力F=54.5 N作用下,由静止开始运动,t1=0.20 s撤去F,则再经过多长时间物体停下来?(g=10 m/s2,sin 37°=0.6,cos 37°=0.8)解析:物体受到恒力F作用时受力如右图所示,设物体此时加速度为a1,对这些力进行正交分解,根据牛顿运动定律有:N′+Fsin θ-mg=0① Fcos θ-f′=ma1②又因为f′=μN′③①②③联立解得:a1=10 m/s2由v=at,得v=a1t1=2.0 m/s撤去F后物体的受力如右图所示,设物体此时加速度为a2,物体停下来经过时间为t2,根据牛顿运动定律有:f=ma2④N -mg=0⑤又因为f=μN⑥④⑤⑥联立解得:a2=5.0 m/s2由0=v-at,得t2==0.4 s.答案:0.4 s(2)已知运动情况求受力情况根据物体的运动情况,应用运动学公式求出加速度,再根据牛顿第二定律求出物体所受的合外力,从而求出未知的力,或与力相关的某些物理量.如:动摩擦因数、劲度系数等.可用程序图表示如下:例2.如图所示,电梯与水平面夹角为30°,电梯从初速度为零开始加速启动,当速度达到1 m/s时,一个质量为50 kg的人踏上第一级(不计这一级的宽度),然后跟电梯一起加速向上运动,到达电梯终点时已经过4 s,电梯的终点离地面高度为10 m.求这个过程中人对梯面压力和人与梯面间的静摩擦力.(g=10m/s2)解析:以人为研究对象,人运动的初速度为v0=1 m/s,位移为s=h/sin 30°=20 m,时间为t=4 s. 根据运动学公式:s=v0t+ at2 代入数据解得:a=2 m/s2对人进行受力分析,人受重力mg、竖直向上的支持力FN、水平向右的静摩擦力Fμ(摩擦力方向一定与接触面平行),为了便于研究,取水平向右为x轴正方向,竖直向上为y轴正方向,建立直角坐标系(如左下图).此时只需分解加速度,其中ax=acos 30°,ay=asin 30° (如右下图)根据牛顿第二定律有X方向:Fμ=max=macos 30°①Y方向:FN-mg=may=masin 30°②由①式解得:Fμ=87 N 由②式解得:FN=550 N根据牛顿第三定律可知,人对梯面压力等于550 N,方向竖直向下.而人与梯面间的静摩擦力等于87 N,方向水平向右.答案:人对梯面压力等于550 N,方向竖直向下;人与梯面间的静摩擦力等于87 N,方向水平向右2.牛顿运动定律在传送带问题中的应用传送带在自动输送各种粮食起很大作用,如图所示.而该模型可分为以下三类:(1)水平传送带当传送带水平运动时,应特别注意摩擦力的突变和物体运动状态的变化.摩擦力的突变,常常导致物体的受力情况和运动性质的突变.静摩擦力到达最大值,是物体恰好保持相对静止的临界状态;滑动摩擦力存在于发生相对运动的物体之间,因此两物体的速度达到相同时,滑动摩擦力要发生突变(摩擦力为零或为静摩擦力).(2)倾斜传送带当传送带倾斜运动时,除了要注意摩擦力的突变和物体运动状态的变化外,还要注意物体与传送带之间的动摩擦因数μ和传送带倾斜角度θ的关系,从而正确判断物体的速度和传送带速度相等时物体运动的性质.(3)组合传送带组合传送带是水平传送带和倾斜传送带连接在一起传送物体.例3.如图所示,传送带与地面的倾角θ=37°,从A到B的长度为16 m,传送带以v0=10 m/s的速度逆时针转动.在传送带上端无初速的放一个质量为m=0.5 kg的物体,它与传送带之间的动摩擦因数μ=0.5,求物体从A运动到B所需的时间是多少?(sin37°=0.6,cos37°=0.8,g=10 m/s2)解析:物体放在传送带上后,开始阶段,传送带的速度大于物体的速度,传送带给物体一沿斜面向下的滑动摩擦力,物体由静止开始加速下滑,受力分析如图(a)所示;当物体加速至与传送带速度相等时,由于μ<tan θ,物体在重力作用下将继续加速,此后物体的速度大于传送带的速度,传送带给物体沿传送带向上的滑动摩擦力,但合力沿传送带向下,物体继续加速下滑,受力分析如图(b)所示.综上可知,滑动摩擦力的方向在获得共同速度的瞬间发生了“突变”.开始阶段由牛二定律:mgsin θ+μmgcos θ=ma1所以:a1=gsin θ+μgcos θ=10 m/s2物体加速至与传送带速度相等时需要的时间 t1=v/a1=1 s发生的位移:s= a1t12=5 m<16 m物体加速到10 m/s 时仍未到达B点.