第一讲 圆柱体表面积

合集下载

圆柱体计算公式

圆柱体计算公式

圆柱体计算公式
圆柱体是常见的几何图形,它具有便于计算的特点,可以用来计算多种图形的面积或体积。

圆柱体是由一个圆盘和一个圆柱组成的,它的外形很漂亮,并且拥有容易计算的特点,因此被广泛应用。

圆柱体的计算公式是:
体积公式:V=πrh
其中,V为圆柱体的体积,r为圆柱体的底面半径,h为圆柱体
的高度。

圆柱体表面积公式:S=2πrh+2πr
其中,S为圆柱体的表面积,r为圆柱体的底面半径,h为圆柱
体的高度。

圆柱体底面积公式:A=πr
其中,A为圆柱体的底面积,r为圆柱体的底面半径。

因此,如果要计算圆柱体的体积,只需要计算它的底面半径和高度,然后把它们代入上述公式中,就可以求出圆柱体的体积了。

圆柱体的计算公式广泛用于建筑、医学、飞行和工程等领域,可以准确计算出柱状物体的体积、表面积和底面积,这样能为制造和工程设计提供便利。

圆柱体的计算公式也适用于化学行业,如果需要试剂的精确分配,可以使用它来计算比较准确的体积,这样就可以精确的制备或使用试剂。

圆柱体的计算公式也可以用于物理和数学中的计算,例如,在高
中物理课程中,可以使用圆柱体的计算公式来计算圆柱体的热密度、表面积和体积等信息。

此外,在数学课程中,也可以使用它来计算几何图形的部分信息,例如圆柱体的体积和表面积。

总之,圆柱体计算公式是一个重要的计算工具,它可以用于计算几何图形的体积、表面积和底面积,这样就可以应用于实际问题的解决中,从而为制造和工程设计提供便利。

圆柱体侧面积公式,表面积公式,圆柱体体积公式

圆柱体侧面积公式,表面积公式,圆柱体体积公式

圆柱体侧面积公式,表面积公式,圆柱体体积公式圆柱体是一种常见的几何体,它的形状类似于一个圆形的柱子,由两个平行的圆形底面和一个侧面组成。

在数学中,我们可以通过一系列公式来计算圆柱体的各种属性,包括侧面积、表面积和体积。

本文将详细介绍圆柱体侧面积公式、表面积公式和体积公式。

一、圆柱体侧面积公式圆柱体的侧面积是指圆柱体的侧面的总面积。

侧面是指连接圆柱体两个底面的侧面,它的形状类似于一个长方形。

假设圆柱体的高为h,底面半径为r,那么圆柱体的侧面积S可以通过以下公式计算: S = 2πrh其中,π是圆周率,约等于3.14。

这个公式的含义是,圆柱体的侧面积等于圆柱体的高乘以底面周长的两倍。

这个公式的推导可以通过将圆柱体展开成一个长方形来实现。

将长方形的宽度设为圆柱体的高h,长度设为底面周长的两倍2πr,那么长方形的面积就是2πrh,即圆柱体的侧面积。

二、圆柱体表面积公式圆柱体的表面积是指圆柱体的所有面积之和,包括底面和侧面。

假设圆柱体的高为h,底面半径为r,那么圆柱体的表面积A可以通过以下公式计算:A = 2πr(r+h)这个公式的含义是,圆柱体的表面积等于两个底面的面积加上侧面的面积。

