六年级数学圆柱体积1

合集下载

人教新课标六年级下册数学教案 圆柱的体积 1教学设计

人教新课标六年级下册数学教案 圆柱的体积 1教学设计
创新精神、实践能力得到提高。
教 具 准 教师用书、课堂练习本、课件。 备 教 学 教学行为
一、创设情景、 提出问题 情境引入:某玩具厂厂长,他们厂新

程 学习行为
备注
近开发了一种积木玩具, 这三个积木 小组学生讨论、思考。 的底面积和高都相等, 他想比较一下 这三个积木的体积的大小, 同学们有 什么方法? 二、动手实验, 探索公式 1.观察、比较,建立猜想 引导生观察例 4 中的三个几何体, 提 问: (1) 长方体、 正方体的体积相等吗?
学生猜想、计算、验证,感知公式的简洁、便利和独特作用,感知计 算策略,密切联系生活。 引导、启发。 教师用书、课堂练习本、课件。
教 教学行为
一、知识梳理 出示补充题示意图

过 程 学习行为
备注
·
50 厘米
·
学生观察。
底面积 314 平方厘米 提问: 1.这个圆柱的体积怎么求?,师 板书公式:V=Sh 2.如果已知的是底面半径和高, 该怎么求呢? 3.如果这是一个圆柱体鱼缸。 (1)要计算这个圆柱体鱼缸能装 多少水,就是求什么 与求圆柱的体积有什么区别? 师小结:求圆柱的容积与体积方法 一样,容积要从里面量出有关数据 二、基本练习 1.完成练习七第一题,填表 学生独立完成后,说出计算的根 据,师强调计算体积的两个基本条 学生根据题目的条件选择相 (2)圆柱体的容积又怎样求呢? 应的计算方法 学生回答体积计算公式。
5
件。 2.完成练习七第 2 题。 料最多,再让学生根据图中的条件 计算,以验证或否定自己的猜想。 先猜想、再验证 3.完成练习七第 3 题。 独立思考后让学生说题中的数据 为什么要强调是从里面量的,再想 独立思考、比较里外测量数 计算容积的方法。 三、综合练习 1.完成练习七第 4 题。计算 1 元 硬币的体积 师出示 50 枚 1 元硬币用纸卷成圆 柱的形状 (1) 图,引导生观察图中的条 件。 币的体积?有什么不同的 方法? 硬币组成的圆柱的体积,再 算 1 枚 1 元硬币的体积,也 可以先算出枚 1 元硬币的厚 观察教具,独立思考 度,再用底面积乘高。 2.算出茶杯大约可盛水多少克

六年级下学期数学 圆柱的体积 完整版讲义 例题+课后作业

六年级下学期数学 圆柱的体积 完整版讲义 例题+课后作业

六年级下学期圆柱的体积知识概要1、圆柱的体积将圆柱切割拼成一个近似长方体:长方体的长:圆柱底面圆周长的一半πr长方体的宽:圆柱的底面半径r长方体的高:圆柱的高hV=πr·r·h =πr2hV=底面积×高2、体积单位及换算体积单位:立方米、立方分米、立方厘米相邻两个体积单位间的进率是10001立方米=1000立方分米1立方分米=1000立方厘米精讲精练例1、(1)圆柱的半径扩大为原来的3倍,高不变,体积扩大为原来的____倍。

如果高变成2倍,半径不变,体积变为原来的_____倍。

(2)判断:①圆柱的半径扩大为原来的2倍,表面积扩大为原来的4倍。

()②圆柱的半径扩大为原来的2倍,体积扩大为原来的6倍。

()演练1、(1)圆柱的半径缩小为原来的二分之一,高不变,体积缩小为原来的_____。

(2)判断:圆柱的半径扩大为原来的2倍,高不变,体积扩大为原来的4倍。

()例2、(1)已知圆柱体的底面半径3厘米,高10厘米。

那么这个圆柱体的体积是_____立方厘米.(2)如图,用高都是1米,底面半径分别为1.5米、1米和0.5米的三个圆柱组成一个物体.问这个物体的体积是多少平方米?(圆周率取3)1110.511.5演练2、(1)一个圆柱底面积是1⒉56平方分米,高是2分米,则圆柱的体积是多少立方分米?(2)一个双层的圆柱形蛋糕,两层都高15厘米,第一层和第二层蛋糕的半径分别为10厘米和5厘米。

求这个蛋糕的体积。

例3、有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见下图)。

这个零件的体积是多少?演练3、有一个圆柱体的零件,高6厘米,底面直径是8厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见下图)。

这个零件的体积是多少?例4、(1)圆柱体的侧面展开,放平,是长宽分别为18厘米和12厘米的长方形,那么这个圆柱体的体积是________立方厘米。

圆柱的体积说课稿7篇

圆柱的体积说课稿7篇

圆柱的体积说课稿7篇圆柱的体积说课稿7篇作为一名教职工,时常需要用到说课稿,借助说课稿我们可以快速提升自己的教学能力。

快来参考说课稿是怎么写的吧!下面是小编为大家整理的圆柱的体积说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。

