(完整版)牛顿第二定律题型总结,推荐文档

合集下载

牛顿第二定律十大题型分类汇总(详解版)

牛顿第二定律十大题型分类汇总(详解版)

牛顿第二定律十大题型分类汇总(带详解)一、牛顿第二定律与斜面结合1.如图所示,一足够长的固定在水平面上的斜面,倾角37θ= ,斜面BC 与水平面AB 平滑连接,质量2kg m =的物体静止于水平面上的M 点,M 点与B 点之间的距离9m L =,物体与水平面和斜面间的动摩擦因数均为0.5μ=,现物体受到一水平向右的恒力14N F =作用,运动至B 点时撤去该力,B 点有一小圆弧,使得物体经过B 点时只有速度方向发生改变,速度大小不变,重力加速度210m/s g =,则:(1)物体到达B 点时的速度大小;(2)物体沿斜面向上滑行的最远距离。

(3)物体从开始运动到最后停止运动的总时间。

解得212m/s a =由M 到B 有212B v a L=解得6m/sB v =(2)沿斜面上滑时,根据牛顿第二定律得2sin37cos37mg mg ma μ︒+︒=解得2210m/s a =沿斜面运动的最远距离为(3)从M 点运动到B 点的时间为从B点运动到斜面最高点的时间为沿斜面下滑时的加速度为3sin37cos37mg mg ma μ︒-︒=解得232m/s a =沿斜面下滑的时间为解得下滑到B点时的速度为在水平面上运动的加速度大小为4mg ma μ=解得245m/s a =从B点到静止的时间为物体从开始运动到最后停止运动的总时间为1234t t t t t =+++解得2.一质量m =2kg 小物块从斜面上A 点由静止开始滑下,滑到斜面底端B 点后沿水平面再滑行一段距离停下来。

若物块与斜面、水平面间的动摩擦因数均为μ=0.25。

斜面A、B 两点之间的距离s =18m,斜面倾角θ=37°(sin37°=0.6;cos37°=0.8)斜面与水平面间平滑连接,不计空气阻力,g =10m/s 2。

求:(1)物块在斜面上下滑过程中的加速度大小;(2)物块滑到B 点时的速度大小;(3)物块在水平面上滑行的时间。

牛顿第二定律典型题型归纳(学生) -完整获奖版

牛顿第二定律典型题型归纳(学生) -完整获奖版

牛顿第二定律典型题型归纳一. 重难点解析:1. 动力学两类基本问题应用牛顿运动定律解决的问题主要可分为两类:(1)已知受力情况求运动情况。

(2)已知运动情况求受力情况。

分析解决这两类问题的关键是抓住受力情况和运动情况之间联系的桥梁——加速度。

基本思路流程图:基本公式流程图为:2. 动力学问题的处理方法(1)正确的受力分析。

对物体进行受力分析,是求解力学问题的关键,也是学好力学的基础。

(2)受力分析的依据。

①力的产生条件是否存在,是受力分析的重要依据之一。

②力的作用效果与物体的运动状态之间有相互制约的关系,结合物体的运动状态分析受力情况是不可忽视的。

③由牛顿第三定律(力的相互性)出发,分析物体的受力情况,可以化难为易。

3. 解题思路及步骤(1)由物体的受力情况求解物体的运动情况的一般方法和步骤。

①确定研究对象,对研究对象进行受力分析,并画出物体的受力图。

②根据力的合成与分解的方法,求出物体所受合外力(包括大小和方向)③根据牛顿第二定律列方程,求出物体的加速度。

④结合给定的物体运动的初始条件,选择运动学公式,求出所需的运动参量。

(2)由物体的运动情况求解物体的受力情况。

解决这类问题的基本思路是解决第一类问题的逆过程,具体步骤跟上面所讲的相似,但需特别注意:①由运动学规律求加速度,要特别注意加速度的方向,从而确定合力的方向,不能将速度的方向与加速度的方向混淆。

②题目中求的力可能是合力,也可能是某一特定的作用力。

即使是后一种情况,也必须先求出合力的大小和方向,再根据力的合成与分解知识求分力。

4. 解题方法牛顿运动定律是解决动力学问题的重要定律,具体应用的方法有好多,高中物理解题常用的方法有以下几种:(1)正交分解法:表示方法为减少矢量的分解,建立坐标系时,确定x轴正方向有两种方法:①分解力而不分解加速度。

分解力而不分解加速度,通常以加速度a的方向为x轴正方向,建立直角坐标系,将物体所受的各个力分解在x轴和y轴上,分别得x轴和y轴的合力。

加强牛顿第二定律题型总结

加强牛顿第二定律题型总结

牛顿运动定律的应用题型1:必须弄清牛顿第二定律的瞬时性一小球自空中自由落下,与正下方的直立轻质弹簧接触,直至速度为零的过程中,关于小球运动状态,正确的是( )A .接触后,小球作减速运动,加速度的绝对值越来越大,速度越来越小,最后等于零B .接触后,小球先做加速运动,后做减速运动,其速度先增加后减小直到为零C .接触后,速度为零的地方就是弹簧被压缩最大之处,加速度为零的地方也是弹簧被压缩最大之处D .接触后,小球速度最大的地方就是加速度等于零的地方拓展:如图质量为m 的小球用水平弹簧系住,并用倾角为30°的光滑木板AB 托住,小球恰好处于静止状态.当木板AB 突然向下撤离的瞬间,小球的加速度为( )A .0B .大小为233g ,方向竖直向下 C .大小为233g ,方向垂直于木板向下 D .大小为33g ,方向水平向右题型2:必须弄清牛顿第二定律的同体性例、一人在井下站在吊台上,用如图4所示的定滑轮装置拉绳把吊台和自己提升上来。

图中跨过滑轮的两段绳都认为是竖直的且不计摩擦。

吊台的质量m=15kg,人的质量为M=55kg,起动时吊台向上的加速度是a=0.2m/s 2,求这时人对吊台的压力。

(g=9.8m/s 2)拓展:如图所示,A 、B 的质量分别为m A =0.2kg ,m B =0.4kg ,盘C 的质量m C =0.6kg ,现悬挂于天花板O 处,处于静止状态。

当用火柴烧断O 处的细线瞬间,木块A 的加速度a A多大?木块B 对盘C 的压力F BC 多大?(g 取10m/s 2)问题3:发生相对运动的条件题型零界问题 如图所示,把长方体切成质量分别为m 和M 的两部分,切面与底面的夹角为θ,长方体置于光滑的水平面上。

设切面是光滑的,要使m 和M 一起在水平面上滑动,作用在m 上的水平力F 满足什么条件?拓展1:如图所示,一夹子夹住木块,在力F 作用下向上提升,夹子和木块的质量分别为m 、M ,夹子与木块两侧间的最大静摩擦有均为f ,若木块不滑动,力F 的最大值是A . 2()f m M M +B .2()f m M m + C.2()()f m M m M g M+-+ B . D .2()()f m M m M g M +++例、质量分别为m 、m 2、m 3的物块A 、B 、C 叠放一起放在光滑的水平地面上,现对B 施加一水平力F ,已知A B 间最大静摩擦力为0f ,B C 间最大静摩擦力为02f ,为保证它们能够一起运动,F 最大值为( )A .06fB . 04fC .03fD . 02f问题4:接触物体分离的条件及应用例、一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。