底面的面积是πr,因为圆的面积等于πr。

所以两个底面的面积之和是2πr。

侧面的面积是圆柱体的侧面积2πrh。

将两者加起来就得到了圆柱体的表面积。

三、圆柱体体积公式圆柱体的体积是指圆柱体所占据的空间大小,它等于圆柱体底面积乘以高。

假设圆柱体的高为h,底面半径为r,那么圆柱体的体积V可以通过以下公式计算:V = πrh这个公式的含义是,圆柱体的体积等于底面面积πr乘以高h。

底面面积πr可以通过圆的面积公式得到,所以圆柱体的体积可以通过圆柱体底面半径和高来计算。

总结圆柱体是一种重要的几何体,它具有很多特殊的性质和应用。

在数学中,我们可以通过一系列公式来计算圆柱体的各种属性,包括侧面积、表面积和体积。

这些公式不仅在数学中有很多应用,也在科学、工程、建筑等领域中得到了广泛的应用。

8.3.2 第一课时 圆柱、圆锥、圆台的表面积和体积

8.3.2 第一课时 圆柱、圆锥、圆台的表面积和体积

8.3.2圆柱、圆锥、圆台、球的表面积和体积第一课时圆柱、圆锥、圆台的表面积和体积课标要求素养要求1.知道圆柱、圆锥、圆台的表面积和体积的计算公式.2.能用公式解决简单的实际问题.在计算圆柱、圆锥、圆台的表面积和体积的过程中,要把实际问题转化为数学问题,并进行计算,发展学生的数学建模、数学运算素养和直观想象素养.教材知识探究如图是工厂生产的各种金属零件,被广泛应用于工业领域的各个方面.问题(1)如果已知制作零件的金属的密度,如何求出这些零件的质量?(2)如图所示的零件都是旋转体,其侧面都是曲面,如何求其表面积?提示(1)先求出金属零件的体积,再求其质量.(2)求其侧面展开图的面积,再加上底面面积就是其表面积.1.圆柱、圆锥、圆台的表面积和体积图形表面积和体积圆柱S圆柱=2πr(r+l)(r是底面半径,l是母线长)V圆柱=πr2h(r是底面半径,h是高)圆锥S 圆锥=πr (r +l )(r 是底面半径,l 是母线长)V 圆锥=13πr 2h (r 是底面半径,h 是高) 圆台S 圆台=π(r ′2+r 2+r ′l +rl )(r ′,r 分别是上、下底面半径,l 是母线长)V 圆台=13πh (r ′2+r ′r +r 2)(r ′,r 分别是上、下底面半径,h 是高)2.柱体、锥体、台体的体积公式 V 柱体=Sh (S 为底面面积,h 为柱体高);V 锥体=13Sh (S 为底面面积,h 为锥体高);V 台体=13(S ′+S ′S +S )h (S ′,S 分别为上、下底面面积,h 为台体高).教材拓展补遗[微判断]1.圆锥的侧面展开图为扇形,其中扇形的弧长为圆锥底面圆的周长.(√)2.若圆柱的底面圆的直径与圆柱的高相等,则圆柱的侧面展开图是正方形.(×)3.求圆台的表面积和体积时,常用“还台为锥”的思想方法.(√)提示 2.设圆柱的底面圆的半径为r ,所以圆柱的侧面展开图的两边分别为2πr ,2r ,二者不相等,故侧面展开图不是正方形. [微训练]1.若圆锥的底面半径为3,高为1,则圆锥的体积为( ) A.π3B.π2C.πD.2π解析 V =13Sh =13×π×3×1=π. 答案 C2.一个圆柱的侧面展开图是一个正方形,则这个圆柱的表面积与侧面积的比是( ) A.1+2π2πB.1+2π4πC.1+2ππD.1+4π2π解析 设底面圆半径为r ,母线长为h ,∴h =2πr ,则S 表S 侧=2πr 2+2πrh 2πrh =r +h h =r +2πr2πr=1+2π2π. 答案 A [微思考]求圆柱、圆锥、圆台的表面积时,关键是什么?提示 求圆柱、圆锥的表面积时,关键是求其母线长与底面的半径;求圆台的表面积时,关键是求其母线长与上、下底面的半径.题型一 求圆柱、圆锥、圆台的表面积【例1】 圆锥的高和底面半径相等,它的一个内接圆柱的高和圆柱底面半径也相等.求圆柱的表面积和圆锥的表面积之比. 解 如图所示,设圆柱和圆锥的底面半径分别为r ,R ,则有r R =R -r R ,即r R =12, ∴R =2r ,圆锥的母线长l =2R , ∴S 圆柱表S 圆锥表=2πr 2+2πr 2πR ·2R +πR 2=4πr 2(2+1)πR 2 =4r 2(2+1)4r 2=12+1=2-1. 规律方法 求旋转体表面积的要点(1)因为轴截面联系着母线、底面半径、高等元素,因此处理好轴截面中边角关系是解题的关键;(2)对于圆台问题,要重视“还台为锥”的思想方法;(3)在计算圆柱、圆锥、圆台的侧面积或表面积时,应根据已知条件先计算出它们的母线和底面圆半径的长,而求解这些未知量常常需要列方程.【训练1】圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的表面积为574π,则圆台较小的底面半径为________.解析设圆台较小的底面半径为r,那么较大的底面半径为3r,由已知得π(r+3r)×3+πr2+9πr2=574π,解得r=7.答案7题型二求圆柱、圆锥、圆台的体积求底面半径和高是关键【例2】(1)设圆台的高为3,如图,在轴截面中母线AA1与底面直径AB的夹角为60°,轴截面中的一条对角线垂直于腰,则圆台的体积为________.解析设上、下底面半径,母线长分别为r,R,l.作A1D⊥AB于点D,则A1D=3,∠A1AB=60°,又∠BA1A=90°,∴∠BA1D=60°,∴AD=A1Dtan 60°=3,∴R-r= 3.BD=A1D·tan 60°=33,∴R+r=33,∴R=23,r=3,而h=3.