圆柱的体积说课稿1各位领导、老师:大家好!:今天,我说课的内容是《圆柱的体积》。

我将从说教材、说学情、说教学流程三个方面进行说课。

一、说教材。

1.说内容。

《圆柱的体积》这节课选自冀教版六年级数学第12册三单元,主要内容是圆柱体的体积计算公式的推导和应用。

2.教材简析。

这一单元是小学阶段学习几何体知识的最后部分,是几何知识的综合运用。

《圆柱的体积》一课,是在学生已经学过了圆面积公式的推导和长方体、正方体的体积公式的基础上进行学习的,学生已经有了把圆拼成近似的长方形的经验,很容易联想到把圆柱切拼成长方体。

学好这部分知识,为今后学习复杂的形体知识打下扎实的基础,是后继学习的前提。

3、分析教材的编写思路、结构特点。

为了更好地理解教材,我认真研读了人教版与冀教版两种不同版本的教材:冀教版教材:教材由过生日的情景图和两个不易直观比较出体积的茶叶桶,呈现了问题情境。

接着由“议一议”启发学生猜想怎样计算圆柱体积,在猜想的基础上,小组合作,动手操作,利用手中的圆柱体学具把一个圆柱体等分成16份、32等份拼成新的拼成长方体。

然后提出“说一说”引导同学观察讨论:拼成的长方体和圆柱体有什么关系?从而推导出圆柱体的体积计算公式。

通过例题1得以简单应用。

人教版教材:教材没有创设生动有趣的问题情境,直接奔入主题猜想怎样计算圆柱体积,直接引导学生利用手中的圆柱体学具,把一个圆柱体等分成16份、32份等新的拼成长方体。

引导同学观察讨论:拼成的长方体和圆柱体有什么关系?从而推导出圆柱体的体积计算公式,出示例4巩固应用,出示例5应用公式计算容积。

通过对比分析,发现:从教材内容安排和活动设计上,主导思想是一致的,都非常重视动手操作活动,让学生经历探究圆柱体积公式的全过程,在这些教学活动中,着重以引导学生运用自主学习、合作探究两种学习方式交替进行,让他们真正以课堂主人的身份参与全程,教师只是探究活动的组织者、引导者、合作者。

六年级数学下册典型例题系列之第二单元圆柱的体积问题基础部分(解析版)

六年级数学下册典型例题系列之第二单元圆柱的体积问题基础部分(解析版)

2021-2022学年六年级数学下册典型例题系列之第二单元圆柱的体积问题基础部分(解析版)编者的话:《2021-2022学年六年级数学下册典型例题系列》是基于教材知识点和常年考点考题总结与编辑而成的,该系列主要包含典型例题和专项练习两大部分。

典型例题部分是按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。

专项练习部分是从常考题和期末真题中选取对应练习,其优点在于选题经典,题型多样,题量适中。

本专题是第二单元圆柱的体积问题基础部分。

本部分内容主要以掌握圆柱的体积公式为主,包括公式的简单运用和生活实际问题的处理等,内容相对简单,建议作为重点内容进行讲解,一共划分为六个考点,欢迎使用。

【考点一】圆柱体积的意义及体积公式。

【方法点拨】圆柱体积的意义和计算公式(1)意义∶一个圆柱所占空间的大小,叫做这个圆柱的体积。

(2)计算公式的字母表达式∶如果用V表示圆柱的体积,用S表示圆柱的底面积,用h表示圆柱的高,则圆柱的体积=底面积×高,用字母表示为V=Sh=πr2h。

【典型例题】一根圆柱形柱子的底面半径为2m,高为5m。

你能算出它的体积吗?(π取3.14)解析:3.14×22×5=62.8(m³)答:柱子的体积为62.8m3。

【对应练习1】一个圆柱的底面直径是6分米,高是20分米,求圆柱的体积。

解析:半径:6÷2=3(分米)S底:3.14×32=28.26(平方分米)V:28.26×20=565.2(立方分米)答:圆柱的体积是565.2立方分米。

【对应练习2】挖一个圆柱形蓄水池,从里面量,底面周长是25.12米,深是2.4米,池内水面距底面0.8米。

蓄水池内现有水多少立方米?解析:半径:25.12÷3.14÷2=4(米)S底:3.14×42=50.24(平方米)h:0.8米V:50.24×0.8=40.192(吨)答:略。

小学六年级数学教案《圆柱的体积》(精选13篇)

小学六年级数学教案《圆柱的体积》(精选13篇)

小学六年级数学教案《圆柱的体积》小学六年级数学教案《圆柱的体积》(精选13篇)作为一位无私奉献的人民教师,通常需要用到教案来辅助教学,借助教案可以更好地组织教学活动。