第二阶段,有:mgsin θ-μmgcos θ=ma2所以:a2=2 m/s2设第二阶段物体滑动到B 的时间为t2 则:LAB+s=vt2+ a2t22解得:t2=1 s,t′2=-11 s(舍去)故物体经历的总时间t=t1+t 2 =2 s.答案:2 s点评:从上述例题可以总结出,皮带传送物体所受摩擦力可能发生突变,不论是其大小的突变,还是其方向的突变,都发生在物体的速度与传送带速度相等的时刻.题型训练2.如图所示为一平直传送带,A、B两处间的距离为L,传送带的运动速度恒为v.有一工件轻轻从A处放上传送带,已知工件与传送带间的动摩擦因数为μ和当地的重力加速度为g,且认为传送带的形状及速率不受影响.求传送带将该工件由A处送到B处可能的时间间隔Δt及相应的条件.(即题中给出量之间应满足的关系).解析:该工件放上传送带,受到水平向右的摩擦力f=μmg;由牛顿第二定律,可得: a=f/m=μg;该工件加速到v所需时间:t=v/a=v/μg;此过程中,工件运动的位移:x= at2=v2/2μg①若v2/2μg≥L,则工件一直匀加速直到B,可得: at2=L,得Δt=②若v2/2μg<L,则工件先匀加速至速度v后做匀速运动直到B,故Δt=t+=+ .答案:①若v2/2μg≥L,则Δt=;②若v2/2μg<L,则Δt=+ .3.整体法与隔离法1.当研究问题中涉及多个物体组成的系统时,通常把研究对象从系统中“隔离”出来,单独进行受力及运动情况的分析.这叫隔离法.2.系统中各物体加速度相同时,我们可以把系统中的物体看做一个整体.然后分析整体受力,由F=ma求出整体加速度,再作进一步分析.这种方法叫整体法.3.解决连接体问题时,经常要把整体法与隔离法结合起来应用.在连接体问题中,如果不要求知道各个运动物体之间的相互作用力,并且各个物体具有大小和方向都相同的加速度,就可以把它们看成一个整体(当成一个质点),分析受到的外力和运动情况,应用牛顿第二定律求出加速度(或其他未知量);如果需知道物体之间的相互作用力,就需要把物体从系统中隔离出来将内力转化为外力,分析物体的受力情况和运动情况,并分别应用牛顿第二定律列出方程,隔离法和整体法是互相依存,互相补充的,两种方法互相配合交替应用,常能更有效地解决有关连接体的问题。
例4.如图所示:小车沿倾角为θ的光滑斜面滑下,在小车的水平台面上有一质量为M的木块和小车保持相对静止,求:(1)小车下滑时木块所受的摩擦力。
(2)小车下滑时木块所受的弹力。
审题:这里由于木块与小车在运动过程中相对静止,它们具有相同的加速度,所以先采用整体分析法,求出木块和小车这个m M系统的整体加速度,a=gsin θ,这样M 的加速度就求出。
由于木块所受的弹力和摩擦力对小车和木块这个系统来说是内力,所以必须将木块从系统中隔离出来分析。
先画出木块的受力图和加速度的方向。
为了解题方便,本题应将加速度分解。
则 f=max =mgsin θcos θmg-N=mayN=mg-mgsin θsin θN =mg(1-sin2θ)假如按习惯把重力、弹力、摩擦力分解,问题就复杂得多。
mgsin θ+fcos θ-Nsin θ=ma mgcos θ-Ncos θ-fsin θ=0例5.水平桌面上放着质量为M 的滑块,用细绳通过定滑轮与质量为m 的物体相连,滑块向右加速运动。
已知滑块与桌面间的动摩擦因数为μ.试求滑块运动的加速度和细绳中的张力。
例6.A 、B 、C 三个物体质量分别为m1、m2和m3,带有滑轮的物体放在光滑的水平面上,滑轮和所有接触处的摩擦及绳的质量不计,为使三个物体无相对运动,则水平推力F 为多少?因三物体加速度相同,本题可用整体法。
解: 研究整体F=(m1+m2+m3)aT= m1 a 为求T研究m2 T= m2g故a= m2 g/ m1 F=(m1+m2+m3)aF =(m1+m2+m3) m2 g/ m1例7.倾角为30°的斜面体置于粗糙的水平地面上,已知斜面体的质量为M=10Kg,一质量为m=1.0Kg的木块正沿斜面体的斜面由静止开始加速下滑,木块滑行路程s=1.0m时,其速度v=1.4m/s,而斜面体保持静止。
求:⑴求地面对斜面体摩擦力的大小及方向。
⑵地面对斜面体支持力的大小。