牛顿第二定律高考题型归纳

牛顿第二定律高考题型归纳

牛顿第二定律〔1〕已知受力情况求运动情况根据牛顿第二定律,已知物体的受力情况,可以求出物体运动的加速度;再根据物体的初始条件(初位置和初速度),应用运动学公式,求出物体的运动情况,即求出物体在任意时刻的速度、位置,也就是求出了物体的运动情况.可用程序图表示如下:例1.风洞实验室中可产生水平向左、大小可调节的风力.现将一套有一小球的细直杆放入风洞实验室.小球孔径略大于细杆直径,小球与杆间的滑动摩擦因数μ=,如下列图所示.保持小球所受风力F=不变,使杆与水平方向间夹角为37°并固定,则小球从静止开始在细杆上滑下距离所需时间为多少?(g取g=10 m/s2,sin 37°=,cos 37°=0.8)解析:设杆对小球的支持力为FN,摩擦力为Ff,对这些力进行正交分解,如下图.在x轴上,由牛顿第二定律,有:mgsin θ+Fcos θ-Ff=ma 在y轴上,由平衡条件,有:FN+Fsin θ-mgcos θ=0 又Ff=μFN解上述三式得:a=7.5 m/s2 又由运动学公式s=at2,由以上各式解得小球从静止出发在细杆上滑下距离s所需时间为t=0.8 s 答案:0.8 s●题型训练●1.如下图,质量m=4.0 kg的物体与地面间的动摩擦因数为μ=0.50.物体在与地面成θ=37°的恒力F=54.5 N作用下,由静止开始运动,t1=0.20 s撤去F,则再经过多长时间物体停下来?(g=10 m/s2,sin 37°=,cos 37°=0.8)解析:物体受到恒力F作用时受力如右图所示,设物体此时加速度为a1,对这些力进行正交分解,根据牛顿运动定律有:N′+Fsin θ-mg=0① Fcos θ-f′=ma1②又因为f′=μN′③①②③联立解得:a1=10 m/s2由v=at,得v=a1t1=2.0 m/s撤去F后物体的受力如右图所示,设物体此时加速度为a2,物体停下来经过时间为t2,根据牛顿运动定律有:f=ma2④ N-mg=0⑤又因为f=μN⑥④⑤⑥联立解得:a2=5.0 m/s2由0=v-at,得t2==0.4 s.答案:0.4 s〔2〕已知运动情况求受力情况根据物体的运动情况,应用运动学公式求出加速度,再根据牛顿第二定律求出物体所受的合外力,从而求出未知的力,或与力相关的某些物理量.如:动摩擦因数、劲度系数等.可用程序图表示如下:例2.如下图,电梯与水平面夹角为30°,电梯从初速度为零开始加速启动,当速度到达1 m/s 时,一个质量为50 kg的人踏上第一级(不计这一级的宽度),然后跟电梯一起加速向上运动,到达电梯终点时已经过4 s,电梯的终点离地面高度为10 m.求这个过程中人对梯面压力和人与梯面间的静摩擦力.(g=10m/s2)解析:以人为研究对象,人运动的初速度为v0=1 m/s,位移为s=h/sin 30°=20 m,时间为t=4 s. 根据运动学公式:s=v0t+ at2 代入数据解得:a=2 m/s2 对人进行受力分析,人受重力mg、竖直向上的支持力FN、水平向右的静摩擦力Fμ(摩擦力方向一定与接触面平行),为了便于研究,取水平向右为x轴正方向,竖直向上为y轴正方向,建立直角坐标系(如左下列图).此时只需分解加速度,其中ax=acos 30°,ay=asin 30° (如右下列图)根据牛顿第二定律有X方向:Fμ=max=macos 30°①Y方向:FN-mg=may=masin 30°②由①式解得:Fμ=87 N 由②式解得:FN=550 N根据牛顿第三定律可知,人对梯面压力等于550 N,方向竖直向下.而人与梯面间的静摩擦力等于87 N,方向水平向右.答案:人对梯面压力等于550 N,方向竖直向下;人与梯面间的静摩擦力等于87 N,方向水平向右传送带在自动输送各种粮食起很大作用,如下图.而该模型可分为以下三类:(1)水平传送带当传送带水平运动时,应特别注意摩擦力的突变和物体运动状态的变化.摩擦力的突变,常常导致物体的受力情况和运动性质的突变.静摩擦力到达最大值,是物体恰好保持相对静止的临界状态;滑动摩擦力存在于发生相对运动的物体之间,因此两物体的速度到达相同时,滑动摩擦力要发生突变(摩擦力为零或为静摩擦力).(2)倾斜传送带当传送带倾斜运动时,除了要注意摩擦力的突变和物体运动状态的变化外,还要注意物体与传送带之间的动摩擦因数μ和传送带倾斜角度θ的关系,从而正确判断物体的速度和传送带速度相等时物体运动的性质.(3)组合传送带组合传送带是水平传送带和倾斜传送带连接在一起传送物体.例3.如下图,传送带与地面的倾角θ=37°,从A到B的长度为16 m,传送带以v0=10 m/s 的速度逆时针转动.在传送带上端无初速的放一个质量为m=0.5 kg的物体,它与传送带之间的动摩擦因数μ=,求物体从A运动到B所需的时间是多少?(sin37°=,cos37°=,g =10 m/s2)解析:物体放在传送带上后,开始阶段,传送带的速度大于物体的速度,传送带给物体一沿斜面向下的滑动摩擦力,物体由静止开始加速下滑,受力分析如图(a)所示;当物体加速至与传送带速度相等时,由于μ<tan θ,物体在重力作用下将继续加速,此后物体的速度大于传送带的速度,传送带给物体沿传送带向上的滑动摩擦力,但合力沿传送带向下,物体继续加速下滑,受力分析如图(b)所示.综上可知,滑动摩擦力的方向在获得共同速度的瞬间发生了“突变”.开始阶段由牛二定律:mgsin θ+μmgcos θ=ma1所以:a1=gsin θ+μgcos θ=10 m/s2物体加速至与传送带速度相等时需要的时间t1=v/a1=1 s发生的位移:s= a1t12=5 m<16 m物体加速到10 m/s 时仍未到达B点.第二阶段,有:mgsin θ-μmgcos θ=ma2所以:a2=2 m/s2设第二阶段物体滑动到B 的时间为t2 则:LAB+s=vt2+ a2t22解得:t2=1 s,t′2=-11 s(舍去)故物体经历的总时间t=t1+t 2 =2 s.答案:2 s点评:从上述例题可以总结出,皮带传送物体所受摩擦力可能发生突变,不管是其大小的突变,还是其方向的突变,都发生在物体的速度与传送带速度相等的时刻.●题型训练●2.如下图为一平直传送带,A、B两处间的距离为L,传送带的运动速度恒为v.有一工件轻轻从A处放上传送带,已知工件与传送带间的动摩擦因数为μ和当地的重力加速度为g,且认为传送带的形状及速率不受影响.求传送带将该工件由A处送到B处可能的时间间隔Δt及相应的条件.(即题中给出量之间应满足的关系).解析:该工件放上传送带,受到水平向右的摩擦力f=μmg;由牛顿第二定律,可得: a=f/m=μg;该工件加速到v所需时间:t=v/a=v/μg;此过程中,工件运动的位移:x= at2=v2/2μg①假设v2/2μg≥L,则工件一直匀加速直到B,可得: at2=L,得Δt=②假设v2/2μg<L,则工件先匀加速至速度v后做匀速运动直到B,故Δt=t+=+ .答案:①假设v2/2μg≥L,则Δt=;②假设v2/2μg<L,则Δt=+ .3.整体法与隔离法1.当研究问题中涉及多个物体组成的系统时,通常把研究对象从系统中“隔离”出来,单独进行受力及运动情况的分析.这叫隔离法.2.系统中各物体加速度相同时,我们可以把系统中的物体看做一个整体.然后分析整体受力,由F=ma求出整体加速度,再作进一步分析.这种方法叫整体法.3.解决连接体问题时,经常要把整体法与隔离法结合起来应用.在连接体问题中,如果不要求知道各个运动物体之间的相互作用力,并且各个物体具有大小和方向都相同的加速度,就可以把它们看成一个整体〔当成一个质点〕,分析受到的外力和运动情况,应用牛顿第二定律求出加速度〔或其他未知量〕;如果需知道物体之间的相互作用力,就需要把物体从系统中隔离出来将内力转化为外力,分析物体的受力情况和运动情况,并分别应用牛顿第二定律列出方程,隔离法和整体法是互相依存,互相补充的,两种方法互相配合交替应用,常能更有效地解决有关连接体的问题。

牛顿第二定律(超全)

牛顿第二定律(超全)

N
国际上规定:
kg
F ak m
F a m
F ma
三、对牛顿第二定律的理解
1 矢量性: F与a都是矢量,且a方向与F 的 .方向任意时刻均 相同 ; 2 瞬时性: a 与 F 同时 产生 ,同时 变化 , . 同时 消失 ,为瞬时对应关系。 3. 独立性: 当物体同时受到几个力的作用时,
各个力都满足F=ma每个力都独立产生各自的 加速度,这些加速度的矢量和,即为物体具 有的 。 合加速度
(第1课时)
牛顿第二定律的性质:
1:瞬时性:加速度和力的关系是瞬时对应,
a与
F同时产生,同时变化,同时消失; 2:矢量性:加速度的方向总与合外力方向相同; 3:独立性(或相对性):当物体受到几个力的 作用时,可把物体的加速度看成是各个力单 独作用时所产生的分加速度的合成; 4:牛顿运动定律的适应范围:是对宏观、低速 物体而言;
运 动 情 况 (
s v t a)
例1:一个静止在水平地面上的物体,质量 是2Kg,在6.4N的水平拉力作用下沿水平地 面向右运动,物体与水平地面间的滑动摩 擦力是4.2N。求物体4s末的速度和4s内发
生的位移。
解:物体的受力如图所示: N a(正)由图知: f G F F合=F-f=6.4N-4.2N=2.2N 由牛顿第二定律:F=ma
例3:一个滑雪的人,质量m=75kg,以
V0=2m/s的初速度沿山坡匀加速地滑下,
山坡的倾角θ=300,在t=5s的时间内滑下
的路程s=60m,求滑雪人受到的阻力(包
括滑动摩擦力和空气阻力)。
解:对人进行受力分析画受力图,如下 因为:V0=2m/s,x=60m,t=5s 取沿钭面向下方向为正 • 则:根据运动学公式: N

牛顿第二定律典型题型分类

牛顿第二定律典型题型分类

牛顿第二定律题型总结一、整体法与隔离法:1、 A 、B 两物体靠在一起,放在光滑水平面上,它们的质量分别为 mA=3kg , m B =6kg ,今用水平力F A = 6N 推、用水平力FB=3N 拉B , A 、B 间的作用力有多大?F A F B A BZ Z z z Z Z Z ZZ Z Z X Z Z. Z ■■- /■ ZZ Z Z X / ■■- /2、 如图所示,质量为 M 的斜面A 置于粗糙水平地面上,动摩擦因数为 *,物体B 与斜 面间无摩擦。

在水平向左的推力F 作用下,A 与B 一起做匀加速直线运动,两者无相对滑动。

已知斜面的倾角为e ,物体B 的质量为m 则它们的加速度 a 及推力F 的大小为()A a=gsinO,F=(M +m)g(H+sin!3)iBFL —B a =g cos0, F =(M +m)g cosH9A,r z Zz _7^77~/, /~~.广,~~C a =g tan 0, F =(M +m)g( P +tan 0)D a = g cot 6, F = H ( M 十 m) g3、如图所示,质量为 m 2的物体2放在正沿平直轨道向右行驶的车厢底板上,并用竖直细绳通过光滑定滑轮连接质量 为m 的物体,与物体1相连接的绳与竖直方向成&角,则( )A .车厢的加速度为g sinemgB, 绳对物体1的拉力为cos 。

C.底板对物体2的支持力为(m2 -m°gD .物体2所受底板的摩擦力为m 2g tan96、在2008年北京残奥会开幕式上,运动员手拉绳索向上攀登,最终点燃了主火炬,体现了残疾运动员坚忍不拔的意 志和自强不息的精神。