那么大家知道正规的教案是怎么写的吗?以下是小编帮大家整理的小学六年级数学教案《圆柱的体积》(精选13篇),欢迎大家借鉴与参考,希望对大家有所帮助。

小学六年级数学教案《圆柱的体积》篇1教学目标1.理解圆柱体体积公式的推导过程,掌握计算公式.2.会运用公式计算圆柱的体积.教学重点圆柱体体积的计算.教学难点理解圆柱体体积公式的推导过程.教学过程一、复习准备(一)教师提问1.什么叫体积?怎样求长方体的体积?2.圆的面积公式是什么?3.圆的面积公式是怎样推导的?(二)谈话导入同学们,我们在研究圆面积公式的推导时,是把它转化成我们学过的长方形知识的来解决的.那圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课我们就来研究这个问题.(板书:圆柱的体积)二、新授教学(一)教学圆柱体的体积公式.(演示动画圆柱体的体积1)1.教师演示把圆柱的底面分成了16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积大小相等,底面是扇形的形体.2.学生利用学具操作.3.启发学生思考、讨论:(1)圆柱体切开后可以拼成一个什么形体?(近似的长方体)(2)通过刚才的实验你发现了什么?①拼成的近似的长方体和圆柱体相比,体积大小没变,形状变了.②拼成的近似的长方体和圆柱体相比,底面的形状变了,由圆变成了近似的长方形,而底面的面积大小没有发生变化.③近似长方体的高就是圆柱的高,没有变化.4.学生根据圆的面积公式推导过程,进行猜想.(1)如果把圆柱的底面平均分成32份,拼成的长方体形状怎样?(2)如果把圆柱的底面平均分成64份,拼成的长方体形状怎样?(3)如果把圆柱的底面平均分成128份,拼成的长方体形状怎样?5.启发学生说出通过以上的观察,发现了什么?(1)平均分的份数越多,拼起来的形体越近似于长方体.(2)平均分的份数越多,每份扇形的底面就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体.6.推导圆柱的体积公式(1)学生分组讨论:圆柱体的体积怎样计算?(2)学生汇报讨论结果,并说明理由.因为长方体的体积等于底面积乘高.(板书:长方体的体积=底面积高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积),近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘高.(板书:圆柱的体积=底面积高)(3)用字母表示圆柱的体积公式.(板书:V=Sh)(二)教学例4.1.出示例4例4.一根圆柱形钢材,底面积是50平方厘米,高是2.1米,它的体积是多少?2.1米=210厘米50210=10500(立方厘米)答:它的体积是10500立方厘米.2.反馈练习(1)一根圆柱形木料,底面积是75平方厘米,长90厘米,它的体积是多少?(2)一个圆柱形罐头盒的内底面半径是5厘米,高15厘米,它的容积是多少?(三)教学例5.1.出示例5例5.一个圆柱形水桶,从里面量底面直径是20厘米,高是25厘米,这个水桶的容积是多少立方分米?水桶的底面积:=3.14=3.14100=314(平方厘米)水桶的容积:31425=7850(立方厘米)=7.8(立方分米)答:这个水桶的容积大约是7.8立方分米.三、课堂小结通过本节课的学习,你有什么收获?1.圆柱体体积公式的推导方法.2.公式的应用.小学六年级数学教案《圆柱的体积》篇2教学内容:北师大版教学六年级《圆柱的体积》教学目标:1、结合具体的情境和实践活动,理解圆柱体体积的含义。

第一单元 圆柱的体积(课件)六年级下册数学北师大版

第一单元 圆柱的体积(课件)六年级下册数学北师大版
8000-6280=1720(cm3) 答:要削去 1720 立方厘米的边角料。
ห้องสมุดไป่ตู้
2、 一根方钢长50厘米,底面是边长 12厘米的正方形。如果把它锻造成底 面面积是90平方厘米的圆柱形钢材, 这根钢材长多少厘米?
长方体的体积=圆柱体的体积
12×12×50=7200(立方厘米) 7200 ÷90=80(厘米)
练一练: 计算下面圆柱的体积。
8dm 4cm
2
长方体的体积=底面积×高 圆柱体的体积= 底面积 ×高
试一试
金箍棒底面周长12.56cm,长200cm, 这根金箍棒的体积是多少立方厘米?
(1)思考:求金箍棒的体积,要先求什 么?由周长可以求出什么? (2)独立尝试列式,并小组交流,说说 你的想法,再汇报。
两个圆柱的高相等,底面积的比是 1:4,体积之和是25立方厘米,求 这两个圆柱的体积。
把一个圆柱的侧面沿高展开,得到一个正方 形。已知正方形边长是12.56分米,求圆柱的 表面积及体积。
讨论
(1)已知圆的半径和高,怎样求圆柱的体积? (2)已知圆的直径和高,怎样求圆柱的体积? (3)已知圆的周长和高,怎样求圆柱的体积?
一个圆柱形柴油罐,底面周长是 12.56 米,高 10 米。如果 每立方米柴油重 0.8 吨,这个油罐可装柴油多少吨?
底面半径:12.56÷3.14÷2=2(米) 3.14×22×10×0.8=100.48(吨)
答:可装柴油 100.48 吨。
7.下面的长方体和圆柱哪个体积大?说说你的比较方法。
2、把一个棱长为6分米的正方体削成一个 最大的圆柱体,这个圆柱体的体积是多少 ?
6 dm
6 dm
6 dm
变式:把一个棱长为 20 厘米的正方体木头,削成一个最大 的圆柱体(如图),要削去多少立方厘米的边角料?

