八年级数学上册与三角形有关的线段
人教版数学八年级上册第十一章三角形第一课《与三角形有关的线段》
由以上讨论可知,其他两边的长分别为7 厘米,7 厘米或6 厘米,8 厘米.
课堂小结
边、顶点、内角
A
概念
(直角、 锐角、钝
c
b
三
按角分 角)三角
角
分类 形B
a
C
形 按边分
性质
三角形两边的和大于第三边. 三角形两边的差小于第三边.
等腰三角形的周长为20厘米. (1)若已知腰长是底长的2倍,求各边的长; (2)若已知一边长为6厘米,求其他两边的长.
解:(1)设底边长为x厘米,则腰长为2x 厘米. x + 2x + 2x = 20, 解得 x = 4.
所以三边长分别为4cm,8cm,8cm.
(2)如果6 厘米长的边为底边,设腰长为x 厘米,则6 + 2x = 20,解得x = 7;
所以,三角形的特征有: (1)三条线段;(2)不在同一直线上;(3)首尾顺次连接.
探究新知
①边:组成三角形的每条线段叫做三角形的边.
②顶点:每两条线段的交点叫做三角形的顶点.
③内角:相邻两边组成的角.
顶点A
角
边c
边b
顶点B
角 边a
角 顶点C
探究新知
三角形的表示: 三角形用符号“△”表示.
记作“△ ABC”读作“三角形ABC”.
课堂检测
基础巩固题
1. 如图,图中直角三角形共有( C )
A.1个 B.2个
C.3个
D.4个
2. 下列各组数中,能作为一个三角形三边边长的是
( C)
A.1,1,2
B.1,2,4
八年级上册数学知识点总结:与三角形有关的线段、角
八年级上册数学知识点总结:与三角形有关的线段、角 学习是一个循序渐进的过程,也是一个不断积累不断创新的过程。
下面小编为大家整理了八年级上册数学知识点总结:与三角形有关的线段、角,欢迎大家参考阅读!【一】三角形的有关概念1.三角形:由不在同一直线上的三条线段首尾顺次相接组成的图形叫三角形。
三角形的特征:①不在同一直线上;②三条线段;③首尾顺次相接;④三角形具有稳定性。
2.三角形中的三条重要线段:角平分线、中线、高(1)角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
(2)中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
(3)高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
说明:①三角形的角平分线、中线、高都是线段;②三角形的角平分线、中线都在三角形内部且都交于一点;三角形的高可能在三角形的内部(锐角三角形)、外部(钝角三角形),也可能在边上(直角三角形),它们(或延长线)相交于一点。
【二】三角形的边和角三边关系:三角形中任意两边之和大于第三边。
由三边关系可以推出:三角形任意两边之差小于第三边。
【三】三角形内、外角的关系1.三角形的内角和等于180°。
2.直角三角形的两个锐角互余。
3.三角形的一外角等于和它不相邻的两个内角之和,三角形的一个外角大于任何一个和它不相邻的内角。
4.三角形的外角和为360°。
【四】等腰三角形与直角三角形:1.等腰三角形:有两条边相等的三角形称为等腰三角形,相等的两边叫做等腰三角形的腰,三条边都相等的三角形叫做等边三角形(或正三角形)。
说明:等边三角形是等腰三角形的特殊情况。
2.直角三角形:有一个角是直角的三角形是直角三角形,它的两个锐角互余。
以上就是查字典数学网为大家整理的八年级上册数学知识点总结:与三角形有关的线段、角,怎么样,大家还满意吗?希望对大家的学习有所帮助,同时也祝大家学习进步,考试顺利!。
八年级数学上学期与三角形有关的线段(基础)知识讲解——含课后作业与答案
与三角形有关的线段(基础)知识讲解【学习目标】1. 理解三角形及与三角形有关的概念,掌握它们的文字、符号语言及图形表述方法;2. 理解并会应用三角形三边间的关系;3. 理解三角形的高、中线、角平分线及重心的概念,学会它们的画法及简单应用;4. 对三角形的稳定性有所认识,知道这个性质有广泛的应用.【要点梳理】要点一、三角形的定义及分类1. 定义: 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.要点诠释:(1)三角形的基本元素:①三角形的边:即组成三角形的线段;②三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角; ③三角形的顶点:即相邻两边的公共端点.(2)三角形定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”.(3) 三角形的表示:三角形用符号“△”表示,顶点为A 、B 、C 的三角形记作“△ABC ”,读作“三角形ABC ”,注意单独的△没有意义;△ABC 的三边可以用大写字母AB 、BC 、AC 来表示,也可以用小写字母a 、b 、c 来表示,边BC 用a 表示,边AC 、AB 分别用b 、c 表示.【高清课堂:与三角形有关的线段 2、三角形的分类 】2.三角形的分类(1)按角分类:⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形 锐角三角形斜三角形 钝角三角形 要点诠释:①锐角三角形:三个内角都是锐角的三角形;②钝角三角形:有一个内角为钝角的三角形.(2)按边分类:要点诠释:①等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角;②等边三角形:三边都相等的三角形.要点二、三角形的三边关系定理:三角形任意两边的和大于第三边.推论:三角形任意两边的差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.(3)证明线段之间的不等关系.要点三、三角形的高、中线与角平分线1、三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.三角形的高的数学语言:如下图,AD 是ΔABC 的高,或AD 是ΔABC 的BC 边上的高,或AD⊥BC 于D ,或∠ADB =∠ADC=∠90°.注意:AD 是ΔABC 的高 ∠ADB=∠ADC=90°(或AD⊥BC 于D);要点诠释:(1)三角形的高是线段;(2)三角形有三条高,且相交于一点,这一点叫做三角形的垂心;(3)三角形的三条高:(ⅰ)锐角三角形的三条高在三角形内部,三条高的交点也在三角形内部;(ⅱ)钝角三角形有两条高在三角形的外部,且三条高的交点在三角形的外部;(ⅲ)直角三角形三条高的交点是直角的顶点.2、三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线.三角形的中线的数学语言:如下图,AD 是ΔABC 的中线或AD 是ΔA BC 的BC 边上的中线或BD =CD =21BC.要点诠释:(1)三角形的中线是线段;(2)三角形三条中线全在三角形内部;(3)三角形三条中线交于三角形内部一点,这一点叫三角形的重心;(4)中线把三角形分成面积相等的两个三角形.3、三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线.三角形的角平分线的数学语言:如下图,AD 是ΔABC 的角平分线,或∠BAD=∠CAD 且点D 在BC 上.注意:AD 是ΔABC 的角平分线 ∠BAD=∠DAC=21∠B AC (或∠BAC=2∠BAD=2∠DAC) . 要点诠释:(1)三角形的角平分线是线段;(2)一个三角形有三条角平分线,并且都在三角形的内部;(3)三角形三条角平分线交于三角形内部一点,这一点叫做三角形的内心;(4)可以用量角器或圆规画三角形的角平分线.要点四、三角形的稳定性三角形的三条边确定后,三角形的形状和大小就确定不变了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在门框未安好之前,先在门框上斜着钉一根木板,使它不变形.【典型例题】类型一、三角形的定义及表示1.如图所示.(1)图中共有多少个三角形?并把它们写出来;(2)线段AE是哪些三角形的边?(3)∠B是哪些三角形的角?【思路点拨】在(1)问中数三角形的个数时,应按一定规律去找,这样才会不重、不漏地找出所有的三角形;在(2)问中,突破口在于由三角形定义知,除了A、E再找一个第三点,使这点不在AE上,便可得到以AE为边的三角形;(3)问的突破口是∠B一定是以B为一个顶点组成的三角形中.【答案与解析】解:(1)图中共有6个三角形,它们是△ABD,△ABE,△ABC,△ADE,△ADC,△AEC.(2)线段AE分别为△ABE,△ADE,△ACE的边.(3)∠B分别为△ABD,△ABE,△ABC的角.【总结升华】在数三角形的个数时一定要按照一定的顺序进行,做到不重不漏.举一反三:【变式】如图,,以A为顶点的三角形有几个?用符号表示这些三角形.【答案】3个,分别是△EAB, △BAC, △CAD.类型二、三角形的三边关系2. 三根木条的长度如图所示,能组成三角形的是( )【答案】D.【解析】要构成一个三角形.必须满足任意两边之和大于第三边.在运用时习惯于检查较短的两边之和是否大于第三边.A、B、C三个选项中,较短两边之和小于或等于第三边.故不能组成三角形.D选项中,2cm+3cm>4cm.故能够组成三角形.【总结升华】判断以三条线段为边能否构成三角形的简易方法是:①判断出较长的一边;②看较短的两边之和是否大于较长的一边,大于则能够成三角形,不大于则不能够成三角形.【高清课堂:与三角形有关的线段 例1】举一反三:【变式】判断下列三条线段能否构成三角形.(1) 3,4,5; (2) 3,5,9 ; (3) 5,5,8.【答案】(1)能; (2)不能; (3)能.3.若三角形的两边长分别是2和7,则第三边长c 的取值范围是_______.【答案】59c <<【解析】三角形的两边长分别是2和7, 则第三边长c 的取值范围是│2-7│<c<2+7, 即5<c<9.【总结升华】三角形的两边a 、b ,那么第三边c 的取值范围是│a -b│<c<a+b.举一反三:【变式】(2015春•盱眙县期中)四边形ABCD 是任意四边形,AC 与BD 交点O .求证:AC+BD >(AB+BC+CD+DA ).【答案】证明:∵在△OAB 中OA+OB >AB在△OAD 中有OA+OD >AD ,在△ODC 中有OD+OC >CD ,在△OBC 中有OB+OC >BC ,∴OA+OB+OA+OD+OD+OC+OC+OB >AB+BC+CD+DA即2(AC+BD )>AB+BC+CD+DA ,即AC+BD >(AB+BC+CD+DA ).类型三、三角形中重要线段4. (2016春•江阴市月考)如图,AD ⊥BC 于点D ,GC ⊥BC 于点C ,CF ⊥AB 于点F ,下列关于高的说法中错误的是( )A .△ABC 中,AD 是BC 边上的高B .△GBC 中,CF 是BG 边上的高C .△ABC 中,GC 是BC 边上的高D .△GBC 中,GC 是BC 边上的高【思路点拨】根据三角形的一个顶点到对边的垂线段叫做三角形的高对各选项分析判断后利用排除法求解.【答案与解析】解:A 、△ABC 中,AD 是BC 边上的高正确,故本选项错误;B 、△GBC 中,CF 是BG 边上的高正确,故本选项错误;C 、△ABC 中,GC 是BC 边上的高错误,故本选项正确;D 、△GBC 中,GC 是BC 边上的高正确,故本选项错误.故选C .【总结升华】本题考查了三角形的高的定义:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高,是基础题,熟记概念是解题的关键.举一反三:【变式】(2015•长沙)如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .【答案】A . 5.如图所示,CD 为△ABC 的AB 边上的中线,△BCD 的周长比△ACD 的周长大3cm ,BC =8cm ,求边AC 的长.【思路点拨】根据题意,结合图形,有下列数量关系:①AD =BD ,②△BCD 的周长比△ACD 的周长大3.【答案与解析】解:依题意:△BCD 的周长比△ACD 的周长大3cm ,故有:BC+CD+BD-(AC+CD+AD)=3.又∵ CD 为△ABC 的AB 边上的中线,∴ AD =BD ,即BC-AC =3.又∵ BC =8,∴ AC =5.答:AC 的长为5cm .【总结升华】运用三角形的中线的定义得到线段AD =BD 是解答本题的关键,另外对图形中线段所在位置的观察,找出它们之间的联系,这种数形结合的数学思想是解几何题常用的方法.举一反三:【变式】如图所示,在△ABC 中,D 、E 分别为BC 、AD 的中点,且4ABC S △,则S 阴影为________.【答案】1.类型四、三角形的稳定性6. 如图所示,木工师傅在做完门框后,为防止变形常常像图中那样钉上两条斜拉的木板条(即AB、CD),这样做的数学道理是什么?【答案与解析】解:三角形的稳定性.【总结升华】本题是三角形的稳定性在生活中的具体应用.实际生活中,将多边形转化为三角形都是为了利用三角形的稳定性.与三角形有关的线段(基础)巩固练习【巩固练习】一、选择题1.(2016•西宁)下列每组数分别是三根木棒的长度,能用他们摆成三角形的是( ).A.3cm ,4cm,8cm B.8cm,7cm,15cmC.5cm ,6cm,11cm D.13cm ,12cm,20cm2.