∴V 圆台=13πh (R 2+Rr +r 2)=13π×3×[(23)2+23×3+(3)2]=21π. ∴圆台的体积为21π. 答案 21π(2)在Rt △ABC 中,AB =3,BC =4,∠ABC =90°,把△ABC 绕其斜边AC 所在的直线旋转一周后,所形成的几何体的体积是多少?解 由题意,所形成的几何体为两个圆锥的组合体,如图所示,两个圆锥的底面半径为斜边上的高BD ,且BD =AB ·BC AC =125,两个圆锥的高分别为AD 和DC , 所以V =V 1+V 2=13πBD 2·AD +13πBD 2·CD =13πBD 2·(AD +CD )=13πBD 2·AC =13π×⎝ ⎛⎭⎪⎫1252×5=485π.故所形成的几何体的体积是485π.规律方法 求圆柱、圆锥、圆台的体积的关键是求其底面面积和高,其中高一般利用几何体的轴截面求得,一般是由母线、高、半径组成的直角三角形中列出方程并求解.【训练2】 若一个圆柱与圆锥的高相等,且轴截面面积也相等,那么圆柱与圆锥的体积之比是( )A.1B.1∶2C.3∶2D.3∶4解析 设圆柱、圆锥的高都为h ,底面半径分别为r ,R ,则有12·2Rh =2rh ,所以R =2r ,V 圆锥=13πR 2h =43πr 2h ,V 圆柱=πr 2h ,故V 圆柱∶V 圆锥=3∶4. 答案 D题型三 求组合体的表面积和体积分割为规则的几何体求其表面积、体积之和,保证不重不漏【例3】 如图所示,在边长为4的正三角形ABC 中,E ,F 依次是AB ,AC 的中点,AD ⊥BC ,EH ⊥BC ,FG ⊥BC ,D ,H ,G 为垂足,若将正三角形ABC 绕AD 旋转180°,求阴影部分形成的几何体的表面积和体积.解 由题意知,旋转后几何体是一个圆锥,从下面挖去一个圆柱,且圆锥的底面半径为2,高为23,圆柱的底面半径为1,高为 3.所求旋转体的表面积由三部分组成:圆锥的底面、侧面,圆柱的侧面. S 圆锥底面=4π,S 圆锥侧=8π, S 圆柱侧=23π,故所求几何体的表面积为: 4π+8π+23π=12π+23π.所求旋转体的体积为大圆锥的体积减去里面小圆柱的体积, 即V 旋转体=13×π×22×23-π×12×3=533π, 故所求旋转体的体积为533π.规律方法 组合体体积与表面积的求解策略:(1)首先应弄清它的组成,其表面有哪些底面和侧面,各个面应怎样求其面积,然后把这些面的面积相加或相减;求体积时也要先弄清组成,求出各简单几何体的体积,然后再相加或相减.(2)在求组合体的表面积、体积时要注意“表面(和外界直接接触的面)”与“体积(几何体所占空间的大小)”的定义,以确保不重复、不遗漏.【训练3】如图所示,在梯形ABCD中,∠ABC=π2,AD∥BC,BC=2AD=2AB=2,将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A.53π B.43π C.23π D.2π解析由题意,旋转而成的几何体是圆柱,挖去一个圆锥(如图),该几何体的体积为π×12×2-13×π×12×1=53π.答案 A一、素养落地1.通过了解几何体的结构特征,从而计算圆柱、圆锥、圆台的表面积和体积,培养数学运算素养,提升直观想象和数学建模素养.2.柱体、锥体、台体的体积公式之间的关系二、素养训练1.若圆锥的底面半径为1,高为3,则圆锥的表面积为()A.πB.2πC.3πD.4π解析 设圆锥的母线长为l ,则l =3+1=2,所以圆锥的表面积为S =π×1×(1+2)=3π. 答案 C2.圆台的体积为7π,上、下底面的半径分别为1和2,则圆台的高为( ) A.3B.4C.5D.6解析 由题意知V =13(π+2π+4π)h =7π,故h =3. 答案 A3.设甲、乙两个圆柱的底面积分别为S 1,S 2,体积分别为V 1,V 2.若它们的侧面积相等,且S 1S 2=94,则V 1V 2的值是________.解析 设两个圆柱的底面半径和高分别为r 1,r 2和h 1,h 2.由S 1S 2=94,得πr 21πr 22=94,∴r 1r2=32.由圆柱的侧面积相等,得2πr 1h 1=2πr 2h 2, 即r 1h 1=r 2h 2. ∴V 1V 2=πr 21h 1πr 22h 2=r 1r 2=32.答案 324.圆柱有一个内接长方体AC 1,长方体体对角线长是10 2 cm ,圆柱的侧面展开平面图为矩形,此矩形的面积是100π cm 2,求圆柱的体积. 解 设圆柱底面半径为r cm ,高为h cm.如图所示,则圆柱轴截面长方形的对角线长等于它的内接长方体的体对角线长,则⎩⎪⎨⎪⎧(2r )2+h 2=(102)2,2πrh =100π,∴⎩⎪⎨⎪⎧r =5,h =10.∴V 圆柱=Sh =πr 2h =π×52×10 =250π(cm 3).∴圆柱体积为250π cm 3.基础达标一、选择题1.一个圆台的母线长等于上、下底面半径和的一半,且侧面积是32π,则母线长为( ) A.2B.2 2C.4D.8解析 圆台的轴截面如图,由题意知,l =12(r +R ),S 圆台侧=π(r +R )·l =π·2l ·l =32π, ∴l =4. 答案 C2.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( ) A.4πB.3πC.2πD.π解析 底面圆半径为1,高为1,侧面积S =2πrh =2π×1×1=2π.