人教版六年级数学下册第一单元圆柱的体积

人教版六年级数学下册第一单元圆柱的体积

练习:1、一个圆柱的侧面积是125.6平方厘米, 半径是8厘米,求它的体积。
2、一个圆柱形水池底面直径8米,池深2米, 如果在水池的底面和四周涂上水泥,涂水泥的 面积有多少平方米?水池最多能盛水多少立方 米?
3、把一个底半径为5厘米的圆柱铁块放入一个 底半径10厘米,高14厘米的容器里,水面上升 了3厘米,求这个圆柱铁块的高。
5 :4
体积
5 :4
【例3】把一块长31.4厘米、宽20厘米、 高4厘米的长方体钢材熔化成底面半径是4 厘米的圆柱,圆柱的高是多少厘米?
3.14 20 4 5(厘米) 3.14 4 4
练习:一个圆柱的底面周长是25.12厘米, 高10厘米,把它装满水后,再倒入一个长 10厘米、宽8厘米的长方体容器中,水面 高多少厘米?
5厘米
20厘米
3、一个酒精瓶,它的瓶身呈圆柱形(不包括 瓶颈),如下图.已知它的容积为26.4π立方 厘米.当瓶子正放时,瓶内的酒精的液面高为 6厘米.瓶子倒放时,空余部分的高为2厘 米.问:瓶内酒精的体积是多少立方厘米?
2厘米
6厘米
【例7】在一只底面半径为10厘米的圆柱形玻璃容器中,水 深8厘米,要在容器中放入长10厘米、宽3.14厘米,高15厘 米的一块铁块。 (1)如果把铁块横放在水中水面上升多少厘米? (2)如果把铁块竖放在水中,水面上升多少厘米?
1、一个圆柱体的木头,底面 直径24厘米,高1米,锯下 25厘米长的一段后,表面积 减少多少平方厘米?
2、一个圆柱体木块的底面周长 是25.12厘米,竖着沿直径从中 间切开,表面积增加了32平方厘 米,求其中半个圆柱体的表面积?
1、一个圆柱体,如果它的高增 加1厘米,它的侧面积就增加 50.24平方厘米,这个圆柱体的 底面半径是多少?

六年级下册数学圆柱的体积

六年级下册数学圆柱的体积

圆柱的体积☆☆知识讲解:知识点一:圆柱体积的意义和计算公式1.圆柱体积的意义:一个圆柱所占空间的大小,叫做这个圆柱的体积。

2.圆柱体积公式的推导:圆柱的体积=长方体的体积=长方体的底面积×长方体的高=圆柱的底面积×圆柱的高如果用V 表示圆柱的体积,S 表示圆柱的底面积,h 表示圆柱的高,可以得到圆柱的体积计算公式为:h r Sh V 2π==知识点二:圆柱的体积计算公式的应用知识应用1:已知圆柱的底面积和高,求圆柱的体积。

点击例题:一根圆柱形钢材,底面积是402cm ,高是m ,它的体积是多少知识应用2:已知圆柱的底面半径和高,求圆柱的体积。

点击例题:一个圆柱形罐头盒的底面半径是5cm ,高是18cm 。

体积是多少知识应用3:已知圆柱的底面直径和高,求圆柱的体积。

点击例题:一个圆柱形水桶,从里面量底面直径是4分米,高是5分米,这个水桶的容积是多少(得数保留整立方分米)可装水多少千克(1立方分米水重1千克)知识应用4:已知圆柱的底面周长和高,求圆柱的体积。

点击例题:一个圆柱形水泥柱,底面周长是米,高是3米,这根水泥柱的体积是多少立方米知识应用5:已知圆柱的体积和高(或底面积),也可以求出圆柱的底面积(或高)。

点击例题:在地面挖一个圆柱形水池,底面周长米,要使池内存水1570立方米,水池至少要挖多深过关精练:一个圆柱形容器的底面直径为4分米,现在往容器里倒入升的水,水深多少分米☆☆思维拓展:点拨方法1:如果把一个正方体的木料加工成一个最大的圆柱体,这个圆柱体的高就等于正方体的棱长,这个圆柱体的底面直径也就等于正方体的棱长。

点击例题:有一块正方体的木料,它的棱长是3分米,把这块木料加工成一个最大的圆柱体(如图),这个圆柱体的体积是多少过关精练:点拨方法2:将物体浸没在容器里,物体的体积等于升高的那部分液体的体积;如果物体没有完全浸没在液体中,则浸没在液体中的那部分体积等于升高的液体的体积。