如图所示的图形中,三角形的个数共有( ).A.1个 B.2个 C.3个 D.4个3.(2015春•常州期中)如果三角形的两边长分别为4和5,第三边的长是整数,而且是奇数,则第三边的长可以是()A. 6 B. 7 C. 8 D. 94.为估计池塘两岸A、B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是( ).A.5m B.15m C.20m D.28m5.三角形的角平分线、中线和高都是( ).A.直线 B.线段 C.射线 D.以上答案都不对6.下列说法不正确的是( ).A.三角形的中线在三角形的内部 B.三角形的角平分线在三角形的内部C.三角形的高在三角形的内部 D.三角形必有一高线在三角形的内部7.如图,AM是△ABC的中线,那么若用S1表示△ABM的面积,用S2表示△ACM的面积,则S1和S2的大小关系是( ).A.S1>S2 B.S1<S2 C.S1=S2 D.以上三种情况都有可能8.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是( ).A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短二、填空题9.(2016•金平区一模)如图,自行车的三角形支架,这是利用三角形具有________性.10.如果三角形的两边长分别是3 cm和6 cm,第三边长是奇数,那么这个三角形的第三边长为________.11. 已知等腰三角形的两边分别为4cm和7cm,则这个三角形的周长为________.12. 如图,AD是△ABC的角平分线,则∠______=∠______=12∠_______;BE是△ABC的中线,则_____=_____=12____ ;CF是△ABC的高,则∠________=∠________=90°,CF________AB.13. 如图,AD、AE分别是△ABC的高和中线,已知AD=5cm,CE=6cm,则△ABE和△ABC的面积分别为________________.14.(2015春•焦作校级期中)AD是△ABC的边BC上的中线,AB=3,AC=4,则中线AD的取值范围是_____________.三、解答题15.判断下列所给的三条线段是否能围成三角形?(1)5cm,5cm,a cm(0<a<10);(2)a+1,a+2,a+3;(3)三条线段之比为2:3:5.16.如图,在△ABC中,∠BAD=∠CAD,AE=CE,AG⊥BC,AD与BE相交于点F,试指出AD、AF分别是哪两个三角形的角平分线,BE、DE分别是哪两个三角形的中线?AG是哪些三角形的高?17.(2014春•苏州期末)如图,已知△ABC的周长为21cm,AB=6cm,BC边上中线AD=5cm,△ABD周长为15cm,求AC长.18.利用三角形的中线,你能否将图中的三角形的面积分成相等的四部分(给出3种方法)?【答案与解析】一、选择题1. 【答案】D.2. 【答案】C;【解析】三个三角形:△ABC, △ACD, △ABD.3. 【答案】B;【解析】解:由题意,令第三边为x,则5﹣4<x<5+4,即1<x<9,∵第三边长为奇数,∴第三边长是3或5或7.∴三角形的第三边长可以为7.故选B.4. 【答案】D;【解析】因为第三边满足:|另两边之差|<第三边<另两边之和,故|6-12<AB<16+12 即4<AB<28故选D.5. 【答案】B.6. 【答案】C;【解析】三角形的三条高线不一定都在三角形内部.7. 【答案】C;【解析】中线把三角形分成面积相等的两个三角形.8. 【答案】A.二、填空题9. 【答案】稳定.10.【答案】5 cm或7 cm;【解析】三角形三边关系的应用.11.【答案】15cm或18cm;【解析】按腰为4 cm或7 cm分类讨论.12.【答案】BAD CAD BAC;AE CE AC;AFC BFC ⊥.13.【答案】15cm2,30cm2;【解析】S△ABE=S△A CE=15 cm2,S△AB C=2 S△ABE=30 cm2.14.【答案】解:延长AD至E,使DE=AD,连接CE.∵BD=CD,∠ADB=∠EDC,AD=DE,∴△ABD≌△ECD,∴CE=AB.在△ACE中,CE﹣AC<AE<CE+AC,即1<2AD<7,<AD<.故答案为:<AD<.三、解答题15.【解析】解:(1)5+5=10>a(0<a<10),且5+a>5,所以能围成三角形;(2)当-1<a<0时,因为a+1+a+2=2a+3<a+3,所以此时不能围成三角形,当a=0时,因为a+1+a+2=2a+3=3,而a+3=3,所以a+1+a+2=a+3,所以此时不能围成三角形.当a >0时,因为a+1+a+2=2a+3>a+3.所以此时能围成三角形.(3)因为三条线段之比为2:3:5,则可设三条线段的长分别是2k,3k,5k,则2k+3k=5k不满足三角形三边关系.所以不能围成三角形.16.【解析】解:AD、AF分别是△ABC,△ABE的角平分线.BE、DE分别是△ABC,△ADC的中线,AG是△ABC,△ABD,△ACD,△ABG,△ACG,△ADG的高.17.【解析】解:∵AB=6cm,AD=5cm,△ABD周长为15cm,∴BD=15﹣6﹣5=4cm,∵AD是BC边上的中线,∴BC=8cm,∵△ABC的周长为21cm,∴AC=21﹣6﹣8=7cm.故AC长为7cm.18.【解析】解:如图。
八年级数学三角形与全等三角形知识点大全
八年级数学三角形知识点归纳一、与三角形有关的线段1、不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形2、等边三角形:三边都相等的三角形3、等腰三角形:有两条边相等的三角形4、不等边三角形:三边都不相等的三角形5、在等腰三角形中,相等的两边都叫腰,另一边叫底,两腰的夹角叫做顶角,腰与底边的夹角叫做底角6、三角形分类:不等边三角形等腰三角形:底边与腰不等的等腰三角形等边三角形7、三角形两边之与大于第三边,两边之差小于第三边注:1)在实际运用中,只需检验最短的两边之与大于第三边,则可说明能组成三角形2)在实际运用中,已经两边,则第三边的取值范围为:两边之差<第三边<两边之与3)所有通过周长相加减求三角形的边,求出两个答案的,注意检查每个答案能否组成三角形8、三角形的高:从△ABC的顶点A向它所对的边BC所在的直线画垂线,垂足为D,所得线段AD叫做△ABC的边BC上的高9、三角形的中线:连接△ABC的顶点A与它所对的边BC的中点D,所得线段AD叫做△ABC的边BC上的中线注:两个三角形周长之差为x,则存在两种可能:即可能是第一个△周长大,也有可能是第一个△周长小10、三角形的角平分线:画∠A的平分线AD,交∠A所对的边BC于D,所得线段AD叫做△ABC的角平分线11、三角形的稳定性,四边形没有稳定性二、与三角形有关的角1、三角形内角与定理:三角形三个内角的与等于180度。
证明方法:利用平行线性质2、三角形的外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角3、三角形的一个外角等于与它不相邻的两个内角的与4、三角形的一个外角大于与它不相邻的任何一个内角5、三角形的外角与为360度6、等腰三角形两个底角相等三、多边形及其内角与1、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形2、N边形:如果一个多边形由N条线段组成,那么这个多边形就叫做N边形。
3、内角:多边形相邻两边组成的角叫做它的内角4、外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角5、对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线6、正多边形:各个角都相等,各条边都相等的多边形叫做正多边形7、多边形的内角与:n边形内角与等于(n-2)*1808、多边形的外角与:360度注:有些题,利用外角与,能提升解题速度9、从n边形的一个顶点出发,可以引n-3条对角线,它们将n 边形分成n-2个△注:探索题型中,一定要注意是否是从N边形顶点出发,不要盲目背诵答案10、从n边形的一个顶点出发,可以引n-3条对角线,n边形共有对角线23)-n(n条。
人教版八年级数学上册说课稿11.1与三角形有关的线段
人教版八年级数学上册说课稿11.1 与三角形有关的线段一. 教材分析人教版八年级数学上册第11.1节《与三角形有关的线段》,这部分内容是学生在学习了三角形的性质和分类后,进一步研究三角形的线段性质。
本节内容主要包括三角形的角平分线、中线和高线的性质及其应用。
这些线段在三角形中具有重要的地位,对于学生深入理解三角形的结构特征和解决三角形相关问题具有重要意义。
二. 学情分析学生在学习本节内容前,已经掌握了三角形的基本性质和分类,对三角形有一定的认识。
但学生对于三角形的角平分线、中线和高线的性质及其应用可能还比较陌生,因此需要在教学过程中引导学生通过观察、思考、探究,从而理解和掌握这些线段的性质。
三. 说教学目标1.知识与技能目标:使学生了解三角形的角平分线、中线和高线的定义,掌握它们的性质及其应用。
2.过程与方法目标:通过观察、思考、探究,培养学生解决问题的能力和空间想象力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和勇于探索的精神。
四. 说教学重难点1.教学重点:三角形的角平分线、中线和高线的性质及其应用。
2.教学难点:理解和证明三角形的角平分线、中线和高线的性质,以及如何在实际问题中灵活运用。
五. 说教学方法与手段1.教学方法:采用问题驱动的教学方法,引导学生通过观察、思考、探究,从而理解和掌握三角形的角平分线、中线和高线的性质。
2.教学手段:利用多媒体课件辅助教学,通过动画演示和图形展示,帮助学生直观地理解三角形的线段性质。
六. 说教学过程1.导入新课:通过复习三角形的基本性质和分类,引出三角形的角平分线、中线和高线的概念。
2.探究性质:引导学生观察三角形,发现角平分线、中线和高线的特点,学生分组讨论,总结出它们的性质。
3.证明性质:学生代表上台演示和证明三角形的角平分线、中线和高线的性质,其他学生进行评价和补充。
4.应用拓展:给出一些实际问题,让学生运用所学的线段性质进行解决,教师进行指导和点评。
11.1.1 与三角形有关的线段 初中数学人教版八年级上册教学课件
直角三角形
形
钝角三角形
探究二
除了按角的大小分类,还可以怎样分类?
①
②
三边都不相等的三角形 三边都不相等的三角形
③ 三边都不相等的三角形
④ 等腰三角形
⑤ 等边三角形
⑥ 等腰三角形
按边的关系分类:
三边都不相等的三角形
按边的相等关系
底边和腰不相等的
等腰三角形
等腰三角形
等边三角形
小结:三角形的分类
1.按角的大小分类
因此,以1,2,3无法组成三角形. 因此,以2,3,4可以组成三角形.
因此,判断三条线段能否组成三角形时,只需利用 “较短的两边之和大于第三边”就可以进行判断.
小试牛刀
下列长度的三条线段能否组成三角形?为什么? (1)3,4,8 ( 不能 ) 因为:3 + 4 < 8 (2)2,5,6 ( 能 ) 因为:2 + 5 > 6 (3)4,6,10 ( 不能 ) 因为:4 + 6 = 10
(1)AB + AC > BC (2)BC+ AC > AB (3)BC +AB > AC
AB > BC - AC AC > AB -BC BC > AC -AB
结论2: 三角形两边之差小于第三边
第三边的取值范围: 两边之差<第三边<两边之和
较大的边-较小的边
小试牛刀
已知三角形一边为5,另一边为3,求第三边长c的取值
变式2:已知等腰三角形的一边长为5cm,周长为17cm,则其他两边长 为_5_c_m_,__7_c_m_或__6_c_m_,_.6cm
学以致用
1.下图中三角形的个数是( D )
与三角形有关的线段(课件)八年级数学上册(人教版)
1
AD×BC= BP×AC.
2
2
24
代入数值,可解得BP= .
5
【点睛】面积法的应用:若涉及两条高求长度,一般需结合面积(但不求出
面积),利用三角形面积的两种不同表示方法列等式求解.
如图所示,AD,CE是△ABC的两条高,AB=6cm,BC=12cm,CE=9cm.
(1)求△ABC的面积;
(2)求AD的长.
第十一章 三角形
11.1 与三角形有关的线段
(11.1.1-11.1.3)
情景引入
在我们日常生活中经常能看到三角形的影子.
减速慢行
注意儿童
前方村庄
11.1.1 三角形的边
三角形的概念
问题1:观察下面三角形的形成过程,说一说什么叫三
角形?
A
定义:由不在同一条直线上的三条
线段首尾顺次相接所组成的图形叫
解:
1
2
1
2
(1)由题意得:△ = AB×CE= ×6×9=27cm2 .
1
2
(2)∵△ = BC×AD,
∴
1
27=
2
×12×AD
解得AD=4.5cm.
思考 已知D是BC的中点,试问△ABD的面积与△ADC的面积有何
关系?
连接△ABC的顶点A和它所对的边BC的
中点D,所得线段AD叫做△ABC的边BC
把一条线段分成两条相等的线段的点.
3.角平分线的定义:
一条射线把一个角分成两个相等的角,这条射线叫做这个角
的平分线.