故选C. 答案 C3.如图,一个底面半径为2的圆柱被一平面所截,截得的几何体的最短和最长母线长分别为2和3,则该几何体的体积为( )A.5πB.6πC.20πD.10π解析用一个完全相同的几何体把题中几何体补成一个圆柱,如图,则圆柱的体积为π×22×5=20π,故所求几何体的体积为10π.答案 D4.若一个圆台如图所示,则其侧面积等于()A.6B.6πC.35πD.65π解析∵圆台的母线长为(2-1)2+22=5,∴S圆台侧=π(1+2)·5=35π.答案 C5.半径为R的半圆卷成一个圆锥,则它的体积为()A.324πR3 B.38πR3C.524πR3 D.58πR3解析设圆锥底面圆的半径为r,高为h,则有2πr=πR,则r=12R.又由已知,得圆锥母线长为R,所以圆锥的高h=R2-r2=32R,故体积V=13πr2h=324πR3.答案 A二、填空题6.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.解析设新的底面半径为r,则有13×πr2×4+πr2×8=13×π×52×4+π×22×8,解得r =7. 答案 7 7.一个圆柱和一个圆锥的轴截面分别是边长为a 的正方形和正三角形,则它们的表面积之比为________. 解析 S 圆柱=2·π⎝ ⎛⎭⎪⎫a 22+2π· a 2·a =32πa 2, S 圆锥=π⎝ ⎛⎭⎪⎫a 22+π·a 2·a =34πa 2, ∴S 圆柱∶S 圆锥=2∶1.答案 2∶18.圆台上、下底面的面积分别为π,4π,侧面积为6π,则这个圆台的体积是________. 解析 由已知得两底面半径分别为r =1,R =2,又S 侧=6π,所以π(1+2)·l =6π,所以l =2,则h =l 2-(R -r )2=3,所以体积V =13π×3×(12+1×2+22)=733π.答案 733π三、解答题9.已知底面半径为 3 cm ,母线长为 6 cm 的圆柱,挖去一个以圆柱上底面圆心为顶点、下底面为底面的圆锥,求所得几何体的表面积.解 如图所示,所得几何体的表面积为S =S 底+S 柱侧+S 锥侧=π(3)2+2π×3×6+π×3×3=(3+62+33)π(cm 2).10.已知一个圆锥的底面半径为R ,高为H ,在其内部有一个高为x 的内接圆柱.(1)求圆柱的侧面积;(2)x 为何值时,圆柱的侧面积最大?解 (1)作圆锥的轴截面,如图所示.因为r R =H -x H ,所以r =R -R H x ,所以S 圆柱侧=2πrx=2πRx -2πR H x 2(0<x <H ).(2)因为-2πR H <0,所以当x =2πR 4πR H=H 2时,S 圆柱侧最大.故当x =H 2时,即圆柱的高为圆锥高的一半时,圆柱的侧面积最大.能力提升11.体积为52的圆台,一个底面积是另一个底面积的9倍,那么截得这个圆台的圆锥的体积是( )A.54B.54πC.58D.58π解析 设上底面半径为r ,则由题意求得下底面半径为3r ,设圆台高为h 1,则52=13πh 1(r 2+9r 2+3r ·r ),∴πr 2h 1=12.令原圆锥的高为h ,由相似知识得r 3r =h -h 1h ,∴h =32h 1, ∴V 原圆锥=13π(3r )2×h =3πr 2×32h 1=92×12=54.答案 A12.圆台的母线长为8 cm ,母线与底面成60°角,轴截面的两条对角线互相垂直,求圆台的表面积.解如图所示的是圆台的轴截面ABB1A1,其中∠A1AB=60°,过A1作A1H⊥AB 于H,则O1O=A1H=A1A·sin 60°=43(cm),AH=A1A·cos 60°=4(cm).设O1A1=r1,OA=r2,则r2-r1=AH=4.①设A1B与AB1的交点为M,则A1M=B1M.又∵A1B⊥AB1,∴∠A1MO1=∠B1MO1=45°.∴O1M=O1A1=r1.同理OM=OA=r2.∴O1O=O1M+OM=r1+r2=43,②由①②可得r1=2(3-1),r2=2(3+1).∴S表=πr21+πr22+π(r1+r2)l=32(1+3)π(cm2).创新猜想13.(多选题)圆台的上、下底面半径分别是10和20,它的侧面展开图扇环的圆心角为180°,则圆台的()A.母线长是20B.表面积是1 100πC.高是10 2D.体积是7 00033π解析如图所示,设圆台的上底面周长为C,因为扇环的圆心角为180°,所以C=π·SA,又C=10×2π,所以SA=20,同理SB=40,故圆台的母线AB=SB-SA=20,高h=AB2-(20-10)2=103,体积V=12+10×20+202)=3π×103×(107 00033π,表面积S=π(10+20)×20+100π+400π=1 100π,故选A,B,D.答案ABD14.(多填题)把底面半径为8 cm的圆锥放倒在一平面上,使圆锥在此平面内绕圆锥顶点S滚动,当这个圆锥在平面内转回原位置时,圆锥本身滚动了2.5周,则圆锥的母线长为______,表面积等于________.解析设圆锥的母线长为l,如图,以S为圆心,SA为半径的圆的面积S=πl2.又圆锥的侧面积S圆锥侧=πrl=8πl.根据圆锥在平面内转到原位置时,圆锥本身滚动了2.5周,∴πl2=2.5×8πl,∴l=20(cm).圆锥的表面积S=S圆锥侧+S底=π×8×20+π×82=224π(cm2).答案20 cm224π cm2。