《圆柱的体积(1)》(课件)-六年级下册数学人教版

《圆柱的体积(1)》(课件)-六年级下册数学人教版

(3) 把一个棱长为10分米的正方体木块削成一个最大的圆柱,
这个圆柱的体积是( B )立方分米。
A.100
B.785
C.78.5
D.314
(4) 圆柱的底面半径和高都扩大到原来的2倍,它的体积扩大
到原来的( C )倍。
A.2
B.4
C.8
D.6
2 挖一口圆柱形水井,地面以下的井深为10m,底面直径 为1m。挖出的土有多少立方米?(教材P24第2题)
V=75×90=6750(cm3) 答:它的体积是6750cm3。
3 一个圆柱形的水池,从里面量底面半径是5m,深是3.2m。 这个水池能蓄水多少吨?(1m3的水重1t。) (教材P25第2题)
V=3.14×52×3.2=251.2(m3)=251.2(t)
答:这个水池能蓄水251.2t。
当堂练习 及时反馈
2 下图中的圆柱与长方体的体积相等。这个圆柱的高是多 少?(单位:dm)
15.7
12
3
V=15.7×6×3=282.6(dm3) h=282.6÷[3.14×(12÷2)2]=2.5(dm) 答:这个圆柱的高是2.5dm。
3 如图,一根长6m的圆木,如果把它截成三段,表面积就 增加942cm2。原来这根原木的体积是多少立方米?
7 cm 6 cm
一个圆柱所占空间的大小, 叫作这个圆柱的体积。
怎样计算圆柱的体积呢?
合作交流 探索新知
探究圆柱的体积计算公式
想一想:圆的面积公 式是怎样推导的呢?
34 56
2
7
1
8
16
9
15

10
1413 12 11
12345678 9 10 11 12 13 14 15 16

【典型例题系列】人教版六年级数学下册典型例题系列之第三单元圆柱的体积问题基础部分

【典型例题系列】人教版六年级数学下册典型例题系列之第三单元圆柱的体积问题基础部分
【答案】(1)314平方米
(2)2009.6吨
【解析】
【分析】(1)求一个圆柱形粮囤的占地面积,即是这个圆柱形粮囤的一个底面积;代入圆的面积公式即可解答;
(2)先根据圆柱的体积公式算出这个粮囤的体积即是装小麦的体积,然后根据乘法的意义算出共重多少吨。
【详解】(1)3.14×(20÷2)2
=3.14×100
【对应练习2】
10.如下图,是一个圆柱展开图(单位:cm),求圆柱的体积。
【答案】84.78立方厘米
【解析】
【分析】根据圆柱的体积V=πr2h,其中r=C÷π÷2,代入数据计算即可。
【详解】18.84÷3.14÷2
=6÷2
=3(cm)
3.14×32×3
=28.26×3
=84.78(立方厘米)
答:圆柱的体积是84.78立方厘米。
(立方分米)
226.08立方分米=226.08升
(千克)
答:这个油桶可以装油 千克。
【点睛】本题考查了圆柱的体积,圆柱的体积等于底面积乘高。
【对应练习3】
20.一个圆柱形粮囤,从里面量,底面直径20米,高是8米。
(1)这个圆柱形粮囤,里面占地面积多少平方米?
(2)如果每立方米的小麦0.8吨,这个圆柱形粮囤能装小麦多少吨?
【答案】88.17千克
【解析】
【分析】根据“ ”求出圆柱形钢坯的体积,再乘每立方分米钢材的重量即可。
【详解】1米=10分米;
3.14×(1.2÷2)²×10×7.8
=11.304×7.87千克。
【点睛】熟记圆柱的体积计算公式是解答本题的关键,本题要注意单位。
【方法点拨】
圆柱体积的意义和计算公式
(1)意义:一个圆柱所占空间的大小,叫做这个圆柱的体积。

小学六年级数学《圆柱的体积》教案(优秀9篇)

小学六年级数学《圆柱的体积》教案(优秀9篇)

小学六年级数学《圆柱的体积》教案(优秀9篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划报告、合同协议、心得体会、演讲致辞、条据文书、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as plan reports, contract agreements, insights, speeches, policy documents, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!小学六年级数学《圆柱的体积》教案(优秀9篇)作为一名教职工,就不得不需要编写教案,借助教案可以有效提升自己的教学能力。

六年级下册数学教案-《圆柱的体积》人教版

六年级下册数学教案-《圆柱的体积》人教版
突破方法:提醒学生注意单位统一,以及π的取值(一般取3.14),培养学生严谨的计算习惯。
(4)合作交流中的难点:在小组合作过程中,学生可能无法充分表达自己的观点,或者无法倾听他人的意见。
突破方法:教师引导学生学会倾听、尊重他人,培养学生的团队协作能力和人际沟通能力。
四、教学流程
(一)导入新课(用时5分钟)
1.讨论主题:学生将围绕“圆柱体积在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考,如圆柱体积计算在工程设计中的应用。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
1.理论介绍:首先,我们要了解圆柱体积的基本概念。圆柱体积是指圆柱体所占空间的大小。它是我们研究几何体积的一个重要部分,可以帮助我们解决许多实际问题。
2.案例分析:接下来,我们来看一个具体的案例。通过将圆柱切割、拼凑成近似长方体的方式,推导出圆柱体积的计算公式,并展示如何运用这个公式解决实际问题。
3.重点难点解析:在讲授过程中,我会特别强调圆柱体积公式V=πr²h和圆柱与长方体体积关系这两个重点。对于难点部分,如空间观念的建立和公式的应用,我会通过实物操作和举例来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与圆柱体积相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如测量水桶的半径和高度,计算其体积,从而验证圆柱体积公式的正确性。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。