思考 你还记得“过一点画已知直线的垂线”吗?
A
B
思考 如何求△ABC的面积?
D
从△ABC的顶点A向它所对的边BC所在直线画垂线,垂足为D,所
八年级上册数学与三角形有关的线段
八年级上册数学与三角形有关的线段与三角形有关的线段(人教版八年级上册)一、三角形的边。
1. 三角形的定义。
- 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
- 例如,在△ABC中,线段AB、BC、AC是三角形的三条边,点A、B、C是三角形的三个顶点,∠A、∠B、∠C是三角形的三个内角。
2. 三角形的分类。
- 按边分类:- 三边都不相等的三角形。
- 等腰三角形:有两边相等的三角形叫做等腰三角形。
相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。
- 特别地,三边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形。
- 按角分类:- 锐角三角形:三个角都是锐角的三角形。
- 直角三角形:有一个角是直角的三角形。
- 钝角三角形:有一个角是钝角的三角形。
3. 三角形三边关系。
- 三角形两边的和大于第三边。
- 三角形两边的差小于第三边。
- 例如,已知一个三角形的三条边分别为a、b、c,则a + b>c,a - c < b等。
- 应用:判断三条线段能否组成三角形。
例如,三条线段的长分别为5、8、3,因为3+5 = 8,不满足两边之和大于第三边,所以这三条线段不能组成三角形。
二、三角形的高、中线与角平分线。
1. 三角形的高。
- 从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高。
- 三角形的三条高所在的直线相交于一点。
- 锐角三角形的三条高都在三角形的内部;直角三角形有两条高即两条直角边,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部。
2. 三角形的中线。
- 在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
- 三角形的三条中线相交于一点,这个点叫做三角形的重心。
- 三角形的一条中线把三角形分成两个面积相等的三角形。
因为等底同高的三角形面积相等,中线将对边平分,所以这两个三角形面积相等。
八年级数学上册11.1《与三角形有关的线段》三角形的高、中线与角平分线知识点解读素材新人教版
知识点解读:三角形的高、中线与角平分线知识点1:三角形的高、中线、角平分线(掌握) 知识详析: 三角形的高: 三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段. 高的叙述方法(右图):①的高;是ABC AD ∆ ②;D BC AD ,垂足为⊥③ 90=∠=∠CDA BDA BC D 上,且点在三角形的中线:三角形中,连结一个顶点和它对边中点的线段.几何语言:(右图)AD 是△ABC 的边BC 上的中线.逆向推理:若AD 是△ABC 的中线,则D 是边BC 的中点.三角形的角平分线:三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段.几何语言(图3):若∠1=∠2,则AD 是∠BAC 的角平分线.逆向推理:若AD 是角平分线,则∠1=∠2.【典例】1.三角形的高、中线和角平分线是代表线段还是代表射线或直线?解析:这是最基本,也最易混淆的基础知识,需要牢记的掌握.我们可以根据三角形的高、中线和角平分线的概念定义知道它们既不是射线,也不是直线,而均表示线段.2。
A B CD 1 2 图3A B C D 1 2 D C B A如图,在△ABC中,AE,AD分别是BC边上中线和高,(1)说明△ABE的面积与△AEC的面积有何关系?(2)你有什么发现?解析:关于三角形的面积,后面我们将要学到,三角形的面积公式为底乘高的一半.此时我们可以了解到同高等底的两个三角形的面积相等,三角形的中线把三角形分成两个面积相等的三角形.故△ABE的面积与△AEC的面积相等.知识点2:三角形的重心、垂心、内心、外心、旁心(了解)知识详析:重心是三条中线的交点,它到顶点的距离是它到对边中点距离的2倍.垂心是三条高的交点,它能构成很多直角三角形相似.内心是三条角平分线的交点,它到三边的距离相等.外心是三条边垂直平分线的交点,它到三个顶点的距离相等.旁心是一个内角平分线与其不相邻的两个外角平分线的交点,它到三边的距离相等.【典例】1.在△ABC中,边BC上的中线AD等于9cm,那么这个三角形的重心G到顶点A的距离是____cm.解析:根据重心的概念得出AG=2DG,即可得出答案.由AD等于9cm,故重心G到顶点A的距离是6cm.2。
八年级数学上册第十一章三角形111与三角形有关的线段11.1.1三角形的边
第十一章 11.1.1三角形的边知识点1:三角形的概念(1)定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.在此定义中,要特别注意“不在同一条直线上”、“三条线段”、“首尾顺次相接”这三个条件,缺一不可. 如图,在线段AB上取一点(除端点)C,三条线段AC、CB和AB是首尾顺次相接的,但它们却没有构成三角形.(2)组成:如图,三条边,即边AB、边BC、边CA;三个内角,即∠A、∠B、∠C;三个顶点,即点A、点B、点C. 三角形有三个顶点,三个角,三条边.(3)表示法:“三角形”用符号“△”表示,如上图,顶点是A、B、C的三角形,记作“△ABC”,读作“三角形ABC” .另外,△ABC的三边,有时也用a,b,c来表示,一般地,∠A对边a,∠B对边b,∠C对边c.如图上,顶点A所对的边BC用a表示,边AC、边AB分别用b、c来表示.归纳整理:我们通常数三角形的方法有:(1)按图形的形成过程(即重新画一遍图形,按照三角形形成的先后顺序去数).(2)按照三角形的大小去数.(3)可以从图中的某一条线段开始沿着一定的方向去数.(4)先固定一个顶点,变化另两个顶点来数.注意:通过三角形的定义可知,三角形的特征有:①三条线段;②不在同一条直线上;③首尾顺次相接.这是判断是否是三角形的标准.知识点2:三角形的分类(1)三角形按边分类:三角形(2)三角形按角的大小分类:三角形(3)按边分类中各种三角形的关系:归纳整理:(1)三边都不相等的三角形是不等边三角形,不等边三角形应该是指“三边都不相等”的三角形;有两边相等的三角形叫做等腰三角形,相等的两边叫做等腰三角形的腰;三边都相等的三角形叫做等边三角形.(2)等边三角形是特殊的等腰三角形,即底边和腰相等的等腰三角形.知识点3:三角形的三边关系(1) 三角形任意两边之和大于第三边.(2)三角形任意两边之差小于第三边.归纳整理:(1)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可以求出第三边的取值范围.并且对于三角形三边关系通常要与等腰三角形的知识连用,结合分类讨论思想求解.(2)三角形三边关系是“两点之间,线段最短”的具体应用.考点1:三角形的数法【例1】如图,图中有几个三角形,哪几个三角形?解:有6个三角形.它们分别是△ABE、△ABD、△ABC、△AED、△AEC、△ADC.点拨:只要符合有不在同一条直线上的三条线段首尾顺次相接,就是一个三角形.在数三角形的个数的问题上,要注意不重不漏的问题.形如例1这样的三角形的个数也可以根据点E、D把BC分成了三段,所以三角形的个数为3+2+1=6(个).考点2:三角形的分类【例2】设M表示直角三角形,N表示等腰三角形,P表示等边三角形,Q表示等腰直角三角形,则下列四个选项中,能表示它们之间关系的是( ).解:A.点拨:本题主要考查了三角形的分类以及不同三角形之间的关系,只要正确地理顺三角形之间的关系即可.等腰三角形与直角三角形的公共部分是等腰直角三角形,等腰三角形包括等边三角形和等腰直角三角形,只有选项A符合题意.考点3:三角形边的求法【例3】已知等腰三角形的周长是600px.(1)腰长是底边长的2倍,求腰长;(2)已知其中一边长为150px,求其他两边长.解:(1)设底边长为xcm,则腰长为2xcm.根据题意,得x+2x+2x=24.解得x=4.8.故腰长=2x=2×4.8=9.6(cm).(2)因为长为150px的边可能是腰,也可能是底,所以要分两种情况计算.当长为150px的边为腰时,则底边为24-6×2=12.由6+6=12,两边之和等于第三边,所以150px长为腰不能组成三角形,舍去.当长为150px的边为底边时,则腰长为(24-6)÷2=9.∵150px,225px,225px可以组成三角形,∴三角形其他两边长均为225px.点拨:计算(1)可以通过设未知数来进行计算,得出方程,通过求方程的解从而求出答案,其中体现了方程思想.计算(2)要注意分两种情况考虑,因为题目中没有说明这条边究竟是腰还是底边,所以通过其中一边长为150px,求其他两边的长应该分成两种情况考虑:一种是150px长的边为腰,另一种是150px长的边为底,体现了数学中的分类讨论思想.并且计算结果还要注意检查是否符合两边之和大于第三边.考点4:三角形的三边关系【例4】用7根火柴棒首尾顺次连接摆成一个三角形,能摆成不同的三角形的个数为.解:能摆成不同形状的三角形的个数为2.点拨:设一根火柴棒的长度为单位1,最短边不能大于2,若最短边大于2,则周长至少是9,不合题意.①当最短边长为1时,另两边长可能为1,5;2,4;3,3;其中当边长为1,1,5;1,2,4时不能构成三角形,只有1,3,3能构成三角形;②当最短边长为2时,另两边长可能为2,3;3,2;边长为2,2,3和2,3,2能构成三角形,但这两种三角形的形状相同.。
八年级数学上册第十一章三角形《与三角形有关的线段:三角形的稳定性》
教学设计2024秋季八年级数学上册第十一章三角形《与三角形有关的线段:三角形的稳定性》教学目标(核心素养)1.知识与技能:学生能够理解并解释三角形稳定性的原理,识别并举例说明三角形稳定性在日常生活中的应用。
2.数学思维:通过观察和实验,培养学生的观察分析能力、逻辑推理能力和空间想象能力。
3.问题解决:学会运用三角形稳定性的原理解决实际问题,如设计稳定的结构等。
4.情感态度:激发学生对数学与现实生活联系的兴趣,培养探索精神和创新意识。
教学重点•理解三角形稳定性的原理。
•识别并举例说明三角形稳定性在日常生活中的应用。
教学难点•深入理解三角形稳定性背后的数学原理,并能将其应用于解决实际问题。
教学资源•多媒体课件(包含三角形稳定性的动画演示、生活实例图片等)•三角形框架模型(可拆卸重组)•其他多边形框架模型(如四边形、五边形等,用于对比)•学生笔记本•黑板与粉笔教学方法•直观演示法:利用多媒体课件和实物模型直观展示三角形稳定性的原理。
•实验探究法:通过搭建不同形状的框架模型,让学生亲手操作,感受三角形稳定性的差异。
•讨论交流法:组织学生分组讨论,分享各自对三角形稳定性的理解和应用实例。
•归纳总结法:引导学生总结三角形稳定性的原理和应用,形成系统的知识体系。
教学过程导入新课•生活实例引入:展示一些利用三角形稳定性原理设计的建筑、桥梁、家具等图片,引导学生观察并思考这些结构为何如此稳定。
•提出问题:为什么三角形结构具有稳定性?而其他多边形(如四边形)则相对不稳定?从而引出本节课的主题。
新课教学1.理论讲解•定义阐述:简要介绍三角形稳定性的概念,即三角形在受到外力作用时不易变形,保持其形状和大小的稳定性。
•原理剖析:利用多媒体课件展示三角形稳定性的数学原理,如三角形的三边关系、角度关系等如何共同作用于维持其稳定性。
2.实验探究•搭建模型:分发三角形框架模型和其他多边形框架模型给学生,让他们亲手搭建并尝试施加外力,观察并记录不同形状框架的稳定性表现。
人教版数学八年级上册教案11.1《与三角形有关的线段》
人教版数学八年级上册教案11.1《与三角形有关的线段》一. 教材分析人教版数学八年级上册第11.1节《与三角形有关的线段》主要介绍了三角形的中线、角平分线和高的概念。
通过本节课的学习,学生能够理解三角形中线、角平分线和高的定义,掌握它们的基本性质,并为后续的三角形全等和三角形的证明打下基础。
二. 学情分析学生在七年级已经学习了线段的性质和三角形的基本概念,对线段和三角形有一定的认识。
但部分学生对概念的理解不够深入,对性质的运用不够熟练。
因此,在教学过程中,需要引导学生通过观察、操作、思考、交流等活动,加深对三角形中线、角平分线和高的理解,提高运用性质解决问题的能力。
三. 教学目标1.了解三角形的中线、角平分线和高的定义,掌握它们的基本性质。
2.能够运用中线、角平分线和高的性质解决一些简单问题。
3.培养学生的观察能力、操作能力、思考能力和交流能力。