为了探究上升过程中运动员与绳索和吊椅间的作用,可将过程简化。

一根不可伸缩的轻绳跨过4、如图所示,一只质量为 m 的小猴抓住用绳吊在大花板上的一根质量为 M 的竖直杆。

当悬绳突然断裂时,小猴急速沿 杆竖直上爬,以保持它离地面的高度不变。

(word完整版)牛顿第二定律题型总结,推荐文档

(word完整版)牛顿第二定律题型总结,推荐文档

牛顿运动定律的应用一、知识归纳:1、牛顿第二定律(1)定律内容:物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同.(2)定义式:F 合=ma2、对牛顿第二定律的理解(1)瞬时性.根据牛顿第二定律,对于质量确定的物体而言,其加速度的大小和方向完全由物体受到的合外力的大小和方向所决定.加速度和物体所受的合外力是瞬时对应关系,即同时产生、同时变化、同时消失,保持一一对应关系.(2)矢量性.F =ma 是一个矢量式.力和加速度都是矢量,物体的加速度的方向由物体所受合外力的方向决定.已知F 合的方向,可推知a 的方向,反之亦然.(3)同体性:a =mF 合各量都是属于同一物体的,即研究对象的统一性.(4)独立性:F 合产生的a 是物体的合加速度,x 方向的合力产生x 方向的加速度,y 方向的合力产生y 方向的加速度.牛顿第二定律的分量式为F x =ma x ,F y =ma y .(5)相对性:公式中的a 是相对地面的而不是相对运动状态发生变化的参考系的. 特别提醒:(1)物体的加速度和合外力是同时产生的,不分先后,但有因果性,力是产生加速度的原因,没有力就没有加速度. (2)不能根据m =m F 得出m ∝F ,m ∝a1的结论.物体的质量m 与物体受的合外力和运动的加速度无关. 3、合外力、加速度、速度的关系(1)物体所受合外力的方向决定了其加速度的方向,合外力与加速度的大小关系是F =ma ,只要有合外力,不管速度是大还是小,或是零,都有加速度,只要合外力为零,则加速度为零,与速度的大小无关.只有速度的变化率才与合外力有必然的联系.(2)合力与速度同向时,物体做加速运动,反之减速. (3)力与运动关系:力是改变物体运动状态的原因,即力→加速度→速度变化(运动状态变化),物体所受到的合外力决定了物体加速度的大小,而加速度的大小决定了单位时间内速度变化量的大小,加速度的大小与速度大小无必然的联系.(4)加速度的定义式与决定式:a =tv∆∆是加速度的定义式,它给出了测量物体的加速度的方法,这是物理上用比值定义物理量的方法;a =mF是加速度的决定式,它揭示了物体产生加速度的原因及影响物体加速度的因素. 特别提醒:物体的加速度的方向与物体所受的合外力是瞬时对应关系,即a 与合力F 方向总是相同,但速度v 的方向不一定与合外力的方向相同.讨论点一:如图所示,对静止在光滑水平面上的物体施加一水平拉力,当力刚开始作用瞬间 ( )A .物体立即获得速度B .物体立即获得加速度C .物体同时获得速度和加速度D .由于物体没有来得及运动,所以速度和加速度都为零 4、力的单位(1)当物体的质量是m =1kg ,在某力的作用下它获得的加速度是a =1m/s 2时,那么这个力就是1牛顿,符号N 表示.(2)比例系数k 的含义:根据F =kma 知,k =F/ma ,因此k 在数值上等于使单位质量的物体产生单位加速度的力的大小.k 的大小由F 、m 、a 三者的单位共同决定,三者取不同的单位k 的数值不一样,在国际单位制中,k =1.由此可知,在应用公式F =ma 进行计算时,F 、m 、a 的单位必须统一为国际单位制中相应的单位.讨论点二:在牛顿第二定律的数学表达式F=kma中,有关比例系数k的说法,正确的是A.k的数值由F、m、a的数值决定B.k的数值由F、m、a的单位决定C.在国际单位制中,k=1 D.在任何情况下k都等于15、应用牛顿第二定律解题的一般步骤(1)确定研究对象(有时选取合适的研究对象,可使解题大为简化)(2)分析研究对象的受力情况,画出受力分析图(3)选定正方向或建立适当的正交坐标系(4)求合力,列方程求解(5)对结果进行检验或讨论6、超重、失重(1)视重:所谓“视重”是指人由弹簧秤等量具上所看到的读数.(2)超重:当物体具有向上的加速度时,物体对支持物的压力(或对悬挂物的拉力)大于物体所受的重力(即视重大于重力)的现象称为超重现象.(3)失重:当物体具有向下的加速度时,物体对支持物的压力(或对悬挂物的拉力)小于物体所受的重力(即视重小于重力)的现象,称为失重现象.(4)完全失重:当物体向下的加速度a=g时,物体对支持物的压力(或对悬挂物的拉力)等于零的状态,即视重等于零时,称为完全失重状态.(5)产生超重、失重现象的原因:①产生超重的原因:当物体具有向上的加速度a(向上加速或向下减速运动)时,支持物对物体的支持力(或悬绳的拉力)为F.由牛顿第二定律可得:F-mg=ma所以F=m(g+a)>mg由牛顿第三定律知,物体对支持物的压力(或对悬绳的拉力)F′>mg.②产生失重现象的原因:当物体具有向下的加速度a(向下加速或向上减速运动)时,支持物对物体的支持力(或悬绳对物体的拉力)为F.由牛顿第二定律可知:mg-F=ma所以F=m(g-a)<mg由牛顿第三定律可知,物体对支持物的压力(或对悬绳的拉力)F′<mg.特例:当物体具有向下的加速度a=g时.则F′=0.物体处于完全失重状态.(6)对超重和失重现象的理解.①物体处于超重或失重状态时,物体所受的重力始终不变,只是物体对支持物的压力或对悬挂物的拉力发生了变化,看起来物重好像有所增大或减小.②发生超重或失重的现象与物体的速度方向无关,只取决于物体加速度的方向.③在完全失重状态下,平常由重力产生的一切物理现象都会完全消失,比如物体对桌面无压力,单摆停止摆动,浸在水中的物体不受浮力等.靠重力才能使用的仪器,也不能再使用,如天平、液体气压计等.讨论点一:如图所示,质量均为m的甲、乙两同学,分别静止于水平地面的台秤P、Q上,他们用手分别竖直牵拉一只弹簧秤的两端,稳定后弹簧秤的示数为F,若弹簧秤的质量不计,下列说法正确的是()A.甲同学处于超重状态,乙同学处于失重状态B.台秤P的读数等于mg-FC.台秤Q的读数为mg-2FD.两台秤的读数之和为2mg二、典型题型题型1:必须弄清牛顿第二定律的矢量性牛顿第二定律F=ma是矢量式,加速度的方向与物体所受合外力的方向相同。

牛顿第二定律各种典型题型

牛顿第二定律各种典型题型

牛顿第二定律牛顿第二定律11.内容物体加速度的大小跟它受到的作用力成正比、跟它的质量成反比,加速度的方向跟作用力的方向相同。

2.表达式F=ma。

3.“五个”性质1.一般思路:分析物体该时的受力情况—由牛顿第二定律列方程一瞬时加速度2.两种模型(1)刚性绳(或接触面):一种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,弹力立即改变或消失,不需要形变恢复时间,一般题目中所给的细线、轻杆和接触面在不加特殊说明时,均可按此模型处理。

(2)弹簧(或橡皮绳):当弹簧的两端与物体相连(即两端为固定端)时,由于物体有惯性,弹簧的长度不会发生突变,所以在瞬时问题中,其弹力的大小认为是不变的,即此时弹簧的弹力不突变。

[例](多选)(2014 •南通第一中学检测)如图所示,A、B球的质量相等,弹簧的质量不计,倾角为B的斜面光滑,系统静止时,弹簧与细线均平行于斜面,在细线被烧断的瞬间,下列说法正确的是()A.两个小球的瞬时加速度均沿斜面向下,大小均为85吊eB.B球的受力情况未变,瞬时加速度为零C. A球的瞬时加速度沿斜面向下,大小为2gsin eD.弹簧有收缩的趋势,B球的瞬时加速度向上,A球的瞬时加速度向下,瞬时加速度都不为零[例](2013吉林模拟)在动摩擦因数U =0.2的水平面上有一个质量为m=2 kg 的小球, 小球与水平轻弹簧及与竖直方向成0=45°角的不可伸长的轻绳一端相连,如图所示,此时 小球处于静止平衡状态,且水平面对小球的弹力恰好为零。

当剪断轻绳的瞬间,取g=10 m/s 2,以下说法正确的是()若剪断弹簧,则剪断的瞬间小球的加速度大小为10巾〃2,方向向右针对练习:(2014 •苏州第三中学质检)如图所示,质量分别为m 、2m 的小球A 、B,由 轻质弹簧相连后再用细线悬挂在电梯内,已知电梯正在竖直向上做匀加速直线运动,细线中 的拉力为F,此时突然剪断细线。

在线断的瞬间,弹簧的弹力的大小和小琳的加速度的大小分别为( 4. (2014•宁夏银川一中一模)如图所示,A 、B 两小球分别连在轻线两端,B 球另一端解决两类动力学问题两个关键点 ⑴把握“两个分析”“一个桥梁”两个分析:物体的受力分析和物体的运动过程分析。

牛顿第二定律专题(含经典例题)

牛顿第二定律专题(含经典例题)