六年级数学下册《圆柱的体积》

六年级数学下册《圆柱的体积》

一个圆柱体的侧面积是底面积的 4倍,它的底面半径是2米,这个 圆柱体的体积是多少?
一个圆柱体的侧面积和底面积相等 ,底面半径是4厘米,求这个圆柱 的体积是多少?
一个圆柱体的侧面积是50平方分米 ,底面半径是3分米,求这个圆柱 体的体积。
• 一个长6厘米,宽4厘米的长方形, 分别以它的长和宽为轴转动一周, 得到的两个圆柱,这两个圆柱的体 积是否相同?表面积是否相同?
有一根圆柱形的木料,如果沿着它 的底面直径切开,剖面正好是一个 正方形。如果这个圆柱的底面周长 是12.56分米,这根木料的体积是 多少立方分米?
• 将一块棱长是10㎝的正方体木块削 成一个最大的圆柱,圆柱的体积是 多少立方厘米?
在一个长、宽、高分别为6 ㎝、6㎝、8㎝的长方体内截 一个最大的圆柱,圆柱的体 积是多少立方厘米?
3.14 ×0.42×5=2.512(立方米)
答:它的体积是2.512立方米。
一个圆柱形水桶,从桶内量底面直径是3分 米,高是4分米,这个水桶的容积是多少升?
3分米 4分米
3 )2=7.065(dm2) (1)水桶的底面积:3.14×( 2 (2)水桶的容积: 7.065×4=28.26(L)
一根圆柱形铁棒,底面周长是12.56厘米, 长是100厘米,它的体积是多少?
• 一根长30分米的圆柱形木料 ,锯成两段后,表面积比原 来增加了12平方分米。这根 木料原来的体积是多少立方 分米?
把一根长1.5的圆木截成两段后表 面积增加了48㎝²,这根圆木原来 的体积是多少?
• 一根圆柱形木料长8米,如果把它 沿着横截面截成4段,表面积就增 加了18.84㎡。这根圆柱形木料原 来的体积是多少立方米?
• 把一个土豆浸没到一个底面 直径是2分米的水桶中,水 面的高度由2分米上升到2.2 分米。这个土豆的体积是多 少立方分米?

北师六年级下册数学1单元 第5课时 圆柱的体积(1) 教案

北师六年级下册数学1单元 第5课时 圆柱的体积(1) 教案
如果用V表示圆柱的体积,S表示圆柱的底面积,h表示圆柱的高,那么圆柱的体积计算公式可以表示为V=Sh
如果圆柱的底面积未知,已知底面半径、直径、或底面周长,我们可以怎样计算呢?认真想一想。
生:如果已知底面半径,就需要先算出圆柱底面圆的面积再乘高,用字母表示为V =πr2h;
如果已知底面直径或周长,就需要先算出底面半径,再算底面积乘高,分别用字母表示是V =π(d÷2)2h、V =π(C÷π÷2)2h
师:在底面积未知的情况下,我们都需要先计算出底面半径,只有根据半径才能计算底面积。明白了这些让我们回头帮助淘气和笑笑解决刚才的问题吧!
笑笑了解到一根柱子的底面半径为0.4m,高为5m。你能算出它的体积吗?试一试,并说说你的计算过程和注意事项。
生:已知底面半径和高,求体积,可以根据V=πr2h直接计算。3.14×0.42×5=3.14×0.16×5我们先来计算0.16×5比较简单,不容易出错,最终计算结果是2.512m3,一定要注意单位是体积单位。
学情分析
学生已掌握了长方体和正方体体积的计算方法以及圆的面积计算公式的推导过程,在圆柱的体积这节课最大化的体现动手实践,自主探索,合作交流,为突破重、难点。本节课在教法和学法上从以下几方面着手:先利用教具通过直观教学让学生观察,比较,动手操作,经历知识产生的过程,发展学生思维能力;让学生通过 “类比猜想——验证说明”的探索过程,主动学习,掌握知识形成技能,合作探究学习成为课堂的主要学习方式。
教学策略
引导学生利用“等积变形”的方法去探究圆柱体积的计算方法。
教学内容
北师大版六年级下册 教科书第8页
教学目标
1.结合具体情境和实践活动,了解圆柱体积的含义,进一步理解体积和容积的含义。
2.通过圆柱与长方体的“类比”,经历“猜想与验证”探索圆柱体积计算方法的过程,体会“类比”的数学思想方法。

北师大版小学数学六年级下册第一单元《圆柱的体积》教学建议及课后习题解析

北师大版小学数学六年级下册第一单元《圆柱的体积》教学建议及课后习题解析

圆柱的体积学习目标1.通过具体情境观察、实物感知等活动,感受物体体积的大小,发展空间观念。

2.通过圆柱与长方体的“类比”,经历“猜想与验证”探索圆柱体积计算方法的过程,体会“类比”的数学思想方法。

3.掌握圆柱体积的计算方法,能正确计算圆柱的体积,能运用圆柱体积计算方法解决简单的实际问题。

编写说明这部分内容是在学生已经初步理解了体积和容积的含义、掌握了长方体和正方体的体积计算方法的基础上学习的,长方体和正方体的体积计算方法“底面积×高”对探索圆柱的体积计算方法有正迁移作用。