四. 教学重难点1.重点:三角形的中线、角平分线和高的定义及基本性质。
2.难点:运用中线、角平分线和高的性质解决问题。
五. 教学方法1.采用问题驱动法,引导学生观察、操作、思考、交流,发现规律。
2.运用多媒体辅助教学,展示清晰的图形和动画,帮助学生形象地理解概念和性质。
3.采用案例分析法,精选典型例题,让学生在解决实际问题中掌握知识。
六. 教学准备1.多媒体教学设备。
2.三角板、直尺、量角器等绘图工具。
3.准备相关课件和教学素材。
七. 教学过程1. 导入(5分钟)利用多媒体展示一个三角形,引导学生观察并思考:三角形有哪些特殊的线段?2. 呈现(10分钟)介绍三角形的中线、角平分线和高的概念,并用多媒体展示它们的定义和性质。
让学生通过观察和思考,发现它们之间的关系。
3. 操练(10分钟)学生分组讨论,每组选择一个三角形,画出它的中线、角平分线和高,并观察它们之间的关系。
教师巡回指导,解答学生的疑问。
4. 巩固(10分钟)学生独立完成教材中的练习题,教师选取部分题目进行讲解和分析。
八年级数学上册第十一章三角形11.1与三角形有关的线段11.1.1三角形的边
第十一章 三角形 11.1 与三角形有关的线段 11.1.1 三角形的边学习目标 1.了解三角形的概念,会用符号语言表示三角形. 2.通过具体的实践活动理解三角形三边的不等关系.学习过程 一、自主学习 问题 1:观察下面的图片,你能找到哪些我们熟悉的图形?问题 2:在小学,我们学过三角形,你了解三角形的哪些性质? 二、深化探究 探究 1:观察三角形的构成,探索三角形的概念 问题 1:你能画出一个三角形吗?问题 2:结合你画的三角形,说明三角形是由什么组成的? 问题 3:下面的几个图形都是由三条线段组成的,它们都是三角形吗?问题 4:什么叫三角形?探究 2:自主学习三角形的表示方法及分类 阅读教材第 2 页到第 3 页探究前内容,回答下列问题. 问题 1:如图回答以下问题: (1)在三角形中,什么叫边?什么叫内角?什么叫顶点? (2)三角形有几条边?有几个内角?有几个顶点? (3)如何用符号表示三角形 ABC? (4)如何用小写字母表示三角形 ABC 的三条边?问题 2:如果将三角形分类,按照边的关系分可以分成几类?按照角的关系又如何分类呢?问题 3:如图,找出图中的三角形,用符号表示出来,并指出 AB,AD,CD 分别是哪个三角形的边.探究 3:通过观察实践,理解三角形三边关系 问题 1:任意画一个△ABC,假设有一只小虫从点 B 出发,沿三角形的边爬到点 C,它有几条线路 可以选择?各条线路的长一样吗?问题 2:联系三角形的三边,从问题 1 中你可以得到怎样的结论? 问题 3:用三条长度分别为 5,9,3 的线段能组成一个三角形吗?为什么? 三、练习巩固 练习 1:三角形是指( ) A.由三条线段所组成的封闭图形 B.由不在同一直线上的三条直线首尾顺次相接组成的图形 C.由不在同一直线上的三条线段首尾顺次相接组成的图形 D.由三条线段首尾顺次相接组成的图形 练习 2:图中有几个三角形?用符号表示这些三角形.练习 3.有三根木棒的长度分别为 3 cm,6 cm 和 4 cm,用这些木棒能否围成一个三角形?为什么?练习 4:用一条长 18 cm 的细绳围成一个等腰三角形. (1)如果腰长是底边的 2 倍,那么各边的长是多少? (2)能围成有一边的长为 4 cm 的等腰三角形吗?为什么?四、深化提高 练习 1:下面各组数中作为线段长不能构成三角形的一组是( ) A.0.2,0.6,0.7 B.5k,7k,10k(k>0) C.m-a,m,m+a(m>a,m>0,a>0) D.22,22,33 练习 2:小明想要钉一个三边长都是整数的三角形,现在他只有两根分别长 4 cm 和 5 cm 的木 条,那么第三根木条的长度可以是多少?(写出所有可能结果)练习 3:平面上有四个点 A,B,C,D,用它们作顶点可以组成几个三角形?参考答案 一、自主学习问题 1:三角形、四边形等. 问题 2:三条边;三个内角;具有稳定性;三角形的内角和是 180°. 二、深化探究 探究 1: 问题 1:能 问题 2:三角形是由三条线段组成的. 问题 3:只有第(1)个是三角形,其他的都不是. 问题 4:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 探究 2: 问题 1:组成三角形的三条线段都叫做三角形的边;相邻两边所组成的角叫做三角形的内角,简 称三角形的角;相邻两边的公共端点是三角形的顶点.三角形有三条边、三个内角、三个顶点.三角 形 ABC 用符号表示为△ABC.△ABC 的边 AB 为∠C 所对的边,可以用顶点 C 的小写字母 c 表示,同样, 边 AC 可用 b 表示,边 BC 可用 a 表示. 问题 2:三角形按照“有几条边相等”可以分为:{ 等边三角形 等腰三角形 三角形 不等边三角形也可以按照边的相等关系分为:{ { 不等边三角形等腰三角形底边和腰不相等的等腰三角形 等边三角形三角形三角形按照角的关系可以分为:{直角三角形锐角三角形 三角形 钝角三角形 问题 3:图中共有三个三角形,分别是△ABC,△ABD,△ADC,其中 AB 既是△ABC 的边,也是△ABD 的边,AD 既是△ABD 的边,也是△ADC 的边,CD 是△ADC 的边. 探究 3: 问题 1:小虫从点 B 出发沿三角形的边爬到点 C 有 2 条线路: (1)从 B→C,即线段 BC 的长; (2)从 B→A→C,即线段 BA 与线段 AC 长之和:BA+AC. 经过测量可得 BA+AC>BC,所以这两条线路的长不一样. 根据“两点的所有连线中,线段最短”,说明 BA+AC>BC. 问题 2:三角形两边的和大于第三边. 问题 3:用三条长度分别为 5,9,3 的线段不能组成一个三角形,因为 5+3<9. 三、练习巩固 答案:1.C 2.共有 5 个三角形.分别是:△ABC,△BCD,△BCE,△ABE,△CDE. 3.能,因为 3+4>6. 4.解:(1)设底边长为 x cm,则腰长 2x cm. x+2x+2x=18, 解得 x=3.6. 所以,三边长分别为 3.6 cm,7.2 cm,7.2 cm. (2)因为长 4 cm 的边可能是腰,也可能是底边,所以需要分情况讨论. 如果长 4 cm 的边为底边,设腰长为 x cm,则 4+2x=18, 解得 x=7. 如果长 4 cm 的边为腰,设底边长为 x cm,则 2×4+x=18, 解得 x=10. 因为 4+4<10,出现两边的和小于第三边的情况,所以不能围成腰长是 4 cm 的等腰三角形. 由以上讨论可知,可以围成一边长是 4 cm 的等腰三角形. 四、深化提高 练习 1:C 练习 2:解:第三根木条的长度可以是 2 cm,3 cm,4 cm,5 cm,6 cm,7 cm,8 cm. 练习 3:解:由于题中并没有说明这四个点是否在同一条直线上,所以要分情况讨论. (1)四点共线时,不能组成三角形. (2)三点共线时,可以组成三个三角形. (3)任意三点都不共线时,可以组成四个三角形.。
人教版八年级上册数学与三角形有关的线段含答案
第十一章三角形11.1与三角形有关的线段专题一三角形个数的确定1.如图,图中三角形的个数为()A.2 B.18 C.19 D.202.如图所示,第1个图中有1个三角形,第2个图中共有5个三角形,第3个图中共有9个三角形,依此类推,则第6个图中共有三角形__________个.3.阅读材料,并填表:在△ABC中,有一点P1,当P1、A、B、C 没有任何三点在同一直线上时,可构成三个不重叠的小三角形(如图).当△ABC内的点的个数增加时,若其他条件不变,三角形内互不重叠的小三角形的个数情况怎样?完成下表:△ABC内点的个数 1 2 3 (100)7构成不重叠的小三角3 5 …形的个数专题二根据三角形的三边不等关系确定未知字母的范围4.三角形的三边分别为3,1-2a,8,则a的取值范围是()A .-6<a <-3B .-5<a <-2C .2<a <5D .a <-5或a >-25. 在△ABC 中,三边长分别为正整数a 、b 、c ,且c ≥b ≥a >0,如果b =4,则这样的三角形共有______个.6.若三角形的三边长分别是2、x 、8,且x 是不等式22x +>123x --的正整数解,试求第三边x 的长.状元笔记【知识要点】1.三角形的三边关系三角形两边的和大于第三边,两边的差小于第三边.2.三角形三条重要线段(1)高:从三角形的顶点向对边所在的直线作垂线,顶点与垂足之间的线段叫做三角形的高.(2)中线:连接三角形的顶点与对边中点的线段叫做三角形的中线.(3)角平分线:三角形内角的平分线与对边相交,顶点与交点之间的线段叫做三角形的角平分线.3.三角形的稳定性三角形具有稳定性.【温馨提示】1.以“是否有边相等”,可以将三角形分为两类:三边都不相等的三角形和等腰三角形.而不是分为三类:三边都不相等的三角形、等腰三角形、等边三角形,等边三角形是等腰三角形的一种.2.三角形的高、中线、角平分线都是线段,而不是直线或射线.【方法技巧】1.根据三角形的三边关系判定三条线段能否组成三角形时,要看两条较短边之和是否大于最长边.2.三角形的中线将三角形分成两个同底等高的三角形,这两个三角形面积相等.参考答案:1.D 解析:线段AB上有5个点,线段AB与点C组成5×(5-1)÷2=10个三角形;同样,线段DE上也有5个点,线段DE与点C组成5×(5-1)÷2=10个三角形,图中三角形的个数为20个.故选D.2.21 解析:根据前边的具体数据,再结合图形,不难发现:后边的总比前边多4,若把第一个图形中三角形的个数看作是1=4-3,则第n个图形中,三角形的个数是4n-3.所以当n=6时,原式=21.3.解:填表如下:△ABC内点的个数 1 2 3 (100)7构成不重叠的小三角形的个数3 5 7 (201)5解析:当△ABC内有1个点时,构成不重叠的三角形的个数是3=1×2+1;当△ABC内有2个点时,构成不重叠的三角形的个数是5=2×2+1;参考上面数据可知,三角形的个数与点的个数之间的关系是:三角形内有n个点时,三角形内互不重叠的小三角形的个数是2n+1,故当有3个点时,三角形的个数是3×2+1=7;当有1007个点时,三角形的个数是1007×2+1=2015.4.B 解析:根据题意,得8-3<1-2a<8+3,即5<1-2a<11,解得-5<a<-2.故选B.5.10 解析:∵在△ABC中,三边长分别为正整数a、b、c,且c≥b≥a>0,∴c<a+b.∵b=4,∴a=1,2,3,4.a=1时,c=4;a=2时,c=4或5;a=3时,c=4,5,6;a=4时,c=4,5,6,7.∴这样的三角形共有1+2+3+4=10个.6.解:原不等式可化为3(x+2)>-2(1-2x),解得x<8.∵x是它的正整数解,∴x可取1,2,3,5,6,7.再根据三角形三边关系,得6<x<10,∴x=7.别浪费一分一秒——如何利用零散时间学人们常说,时间是公平的,每个人的一天只有24个小时,所以应该珍惜时间去充实自己。
数学人教版八年级上第十一章11.1 与三角形有关的线段
数学人教版八年级上第十一章11.1 与三角形有关的线段11.1 与三角形有关的线段1.三角形(1)定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.(2)构成:如图所示,三角形ABC有三条边,三个内角,三个顶点.①边:组成三角形的线段叫做三角形的边.②角:相邻两边所组成的角叫做三角形的内角,简称三角形的角.③顶点:相邻两边的公共端点是三角形的顶点.(3)表示:三角形用符号“△”表示,三角形ABC用符号表示为△ABC. 注:顶点A所对的边BC用a表示,顶点B所对的边AC用b表示,顶点C所对的边AB用c表示.(4)分类:①三角形按角分类如下:?直角三角形三角形?锐角三角形?钝角三角形②三角形按边的相等关系分类如下:破疑点等边三角形和等腰三角形的关系等边三角形是特殊的等腰三角形,即等边三角形是底边和腰相等的等腰三角形.【例1】如图所示,图中有几个三角形,分别表示出来,并写出它们的边和角.分析:根据三角形的定义及构成得出结论.解:图中有三个三角形,分别是:△ABC,△ABD,△ADC.△ABC的三边是:AB,BC,AC,三个内角分别是:∠BAC,∠B,∠C;△ABD的三边是:AB,BD,AD,三个内角分别是:∠BAD,∠B,∠ADB;△ADC的三边是:AD,DC,AC,三个内角分别是:∠ADC,∠DAC,∠C.2.三角形的三边关系 (1)三边关系:三角形两边的和大于第三边,用字母表示:a+b>c,c+b>a,a+c>b.三角形两边的差小于第三边,用字母表示为:c-b边的取值范围;②根据所给三条线段长度判断这三条线段能否构成三角形.“两点之间线段最短”是三边关系得出的理论依据.破疑点三角形三边关系的理解三角形两边之和大于第三边指的是三角形中任意两边之和都大于第三边,即a+b>c,c+b>a,a+c>b三个不等式同时成立.【例2】下列长度的三条线段(单位:厘米)能组成三角形的是( ).A.1,2,3.5 B.4,5,9 C.5,8,15 D.6,8,9解析:选择最短的两条线段,计算它们的和是否大于最长的线段,若大于,则能构成三角形,否则构不成三角形,只有6+8=14>9,所以D能构成三角形.答案:D3.三角形的高 (1)定义:从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高.(2)描述方法:高的描述方法有三种,这三种方法都能得出AD是BC边上的高.如图所示.①AD是△ABC的高;②AD⊥BC,垂足为D;③D在BC上,且∠ADB=∠ADC=90°. (3)性质特点:①因为高是通过作垂线得出的,因而有高一定有垂直和直角.常用关系式为:因为AD是BC边上的高,所以∠ADB=∠ADC=90°.②“三角形的三条高(所在直线)交于一点”,当是锐角三角形时,这点在三角形内部;当是直角三角形时,这点在三角形直角顶点上;当是钝角三角形时,这点在三角形外部.如图所示.破疑点三角形的高线的理解三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上.【例3】三角形的三条高在( ). A.三角形的内部 B.三角形的外部C.三角形的边上 D.三角形的内部、外部或边上解析:三角形的三条高交于一点,但有感谢您的阅读,祝您生活愉快。