牛顿第二定律专题1.考纲解读2.考点整合考点一牛顿第二定律1.定律内容:物体的加速度跟物体成正比,跟物体的成反比,加速度的方向跟合外力的方向 .2.牛顿第二定律的矢量性、瞬时性、独立性.“矢量性”是指加速度的方向取决,“瞬时性”是指加速度和合外力存在着关系,合外力改变,加速度相应改变,“独立性”是指作用在物体上的每个力都独立的产生各自的加速度,合外力的加速度即是这些加速度的矢量和.3.牛顿第二定律的分量式:ΣFx=max,ΣFy=may[特别提醒]:F是指物体所受到的合外力,即物体所有受力的合力.加速度与合外力是瞬时对应关系,即有合外力就有加速度,没有合外力就没有加速度.【例1】如图所示,小车上固定着三角硬杆,杆的端点固定着一个质量为m的小球.当小车水平向右的加速度逐渐增大时,杆对小球的作用力的变化(用F1至F4变化表示)可能是下图中的(OO'沿杆方向)【解析】对小球进行受力分析,小球受重力和杆对小球的弹力,弹力在竖直方向的分量和重力平衡,小球在水平方向的分力提供加速度,故C正确.【答案】C【方法点评】本题考查牛顿第二定律,只要能明确研究对象,进行受力分析,根据牛顿第二定律列方程即可.考点二力、加速度和速度的关系在直线运动中当物体的合外力(加速度)与速度的方向时,物体做加速运动,若合外力(加速度)恒定,物体做运动,若合外力(加速度)变化,则物体做运动,当物体的合外力(加速度)方向与速度的方向时,物体做减速运动.若合外力(加速度)恒定,物体做运动,若合外力(加速度)变化,则物体做运动.[特别提醒]:要分析清楚物体的运动情况,必须从受力着手,因为力是改变运动状态的原因,求解物理问题,关键在于建立正确的运动情景,而这一切都必须从受力分析开始.[例2] 如图3-12-1所示,自由下落的小球下落一段时间后,与弹簧接触,从它接触弹簧开始,到弹簧压缩到最短的过程中,小球的速度、加速度的变化情况如何?最低点的加速度是否比g大?(实际平衡位置,等效成简谐运动)图3-12-1[解析]小球接触弹簧后受两个力,向下的重力mg和向上的弹力.(如图3-12-2(a)所示刚开始时,当<mg时,小球合力向下,,合力不断变小,因而加速度减小,由于a方向与v0同向,因此速度继续变大.当=mg时,如图3-12-2(b)所示,合力为零,加速度为零,速度达到最大值.之后小球由于惯性仍向下运动,继续压缩弹簧,但>mg,合力向上,由于加速度的方向和速度方向相反,小球做加速度增大的减速运动,因此速度减小到零弹簧被压缩到最短.如图3-12-2(c)所示[答案]小球压缩弹簧的过程,合外力的方向先向下后向上,大小是先变小至零后变大,加速度的方向也是先向下后向上,大小是先变小后变大,速度的方向始终向下,大小是先变大后变小. (还可以讨论小球在最低点的加速度和重力加速度的关系)[方法技巧]要分析物体的运动情况一定要从受力分析着手,再结合牛顿第二定律进行讨论、分析.对于弹簧类问题的求解,最好是画出弹簧的原长,现在的长度,这样弹簧的形变长度就一目了然,使得求解变得非常的简单明了.考点三瞬时问题瞬时问题主要是讨论细绳(或细线)、轻弹簧(或橡皮条)这两种模型.细绳模型的特点:细绳不可伸长,形变,故其张力可以,弹簧(或橡皮条)模型的特点:形变比较,形变的恢复需要时间,故弹力 .[特别提醒]求解瞬时问题,首先一定要分清类型,然后分析变化之前的受力,再分析变化瞬间的受力,这样就可以很快求解.[例3]如图5所示,质量为m的小球被水平绳AO和与竖直方向成θ角的轻弹簧系着处于静止状态,现用火将绳AO烧断,在绳AO烧断的瞬间,下列说法正确的是()A.弹簧的拉力B.弹簧的拉力C.小球的加速度为零D.小球的加速度[解析]烧断OA之前,小球受3个力,如图所示,烧断细绳的瞬间,绳子的张力没有了,但由于轻弹簧的形变的恢复需要时间,故弹簧的弹力不变,A正确。

牛顿第二定律25种题型

牛顿第二定律25种题型

牛顿第二定律25种题型牛顿第二定律是物理学中的基本定律之一,它描述了物体受力时的加速度与力的关系。

下面将详细介绍牛顿第二定律的25种题型。

1. 计算物体的加速度:根据牛顿第二定律,加速度与物体所受力成正比,与物体的质量成反比。

因此,可以通过已知的力和质量来计算物体的加速度。

2. 计算物体所受的力:根据牛顿第二定律,力与物体的质量和加速度成正比。

因此,可以通过已知的质量和加速度来计算物体所受的力。

3. 计算物体的质量:根据牛顿第二定律,质量与力和加速度的比值成正比。

因此,可以通过已知的力和加速度来计算物体的质量。

4. 计算物体的重力:根据牛顿第二定律,物体所受的重力与物体的质量成正比。

因此,可以通过已知的质量和加速度(通常为重力加速度)来计算物体的重力。

5. 计算物体所受的摩擦力:根据牛顿第二定律,物体所受的摩擦力与物体的质量和加速度成正比。

因此,可以通过已知的质量和加速度来计算物体所受的摩擦力。

6. 计算物体所受的弹力:根据牛顿第二定律,物体所受的弹力与物体的质量和加速度成正比。

因此,可以通过已知的质量和加速度来计算物体所受的弹力。

7. 计算物体所受的拉力:根据牛顿第二定律,物体所受的拉力与物体的质量和加速度成正比。

因此,可以通过已知的质量和加速度来计算物体所受的拉力。

8. 计算物体所受的斜面力:当物体沿斜面运动时,可以通过分解力的成分来计算物体所受的斜面力。

9. 计算物体所受的空气阻力:当物体在空气中运动时,可以通过已知的速度和物体的形状来计算物体所受的空气阻力。

10. 计算物体所受的浮力:当物体浸没在液体中时,可以通过已知的液体密度、物体的体积和重力加速度来计算物体所受的浮力。

11. 计算物体所受的离心力:当物体在旋转的平台上运动时,可以通过已知的物体质量、旋转半径和角速度来计算物体所受的离心力。

12. 计算物体所受的引力:当两个物体之间存在引力时,可以通过已知的物体质量和距离来计算物体所受的引力。

牛顿第二定律的应用常见题型与解题方法(王老师原创)非常全面,经典..

牛顿第二定律的应用常见题型与解题方法(王老师原创)非常全面,经典..

牛顿第二定律的应用第一讲一、两类动力学问题1.1.已知物体的受力情况求物体的运动情况:已知物体的受力情况求物体的运动情况:已知物体的受力情况求物体的运动情况:根据物体的受力情况求出物体受到的合外力,然后应用牛顿第二定律F=ma 求出物体的加速度,再根据初始条件由运动学公式就可以求出物体的运动情况––物体的速度、位移或运动时间。

件由运动学公式就可以求出物体的运动情况––物体的速度、位移或运动时间。

2.2.已知物体的运动情况求物体的受力情况:已知物体的运动情况求物体的受力情况:已知物体的运动情况求物体的受力情况:根据物体的运动情况,应用运动学公式求出物体的加速度,然后再应用牛顿第二定律求出物体所受的合外力,进而求出某些未知力。

进而求出某些未知力。

求解以上两类动力学问题的思路,可用如下所示的框图来表示:求解以上两类动力学问题的思路,可用如下所示的框图来表示:第一类第一类 第二类第二类典型例题: 例1、如图所示,用F =12 N 的水平拉力,使物体由静止开始沿水平地面做匀加速直线运动. 已知物体的质量m =2.0 kg ,物体与地面间的动摩擦因数μ=0.30. 求:求:(1)物体加速度a 的大小;的大小; (2)物体在t =2.0s 时速度v 的大小.例2、列车在机车的牵引下沿平直铁轨匀加速行驶,在100s 内速度由5.0m/s 增加到15.0m/s.(1)求列车的加速度大小.)求列车的加速度大小.(2)若列车的质量是1.01.0××106kg kg,机车对列车的牵引力是,机车对列车的牵引力是1.51.5××105N ,求列车在运动中所受的阻力大小.,求列车在运动中所受的阻力大小.二、正交分解法在牛顿第二定律中的应用例3、如图所示,质量为m 的人站在自动扶梯上,扶梯正以加速度a 向上减速运动,向上减速运动,a a 与水平方向的夹角为θ,求人所受到的支持力和摩擦力.求人所受到的支持力和摩擦力.三、整体法与隔离法在牛顿第二定律中的应用 物体的受力情况力情况 物体的加速度a 物体的运动情况动情况F 求内力:先整体后隔离求内力:先整体后隔离例4、如图所示,两个质量相同的物体1和2,紧靠在一起放在光滑的水平面上,如果它们分别受到水平推力F1和F2的作用,而且F1F1>>F2F2,则,则1施于2的作用力的大小为(的作用力的大小为( )A .F1B .F2C .(F1+F2F1+F2))/2D D..(F1-F2F1-F2))/2求外力:先隔离后整体求外力:先隔离后整体例5、如图所示,质量为m 的物块放在倾角为θ的斜面上,斜面的质量为M M ,斜面与物块无摩擦,地面光滑。

(完整版)高一物理牛顿第二定律典型例题答案及讲解

(完整版)高一物理牛顿第二定律典型例题答案及讲解

高一物理牛顿第二定律典型例题讲解与错误分析【例1】在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作将作 [ ] [ ]A .匀减速运动.匀减速运动B .匀加速运动.匀加速运动C .速度逐渐减小的变加速运动.速度逐渐减小的变加速运动D .速度逐渐增大的变加速运动.速度逐渐增大的变加速运动【分析】 木块受到外力作用必有加速度,已知外力方向不变,数值变小,根据牛顿第二定律可知,木块加速度的方向不变,大小在逐渐变小,也就是木块每秒增加的速度在减少,由于加速度方向与速度方向一致,木块的速度大小仍在不断增加,即木块作的是加速度逐渐减小速度逐渐增大的变加速运动.的变加速运动. 【答】 D .【例2】 一个质量m=2kg 的木块,放在光滑水平桌面上,受到三个大小均为F=10N F=10N、与桌面平、与桌面平行、互成120120°角的拉力作用,则物体的加速度多大?若把其中一个力反向,物体的加速度又为多°角的拉力作用,则物体的加速度多大?若把其中一个力反向,物体的加速度又为多少?少?【分析】 物体的加速度由它所受的合外力决定.放在水平桌面上的木块共受到五个力作用:竖直方向的重力和桌面弹力,水平方向的三个拉力.由于木块在竖直方向处于力平衡状态,因此,只需由水平拉力算出合外力即可由牛顿第二定律得到加速度.只需由水平拉力算出合外力即可由牛顿第二定律得到加速度.(1)由于同一平面内、大小相等、互成120120°角的三个力的合力等于零,所以木块的加速度°角的三个力的合力等于零,所以木块的加速度a=0a=0..(2)物体受到三个力作用平衡时,其中任何两个力的合力必与第三个力等值反向.如果把某一个力反向,则木块所受的合力F 合=2F=20N =2F=20N,所以其加速度为:,所以其加速度为:,所以其加速度为:它的方向与反向后的这个力方向相同.它的方向与反向后的这个力方向相同.【例3】 沿光滑斜面下滑的物体受到的力是沿光滑斜面下滑的物体受到的力是 [ ] [ ] A .力和斜面支持力.力和斜面支持力B .重力、下滑力和斜面支持力.重力、下滑力和斜面支持力C .重力、正压力和斜面支持力.重力、正压力和斜面支持力D .重力、正压力、下滑力和斜面支持力.重力、正压力、下滑力和斜面支持力【误解一】选(选(B B )。