圆柱的表面积优秀课件ppt

圆柱的表面积优秀课件ppt
要包装100个圆柱形易拉罐的侧面, 至少共需要多少平方分米的广告
纸?(得数保留整数)
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
一台压路机的滚 筒宽1.2米,直径为 0.8米。如果它滚动 10周,压路的面积 是多少平方米?
A: 6
B: 12
C: 24
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
冬天护林工人给圆柱形 的树干的下端涂防蛀涂 料,那么粉刷树干的面
积是指树的( B ). A.底面积 B.侧面积 C.表面积 D.体积
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
长方形的长=圆柱的底面周长,长方形的宽=圆柱的高。
圆柱的侧面积=底面周长×高
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
做一个笔筒所需塑料面积
加油啊!
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
圆柱在木板上滚过的轨迹是什么形状?
往柱子上涂漆,求 涂漆部分面积。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用

《圆柱的表面积》教学设计(精选17篇)

《圆柱的表面积》教学设计(精选17篇)

《圆柱的表面积》教学设计《圆柱的表面积》教学设计(精选17篇)作为一名老师,时常需要编写教学设计,教学设计是一个系统化规划教学系统的过程。

一份好的教学设计是什么样子的呢?以下是小编为大家整理的《圆柱的表面积》教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

《圆柱的表面积》教学设计篇1预设目标:1、使学生理解和掌握圆柱体侧面积的计算方法,能正确计算圆柱的侧面积和表面积。

2、培养学生的观察、操作、概括的能力以及利用知识合理灵活地分析、解决实际问题的能力。

3、培养学生的合作意识和主动探求知识的学习品质。

教学重、难点:1、理解和掌握圆柱体的侧面积和表面积的计算方法。

2、培养学生科学的学习态度。

教学过程:一、检查复习,引入新课。

1、检查:拿出自制的圆柱,分别指出它的底面、侧面和高。

2、复习:点名说说圆柱两底的关系,圆柱高的条数和关系以及侧面展开可能是什么样的图形。

3、引入:两个底面和侧面合在一起就是圆柱的表面,这节课我们来学习圆柱的表面积。

板书:圆柱的表面积二、引导探究,学习新知。

1、侧面积的意义和计算方法。

⑴摸一摸自制圆柱体的侧面,谈一谈自己感觉到什么。

⑵想一想用我们已有的知识,能不能求出这个曲面的面积。

(你能求出这个曲面的面积吗?)小组讨论:有什么好办法求出圆柱的侧积吗?⑶剪一剪自制圆柱,汇报交流结果。

⑷说一说:圆柱体的侧面可转化为已学过的平面图形是什么?它的侧面积正好等于底面周长乘高的乘积。

板书:圆柱的侧面积=底面周长×高⑸算一算:求出圆柱的侧面积,同学自己自作,交流结果。

小结:计算圆柱体的侧面积的方法是什么?⑹做一做:课本76页例1及77页的第一题。

2、表面积的意义及计算方法⑴自读课本:什么是圆柱的表面积?板书:圆柱的表面积=侧面积+2个底面积⑵练一练:(小黑板出示)⑶小结:圆柱的侧面积等于底面积周长与高的乘积,圆柱的表面积等于两个底面积与侧面积的和,但在实际生活的应用中,有许多问题要根据实际情况,合理灵活地求出圆柱的表面积。

圆柱体积公式表面积公式

圆柱体积公式表面积公式

圆柱体积公式表面积公式在同一个平面内有一条定直线和一条动线,当这个平面绕着这条定直线旋转一周时,这条动线所成的面叫做旋转面,这条定直线叫做旋转面的轴,这条动线叫做旋转面的母线。

如果用垂直于轴的两个平面去截圆柱面,那么两个截面和圆柱面所围成的几何体叫做直圆柱,简称圆柱体。

圆柱体体积公式圆柱体积公式是用于计算圆柱体体积的公式。

圆柱体积=π*r2*h=S底面积*高(h)先求底面积,然后乘高。

圆柱体表面积公式π是圆周率,r是圆柱底面的半径,h是圆柱体的高S=2πrr+h相关公式正方形的周长=边长×4长方形的面积=长×宽长方形的周长=(长+宽)×2正方形的面积=边长×边长三角形的面积=底×高÷2平行四边形的面积=底×高梯形的面积=(上底+下底)×高÷2直径=半径×2 半径=直径÷2圆的周长=圆周率×直径=圆周率×半径×2圆的面积=圆周率×半径×半径长方体的表面积=(长×宽+长×高+宽×高)×2长方体的体积=长×宽×高正方体的表面积=棱长×棱长×6正方体的体积=棱长×棱长×棱长圆柱的侧面积=底面圆的周长×高圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积×高圆锥的体积=底面积×高÷3长方体(正方体、圆柱体)的体积=底面积×高感谢您的阅读,祝您生活愉快。

圆柱体表面积课件

圆柱体表面积课件

底面
ห้องสมุดไป่ตู้
底面的周长

底面
圆柱的侧面积=底面周长×高
做一个圆柱形纸盒,至少需要用 多大面积的纸板?(接口处不计)
底面
侧面
圆柱的表面积=
底面
圆柱的侧面积 + 底面的面积×2
底面周长×高
S表面积=2πr×h + 2×πr2
(1)侧面积:2 ×3.14 ×10 ×30=1884(平方厘米)
(2)底面积:3.14 ×102 =314(平方厘米)
复习:
1 、圆的周长、面积怎样计算?
2、长方形面积怎样计算?
3、圆柱的特征是什么?
什么是圆柱的表面积?
圆柱的侧面积加上两个底面 的面积就是圆柱的表面积.
圆柱的侧面展开是一个长方形.
1、有两个底面:
面积相等
2、一个侧面:
长=底面周长
高宽

试验小结: 圆柱侧面展开图是长方形 (正方形),长方形的长等于 圆柱的底面周长,宽等于圆柱 的高。
(3)表面积:1884+314 × 2=2512(平方厘米)
达标检测
计算下现各圆柱的表面积。(图中单位:厘米)
做一个无盖的圆柱形铁皮水桶,高是5分米。 底面直径4分米,至少需要多大面积的铁皮?
水桶没有盖,说明它只有一个底面。 (1)水桶的侧面积: 3.14 ×4 ×5=62.8(平方分米) (2)水桶的底面积:
如果一段圆柱形的木头,截成两截, 它的表面积会有什么变化呢?
3.14 ×(4÷2) 2=12.56(平方分米)
( 3)需要铁皮:
62.8+12.56=75.36≈ 75.4(平方分米)
2、一个圆柱形烟囱长50分米底面半径 长2厘米,做这样一个烟囱需要多大面 积的材料