人教版数学八年级上册说课稿11.1《与三角形有关的线段》
人教版数学八年级上册说课稿11.1《与三角形有关的线段》一. 教材分析《人教版数学八年级上册》第11.1节《与三角形有关的线段》是学生在学习了平面几何基础知识后,进一步探讨三角形中的一些重要线段,如三角形的中线、高线、角平分线等。
这些线段在解决三角形相关问题中起着关键作用,对于学生来说,这是一个新的知识层面,需要他们通过观察、思考、操作、交流等活动,掌握这些线段的性质和运用。
二. 学情分析八年级的学生已经具备了一定的几何知识基础,对平面几何图形有了一定的认识。
但是,对于三角形中线的性质、高线的分类、角平分线的判定等知识,还需要通过实例和操作来进一步理解和掌握。
此外,学生在学习过程中,需要逐步培养观察、分析、解决问题的能力。
三. 说教学目标1.知识与技能:使学生了解三角形的中线、高线、角平分线的定义,掌握它们的基本性质,能够运用这些性质解决实际问题。
2.过程与方法:培养学生通过观察、操作、思考、交流等方式,探究几何问题的能力。
3.情感态度与价值观:激发学生学习几何的兴趣,培养他们勇于探究、合作交流的精神。
四. 说教学重难点1.教学重点:三角形的中线、高线、角平分线的定义及其性质。
2.教学难点:三角形高线的分类,以及角平分线的判定。
五. 说教学方法与手段1.教学方法:采用问题驱动、案例教学、合作学习等方法,引导学生主动探究,提高他们分析问题和解决问题的能力。
2.教学手段:利用多媒体课件、几何模型等辅助教学,增强学生对几何图形的直观认识。
六. 说教学过程1.导入:通过复习平面几何中的相关知识,如线段的性质、平行线的性质等,为学生学习本节内容做好铺垫。
2.新课导入:介绍三角形的中线、高线、角平分线的定义,并通过实例使学生初步理解这些线段的性质。
3.课堂讲解:详细讲解三角形的中线、高线、角平分线的性质,并通过几何模型展示这些线段的运用。
4.课堂练习:安排一些具有代表性的练习题,使学生在实践中掌握这些线段的性质和运用。
人教版数学八年级上册第11章第3课11.1与三角形有关的线段(教案)
1.讨论主题:学生将围绕“三角形线段在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
2.提升逻辑推理能力:在教学过程中,引导学生运用已知性质推导三角形中线、高和角平分线的性质,培养学生的逻辑思维和推理能力。
3.培养数据分析观念:通过解决与三角形有关的实际问题,使学生能够运用所学知识进行数据分析,提高解决实际问题的能力。
4.强化数学运算能力:在学习过程中,使学生熟练掌握三角形相关线段的计算方法,提高数学运算速度和准确性。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了三角形中线、高和角平分线的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些线段的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学中,我发现学生们对于三角形的中线、高和角平分线的概念掌握得还算不错。他们在实践活动和小组讨论中表现出了较高的兴趣和参与度。不过,我也注意到几个需要改进的地方。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解三角形的中线、高和角平分线的基本概念。中线是连接三角形一边中点与对角的线段,它等分三角形;高是从三角形的一个顶点垂直于对边的线段,它可以帮助我们计算三角形的高度;角平分线是从三角形的一个顶点出发,将顶角平分的线段,它在几何图形中有着重要的应用。
八年级数学上册第十一章三角形11.1与三角形有关的线段11.1.1三角形的边教学
分 直角三角形
三边都不相等的三角形
按
边 分 等腰三角形
底边和腰不相等的等腰三角形
等边三角形
12/13/2021
第十六页,共三十一页。
新课讲解( jiǎngjiě)
练一练 下列说法:①等边三角形是等腰三角形;②等腰三角形也可能是直角
三角形;③三角形按边分类可分为等腰三角形、等边三角形和三边(sān biān)
3 下列长度的三条线段(xiànduàn)能组成三角形的是( A )
A.5,6,10
B.5,6,11
C.3,4,8
D.4a,4a,8a(a>0)
12/13/2021
第二十五页,共三十一页。
课堂(kètáng)小结
三 角 形
12/13/2021
概念
表示方法
分类 三边关系
三条线段 不在同一条(yī tiáo)
12/13/2021
第十七页,共三十一页。
新课讲解( jiǎngjiě)
练一练
2 已知一个三角形是等腰三角形,则这个(zhè ge)三角形( D) A.一定是锐角三角形 B.一定是直角三角形 C.一定是钝角三角形 D.可能是锐角三角形、直角三角形或钝角三角形
12/13/2021
第十八页,共三十一页。
第二十页,共三十一页。
新课讲解( jiǎngjiě)
知识点3 三角形的三边(sān biān)关系
例题一
用一条长为18 cm的细绳围成一个等腰三角形. (1)如果腰长是底边(dǐ biān)长的2倍,那么各边的长是多少? (2)能围成有一边的长是4 cm的等腰三角形吗?为什么?
(1) 设底边长为x cm,则腰长为2x cm. x+2x+2x = 18. 解得x=3. 6. 所以,三边长分别为3. 6 cm,7.2 cm,7.2 cm.
初二数学与三角形有关的线段和角
与三角形有关的线段和角中考要求知识点睛模块一、与三角形有关的边1 三角形的基本概念:⑴三角形的定义:由三条不在同一条直线上的线段首尾顺次连结组成的平面图形叫做三角形.三角形具有稳定性.⑵三角形的内角:三角形的每两条边所组成的角叫做三角形的内角.在同一个三角形内,大边对大角.⑶三角形的外角:三角形的任意一边与另一边的反向延长线所组成的角叫做三角形的外角. ⑷三角形的分类:()()():⎧⎪⎧⎨⎨⎪⎩⎩⎧⎪⎧⎨⎨⎪⎩⎩直角三角形:三角形中有一个角是直角三角形按角分锐角三角形:三角形中三个角都是锐角斜三角形钝角三角形:三角形中有一个角是钝角不等边三角形:三边都不相等的三角形三角形按边分底边和腰不相等的等腰三角形:有两条边相等的三角形等腰三角形等边三角形正三角形有三边相等的三角形注意:每个三角形至少有两个锐角,而至多有一个钝角.三角形的三个内角中,最大的一个内角是锐角(直角或钝角)时,该三角形即为锐角三角形(直角三角形或钝角三角形).2 与三角形相关的边⑴三角形中的三种重要线段①三角形的角平分线:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.注:每个三角形都有三条角平分线且相交于一点,这个点叫做三角形的内心,而且它一定在三角形内部.②三角形的中线:在三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线.注:每个三角形都有三条中线,且相交于一点,这个点叫做三角形的中心,而且它一定在三角形内部. ③三角形的高:从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段叫做三角形的高线. 注:每个三角形都有三条高且三条高所在的直线相交于一点,这个点叫做三角形的垂心. 锐角三角形的高均在三角形内部,三条高的交点也在三角形的内部;钝角三角形的高线中有两个垂足落在边的延长线上,这两条高落在三角形的外部, 直角三角形有两条高分别与两条直角边重合.反之也成立.画三角形的高时,只需要向对边或对边的延长线作垂线,连接顶点与垂足的线段就是该边的高. ⑵三角形三条边的关系①三角形三边关系:三角形任何两边的和大于第三边.②三角形三边关系定理的推论:三角形任何两边之差小于第三边.即a 、b 、c 三条线段可组成三角形⇔b c a b c -<<+⇔两条较小的线段之和大于最大的线段. 注意:在应用三边关系定理及推论时,可以简化为:当三条线段中最长的线段小于另两条线段之和时,或当三条线段中最短的线段大于另两条线段之差时,即可组成三角形.模块二、与三角形有关的角三角形内角和定理:三角形三个内角和等于180︒.三角形的外角:三角形的外角与相邻的内角互为邻补角,因为每个内角均有两个邻补角,因此三角形共有六个外角,其中有三个与另外三个相等.每个顶点处的两个外角是相等的.三角形的外角和:每个顶点处取一个外角,再相加,叫三角形的外角和(并非6个外角之和).三角形的外角和等于360︒. 三角形内角和定理的三个推论:推论1: 直角三角形的两个锐角互余.推论2: 三角形的一个外角等于和它不相邻的两个内角的和. 推论3: 三角形的一个外角大于任何一个和它不相邻的内角. 三角形内角和180︒的几种证明方法: ①添加平行线法:22112211②帕斯卡(法国数学家)折纸法:332211③更具动手可行性的剪角法:(不严密)把三角形的三个内角剪下来能拼成一个平角. 三角形外角和360︒的证明法:CBA三角形按最大角的大小来分类:⎧⎪⎨⎪⎩锐角三角形:最大的内角为锐角的三角形直角三角形:最大的内角为直角的三角形钝角三角形:最大的内角为钝角的三角形三角形的角与不等式:⒈若ABC ∆为锐角三角形,则090A ︒<∠<︒,090B ︒<∠<︒,090C ︒<∠<︒; ⒉若ABC ∆为直角三角形,且90A ∠=︒,则090B ︒<∠<︒,090C ︒<∠<︒,90A B C ∠=∠+∠=︒,B A C ∠=∠-∠,C A B ∠=∠-∠.⒊若ABC ∆为钝角三角形,且90A ∠>︒,则090B ︒<∠<︒,090C ︒<∠<︒,090B C ︒<∠+∠<︒.模块三、多边形及其内角和1 基本概念⑴ 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形. ⑵ 多边形的边:组成多边形的各条线段叫做多边形的边. ⑶ 多边形的顶点:每相邻两边的公共端点叫做多边形的顶点.⑷多边形的对角线:在多边形中,连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.⑸多边形的内角:多边形相邻两边组成的角叫做它的内角.⑹多边形的外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角.⑺正多边形:各个角相等,且各条边都相等的多边形叫做正多边形.⑻凸多边形:如果多边形的任何一边所在直线都使余下的边都在这条直线的同一侧的多边形.2基本性质⑴稳定性.⑵内角和与外角和定理.如下图,n边形的内角和为(2)180n-⨯︒(3)n≥,多边形的外角和都是360︒.分割成(n-2)个三角形求内角和n个平角-内角和⑶n边形的对角线:一个顶点有(3)n-条对角线,共有(3)2n n-条对角线.⑷不特别强调多边形都指凸多边形,凸多边形的每个内角都小于180︒.例题精讲板块一、与三角形有关的线段【例1】若三角形的两边长分别为6cm,9cm,则其第三边的长可能为()A.2cm B.3cm C.7cm D.16cm【答案】C【例2】现有长度分别为2cm、3cm、4cm、5cm的线段,从中任取三条,能组成三角形的个数是.