牛顿第二定律题型归类

牛顿第二定律题型归类

牛顿定律类型题归类一、瞬时性问题1、刚性绳模型(细钢丝、细线等):认为是一种不发生明显形变即可产生弹力的物体,它的形变的发生和变化过程历时极短,在物体受力情况改变(如某个力消失)的瞬间,其形变可随之突变为受力情况改变后的状态所要求的数值。

2、轻弹簧模型(轻弹簧、橡皮绳、弹性绳等):此种形变明显,其形变发生改变需时间较长,在瞬时问题中,其弹力的大小可看成是不变。

例题分析:例1.如图所示,小球 A 、B 的质量分别 为m 和 2m ,用轻弹簧相连,然后用 细线悬挂而静止,在剪断弹簧的瞬间,求 A 和 B 的加速度各为多少? 例2.如图所示,木块A 和B 用一弹簧相连,竖直放在木板C 上,三者静止于 地面,它们的质量比是1:2:3,设所有接触面都是光滑的,当沿水平方向迅 速抽出木块C 的瞬时,A 和B 的加速度 a A = ,a B = 。

例3.如图质量为m 的小球用水平弹簧系住,并用倾角为30°的光滑木板AB 托住,小球恰好处于静止状态.当木板AB 突然向下撤离的瞬间,小球的加速度【 】 A .0B .大小为233g ,方向竖直向下C .大小为233g ,方向垂直于木板向下D .大小为33g ,方向水平向右 【练习】:1.如图所示,质量为M 的框架放在水平地面上,一轻弹簧上端固定一个质量为m 的小球,小球上下振动时,框架始终没有跳起.当框架对地面压力为零瞬间,小球的加速度大小为:【 】 A.g B.mmM - g C.0 D.mmM +g2.如图所示,A 、B 两小球质量分别为M A 和M B 连在弹簧两端, B 端用细线固定在倾角为30°的光滑斜面上,若不计弹簧质量,在线被剪断瞬间,A 、B 两球的加速度分别为:【 】 A.都等于2g B. 2g和0 C.2g M M M B B A ⋅+和0 D.0和2g M M M B B A ⋅+图3 ABC图2-81题图 图2-92题图 图1B A3.一根轻弹簧上端固定同上端挂一质量为m o 的平盘,盘中有一质量为m 的物体(如图3-3-13)当盘静止时,弹簧的长度比其自然长度伸长为l ,今向下拉盘使弹簧再伸长∆l 后停止,然后松手放开,则刚松手时盘对物体的弹力等于(设弹簧处在弹性限度以内):【 】A .mg l l )1(Λ+B .g m m l l))(1(+∆+ C .mg l l ∆ D .g m m ll )(+∆4.如图所示,质量相同的木块A 、B ,用轻质弹簧连接处于静止状态,现用水平恒力推木块A ,则弹簧在第一次压缩到最短的过程中 :【 】 A .A 、B 速度相同时,加速度a A = a B B .A 、B 速度相同时,加速度a A >a BC .A 、B 加速度相同时,速度υA <υBD .A 、B 加速度相同时,速度υA >υB5.如图所示,小球质量为m,被三根质量不计的弹簧A 、B 、C 拉住,弹簧间的夹角均为1200,小球平衡时, A 、B 、C 的弹力大小之比为3:3:1,当剪断C 瞬间,小球的加速度大小及方向可能为:【 】A .g/2,竖直向下;B .g/2,竖直向上;C .g/4,竖直向下;D .g/4,竖直向上;6.如图4-20所示,A 、B 、C 、D 、E 、F 六个小球分别用弹簧、细绳和细杆联结,挂于水平天花板上,若某一瞬间同时在a 、b 、c 处将悬挂的细绳剪断,比较各球下落瞬间的加速度,下列说法中正确的是( )A .所有小球都以g 的加速度下落B .A 球的加速度为2g ,B 球的加速度为gC . C 、D 、E 、F 球的加速度均为g D .E 球的加速度大于F 球的加速度7:如图所示,一质量为m 的物体系于长度分别为l 1、l 2的两根细线上,l 1的一端悬挂在天花板上,与竖直方向夹角为θ, l 2水平拉直,物体处于平衡状态,现将l 2线剪断 (1)求剪断瞬时物体的加速度.(2)若将上图中的细线l 1改变为长度相同、质量不计的轻弹簧,如图所示,其他条件不变,现将l 2剪断,求剪断瞬时物体的加速度.二、动态分析问题1、速度变化叛断:若速度与加速度方向相同则速度增大,反之减小。

牛顿第二定律专题(精心整理)

牛顿第二定律专题(精心整理)

m a 1-牛顿第二定律专题(A )探究加速度与力、质量的关系 1、使长木板倾斜的目的:2、小车和砝码的总质量M 与托盘和砝码的总质量m 必须满足什么关系?3、理解F a -图象和 图象牛顿第二定律: 1、加速度的定义式: 2、加速度的决定式: 专题训练1.在做“探究加速度与力、质量的关系”的实验时( )A .应使砂和小桶的总质量远小于小车和砝码的总质量,以减小实验误差B .可以用天平测出小桶和砂的总质量m 1、小车和砝码的总质量m 2.根据公式a =m 1g/m 2,求出小车的加速度C .处理实验数据时采用描点法画图象,是为了减少误差D .处理实验数据时采用a -1m 图象,是为了便于根据图线直观地作出判断2.在“探究加速度与力、质量的关系”的实验中,下列说法中正确的是( ) A .平衡摩擦力时,小桶应用细线通过定滑轮系在小车上,但小桶内不能装砂 B .实验中无需始终保持小车和砝码的质量远远大于砂和小桶的质量C .实验中如用纵坐标表示加速度,用横坐标表示小车和车内砝码的总质量,描出相应的点在一条直线上,即可证明加速度与质量成反比D .平衡摩擦力时,小车后面的纸带必须连好,因为运动过程中纸带也要受阻力 3.某同学做“加速度与力、质量的关系”实验时,在平衡摩擦力时,把长木板的一端垫得过高,使得倾角偏大,他所得到的a -F 关系可用下图中哪个图象表示(a 是小车的加速度,F是细线作用于小车的拉力)( )4.有关加速度的说法,正确的是()A.物体加速度的方向与物体运动的方向不是同向就是反向B.物体加速度方向与物体所受合外力的方向总是相同的C.当物体速度增加时,它的加速度也就增大D.只要加速度为正值,物体一定做加速运动5.静止在光滑水平面上的物体,在开始受到水平拉力的瞬间,下述正确的是()A.物体立刻产生加速度,但此时速度为零B.物体立刻运动起来,有速度,但加速度还为零C.速度与加速度都为零D.速度与加速度都不为零6.在粗糙水平面上,质量为m的物体,受水平拉力F作用后产生的加速度为a,物体受到摩擦力为F f,如果把拉力改为2F,则有()A.加速度仍为a B.加速度变为2aC.摩擦力仍为F f D.摩擦力变为2F f7.物体受10N的水平拉力作用,恰能沿水平面匀速运动,当撤去这个拉力后,物体将()A.匀速运动B立即停止运动C.产生加速度,做匀减速运动 D.产生加速度,做匀加速运动8.一辆小车在水平地面上行驶,悬挂的摆球相对小车静止并与竖直方向成α角(如下图所示)下列关于小车运动情况,说法正确的是()A.加速度方向向左,大小为g tanαB.加速度方向向右,大小为g tanαC.加速度方向向左,大小为g sinαD.加速度方向向右,大小为g sinα9.如右图所示,不计绳的质量及绳与滑轮的摩擦,物体A的质量为M,水平面光滑,当在绳端施以F=mg N的竖直向下的拉力作用时,物体A的加速度为a1,当在B端挂一质量为m kg的物体时,A的加速度为a2,则a1与a2的关系正确的是()A.a1=a2 B.a1>a2 C.a1<a2 D.无法判断10.如图所示,吊篮P悬挂在天花板上,与吊篮质量相等的物体Q被固定在吊篮中的轻弹簧托住,当悬挂吊篮的细绳烧断的瞬间,吊篮P和物体Q的加速度大小是()A.a P = a Q = g B.a P =2 g,a Q = gC.a P = g,a Q =2 g D.a P = 2g,a Q = 011.如图所示,A和B的质量分别是1 kg和2 kg,弹簧和悬线的质量不计,在A上面的悬线烧断的瞬间( )C.B的加速度为零 D.B的加速度为g12.在一种叫做“蹦极跳”的运动中,质量为m的游戏者身系一根长为L、弹性优良的轻质柔软的橡皮绳,从高处由静止开始下落1.5L时达到最低点,若不计空气阻力,则在弹性绳从原长达最低点的过程中,以下说法正确的是()A.速度先减小后增大B.加速度先减小后增大C.速度一直减小,直到为零D.加速度一直增大,最后达到某一最大值13. 如图悬挂于小车里的小球偏离竖直方向θ角,则小车可能的运动情况是()A.向右加速运动B.向右减速运动C.向左加速运动D.向左减速运动14.一物体向上抛出后,所受空气阻力大小不变,从它被抛出到落回原地的过程中()A.上升时间大于下降时间B.上升加速度大于下降加速度C.上升阶段平均速度大于下降阶段平均速度D.上升阶段平均速度小于下降阶段平均速度15.2010·上海物理将一个物体以某一速度从地面竖直向上抛出,设物体在运动过程中所受空气阻力大小不变,则物体( )(A)刚抛出时的速度最大(B)在最高点的加速度为零(C)上升时间大于下落时间(D)上升时的加速度等于下落时的加速度16.质点所受的力F随时间变化的规律如图所示,力的方向始终在一直线上.已知t=0时质点的速度为零.在图示的t1、t2、t和t4各时刻中,哪一时刻质点的速度最大()3A.t1B.t2C.t3D.t417.一物体置于光滑的水平面上,在10 N水平拉力作用下,从静止出发经2秒,速度增加到10m/s,则此物体的质量为 kg。