人教版六年级数学下册第三单元《圆柱与圆锥》第一讲讲义-含解析(知识精讲+典型例题+同步练习+进门考)

人教版六年级数学下册第三单元《圆柱与圆锥》第一讲讲义-含解析(知识精讲+典型例题+同步练习+进门考)

人教版六年级数学下册第三单元《圆柱与圆锥上》知识点1圆柱的表面积猫小咪和猫小喵发现了一大瓶鱼罐头,他们在密谋着如何解决掉这瓶罐头。

提问鱼罐头的包装盒属于哪种立体图形?认识圆柱总结:1.圆柱的上下两个底面面积相等。

2.周围的面(除底面外)叫做侧面。

思考:将圆柱沿侧面展开后得到什么图形?思考1.圆柱的侧面积=底面周长×高。

S侧=2πrh。

2.圆柱的表面积=圆柱的侧面积+两个底面圆的面积。

S表=2πrh+2πr²思考:一个圆柱体底面半径是1厘米,高是5厘米,那么它的侧面积和表面积分别是多少?(π取3.14)步骤:圆柱的表面积分为几个部分?三部分:两个底面积和一个侧面积。

两个底面积是多少?S底=3.14×1²×2=6.28平方厘米。

侧面积是多少?侧面积=底面周长×高。

S侧=3.14×1×2×5=31.4平方厘米。

圆柱体的表面积是多少?6.28+31.4=37.68平方厘米。

思考:如果把圆柱横着切一刀,它的表面积有什么变化?总结:切一刀表面积增加两个圆的面积。

思考:把一根长1米的圆柱分成3段,表面积增加了48平方厘米,原来圆柱的表面积是多少平方厘米?(π取3)步骤:分成三段增加几个面?(3-1)×2=4个。

圆柱的底面半径是多少厘米?48÷4=12平方厘米。

12÷3=4 4=2×2。

所以半径是2厘米。

原来圆柱的表面积是多少?1米=100厘米2×3×2×100=1200平方厘米1200+12×2=1224平方厘米思考:把一张长方形铁皮按图剪开,正好能制成一个圆柱形水桶(有盖),那么这个水桶的表面积是多少平方厘米?(π取3.14,接头处忽略不计)步骤:水桶的表面积包含哪几部分?两个底面圆的面积和侧面积。

圆柱的底面周长等于右侧小长方形的长还是宽?等于小长方形的长。

《圆柱的表面积》说课稿7篇

《圆柱的表面积》说课稿7篇

《圆柱的表面积》说课稿7篇《圆柱的表面积》说课稿1各位评委,各位老师:大家好!今天我说课的题目是《圆柱的表面积》,我将从说教材,说教法,说学法,说教学过程,四个方面来介绍我的构思和见解。

一、说教材1、教材内容和地位:《圆柱的表面积》是北师大版小学六年级下册第一单元的一个内容,是在学生五年级学习了长正方体表面积面的旋转,了解了点、线、面之间的关系,和认识了圆柱、圆锥的基本特征后,安排的一节课,通过让学生观察、想象、操作等活动,运用迁移规律掌握圆柱的侧面积、表面积的计算方法,并加以应用,以解决生活中的实际问题。

学好这部分内容,为下节探究圆柱体积降低难度,进一步发展学生的空间观念,为学生进入中学学习其它几个几何知识打下坚实的基础,因此因此它具有很重要的承上启下作用。

2、学情分析:为了使教学设计更贴近学情,有效的完成教学目标,我在课前对学生的知识基础和学习经验进行调研,从调研结果可以看出学生对圆柱体是有一定认识的,70%的学生知道圆柱体的表面积是哪,但是全班只有10%的学生会求圆柱表面积,而且这些孩子都是在外面上过奥数的。

由此可见,学生对圆柱的表面积了解的比较少,存在一定的困难。

3、教学目标:根据教材和学情我制定以下三个教学目标:(1)经历圆柱展开与卷成等活动,探索圆柱侧面积的计算方法,并掌握圆柱表面积的计算方法,能正确计算圆柱表面积。

(2)培养学生观察、操作、概括的能力,以及灵活运用圆柱表面及计算方法解决生活中的一些简单的问题,体会数学与生活的联系,丰富对现实空间的认识。

(3)培养学生初步的逻辑思维能力和空间观念,向学生渗透事物间的相互联系和相互转化的数学思想。

4、教学重点:能应用圆柱体侧面积、表面积的计算方法解决实际问题。

5、教学难点:探究圆柱体侧面积、表面积的计算方法。

6、教具准备:每组一套学具(包括能组成圆柱体的长方形、正方形、平行四边形和多个圆及其他图形)二、说学法新课标指出:学生学习应当是一个生动活泼的、主动地和富有个性的过程,除接受学习外,动手实践、自主探索与合作交流也是数学学习的重要方式,学生应当有足够的时间和空间经历观察、实验、猜测、验证、推理、计算、证明等活动过程。

《圆柱的表面积》教案范文(精选9篇)

《圆柱的表面积》教案范文(精选9篇)