【解析】①2cm、3cm、4cm ②3cm、4cm、5cm③2cm、4cm、5cm【答案】3【例3】一个三角形的周长是偶数,其中的两条边分别是4和1997,则满足上述条件的三角形的个数.【解析】设第三边为x,周长为l.则19932001x<<,199341997200141997l++<<++,39944002l<<【答案】3【例4】用9根同样长的火柴棒在桌面上摆一个三角形(不允许火柴折断,并且全部用完),能摆出不同形状的三角形的个数是.【解析】①2,3,4②3,3,3③4,4,1【答案】3【例5】在等腰ABC△中,AB AC=,一边上的中线BD将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长为.【解析】注意,需要分类讨论,同时也要考虑三角形的三边关系【答案】7或11【例6】如图,加油站A和商店B在马路MN的同一侧,A到MN的距离大于B到MN的距离7AB m=,一个行人P 在马路MN 上行走.问:当P 到A 的距离与P 到B 的距离之差最大时,这个差 等于 .NM P BA【解析】根据三角形的三边关系,PA PB AB -<,当A B P 、、三点共线时,取得最大值PA PB AB -= 【答案】7m【例7】 三角形三边的长都是正整数,其中最长边的长为10,这样的三角形有 .【解析】因为最长边为10,故其他两边都不可能超过10.①当一边为10,另一边可以从1到10,即(1,10,10),……(10,10,10)故这边可以是为10,9,8,7,6【答案】40【例8】 周长为30,各边长为互不相等的整数,则最长边的取值范围是 . 【解析】设30a b c a b c <<+=-,,又a b c +>,故15c <,当三边相等时,最长边最短,故1015c << 【答案】1015c <<【例9】 将长为15dm 的木棒截成长度为整数的三段,使他们构成一个三角形的三边,则不同的截法有 .【解析】设15a b c a b c <<+=-,,又a b c +>,故7.5c <,当三边相等时,最长边最短,故57.5c <≤,当最长边为7时,有4种,当最长边为6时,有2种,当最长边为5时,有1种.【答案】7【例10】 不等边ABC △的两条高长度分别为4和12,若第三条高的长也是整数,则第三条高的长为 .【解析】设面积为S ,这条高为h ,则22222412412S S S S Sh -<<+,故36h <<,又当4h =时为等腰三角形,故舍去,所以5h =【答案】5【例11】 如图,P 是ABC ∆内任意一点,求证:PB PC AB AC +<+;PCBA【说明】要求学生写下其证明过程【答案】如图,延长BP 交AC 于点D .(1)由三角形的三边关系,得到AB AD BP PDPD DC PC +>+⎧⎨+>⎩①.②①+②得AB AD PD DC BP PD PC +++>++,即PB PC AB AC +<+.PDCB【例12】 已知,如图,P Q ,为三角形ABC 内两点,B P Q C ,,,构成凸四边形,求证:AB AC BP PQ QC +>++.QPCBA【说明】该题为上一题的拓展,要求学生写下其证明过程.【答案】方法一:PD DQ PQ +>,AB AC BD CD +>+(例2已证),故()AB AC BP PD DQ QC BP PQ QC +>+++>++D QP CBA方法二:作直线PQ ,分别与AB AC ,交于点M N ,由三角形的三边关系可得AM AN MP PQ QNMP PB BPNQ NC QC +>++⎧⎪+>⎨⎪+>⎩①②③①+②+③得AM AN MP PB NQ NC MP PQ QN BP QC +++++>++++ ∴AM AN PB NC PQ BP QC +++>++即AB AC BP PQ QC +>++NM Q P CBA【例13】 如图,已知△ABC .(1)请你在BC 边上分别取两点D ,E (BC 的中点除外),连接AD ,AE ,写出使此图中只存在两对面积相等的三角形的相应条件,并表示出面积相等的三角形; (2)请你根据使(1)成立的相应条件,证明AB +AC >AD +AE .CB【说明】该题为08年中考题,要求学生写下其证明过程 【答案】(1)如图1,相应的条件就应该是BD =CE ≠DE ,ABD ACE S S =△△(2)如图2,法一:分别过点D 、B 作CA 、EA 的平行线,两线相交于F 点,DF 于AB 交于G 点AEC FBD ≌△△,BG +FG >FB ,AG +DG >AD ,两式相加,故AB +AC >AD +AE .图1DCBA图2GFEDCBA法二:(需要用到全等,可以给有能力的同学补充此法)取DE 中点F ,然后倍长,连接GB GD 、, 故()AFE GFD AFC AFB SAS ≌、≌△△△△,AB BG AD DG +>+(例2已证),所以AB +AC >AD +AEGFED CBA板块二、三角形的角【例14】 一副三角板,如图所示叠放在一起,则图中α∠的度数为 .α【答案】75︒45°30°α【例15】 如下图,ABC ∆中,80A ∠=︒,剪去A ∠后,得到四边形BCED ,则12∠+∠= .21ED B CA【答案】260︒.【例16】 在ABC △中,高BD 和CE 所在直线相交于O 点,若ABC △不是直角三角形,且60A ∠=︒,则BOC ∠= 度.【解析】①当ABC △是锐角三角形时,BOC ∠=120︒②当ABC △是钝角三角形时,BOC ∠=60︒ODECBAODC A【答案】120︒或60︒【例17】 如图,将纸片ABC △沿着DE 折叠压平,则A ∠与1∠和2∠的关系为 .DCBA21【解析】将A 折叠回去为'A ,则123224∠=∠∠=∠,,故1+2=2A ∠∠∠43A'EDCBA21【答案】1+2=2A ∠∠∠【例18】 如图,127.5∠=︒,295∠=︒,338.5∠=︒,求4∠的大小.3421EDCBA【解析】23ADC ∠=∠+∠, 14180ADC ∠+∠+∠=︒,∴2314180∠+∠+∠+∠=︒, ∴9538.527.54180︒+︒+︒+∠=︒, ∴419∠=︒.【答案】19︒【例19】 如图,P 是ABC △内一点,求证:BPC ∠>A ∠PCBA【答案】图中没有三角形的外角,可适当引辅助线构造外角,再比较.延长BP 交AC 于D .则有BPC PDC ∠>∠,且PDC A ∠>∠,所以BPC A ∠>∠.A PCBD【例20】 在ABC △中,(1)如图1,BP CP 、为ABC ∠和ACB ∠的角平分线,求P ∠与A ∠之间的关系? (2)如图2,BP CP 、为ABC ∠和ACE ∠的角平分线,求P ∠与A ∠之间的关系? (3)如图3,BP CP 、为CBD ∠和BCE ∠的角平分线,求P ∠与A ∠之间的关系?xyyx①ABCPxyxyABC P②E yxxy③EDPC B A【解析】这些是三角形角平分线的经典题型,必须让学生掌握这些证明过程【答案】如图①,可得2()180A x y ∠++=︒,()180P x y ∠++=︒,化简可得1902P A ∠=︒+∠如图②,可得22y x A =+∠,y x P =+∠,化简可得12P A ∠=∠如图③,22180x y A +=︒+∠,180x y P ++∠=︒,化简可得1902P A ∠=︒-∠【例21】 (1)如图①,求A ∠、B ∠、C ∠与P ∠的关系(2)如图②,若BP 、CP 为ABD ACD ∠∠、的角平分线,求A ∠与P ∠和D ∠的关系①PCBA②DA B CP【解析】(1)该图为燕尾形,必须让学生掌握这些证明过程,图①可以用下图几种方法来证明,过程略D PCBAABCP ①DABCP(2)根据燕尾形,故P x y A ∠=++∠,22D x y A ∠=++∠,所以2P A D ∠=∠+∠y x yx④PD CBA【答案】(1)P A B C ∠=∠+∠+∠(2)2P A D ∠=∠+∠ 【例22】 (1)若4030A B ∠=︒∠=︒,,求C D ∠+∠的度数(2)若BP CP 、为ABC ACD ∠∠、的角平分线,P ∠与A ∠和D ∠之间的关系DCBAPDCBA【解析】对顶八字形,需要掌握A B C D ∠+∠=∠+∠,第二问便是这个结论的应用【答案】(1)70C D ∠+∠=︒.(2)如图⑤,x A y P +∠=+∠,x P y D +∠=+∠,化简可得2P A D ∠=∠+∠x x yy⑤DPCBA【例23】⑴如图①,若点P 是ABC ∠和ACB ∠的角平分线的交点,则1902P A ∠=︒+∠⑵如图②,若点P 是ABC ∠和外角ACE ∠的角平分线的交点,则90P A ∠=︒-∠⑶如图③,若点P 是外角CBD ∠和BCE ∠的角平分线的交点,则1902P A ∠=︒-∠①A BCPAC P②E③EDPC B A上述说法中正确的个数是( )A.0个B.1个C.2个D.3个【答案】C【例24】 ⑴如图,点P 是ABD ∠与ACD ∠的角平分线的交点,若60A ∠=︒,120D ∠=︒,则______BPC ∠=⑵如图,点P 是ABD ∠与ACD ∠的角平分线的交点,若40A ∠=︒,35P ∠=︒,则______D ∠=P DCBA DPCBA【答案】⑴90BPC ∠=︒;⑵30D ∠=︒【例25】 如右图所示,在ABC ∆中,CD 、BE 是外角平分线,BD 、CE 是内角平分线,BE 、CE 交于E ,BD 、CD 交于D ,试探索D ∠与E ∠的关系: .ABCDEFGO【解析】1122D A E A ∠=∠∠=∠,【答案】D E ∠=∠【例26】 如图所示,点E 和D 分别在ABC ∆的边BA 和CA 的延长线上,若3050D B ∠=︒∠=︒,CF 、EF 分别平分ACB ∠和AED ∠,则F ∠的度数为 .ABCDE FGH【解析】对顶八字形的应用 【答案】1()=402F D B ∠=∠+∠︒【例27】 如图,在ABC △中,BD CD ,是ABC ACB ∠∠,的角平分线,连接AD ,125BDC ∠=︒,求ADB∠的度数DBA【解析】两内角平分线的应用,1902A BDC ∠+︒=∠,又三内角平分线交于一点【答案】35︒【例28】 如图,ABC △中,ABC DBE EBC ACD DCE ECB ∠=∠=∠∠=∠=∠,,若145BEC ∠=︒,则BDC ∠等于 .ED CBA【解析】根据燕尾形,故E A ABE ACE ∠=∠+∠+∠,2A E D ∠+∠=∠,35x y +=︒yxED CBA【答案】110︒【例29】 如图,60A ∠=︒,线段BP 、BE 把ABC ∠三等分,线段CP 、CE 把ACB ∠三等分,则BPE ∠的大小是 .EPCBA【解析】利用例25和26 【答案】50︒【点评】图1和图2中,分别是两个内角的2等分线,3等分线相交.P 1CBAP 2P 1CBA易得结论:图1中有0011809022A AP +∠∠∠==+, 图2中有001180226033A A P +∠∠∠==+, 00001218029*********P A A P ∠+∠∠∠=+=+=+. 【例30】 如图,BF 是ABD ∠的角平分线,CE 是ACD ∠角的平分线,BE 与CF 交于G ,若140BDC ∠=︒,110BGC ∠=︒,求A ∠的度数.A BCDEFG【解析】延长BD 交AC 于H ,则BDC HCD DHC ∠=∠+∠G F EDCBA H∵DHC A ABH ∠=∠+∠∴BDC A ABH HCD ∠=∠+∠+∠①∵BGC GFC FCG ∠=∠+∠,GFC A ABF ∠=∠+∠ ∴BGC A ABF FCG ∠=∠+∠+∠ ∴2222BGC A ABF FCG ∠=∠+∠+∠ 即22BGC A ABH ACD ∠=∠+∠+∠② ②-①得2BGC BDC A ∠-∠=∠ ∴211014080A ∠=⨯︒-︒=︒【答案】80︒【例31】 如图,31ABC ∠=︒,又BAC ∠的平分线AE 与FCB ∠的平分线CE 相交于E 点,则AEC ∠为 .FEDCBA【解析】115.52E BAC ∠=∠=︒【答案】15.5︒。
(完整版)初中数学三角形有关的线段讲解及习题