本节课的重点在于引导学生经历“猜想与验证”的探索过程,在探索中理解、掌握圆柱体积的计算方法,体会“类比”“把未知问题转化为已知”等思想方法,并积累研究图形的经验。

教科书采用了“提出问题—类比猜想—验证归纳—实际应用”的呈现方式。

教科书先创设了两个简单的情境,第一幅图指向圆柱形柱子的体积,第二幅图指向圆柱形杯子的容积,结合情境体会圆柱的体积或容积的实际含义,感受学习求圆柱体积计算方法的必要性,并提出“怎样计算圆柱的体积”的问题。

·想一想,怎样计算圆柱的体积呢?这是学生经历怎样求圆柱的体积的计算方法的猜想过程,体会类比、转化等数学思想方法。

因为长方体与正方体的体积都是“底面积×高”,长方体、正方体是直柱体,而圆柱也是直柱体,因此通过类比可以产生猜想:圆柱的体积计算方法也可能是“底面积×高”。

·尝试验证你的猜想,并与同伴交流。

这是学生“验证”自己的猜想,并与同学交流的探究过程。

教科书中呈现了两种学生可能的方法启发学生从多个角度进行探索,两种方法分别是利用“直观感知”和“等积变形”去体会这样计算的合理性。

第一种方法是用同样大小的硬币叠成圆柱形,直观说明“底面积×高”计算圆柱体积的道理;另一种方法是借助“把圆转化成长方形”的思路,利用“等积变形”,把圆柱转化为长方体,再根据长方体体积的计算方法推导出圆柱体积的计算方法。

六年级下册数学圆柱与圆锥圆柱的体积的教案设计(优秀6篇)

六年级下册数学圆柱与圆锥圆柱的体积的教案设计(优秀6篇)

六年级下册数学圆柱与圆锥圆柱的体积的教案设计(优秀6篇)小学数学《圆柱的体积》教案篇一一、教学目标【知识与技能】掌握圆柱的体积计算公式,能够正确计算圆柱的体积。

【过程与方法】通过观察、类比、分析的过程,提高分析问题、解决问题的能力,发展空间观念。

【情感态度价值观】感受数学与生活的联系,激发学习兴趣,提高学习数学的自信心。

二、教学重难点【教学重点】圆柱的体积公式。

【教学难点】圆柱体积公式的推导过程。

三、教学过程(一)引入新课提问:长方体和正方体的体积公式是什么?预设:长方体的体积=长×宽×高,正方体体积=棱长×棱长×棱长,两者共有的体积公式:长方体(正方体)体积=底面积×高。

今天我们再来研究另一个熟悉的几何图形,圆柱的体积公式。

从而引出本节课题《圆柱的体积》。

(二)探索新知1.圆柱体积公式的猜想在大屏幕出示底面积和高都相等的长方体、正方体和圆柱。

提问:长方体和正方体的体积相等吗?预设:根据长方体(正方体)体积=底面积×高,所以长方体和正方体体积相等。

追问:类比之前学过的体积公式,圆柱的体积可能和哪些因素有关?圆柱的体积公式可能是什么?预设:圆柱的体积和底面积、高有关,圆柱的体积公式=底面积×高。

2.圆柱体积公式的推导回忆圆的面积是通过转化为长方形,从而推导出圆的面积公式。

提问:圆柱可以转化成已知体积公式的哪个图形呢?预设:可以把圆柱转换成长方体。

让学生根据提前下发的能自动等份分割的圆柱体学具,同桌之间相互交流:如何把圆柱转化为长方体呢?预设:学生分一分,拼一拼,组合成近似长方体的图形。

此时教师应借助多媒体设备展示把圆柱等份分成32份,64份甚至更多份的情境,随着等份分割的'份数越多,拼成的图形就越接近长方体。

组织学生进行小组讨论:观察拼成的长方体和原来的圆柱具有怎样的关系?5分钟后请小组代表进行回答。

预设:长方体的底面积、高和体积分别等于原来圆柱的底面积、高和体积。

部编版六年级数学下册第三单元《圆柱的体积》(复习课件)

部编版六年级数学下册第三单元《圆柱的体积》(复习课件)

20cm
圆柱的底面半径是 10cm,高20cm。
=314×20
=6280(cm³)
答:以长为轴旋转一周,得到的圆柱的体积是6280cm³。
右面这个方形的长是20cm,宽是10cm。 分别以长和宽 为轴旋转一周,得到两个圆柱体。它们的体积各是多少?
10cm
3.14×20²×10
以宽为轴旋转,得到 圆柱的底面半径是
162 π
(dm³)
底面周长:
图2
π×(12÷π÷2)²×3=
108 π
(dm³)
1π62>
108 π