《圆柱的表面积》教案《圆柱的表面积》教案范文(精选9篇)作为一位无私奉献的人民教师,就有可能用到教案,教案有助于学生理解并掌握系统的知识。

来参考自己需要的教案吧!下面是小编整理的《圆柱的表面积》教案范文,欢迎阅读,希望大家能够喜欢。

《圆柱的表面积》教案篇1教学内容:青岛版小学数学六年级下册第2单元信息窗2第1课时教学目标:1、理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。

2、通过观察、操作、实验、分析、比较、概括等活动探究出圆柱侧面积和表面积的计算方法,并能运用解决生活中相应的实际问题。

3、经历探索圆柱表面积计算公式的过程,培养学生发现问题和解决问题的、能力,发展学生的空间观念。

教学重难点教学重点:理解圆柱表面积计算公式,并能运用圆柱表面积计算公式解决简单的实际问题。

教学难点:圆柱体侧面积计算方法的推导。

教具、学具教师准备:圆柱体教具、多媒体课件。

学具准备:剪刀、直尺、一些容易剪开的圆柱形纸筒。

教学过程:一、创设情境,提出问题1、复习旧知,做好铺垫谈话:同学们还记得长方形的面积怎样计算吗?你能用字母说一说吗?圆的周长怎样计算?圆的面积呢?圆柱的特征是什么?2、感知情境,收集信息。

谈话:今天,咱们继续研究有关圆柱的知识。

你想了解一下这种纸筒是怎样生产出来的吗?下面我们一起到生产车间去参观一下。

(多媒体播放纸筒的生产过程。

)3、提出问题,明确目标。

谈话:根据屏幕展示情境图右侧的圆柱形纸筒成品及其数据,你能提出什么数学问题?学生可能提出:纸筒包括哪几部分?做一个圆柱体纸筒需要多少纸板?……二、小组合作,自主探究1、明确问题。

(引导学生选择有价值的数学问题。

)谈话:做一个这样的圆柱形纸筒,至少需要多大的纸板?实际上是求什么?根据学生的回答,适时总结求需要多大的纸板,就是求圆柱形纸筒的表面积。

板书:圆柱的表面积2、自主探究。

谈话:怎样求圆柱的表面积呢?我们一起来研究吧!师出示探究提示:⑴看一看,圆柱的表面包括几部分?怎样计算它们的面积?⑵想一想,能否将这个曲面转化成我们学过的平面图形?⑶试一试,利用你们手中用纸围成的圆柱沿着高线剪开图,看你有什么发现?⑷你能推导出圆柱的表面积的计算公式吗?和同伴交流一下。

圆柱体的表面积与体积

圆柱体的表面积与体积

圆柱体的表面积与体积圆柱体是一种常见的几何体,具有圆柱形状的特点。

圆柱体由两个平行且相等的圆面以及连接两个圆面的矩形面构成。

在实际生活和工作中,理解圆柱体的表面积与体积的计算方法是非常重要的。

一、圆柱体的表面积圆柱体的表面积指的是圆柱体外部所有的面积总和。

圆柱体的表面积计算公式为:表面积= 2πr(r + h)其中,r表示圆柱体的底面半径,h表示圆柱体的高。

公式中的π表示圆周率,约等于3.14159。

举例来说,如果一个圆柱体的底面半径为3cm,高为5cm,那么该圆柱体的表面积可以通过代入公式计算得出:表面积= 2π × 3(3 + 5) = 2π × 3 × 8 = 48π ≈ 150.796cm²所以,该圆柱体的表面积约为150.796平方厘米。

二、圆柱体的体积圆柱体的体积指的是圆柱体内部可以容纳的物体的空间大小。

圆柱体的体积计算公式为:体积= πr²h其中,r表示圆柱体的底面半径,h表示圆柱体的高。

继续以上面的例子为例,圆柱体的底面半径为3cm,高为5cm,那么该圆柱体的体积可以通过代入公式计算得出:体积= π × 3² × 5 = π × 3² × 5 = 45π ≈ 141.371cm³所以,该圆柱体的体积约为141.371立方厘米。

三、圆柱体表面积与体积的关系圆柱体的表面积与体积之间存在一定的关系。

一般来说,当圆柱体的表面积增大时,其体积也会随之增大;当圆柱体的表面积减小时,其体积也会随之减小。

通过对比计算不同表面积的圆柱体的体积可以得出这一结论。

例如,将一个圆柱体的底面半径固定为3cm,分别计算当圆柱体的高为5cm、10cm和15cm时的体积:当高为5cm时,体积≈ 141.371cm³当高为10cm时,体积≈ 282.743cm³当高为15cm时,体积≈ 424.115cm³可以发现,圆柱体的体积随着高的增大而增大。