11.1 与三角形有关的线段1.三角形(1)定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.(2)构成:如图所示,三角形ABC 有三条边,三个内角,三个顶点.①边:组成三角形的线段叫做三角形的边.②角:相邻两边所组成的角叫做三角形的内角,简称三角形的角.③顶点:相邻两边的公共端点是三角形的顶点.(3)表示:三角形用符号“△”表示,三角形ABC 用符号表示为△ABC .注:顶点A 所对的边BC 用a 表示,顶点B 所对的边AC 用b 表示,顶点C 所对的边AB 用c 表示.(4)分类:①三角形按角分类如下:三角形⎩⎪⎨⎪⎧ 直角三角形锐角三角形钝角三角形②三角形按边的相等关系分类如下:破疑点 等边三角形和等腰三角形的关系 等边三角形是特殊的等腰三角形,即等边三角形是底边和腰相等的等腰三角形.【例1】 如图所示,图中有几个三角形,分别表示出来,并写出它们的边和角.分析:根据三角形的定义及构成得出结论.解:图中有三个三角形,分别是:△ABC ,△ABD ,△ADC .△ABC 的三边是:AB ,BC ,AC ,三个内角分别是:∠BAC ,∠B ,∠C ; △ABD 的三边是:AB ,BD ,AD ,三个内角分别是:∠BAD ,∠B ,∠ADB ; △ADC 的三边是:AD ,DC ,AC ,三个内角分别是:∠ADC ,∠DAC ,∠C .2.三角形的三边关系(1)三边关系:三角形两边的和大于第三边,用字母表示:a +b >c ,c +b >a ,a +c >b .三角形两边的差小于第三边,用字母表示为:c -b <a ,b -a <c ,c -a <b .(2)作用:①利用三角形的三边关系,在已知两边的三角形中可以确定第三边的取值范围;②根据所给三条线段长度判断这三条线段能否构成三角形.“两点之间线段最短”是三边关系得出的理论依据.破疑点 三角形三边关系的理解 三角形两边之和大于第三边指的是三角形中任意两边之和都大于第三边,即a+b>c,c+b>a,a+c>b三个不等式同时成立.【例2】下列长度的三条线段(单位:厘米)能组成三角形的是().A.1,2,3.5 B.4,5,9C.5,8,15 D.6,8,9解析:选择最短的两条线段,计算它们的和是否大于最长的线段,若大于,则能构成三角形,否则构不成三角形,只有6+8=14>9,所以D能构成三角形.答案:D3.三角形的高(1)定义:从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高.(2)描述方法:高的描述方法有三种,这三种方法都能得出AD是BC边上的高.如图所示.①AD是△ABC的高;②AD⊥BC,垂足为D;③D在BC上,且∠ADB=∠ADC=90°.(3)性质特点:①因为高是通过作垂线得出的,因而有高一定有垂直和直角.常用关系式为:因为AD是BC边上的高,所以∠ADB=∠ADC=90°.②“三角形的三条高(所在直线)交于一点”,当是锐角三角形时,这点在三角形内部;当是直角三角形时,这点在三角形直角顶点上;当是钝角三角形时,这点在三角形外部.如图所示.破疑点三角形的高线的理解三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上.【例3】三角形的三条高在().A.三角形的内部B.三角形的外部C.三角形的边上D.三角形的内部、外部或边上解析:三角形的三条高交于一点,但有三种情况:当是锐角三角形时,这点在三角形内部;当是直角三角形时,这点在三角形直角顶点上;当是钝角三角形时,这点在三角形外部,所以只有D正确.答案:D4.三角形的中线(1)定义:三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.(2)描述方法:三角形中线的描述方法有两种方式,如图.①直接描述:AD 是BC 边上的中线;②间接描述:D 是BC 边上的中点.(3)性质特点:①由三角形中线定义可知,有中线就有相等的线段,如上图中,因为AD 是BC 边上的中线,所以BD =CD (或BD =12BC ,DC =12BC ). ②如下图所示,一个三角形有三条中线,每条边上各有一条,三角形的三条中线交于一点.不论是锐角三角形、直角三角形,还是钝角三角形,三角形的三条中线都交于三角形内部一点.三角形三条中线的交点叫做三角形的重心.破疑点 三角形的中线的理解 三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点.【例4】 如图,AE 是△ABC 的中线,EC =6,DE =2,则BD 的长为( ).A .2B .3C .4D .6解析:因为AE 是△ABC 的中线,所以BE =EC =6.又因为DE =2,所以BD =BE -DE =6-2=4.答案:C5.三角形的角平分线(1)定义:三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线.(2)描述方法:角平分线的描述有三种,如图.①直接描述:AD 是△ABC 的角平分线;②在△ABC 中,∠1=∠2,且D 在BC 上;③AD 平分∠BAC ,交BC 于点D.(3)性质特点:①由三角形角平分线的定义可知,有角平分线就有相等的角,如上图中,因为AD 是△ABC 的角平分线,所以∠1=∠2(或∠1=∠2= ∠BAC ,或∠BAC=2∠1=2∠2).②一个三角形有三条角平分线,三角形的三条角平分线交于一点,不论是锐角三角形、直角三角形,还是钝角三角形,这个交点都在三角形内部.解技巧 三角形的角平分线的理解 三角形的角平分线也是一条线段,角的顶点是一个端点,另一个端点在对边上.【例5】 下列说法正确的是( ).①平分三角形内角的射线叫做三角形的角平分线;②三角形的中线、角平分线都是线段,而高是直线;③每个三角形都有三条中线、高和角平分线;④三角形的中线是经过顶点和对边中点的直线.A.③④B.③C.②③D.①④解析:任何一个三角形都有三条高、中线和角平分线,并且它们都是线段,不是射线或直线,因此只有③正确,故选B.答案:B6.三角形的稳定性(1)定义:三角形的三边确定后,这个三角形的大小、形状就确定不变了,三角形的这个性质叫做三角形的稳定性.(2)理解:三角形的稳定性指的是三角形的大小和形状不变,这说明一个三角形确定后它的附属性质也不变,这不同于四边形,因而在实际生活中,都是用三角形做支架的.【例6】在建筑工地我们常可看见如图所示,用木条EF固定矩形门框ABCD的情形.这种做法根据().A.两点之间线段最短B.两点确定一条直线C.三角形的稳定性D.矩形的四个角都是直角解析:这是三角形稳定性在日常生活中的应用,C正确.答案:C解技巧三角形的稳定性的理解三角形稳定性的问题都是以实际生活为原型,说明这样做的道理,一般较为简单.7.三角形三边关系的应用三角形中“两边之和大于第三边(两边之差小于第三边)”,这是三角形中最基本的三边关系.这里的“两边之和”指的是“任意两边的和”,满足这一关系是三条线段能否构成三角形的前提.三角形三边关系的运用主要有两方面,一是在已知两边的情况下确定第三边的取值范围;二是根据所给三条线段的长度判断这三条线段能否构成三角形.解技巧三角形三边关系的应用①当线段a,b,c满足最短的两条线段之和大于最长的线段时就可构成三角形;②已知两条线段,可根据第三条线段大于这两边之差,小于这两边之和,来确定第三条线段的取值范围.【例7-1】以下列长度的三条线段为边,能组成三角形吗?(1)6 cm,8 cm,10 cm;(2)三条线段长之比为4∶5∶6;(3)a+1,a+2,a+3(a>0).分析:根据三角形的三边关系来判断已知的三条线段能否组成三角形,选择较短的两条线段,看它们的和是否大于第三条线段,即可判断能否组成三角形.解:(1)因为6+8>10,所以长为6 cm,8 cm,10 cm的三条线段能组成三角形;(2)设这三条线段长分别为4x,5x,6x(x>0),因为4x+5x大于6x,所以三条线段长之比为4∶5∶6时,能组成三角形;(3)因为a+1+a+2=2a+3,当a>0时,2a+3>a+3,所以a+1,a+2,a+3(a>0)长的线段能组成三角形.【例7-2】已知三角形的两边长分别为5 cm和8 cm,则此三角形的第三边的长x的取值范围是__________.解析:根据三角形三边关系可知,第三条边的长x应大于已知两边之差且小于已知两边之和,所以3 cm<x<13 cm.答案:3 cm<x<13 cm8.三角形的高、中线、角平分线的画法三角形是最基本的图形,也是应用最多的图形,因此画出它们高、中线、角平分线经常用到,是必须掌握的基本技能.(1)高的画法:类似于垂线的画法,用三角板过某一顶点向对边或对边延长线画垂线,交对边于一点,所得到的垂线段就是这条边上的高.(2)中线的画法:取一边中点,连接这点和这边相对的顶点的线段,就是所求中线.(3)角平分线的画法:类似于画角平分线,作三角形一个角的平分线,交对边于一点,这点和角的顶点之间的线段就是所求的角平分线.9.三角形高的应用从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高.因为三角形的高是通过作垂线得到的,既有直角,又有垂线段,因此它的应用方向主要有两方面:一是求面积问题,高是垂线段,也是点到直线的距离,是求三角形的面积所必须知道的长度;二是直角,高是垂线段,因而一定有直角,根据所有直角都相等或互余关系进行解题是三角形的高应用的另一方向.解技巧巧证直角背景下两锐角相等图形中含有高时,经常用“同角(或等角)的余角相等”来证明角相等,这既是一种方法,也是一个规律.【例8】如图(1),已知△ABC,画出△ABC中,BC边上的高、中线和∠BAC的平分线.图(1) 图(2)分析:因为三角形的高、中线、角平分线都是描述性定义,它们的定义就蕴含了它们的画法,根据总结的画法画出图形即可,如图(2).解:画法如下:(1)过A作BC的垂线,垂足为D,AD即为BC边上的高;(2)取BC的中点E,连接AE,AE即为BC边上的中线;(3)作∠BAC的平分线,交BC于点F,连接AF,AF即为△ABC中∠BAC的平分线.【例9】如图,在△ABC中,AD,BE分别是边BC,AC上的高,试说明∠DAC与∠EBC 的关系.分析:因为有三角形中的高就有垂直、直角,所以∠ADC,∠BEC都是直角.根据小学所学三角形的内角和为180°,所以∠DAC+∠C=90°,∠EBC+∠C=90°,根据同角的余角相等,即可得出∠DAC=∠EBC.解:∠DAC=∠EBC.因为AD,BE分别是边BC,AC上的高,所以∠ADC=90°,∠BEC=90°.所以∠DAC+∠C=90°,∠EBC+∠C=90°.所以∠DAC=∠EBC.10.三角形中线应用拓展三角形的中线是三角形中的一条重要线段,它最大的特点是已知三角形的中线,图中一定含有相等线段,由此延伸出中线的应用:(1)面积问题:三角形的中线将三角形分成面积相等的两个三角形,如图,在△ABC中,AD是BC边上的中线,则S△ABD=S△ACD=12S△ABC.因为BD=CD,△ABD和△ADC等底同高,所以面积相等,因此通过作三角形的中线可将三角形分成面积相等的两部分.(2)周长问题:如图所示,AD是BC边上的中线,△ABD和△ACD的周长之差实质上就是AB与AC的差,这也是三角形中线中常出现的问题.【例10】有一块三角形优良品种试验基地,如图所示,由于引进四个优良品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的划分方案供选择(画图说明).分析:根据三角形中线将三角形分为面积相等的两部分的特征,先把原三角形分为两个面积相等的三角形,然后再依次等分.解:答案不唯一,如方案1:如图(1),在BC上取点D,E,F,使BD=DE=EF=FC,连接AD,AE,AF.方案2:如图(2),分别取AB,BC,CA的中点D,E,F,连接DE,EF,DF.方案3:如图(3),分别取BC的中点D、CD的中点E、AB的中点F,连接AD,AE,DF.方案4:如图(4),分别取BC的中点D、AB的中点E、AC的中点F,连接AD,DE,DF.11.等腰三角形中的三边关系等腰三角形是特殊的三角形,它最大的特点是两条边相等,所以反映在三边关系中,就是底与腰的关系:①只要两腰之和大于底就一定能构成三角形;②在等腰三角形中,底的取值范围是大于0且小于两腰之和.因为等腰三角形的特殊性,所以在涉及等腰三角形问题时,只要不明确哪是底,哪是腰,就必须分情况讨论,并且要验证是否能构成三角形.如一个等腰三角形的两边长是2 cm 和5 cm,它的周长是多少?情况一:当腰是2 cm底是5 cm时,因为2+2<5,两边之和小于第三边,所以此等腰三角形不存在;情况二:当腰是5 cm底是2 cm时,5+2>5,所以此等腰三角形存在,此时周长为12 cm.解技巧利用三边关系求等腰三角形的边长根据两边之和大于第三边,结合底和腰的关系先判断等腰三角形是否存在是求解的前提.【例11-1】等腰三角形的两边长分别为6 cm和9 cm,则腰长为__________.解析:两种情况,一是腰长为6 cm时,底边就是9 cm,此时6+6>9,此三角形存在,所以腰长可以是6 cm;二是腰长为9 cm,此时9+6>9,此三角形也存在,所以腰长也可以是9 cm,故腰长为6 cm或9 cm.答案:9 cm或6 cm【例11-2】已知等腰三角形的周长是24 cm,(1)腰长是底边长的2倍,求腰长;(2)若其中一边长为6 cm,求其他两边长.