牛顿第二定律题型归纳

牛顿第二定律题型归纳

牛顿第二定律题型归纳一、牛顿运动定律的简单应用1.如图所示,底板光滑的小车上用两个量程为20N、完全相同的弹簧测力计甲和乙系住一个质量为1kg的物块,在水平地面上,当小车做匀速直线运动时,两弹簧测力计的示数均为10N,当小车做匀加速直线运动时,弹簧测力计甲的示数为8N,这时小车运动的加速度大小是( )A.2m/s2B.4m/s2C.6m/s2ﻩD.8 m/s22.汽车正在走进千家万户,在给人们的出行带来方便的同时也带来了安全隐患。

行车过程中,如果车距较近,刹车不及时,汽车将发生碰撞,车里的人可能受到伤害,为了尽可能地减轻碰撞引起的伤害,人们设计了安全带,假定乘客质量为70kg,汽车车速为90km/h,从踩下刹车到完全停止需要的时间为5s,安全带对乘客的作用力大小约为(不计人与座椅间的摩擦)( )A.450 NB.400 NC.350 NﻩD.300N3.用40N的水平力F拉一个静止在光滑水平面上、质量为20kg的物体,力F作用3s后撤去,则第5s末物体的速度和加速度的大小分别是( )A.v=6m/s,a=0B.v=10m/s,a=2m/s2C.v=6m/s,a=2m/s2D.v=10m/s,a=04.如图所示,在平直轨道做匀变速运动的车厢中,用轻细线悬挂一个小球,悬线与竖直方向保持恒定的夹角θ,则( )A.小车一定向左运动B.小车一定向右运动C.小车一定具有方向向左的加速度D.小车一定具有方向向右的加速度5.如图所示,一木块在光滑水平面上受一恒力F作用,前方固定一足够长的弹簧,则当木块接触弹簧后()A.木块立即做减速运动B.木块在一段时间内速度仍可增大 C.当F等于弹簧弹力时,木块速度最大 D.弹簧压缩量最大时,木块加速度为零二、瞬时加速度(力是产生加速度的原因,力变化,加速度也随之瞬间变化)1.一轻弹簧的上端固定,下端悬挂一个重物,重物静止时,弹簧伸长了8cm,若再将重物向下拉4cm ,然后放手,则在释放重物的瞬间,重物的加速度的大小是( ) A.g/4 B . g/2 C . 3g/2 D. g2.天花板上用细绳吊起两个用轻弹簧相连的质量相同的小球,两球均保持静止,当突然减断细绳的瞬间, A 、B 的加速度(以向下为正方向)分别为( ) A .g , g, B. 0, 2g C. 2g, 0 D.g, -g3.如图所示,物块A 、B、C 质量分别为m 、2m、3m,A 与天花板间、B 与C之 间用轻弹簧相连,当系统平衡后,突然将A 、B 间轻绳剪断,在轻绳剪断瞬间,A、B 、C 的加速度(以 向下为正方向)分别为( )A.g,g,g B .-5g,2.5g,0 C .-5g,2g,0ﻩ D.-g ,2g ,3g4.如图所示,质量为m 的小球用水平轻弹簧系住,并用倾角 为30°的光滑木板AB 托住,小球恰好处于静止状态。

(完整版)牛顿第二定律的应用知识点总结和练习

(完整版)牛顿第二定律的应用知识点总结和练习
图1 图2
解得
例2.一位滑雪人质量m=75kg,以Vo=2.0 m/s的初速度沿山坡加速滑下,山坡的倾角θ=37°,5s内滑下的路程是60m,求滑雪板和雪地间的动摩擦因数。
练习1:小球用一细线系于车厢顶部,相对静止地随车一起运动,已知线与竖直方向的夹角为θ,求车厢运动的加速度。
a=gtanθ方向向左,向左加速或向右减速
2、已知物体的运动情况,求解物体的受力情况。
处理方法:已知物体的运动情况,由运动学公式求出加速度,再根据牛顿第二定律就可以确定物体所受的合外力,由此推断物体受力情况。流程图如下:
题型一:已知物体的运动情况分析物体的受力情况
【例1】(★★★)质量为100t的机车从停车场出发,做匀加速直线运动,运动225m后,速度达到54km/h,此时,司机关闭发动机,让机车进站,机车又行驶了125m才停在站上。设机车所受阻力不变,求机车关闭发动机前所受到得牵引力。
A、F1+F2=F B、F1=F2
C、 D、
【答案】AC
5、(★★★)重物A和小车B的重力分别为GA和GB,用跨过定滑轮的细线将它们连接起来,如图所示,已知GA>GB,不计一切摩擦。则细线对小车B的拉力T的大小是 ( )
A、T=GAB、GA>T C、GA<T D、当GB>>GA时,T约等于GA
【答案】 BD
A. 大小为零 B. 方向水平向右
C. 方向水平向左 D. 无法判断大小和方向
【答案】A
3、(★★★)在光滑的水平面上,有一个物体同时受到两个水平力F1和F2作用,在第1s内保持静止。若两个力F1和F2随时间变化如图示,则下列说法正确的是 ( )
A、在第2s内,物体做匀加速运动,加速度的大小恒定,速度均匀增大
6.(★★★)放在水平地面上的一物块,受到方向不变的水平推力F作用,力F的大小与时间t的关系、物块速度υ与时间t的关系如图所示。取g = 10m/s2。试利用两图线求出物块的质量及物块与地面间的动摩擦因数。