初中数学知识归纳圆柱体的表面积与体积计算方法

初中数学知识归纳圆柱体的表面积与体积计算方法

初中数学知识归纳圆柱体的表面积与体积计算方法初中数学知识归纳:圆柱体的表面积与体积计算方法圆柱体是初中数学中常见的几何体之一,它具有许多特点和性质。

在本文中,我们将重点讨论圆柱体的表面积和体积计算方法。

通过归纳这两个计算公式,我们可以更好地理解和应用圆柱体的相关知识。

一、圆柱体的表面积计算方法圆柱体的表面积是指该几何体侧面以及两个底面的总面积。

为了计算圆柱体的表面积,我们需要用到几何学中的一些基本公式。

1. 圆的周长公式首先,我们来回顾一下圆的周长公式。

圆的周长是指圆的边界长度,也就是圆的周长。

根据圆的定义,圆的周长等于2π乘以半径(C =2πr)。

2. 圆的面积公式接下来,我们来回顾一下圆的面积公式。

圆的面积是指圆内部的区域面积。

根据圆的定义,圆的面积等于π乘以半径的平方(A = πr²)。

3. 圆柱体的侧面积圆柱体的侧面是由两个平行的圆底面连接而成的。

如果我们将圆柱体“展开”,可以得到一个矩形。

这个矩形的长度等于圆周长,宽度等于圆的高度。

因此,圆柱体的侧面积等于2πr乘以h(S侧= 2πrh)。

4. 圆柱体的底面积圆柱体有两个底面,它们的形状都是圆。

我们可以使用圆的面积公式来计算圆柱体的底面积。

所以,圆柱体的底面积等于πr²(S底 =πr²)。

由于圆柱体的侧面和两个底面都是叠加在一起的,所以圆柱体的表面积等于两倍的圆柱体侧面积加上两个圆柱体底面积(S = 2S侧 + 2S 底= 2πrh + 2πr²)。

二、圆柱体的体积计算方法圆柱体的体积是指该几何体内部所占据的三维空间。

同样地,我们可以使用几何学中的一些基本公式来计算圆柱体的体积。

1. 圆柱体的底面积首先,我们需要计算圆柱体的底面积。

根据之前的讨论,圆柱体的底面积等于πr²(S底= πr²)。

2. 圆柱体的高度接下来,我们需要测量圆柱体的高度。

圆柱体的高度是指两个底面之间的距离。

如何计算圆柱体的表面积

如何计算圆柱体的表面积

如何计算圆柱体的表面积在我们的日常生活和学习中,经常会遇到各种各样的几何图形,圆柱体就是其中一种常见的形状。

比如我们喝的饮料罐、使用的铅笔、家里的柱子等等,很多都是圆柱体。

那你有没有想过,如何计算圆柱体的表面积呢?今天,咱们就一起来研究研究这个问题。

要计算圆柱体的表面积,首先得搞清楚圆柱体的构成。

圆柱体是由两个底面和一个侧面组成的。

底面是两个完全相同的圆,侧面则是一个曲面。

我们先来看看圆柱体的底面积怎么算。

圆的面积公式大家应该都很熟悉,那就是 S =πr² ,其中 S 表示面积,π 通常取 314 左右,r 表示圆的半径。

因为圆柱体有两个底面,所以圆柱体的两个底面积之和就是2πr² 。

接下来,就是圆柱体侧面的面积计算啦。

圆柱体的侧面展开后是一个长方形,这个长方形的长等于底面圆的周长,宽等于圆柱体的高。

底面圆的周长公式是 C =2πr ,所以侧面长方形的面积就是底面圆的周长乘以圆柱体的高,即2πrh 。

那么,圆柱体的表面积就等于两个底面积加上侧面积,用公式表示就是:S =2πr² +2πrh 。

为了让大家更清楚地理解这个公式,咱们来举个例子。

假设一个圆柱体的底面半径是 3 厘米,高是 10 厘米。

先算底面积:π 取 314 ,一个底面的面积就是 314×3²= 2826 平方厘米,两个底面的面积就是 2×2826 = 5652 平方厘米。

再算侧面积:底面圆的周长是 2×314×3 = 1884 厘米,侧面积就是1884×10 = 1884 平方厘米。

最后算表面积:表面积就是 5652 + 1884 = 24492 平方厘米。

在实际计算中,一定要注意单位的统一。

如果半径和高的单位不一致,要先把单位换算成相同的,再进行计算。

另外,还有一些特殊情况需要注意。

比如,如果圆柱体是无盖的,那么表面积就只需要计算一个底面积加上侧面积;如果圆柱体只有上盖或者只有下盖,那就要相应地调整计算的部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲:圆柱体的表面积
一、知识梳理
1、认识圆柱体
2、圆柱体各部分名称及特征
3、圆柱体表积
(1)圆柱侧面积
罐头的侧面贴了一张商标纸, 你能想办法算出这张商标纸的面积吗? 你们是怎么算的?展开后的长方形商标纸的长与宽,与圆柱中的什么关系?(长方形的长就是圆柱的底面周长,宽就是圆柱的高) 如果不展开,能算出这张商标纸的面积吗?你是怎么算的?先算什么?再算什么?小结:算商标纸的面积,实际上就是算圆柱的侧面积。

怎么算圆柱的侧面积?
圆柱的侧面积=底面周长×高
长方形的面积=长×宽.
(2)圆柱底面圆面积
二、基础例
1、求下列圆柱体的侧面积
(1)底面半径是3厘米,高是4厘米;
(2)底面直径是4厘米,高是5厘米。

(3)底面周长是12.56厘米,高是4厘米。

2.求下列圆柱体的表面积
(1)底面半径是4厘米,高是6厘米;
(2)底面直径是6厘米,高是12厘米。

(3)底面周长是25.12厘米,高是8厘米。

三、应用题:
1.用铁皮制作一个圆柱形烟囱,要求底面直径是3分米,高是15分米,制作这个烟囱至少需要铁皮多少平方分米?(接头处不计)
2.用铁皮制作一个圆柱形汽油桶,要求底面半径是4分米,高是12分米,制作10个这样的油桶至少需要铁皮多少平方分米?(接头处不计)
3.把一个底面积是15.7平方厘米的圆柱,切成两个同样大小的圆柱,表面积增加了()平方厘米。

相关文档
最新文档