81 π

54 π
图3
π×(9÷π÷2)²×4=
81 π
(dm³)
图1的体积最大。
图4
π×(6÷π÷2)²×6=
54 π
(dm³)
下面4个图形的面积都是36dm2(图中单位:dm)。
用这些图形分别卷成圆柱,哪个圆柱的体积最小?哪个圆柱的体积最
3 圆柱与圆锥
圆柱的体积 复习
说一说:圆柱的体积是怎么求出来的。 圆柱的体积是指一个圆柱所占空间的大小叫做这个圆柱的体积。
把圆柱切开,拼成一 个近似的长方形。
圆柱的体积 圆柱的底面积
圆柱的高
长方体的体积 长方体的底面积 长方体的高
运用割补法把圆柱转化成与它体积相等的长方体推导圆柱的体 积计算公式。
3.14×[(10÷2)2-(8÷2)2]×80 =3.14×9×80 =2260.8(cm3)
答:它所用钢材的体积是2260.8cm3。
右面这个长方形的长是20cm,宽是10cm。 分别以长和宽 为轴旋转一周,得到两个圆柱体。它们的体积各是多少?
10cm
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


图1:
h=h 甲
讨论题: 1、甲圆柱与乙圆柱谁的体积大? 2、它们的什么条件是相同的? 3、圆柱的体积大小与什么有关?

图1:
h=h 甲
讨论题: 1、甲圆柱与乙圆柱谁的体积大? 2、它们的什么条件是相同的? 3、圆柱的体积大小与什么有关?

图1:
h=h 甲
讨论题: 1、甲圆柱与乙圆柱谁的体积大? 2、它们的什么条件是相同的? 3、圆柱的体积大小与什么有关?
想 一 想
试 一 试
(1)你会计算它们的体积吗?
(2)试写出它们的体积公式。
8 米
16平方米
15平方米
9 米
你收获了 什么?

图1:
h=h

讨论题: 1、甲圆柱与乙圆柱谁的体积大? 2、它们的什么条件是相同的? 3、圆柱的体积大小与什么有关?

图2
将一个圆柱截成不相等的两段,与哪些条件有关?
底面积

讨论题
1、拼成的长方体的体积与原来的圆柱体体积是否相等? 2、它的底面积变了吗? 3、它的高变了吗?

图1:
h=h 甲
讨论题: 1、甲圆柱与乙圆柱谁的体积大? 2、它们的什么条件是相同的? 3、圆柱的体积大小与什么有关?

图1:
h=h 甲
讨论题: 1、甲圆柱与乙圆柱谁的体积大? 2、它们的什么条件是相同的? 3、圆柱的体积大小与什么有关?

图1:
h=h 甲
讨论题: 1、甲圆柱与乙圆柱谁的体积大? 2、它们的什么条件是相同的? 3、圆柱的体积大小与什么有关?
V=兀(d÷2)×h
2
12平方分米
7分米
6 分 米
3 分 米
. 2 3.14 ×(6÷2) ×8
12×6
3.14 ×3 ×7
2
怎样求出饮料罐的底面半径?
1、用绳子量出饮料罐底面的周长,然后通过周长求半径。
2、用直尺量出直径(最长一条为直径),再通过直径求出半 径。
直柱体的体积 = 底面积×高
V =s h

图1:
h=h 甲
讨论题: 1、甲圆柱与乙圆柱谁的体积大? 2、它们的什么条件是相同的? 3、圆柱的体积大小与什么有关?

图1:
h=h 甲
讨论题: 1、甲圆柱与乙圆柱谁的体积大? 2、它们的什么条件是相同的? 3、圆柱的体积大小与什么有关?

图1:
h=h 甲
讨论题: 1、甲圆柱与乙圆柱谁的体积大? 2、它们的什么条件是相同的? 3、圆柱的体积大小与什么有关?
看图列式,并写出相应的公式。
12平方分米
7分米
6 分 米
3 分 米
.
12×6
3.14 ×3 ×7
2
2 3.14 ×(6÷2) ×8 2 V=兀(d÷2)×h
V=s h
(1)
2 V= 兀r × h
(2)
(3)
已知:S r
h 直求 v h 先求s 再求v
V=sh V= 兀r × h
2
d
h
先求r 再求s 然后求v
圆柱体的体积
—— (苏教版)六年制小学数学第十二册
真 棒!

长 宽 棱长
长方体的体积=长×宽×高
正方体的体积=棱长×棱长×棱长
v =a b h

v =a 正
V=s底 h
3
圆柱体积的大小与哪些条件有关?
图1:
h=h 甲
讨论题: 1、甲圆柱与乙圆柱谁的体积大? 2、它们的什么条件是相同的? 3、圆柱的体积大小与什么有关?
例4
一根圆柱形钢材,底面积 是20平方厘米,高是1.5米。 它的体积是多少?
1.5米=150厘米 V=SH =20×150=3000(立方厘米)
答:它的体积是3000立方厘米。
做一做
(1)一根圆柱形木料,底面积为75平方 厘米,长90厘米,它的体积是多少?
75×90=6750(立方厘米)
答:它的体积是6750立方厘米。
相关文档
最新文档