牛顿第二定律高考题型归纳

牛顿第二定律高考题型归纳

牛顿第二定律1.通过牛顿第二定律将力学与运动学结合(1)已知受力情况求运动情况根据牛顿第二定律,已知物体的受力情况,可以求出物体运动的加速度;再根据物体的初始条件(初位置和初速度),应用运动学公式,求出物体的运动情况,即求出物体在任意时刻的速度、位置,也就是求出了物体的运动情况.可用程序图表示如下:例1.风洞实验室中可产生水平向左、大小可调节的风力.现将一套有一小球的细直杆放入风洞实验室.小球孔径略大于细杆直径,小球与杆间的滑动摩擦因数μ=0.5,如下图所示.保持小球所受风力F=0.5mg不变,使杆与水平方向间夹角为37°并固定,则小球从静止开始在细杆上滑下距离2.4m所需时间为多少?(g取g=10 m/s2,sin 37°=0.6,cos 37°=0.8)解析:设杆对小球的支持力为FN,摩擦力为Ff,对这些力进行正交分解,如图所示.在x轴上,由牛顿第二定律,有:mgsin θ+Fcos θ-Ff=ma 在y轴上,由平衡条件,有:FN+Fsin θ-mgcosθ=0 又Ff=μFN解上述三式得:a=7.5 m/s2 又由运动学公式s=at2,由以上各式解得小球从静止出发在细杆上滑下距离s所需时间为t=0.8 s 答案:0.8 s●题型训练●1.如图所示,质量m=4.0 kg的物体与地面间的动摩擦因数为μ=0.50.物体在与地面成θ=37°的恒力F=54.5 N作用下,由静止开始运动,t1=0.20 s撤去F,则再经过多长时间物体停下来?(g=10 m/s2,sin 37°=0.6,cos37°=0.8)解析:物体受到恒力F作用时受力如右图所示,设物体此时加速度为a1,对这些力进行正交分解,根据牛顿运动定律有:N′+Fsin θ-mg=0① Fcos θ-f′=ma1②又因为f′=μN′③①②③联立解得:a1=10 m/s2由v=at,得v=a1t1=2.0 m/s撤去F后物体的受力如右图所示,设物体此时加速度为a2,物体停下来经过时间为t2,根据牛顿运动定律有:f=ma2④N-mg=0⑤又因为f=μN⑥④⑤⑥联立解得:a2=5.0 m/s2由0=v-at,得t2==0.4 s.答案:0.4 s(2)已知运动情况求受力情况根据物体的运动情况,应用运动学公式求出加速度,再根据牛顿第二定律求出物体所受的合外力,从而求出未知的力,或与力相关的某些物理量.如:动摩擦因数、劲度系数等.可用程序图表示如下:例2.如图所示,电梯与水平面夹角为30°,电梯从初速度为零开始加速启动,当速度达到1 m/s时,一个质量为50 kg的人踏上第一级(不计这一级的宽度),然后跟电梯一起加速向上运动,到达电梯终点时已经过4s,电梯的终点离地面高度为10 m.求这个过程中人对梯面压力和人与梯面间的静摩擦力.(g=10m/s2)解析:以人为研究对象,人运动的初速度为v0=1 m/s,位移为s=h/sin 30°=20 m,时间为t=4 s. 根据运动学公式:s=v0t+ at2 代入数据解得:a =2 m/s2对人进行受力分析,人受重力mg、竖直向上的支持力FN、水平向右的静摩擦力Fμ(摩擦力方向一定与接触面平行),为了便于研究,取水平向右为x轴正方向,竖直向上为y轴正方向,建立直角坐标系(如左下图).此时只需分解加速度,其中ax=acos 30°,ay=asin 30° (如右下图)根据牛顿第二定律有X方向:Fμ=max=macos 30°①Y方向:FN-mg=may=masin 30°②由①式解得:Fμ=87 N 由②式解得:FN=550 N根据牛顿第三定律可知,人对梯面压力等于550 N,方向竖直向下.而人与梯面间的静摩擦力等于87 N,方向水平向右.答案:人对梯面压力等于550 N,方向竖直向下;人与梯面间的静摩擦力等于87 N,方向水平向右2.牛顿运动定律在传送带问题中的应用传送带在自动输送各种粮食起很大作用,如图所示.而该模型可分为以下三类:(1)水平传送带当传送带水平运动时,应特别注意摩擦力的突变和物体运动状态的变化.摩擦力的突变,常常导致物体的受力情况和运动性质的突变.静摩擦力到达最大值,是物体恰好保持相对静止的临界状态;滑动摩擦力存在于发生相对运动的物体之间,因此两物体的速度达到相同时,滑动摩擦力要发生突变(摩擦力为零或为静摩擦力).(2)倾斜传送带当传送带倾斜运动时,除了要注意摩擦力的突变和物体运动状态的变化外,还要注意物体与传送带之间的动摩擦因数μ和传送带倾斜角度θ的关系,从而正确判断物体的速度和传送带速度相等时物体运动的性质.(3)组合传送带组合传送带是水平传送带和倾斜传送带连接在一起传送物体.ﻩﻩﻩﻩﻩﻩﻩ例3.如图所示,传送带与地面的倾角θ=37°,从A到B的长度为16 m,传送带以v0=10 m/s的速度逆时针转动.在传送带上端无初速的放一个质量为m=0.5 kg的物体,它与传送带之间的动摩擦因数μ=0.5,求物体从A运动到B所需的时间是多少?(sin37°=0.6,cos37°=0.8,g=10 m/s2)解析:物体放在传送带上后,开始阶段,传送带的速度大于物体的速度,传送带给物体一沿斜面向下的滑动摩擦力,物体由静止开始加速下滑,受力分析如图(a)所示;当物体加速至与传送带速度相等时,由于μ<tan θ,物体在重力作用下将继续加速,此后物体的速度大于传送带的速度,传送带给物体沿传送带向上的滑动摩擦力,但合力沿传送带向下,物体继续加速下滑,受力分析如图(b)所示.综上可知,滑动摩擦力的方向在获得共同速度的瞬间发生了“突变”.开始阶段由牛二定律:mgsin θ+μmgcosθ=ma1所以:a1=gsin θ+μgcos θ=10 m/s2物体加速至与传送带速度相等时需要的时间t1=v/a1=1 s发生的位移:s= a1t12=5 m<16 m物体加速到10m/s时仍未到达B点.第二阶段,有:mgsin θ-μmgcos θ=ma2所以:a2=2 m/s2设第二阶段物体滑动到B 的时间为t2 则:LAB+s=vt2+ a2t22解得:t2=1s,t′2=-11 s(舍去)故物体经历的总时间t=t1+t 2 =2s.答案:2 s点评:从上述例题可以总结出,皮带传送物体所受摩擦力可能发生突变,不论是其大小的突变,还是其方向的突变,都发生在物体的速度与传送带速度相等的时刻.●题型训练●2.如图所示为一平直传送带,A、B两处间的距离为L,传送带的运动速度恒为v.有一工件轻轻从A处放上传送带,已知工件与传送带间的动摩擦因数为μ和当地的重力加速度为g,且认为传送带的形状及速率不受影响.求传送带将该工件由A处送到B处可能的时间间隔Δt及相应的条件.(即题中给出量之间应满足的关系).解析:该工件放上传送带,受到水平向右的摩擦力f=μmg;由牛顿第二定律,可得:a=f/m=μg;该工件加速到v所需时间:t=v/a=v/μg;此过程中,工件运动的位移:x= at2=v2/2μg①若v2/2μg≥L,则工件一直匀加速直到B,可得: at2=L,得Δt=②若v2/2μg<L,则工件先匀加速至速度v后做匀速运动直到B,故Δt=t+ = + .答案:①若v2/2μg≥L,则Δt= ;②若v2/2μg<L,则Δt= + .3.整体法与隔离法1.当研究问题中涉及多个物体组成的系统时,通常把研究对象从系统中“隔离”出来,单独进行受力及运动情况的分析.这叫隔离法.2.系统中各物体加速度相同时,我们可以把系统中的物体看做一个整体.然后分析整体受力,由F=ma求出整体加速度,再作进一步分析.这种方法叫整体法.3.解决连接体问题时,经常要把整体法与隔离法结合起来应用.在连接体问题中,如果不要求知道各个运动物体之间的相互作用力,并且各个物体具有大小和方向都相同的加速度,就可以把它们看成一个整体(当成一个质点),分析受到的外力和运动情况,应用牛顿第二定律求出加速度(或其他未知量);如果需知道物体之间的相互作用力,就需要把物体从系统中隔离出来将内力转化为外力,分析物体的受力情况和运动情况,并分别应用牛顿第二定律列出方程,隔离法和整体法是互相依存,互相补充的,两种方法互相配合交替应用,常能更有效地解决有关连接体的问题。

应用牛顿第二定律解题的几种题型

应用牛顿第二定律解题的几种题型

应用牛顿第二定律解题的几种题型牛顿第二定律是一个重要的物理学定律,用于解释物体运动中加速度变化的原理。

它主要用于描述物体受外力时会发生的加速或减速过程,可用来解决许多实际问题。

本文将介绍应用牛顿第二定律解题的几种典型题型,以及如何解答这些题型。

一、牛顿运动速度题第一种典型题目是根据牛顿第二定律求解运动速度的题型。

例如:一个物体从原点出发,受一个匀加速度a作用,在t时刻后,距离原点s米。

请求出t时刻物体的速度v?解题思路:物体由v0开始加速,到t时刻,它的速度是v=v0+at。

由于物体从原点出发,则v0=0。

所以,在t时刻,物体的速度是v=at。

二、牛顿运动加速度题第二种典型题目是根据牛顿第二定律求解加速度的题型。

例如:一个物体从原点出发,在t时刻后,距离原点s米,且物体的速度为v米/秒。

请求出加速度a?解题思路:由于物体从原点出发,则v0=0。

根据牛顿第二定律,v=v0+at,即v=at。

解出a=v/t。

三、牛顿运动时间题第三种典型题目是根据牛顿第二定律求解运动时间的题型。

例如:一个物体从原点出发,受一个匀加速度a作用,距离原点s米。

请求出物体从原点出发到s米的运动时间t?解题思路:根据牛顿第二定律,v=v0+at,解出t=v/a。

由于物体从原点出发,则v0=0,即t=s/a。

四、牛顿运动位移题第四种典型题目是根据牛顿第二定律求解位移的题型。

例如:一个物体从原点出发,受一个匀加速度a作用,在t时刻后,其速度是v米/秒。

请求出物体从原点出发到t时刻时的位移s?解题思路:根据牛顿第二定律,s=v0t+at^2/2。

由于物体从原点出发,则v0=0,即s=at^2/2。

到此,本文介绍了应用牛顿第二定律解题的几种典型题型,以及解答这些题型的解题思路。

熟练掌握牛顿第二定律,并灵活运用,可以很好地解决实际问题。

牛顿第二定律实验总结、习题(含答案)

牛顿第二定律实验总结、习题(含答案)

实验:验证牛顿第二定律【实验目的】验证牛顿第二定律,就是验证:(1)物体质量一定时,加速度与合外力成正比;(2)合外力一定时,物体的加速度与质量成反比。

【实验原理】1、保持研究对象(小车)的质量(M)不变,改变砂桶内砂的质量(m),即改变牵引力测出小车的对应加速度,用图像法验证加速度是否正比于作用力。

2、保持砂桶内砂的质量(m)不变,改变研究对象的质量(M),即往小车内加减砝码,测出小车对应的加速度,用图像法验证加速度是否反比于质量。

【实验器材】附有定滑轮的长木板、薄木垫、小车、细线、小桶及砂、打点计时器、低压交流电源、导线、天平(带一套砝码)、毫米刻度尺、纸带及复写纸等。

【实验步骤】1、用天平测出小车和小桶的质量M0和m0,并记录数值;2、按照要求安装实验器材,此时不把悬挂小桶用的细绳系在车上,即不给小车加牵引力;3、平衡摩擦力,在长木板不带定滑轮的一端下面垫薄木板,并反复移动其位置,直到打点计时器正常工作后,小车在斜面上的运动可以保持匀速直线运动状态为止。

4、记录小车及车内所加砝码的质量;称好砂子后将砂倒入小桶,把细绳系在小车上并绕过定滑轮悬挂小桶;此时要调整定滑轮的高度使绳与木板平行;接通电源,放开小车,待打点计时器在纸带上打好点后,取下纸带,做好标记。

5、保持小车的总质量不变,改变砂的质量(均要用天平称量),按步骤4中方法打好纸带,做好标记。

6、在每条纸带上选取一段比较理想的部分,分别计算出加速度值。

7、用纵坐标表示加速度,横坐标表示作用力(即砂和砂桶的总重力mg),根据实验结果画出相应的点,如果这些点在一条直线上,便证明了质量一定的情况下,加速度与合外力成正比。