分析:(1)可以通过设未知数,利用周长作为相等关系,列出方程,通过求方程的解从而求出答案;(2)因为题目中没有说明这条边究竟是腰还是底边,要分两种情况考虑,并且计算结果还要注意检查是否符合两边之和都大于第三边.解:(1)设底边长为x cm,则腰长为2x cm,根据题意,得x+2x+2x=24,解得x=4.8,所以腰长为2x=2×4.8=9.6(cm).(2)当长为6 cm的边为腰时,则底边为24-6×2=12(cm).因为6+6=12,两边之和等于第三边,所以6 cm长为腰不能组成三角形,故腰长不能为6 cm.当长为6 cm的边为底边时,则腰长为(24-6)÷2=9(cm),因为6 cm,9 cm,9 cm可以组成三角形,所以等腰三角形其他两边长均为9 cm.12.与三角形有关的线段易错点分析在本节内容中,易错点主要表现在以下三个方面:(1)三角形的高、中线、角平分线都是线段,它们都有长度,这与前面所学的垂线是直线、角平分线是射线容易混淆.(2)画钝角三角形的高时易出错,如下图三种画法都是错误的.三种情况错误的原因都是对三角形的高的定义理解不透彻.图1中BE不垂直于边AC,错因是受锐角三角形的影响,误认为高的垂足必落在对边上;图2错在没有过点B画AC 的垂线段;图3错在把三角形的高与AC边上的垂线混淆,把线段画成了射线.正确的作法是过点B向对边AC所在的直线画垂线,垂足为E.因为三角形是钝角三角形,所以垂足落在CA 的延长线上,如下图所示:(3)运用三角形三边关系时出错,只有两边之和大于第三边,才能构成三角形,才能进行其他运算,这是前提.特别是等腰三角形在没指明哪是底哪是腰时更易出错,一定要分类讨论,且必须考虑“不同情况下是否能构成三角形”.【例12-1】 下列说法正确的是( ).A .三角形的角平分线是射线B .三角形的高是一条垂线C .三角形的三条中线相交于一点D .三角形的中线、角平分线和高都在三角形内部解析:A ,B ,D 都是错误的,A 选项一个角的平分线与三角形的角平分线有本质区别:角的平分线是射线,三角形的角平分线是线段;三角形的高也是线段,是从三角形的一个顶点向它的对边所在的直线画垂线,顶点和垂足之间的线段;三角形的中线、角平分线以及锐角三角形的三条高都在三角形内部,但钝角三角形有两条高在三角形的外部,所以D 也是错误的.只有C 正确.答案:C【例12-2】 等腰三角形一腰上的中线把这个三角形的周长分成为12 cm 和15 cm 两部分,求三角形的底边长.分析:有两种可能,一种是锐角三角形,如图(1)所示,这时AB +AD =15 cm ,BC +CD =12 cm ;另一种是钝角三角形,如图(2),这时AB +AD =12 cm ,BC +CD =15 cm.图(1) 图(2) 解:(1)当三角形是锐角三角形时,因为D 是AC 的中点,所以AD =12AC =12AB ,所以AB +AD =AB +12AB =15,解得AB =10(cm).所以AC =10 cm ,所以底边BC =15+12-10×2=7(cm),此时能构成三角形,且底边长为7 cm.(2)当三角形是钝角三角形时,AB +AD =AB +12AB =12,解得AB =8(cm),所以AC =8 cm ,所以BC =15+12-8×2=11(cm).因为8+8>11,所以能构成三角形,此时底边为11 cm.答:底边的长为7 cm 或11 cm.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第11章《三角形》同步练习(§11.1 与三角形有关的线段A)班级学号姓名得分1、填空题:(1)由____________三条线段______所组成的图形叫做三角形.组成三角形的线段叫做______;相邻两边的公共端点叫做______,相邻两边所组成的角叫做______,简称______.(2)如图所示,顶点是A、B、C的三角形,记作______,读作______.其中,顶点A所对的边______还可用______表示;顶点B所对的边______还可用______表示;顶点C 所对的边______还可用______表示.(3)由“连接两点的线中,线段最短”这一性质可以得到三角形的三边有这样的性质______________________________.由它还可推出:三角形两边的差____________.(4)对于△ABC,若a≥b,则a+b______c同时a-b______c;又可写成______<c<______.(5)若一个三角形的两边长分别为4cm和5cm,则第三边x的长度的取值范围是____________,其中x可以取的整数值为____________.2.已知:如图,试回答下列问题:(1)图中有______个三角形,它们分别是______________________________________.(2)以线段AD为公共边的三角形是_________________________________________.(3)线段CE所在的三角形是______,CE边所对的角是________________________.(4)△ABC、△ACD、△ADE这三个三角形的面积之比等于______∶______∶______.3.选择题:(1)下列各组线段能组成一个三角形的是( ).(A)3cm,3cm,6cm (B)2cm,3cm,6cm(C)5cm,8cm,12cm (D)4cm,7cm,11cm(2)现有两根木条,它们的长分别为50cm,35cm,如果要钉一个三角形木架,那么下列四根木条中应选取( ).(A)0.85m长的木条(B)0.15m长的木条(C)1m长的木条(D)0.5m长的木条(3)从长度分别为10cm、20cm、30cm、40cm的四根木条中,任取三根可组成三角形的个数是( ).(A)1个(B)2个(C)3个(D)4个(4)若三角形的两边长分别为3和5,则其周长l的取值范围是( ).(A)6<l<15 (B)6<l<16(C)11<l<13 (D)10<l<164.(1)一个等腰三角形的周长为18,若腰长的3倍比底边的2倍多6,求各边长.(2)已知等腰三角形的一边等于8cm,一边等于6cm,求它的周长.(3)一个等腰三角形的周长为30cm,一边长为6cm,求其它两边的长.(4)有两边相等的三角形的周长为12cm,一边与另一边的差是3cm,求三边的长.5.(1)若三角形三条边的长分别是7,10,x,求x的范围.(2)若三边分别为2,x-1,3,求x的范围.(3)若三角形两边长为7和10,求最长边x的范围.(4)等腰三角形腰长为2,求周长l的范围.(5)等腰三角形的腰长是整数,周长是10,求它的各边长.6.已知:如图,△ABC中,AB=AC,D是AB边上一点.(1)通过度量AB 、CD 、DB 的长度,确定AB 与)(21DB CD 的大小关系.(2)试用你所学的知识来说明这个不等关系是成立的.7.已知:如图,P 是△ABC 内一点.请想一个办法说明AB +AC >PB +PC .8.如图,D 、E 是△ABC 内的两点,求证:AB +AC >BD +DE +EC .第11章《三角形》同步练习(§11.1 与三角形有关的线段B )班级 学号 姓名 得分1.填空题:(1)从三角形一个顶点向它的对边画______,以______和______为端点的线段叫做三角形这边上的高.如图,若CD 是△ABC 中AB 边上的高,则∠ADC ______∠BDC =______,C 点到对边AB 的距离是______的长.(2)连结三角形的一个顶点和它______的______叫做三角形这边上的中线. 如右图,若BE 是△ABC 中AC 边上的中线,则AE ______.______21EC(3)三角形一个角的______与这个角的对边相交,以这个角的______和______为端点的线段叫做三角形的角平分线.一个角的平分线与三角形的角平分线的区别是________________________________ ______________________________________. 如图,若AD 是△ABC 的角平分线,则∠BAD ______∠CAD =21______或∠BAC =2______=2______.2.已知:△GEF ,分别画出此三角形的高GH ,中线EM ,角平分线FN .3.(1)分别画出△ABC 的三条高AD 、BE 、CF .(∠A为锐角) (∠A为直角) (∠A为钝角)(2)这三条高AD、BE、CF所在的直线有怎样的位置关系?4.(1)分别画出△ABC的三条中线AD、BE、CF.(2)这三条中线AD、BE、CF有怎样的位置关系?(3)设中线AD与BE相交于M点,分别量一量线段BM和ME、线段AM和MD的长,从中你能发现什么结论?5.(1)分别画出△ABC的三条角平分线AD、BE、CF.(2)这三条角平分线AD、BE、CF有怎样的位置关系?(3)设△ABC的角平分线BE、CF交于N点,请量一量点N到△ABC三边的距离,从中你能发现什么结论?6.已知:△ABC中,AB=AC,BD是AC边上的中线,如果D点把三角形ABC的周长分为12cm和15cm两部分,求此三角形各边的长.7.(1)如果将一个三角形的三边的长确定,那么这个三角形的形状和大小就不会改变了,三角形的这个性质叫做________________________. (2)四边形是否具有这种性质? 8.将一个三角形剖分成若干个面积相等的小三角形,称为该三角形的等积三角形的剖分(以下两问要求各画三个示意图)(1)已知一个任意三角形,并其剖分成3个等积的三角形. (2)已知一个任意三角形,将其剖分成4个等积的三角形.9.不等边△ABC 的两条高长度分别为4和12,若第三条高的长也是整数,试求它的长.参考答案(§11.1 与三角形有关的线段A )1.(1)不在同一直线上的,首尾顺次相接,三角形的边,三角形的顶点,三角形的内角,三角形的角.(2)△ABC ,三角形ABC ,BC ,a ;AC ,b ;AB ,c (3)三角形两边之和大于第三边,小于第三边. (4)>,<,a -b ,a +b(5)1cm <x <9cm ,2cm 、3cm 、4cm 、5cm 、6cm 、7cm 、8cm . 2.(1)六,△ABC 、△ABD 、△ABE 、△ACD 、△ACE 、△ADE . (2)△ABD 、△ACD 、△ADE . (3)△ACE ,∠CAE . (4)BC :CD :DE .3.(1)C ,(2)D ,(3)A ,(4)D4.(1)6,6,6;(2)20cm ,22cm ;(3)12cm ,12cm ;(4)5cm ,5cm ,2cm . 5.(1)3<x <17;(2)2<x <6;(3)10≤x <17;(4)4<e <8; (5)3,3,4或4,4,2 6.(1))(21DB CD AB +>. (2)提示:对于△ADC ,∵AD +AC >DC , ∴(AD +DB )+AC >CD +DB , 即AB +AC >CD +DB .又∵AB =AC ,∴2AB >CD +DB . 从而AB >21(CD +DB ). 7.提示:延长BP 交AC 于D .∵在△ABD 中,AB +AD >BD =BP +PD ,① 在△DPC 中,DP +DC >PC ,② 由①、②,∴AB +(AD +DC )+DP >BP +PC +DP . 即AB +AC >PB +PC .8.证明:延长BP 交AC 于D ,延长CE 交BD 于F . 在△ABD 中,AB +AD >BD . ① 在△FDC 中,FD +DC >FC . ② 在△PEF 中,PF +FE >PE . ③①+②+③得AB +AD +FD +DC +PF +FE >BD +FC +PE , 即:AB +AC +PF +FD +FE >BP +PF +FD +FE +EC +PE , 所以AB +AC >BP +PE +EC .(§11.1 与三角形有关的线段B )1.(1)垂线,顶点、垂足,=,90°,高CD 的长. (2)所对的边的中点、线段,=,AC(3)平分线,顶点、交点,一个角的平分线是射线,而三角形的角平分线是线段. =,∠BAC ,∠BAD ,∠DAC 2.略.3.(1)略,(2)三条高所在直线交于一点.4.(1)略,(2)三条中线交于一点,(3)BM =2ME .5.(1)略,(2)三条角平分线交于一点,(3)点N 到△ABC 三边的距离相等. 6.提示:有两种情况,分别运用方程思想,设未知数求解.⎩⎨⎧===,11,8BC AC AB 或⎩⎨⎧===.7,10BC AC AB 7.(1)三角形的稳定性,(2)不具有稳定性.8.(1)(2)下列各图是答案的一部分:9.它的长为5,或4.提示:设S △ABC =S ,第三条高为h ,则△ABC 的三边长可表示为:hSS S 212242、、,列不等式得:12242212242SS h S S S +<<- ∴3<h <6.。