8、保持砂和桶的质量不变,在小车上加砝码(需记录好数据),重复上面的实验步骤,求出相应的加速度,用纵坐标表示加速度,横坐标表示小车及砝码的总质量的倒数1M,根据实验结果画出相应的点,如果这些点在一条直线上,就证明了合外力一定的情况下,加速度与质量成反比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题型 3:必须弄清牛顿第二定律的同体性
加速度和合外力(还有质量)是同属一个物体的,所以解题时一定要把研究对象确定好,
把研究对象全过程的受力情况都搞清楚。
例 4、一人在井下站在吊台上,用如图 4 所示的定滑轮装置拉绳把吊台和自己提升上来。
图中跨过滑轮的两段绳都认为是竖直的且不计摩擦。吊台的质量 m=15kg,人的质量为
球.当小 小车的
题型 2:必须弄清牛顿第二定律的瞬时性
牛顿第二定律是表示力的瞬时作用规律,描述的是力的瞬时作用效果—产生加速度。物体在某一时 刻加速度的大小和方向,是由该物体在这一时刻所受到的合外力的大小和方向来决定的。当物体所受到 的合外力发生变化时,它的加速度随即也要发生变化,F=ma 对运动过程的每一瞬间成立,加速度与力是 同一时刻的对应量,即同时产生、同时变化、同时消失。
O
A B
C
问题 4:发生相对运动的条件
A. 6 f0
B. 4 f0
C. 3 f0
D. 2 f0
拓展 1:如图所示,一夹子夹住木块,在力 F 作用下向上提升,夹子和木块的质量分别为 m、M,夹子与 木块两侧间的最大静摩擦有均为 f,若木块不滑动,力 F 的最大值是
2 f (m + M )
A.
M
2 f (m + M ) B. m
正交分解法进行求解。
例 1、如图所示,电梯与水平面夹角为 300,当电梯加速向上运动时,人
对梯面压力
是其重力的 6/5,则人与梯面间的摩擦力是其重力的多少倍?
拓展:如图,动力小车上有一竖杆,杆端用细绳拴一质量为 m 的小 车沿倾角为 30°的斜面匀加速向上运动时,绳与杆的夹角为 60°,求 加速度和绳中拉力大小.
由牛顿第三定律可知,物体对支持物的压力(或对悬绳的拉力)F′<mg.
特例:当物体具有向下的加速度 a=g 时.
则 F′=0.物体处于完全失重状态.
(6)对超重和失重现象的理解.
①物体处于超重或失重状态时,物体所受的重力始终不变,只是物体对支持物的压力或对悬挂物的拉力
发生了变化,看起来物重好像有所增大或减小.
关.只有速度的变化率才与合外力有必然的联系.
(2)合力与速度同向时,物体做加速运动,反之减速.
(3)力与运动关系:
力是改变物体运动状态的原因,即力→加速度→速度变化(运动状态变化),物体所受到的合外力决定
了物体加速度的大小,而加速度的大小决定了单位时间内速度变化量的大小,加速度的大小与速度大小
无必然的联系.
的合外力的大小和方向所决定.加速度和物体所受的合外力是瞬时对应关系,即同时产生、同时变化、 同时消失,保持一一对应关系.
(2)矢量性.F=ma 是一个矢量式.力和加速度都是矢量,物体的加速度的方向由物体所受合外力的 方向决定.已知 F 合的方向,可推知 a 的方向,反之亦然.
(3)同体性:a= F合 各量都是属于同一物体的,即研究对象的统一性. m
应的单位.
讨论点二:在牛顿第二定律的数学表达式 F=kma 中,有关比例系数 k 的说法,正确的是
A.k 的数值由 F、m、a 的数值决定
B.k 的数值由 F、m、a 的单位决定
C.在国际单位制中,k=1
D.在任何情况下 k 都等于 1
5、应用牛顿第二定律解题的一般步骤 (1)确定研究对象(有时选取合适的研究对象,可使解题大为简化) (2)分析研究对象的受力情况,画出受力分析图 (3)选定正方向或建立适当的正交坐标系 (4)求合力,列方程求解 (5)对结果进行检验或讨论
例水平6、板一将根物劲体度托系住数,并为使k弹,质簧量处不于计自的然轻长弹度簧。,如上图端7固所定示,下。端现系让一木质板量由为静m止开的物
始以加速度 a(a<g)匀加速向下移动。求经过多长时间木板开始与物体分离。
图7
弹力变 问题。
体,有一
F 拓展:如图 8 所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体 P 处于静止,P 的质量 m=12kg,弹簧的劲度系数 k=300N/m。现在给 P 施加一个竖直 向上的力 F,使 P 从静止开始向上做匀加速直线运动,已知在 t=0.2s 内 F 是变力,在 0.2s 以后 F 是恒力,g=10m/s2,则 F 的最小值、最大值各是多少?(g=10m/s2)
别竖直牵拉一只弹簧秤的两端,稳定后弹簧秤的示数为 F,若弹簧秤的
质量不计,
下列说法正确的是
( )
A.甲同学处于超重状态,乙同学处于失重状态
B.台秤 P 的读数等于 mg-F
C.台秤 Q 的读数为 mg-2F
D.两台秤的读数之和为 2mg
二、典型题型
题型 1:必须弄清牛顿第二定律的矢量性
牛顿第二定律 F=ma 是矢量式,加速度的方向与物体所受合外力的方向相同。在解题时,可以利用
(4)加速度的定义式与决定式:
v a= t 是加速度的定义式,它给出了测量物体的加速度的方法,这是物理上用比值定义物理量的
F
方法;a= 是加速度的决定式,它揭示了物体产生加速度的原因及影响物体加速度的因素.
m
特别提醒:物体的加速度的方向与物体所受的合外力是瞬时对应关系,即 a 与合力 F 方向总是相同,
F
1
(2)不能根据 m= 得出 m∝F,m∝ 的结论.物体的质量 m 与物体受的合外力和运动的加速度无关.
m
a
3、合外力、加速度、速度的关系
(1)物体所受合外力的方向决定了其加速度的方向,合外力与加速度的大小关系是 F=ma,只要有合
外力,不管速度是大还是小,或是零,都有加速度,只要合外力为零,则加速度为零,与速度的大小无
但速度 v 的方向不一定与合外力的方向相同.
讨论点一:如图所示,对静止在光滑水平面上的物体施加
一水平拉力,
当力刚开始作用瞬间 ( )
A.物体立即获得速度
B.物体立即获
得加速度
C.物体同时获得速度和加速度
D.由于物体没有来得及运动,所以速度和加速度都为零
4、力的单位
(1)当物体的质量是 m=1kg,在某力的作用下它获得的加速度是 a=1m/s2 时,那么这个力就是 1 牛顿,符
A.0
23 B.大小为 3 g,方向竖直向下
23
3
C.大小为 3 g,方向垂直于木板向下 D.大小为 3 g,方向水平向右
拓展:一小球自空中自由落下,与正下方的直立轻质弹簧接触,直至速度为零的过程中, 关于小球运动状态,正确的是( )
A.接触后,小球作减速运动,加速度的绝对值越来越大,速度越来越小,最后等于零 B.接触后,小球先做加速运动,后做减速运动,其速度先增加后减小直到为零 C.接触后,速度为零的地方就是弹簧被压缩最大之处,加速度为零的地方也是弹簧被 压缩最大之处 D.接触后,小球速度最大的地方就是加速度等于零的地方
(4)独立性:F 合产生的 a 是物体的合加速度,x 方向的合力产生 x 方向的加速度,y 方向的合力产生 y 方向的加速度.牛顿第二定律的分量式为 Fx=max,Fy=may.
(5)相对性:公式中的 a 是相对地面的而不是相对运动状态发生变化的参考系的. 特别提醒: (1)物体的加速度和合外力是同时产生的,不分先后,但有因果性,力是产生加速度的原因,没有力就没 有加速度.
M=55kg,起动时吊台向上的加速度是 a=0.2m/s2,求这时人对吊台的压力。(g=9.8m/s2)
图4
拓展:如图所示,A、B 的质量分别为 mA=0.2kg,mB=0.4kg,盘 C 的质量 mC=0.6kg, 现悬挂于天花板 O 处,处于静止状态。当用火柴烧断 O 处的细线瞬间,木块 A 的加速 度 aA 多大?木块 B 对盘 C 的压力 FBC 多大?(g 取 10m/s2)
②发生超重或失重的现象与物体的速度方向无关,只取决于物体加速度的方向.
③在完全失重状态下,平常由重力产生的一切物理现象都会完全消失,比如物体对桌面无压力,单摆停
止摆动,浸在水中的物体不受浮力等.靠重力才能使用的仪器,也不能再使用,如天平、液体气压计
等.
讨论点一:如图所示,质量均为 m 的甲、乙两同学,分别静止于水平地面的台秤 P、Q 上,他们用手分
视重小于重力)的现象,称为失重现象.
(4)完全失重:当物体向下的加速度 a=g 时,物体对支持物的压力(或对悬挂物的拉力)等于零的状态,即
视重等于零时,称为完全失重状态.
(5)产生超重、失重现象的原因:
①产生超重的原因:
当物体具有向上的加速度 a(向上加速或向下减速运动)时,支持物对物体的支持力(或悬绳的拉力)为 F.由
牛顿运动定律的应用
一、知识归纳: 1、牛顿第二定律 (1)定律内容:物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟合外力
的方向相同. (2)定义式:F 合=ma 2、对牛顿第二定律的理解 (1)瞬时性.根据牛顿第二定律,对于质量确定的物体而言,其加速度的大小和方向完全由物体受到
L1 θ L2
图 2(b)
拓展:小球 A、B 的质量分别为 m 和 2m,用轻弹簧相连,然后用细线悬挂而静 止,如 图所示, 在烧断细线的瞬间,A、B 的加速度各是多少?
拓展:如图质量为 m 的小球用水平弹簧系住,并用倾角为 30°的光滑木板 AB 托住,小球恰好处于静止状态.当木板 AB 突然向下撤离的瞬间,小球 的加速度为( )
号 N 表示.
(2)比例系数 k 的含义:根据 F=kma 知,k=F/ma,因此 k 在数值上等于使单位质量的物体产生单位加速
度的力的大小.k 的大小由 F、m、a 三者的单位共同决定,三者取不同的单位 k 的数值不一样,在国际
单位制中,k=1.由此可知,在应用公式 F=ma 进行计算时,F、m、a 的单位必须统一为国际单位制中相
C. 2 f (m + M ) - (m + M )g M
相关文档
最新文档