2016年重庆市中考数学试卷b
(中考精品)重庆市中考数学真题(B卷)(原卷版)
重庆市2022年初中学业水平暨高中招生考试数学试卷(B 卷)(全卷共四个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;参考公式:抛物线2y ax bx c =++(0a ≠)的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴为2b x a=-. 一、选择题(共12个小题,每小题4分,共48分)在每个小题的下面,都给出了序号为A 、B 、C 、D 的四个选项,其中只有一个正确的,请将答题卡上题号右侧的正确答案所对应的方框涂黑.1. 2-的相反数是( )A. 2-B. 2C. 12 D. 12- 2. 下列北京冬奥会运动标识图案是轴对称图形的是( )A B.C. D.3. 如图,直线a b ∥,直线m 与a ,b 相交,若1115∠=︒,则2∠的度数为( )A. 115°B. 105°C. 75°D. 65° 4. 如图是小颖0到12时的心跳速度变化图,在这一时段内心跳速度最快的时刻约为.( )A. 3时B. 6时C. 9时D. 12时 5. 如图,ABC 与DEF 位似,点O 是它们的位似中心,且位似比为1∶2,则ABC 与DEF 的周长之比是( )A. 1∶2B. 1∶4C. 1∶3D. 1∶9 6. 把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为( )A. 15B. 13C. 11D. 97. 4的值在( )A. 6到7之间B. 5到6之间C. 4到5之间D. 3到4之间8. 学校连续三年组织学生参加义务植树,第一年共植树400棵,第三年共植树625棵.设该校植树棵数的年平均增长率为x ,根据题意,下列方程正确的是( )A. 2625(1)400x -=B. 2400(1)625x +=C. 2625400x =D. 2400625x =9. 如图,在正方形ABCD 中,对角线AC 、BD 相交于点O . E 、F 分别为AC 、BD 上一点,且OE OF =,连接AF ,BE ,EF .若25AFE ∠=︒,则CBE ∠的度数为( )A. 50°B. 55°C. 65°D. 70° 10. 如图,AB 是O 的直径,C 为O 上一点,过点C 的切线与AB 的延长线交于点P,若AC PC ==,则PB 的长为( )B. 32C. D. 3 11. 关于x 的分式方程31133x a x x x-++=--的解为正数,且关于y 的不等式组92(2)213y y y a +≤+⎧⎪-⎨>⎪⎩的解集为5y ≥,则所有满足条件的整数a 的值之和是( ) A. 13 B. 15 C. 18 D. 20 12. 对多项式x y z m n ----任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:()()x y z m n x y z m n ----=--++,()x y z m n x y z m n ----=--+-,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确个数为( )A. 0B. 1C. 2D. 3二、填空题(共4个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上.13. 0|2|(3-+=_________.14. 不透明的袋子中装有2个红球和1个白球,除颜色外无其他差别,随机摸出一个球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率是________.15. 如图,在矩形ABCD 中,1AB =,2BC =,以B 为圆心,BC 的长为半轻画弧,交AD 于点E .则图中阴影部分的面积为_________.(结果保留π)16. 特产专卖店销售桃片、米花糖、麻花三种特产,其中每包桃片的成本是麻花的2倍,每包桃片、米花糖、麻花的售价分别比其成本高20%、30%、20%.该店五月份销售桃片、米花糖、麻花的数量之比为1∶3∶2,三种特产的总利润是总成本的25%,则每包米花糖与每包麻花的成本之比为_________.三、解答题(共2个小题,每小题8分,共16分)17. 计算:(1)()()(2)x y x y y y +-+-;(2)2244124m m m m m -+⎛⎫-÷ ⎪⎝⎭-+. 18. 我们知道,矩形的面积等于这个矩形的长乘宽,小明想用其验证一个底为a ,高为h 的三角形的面积公式为12S ah =.想法是:以BC 为边作矩形BCFE ,点A 在边FE 上,再过点A 作BC 的垂线,将其转化为证三角形全等,由全等图形面积相等来得到验证.按以上思路完成下面的作图与填空:证明:用直尺和圆规过点A 作BC 的垂线AD 交BC 于点的D .(只保留作图痕迹)在ADC 和CFA △中,∵AD BC ⊥,∴90ADC ∠=︒.∵90F ∠=︒,∴______①____.∵EF BC ∥,∴______②_____.又∵____③______.∴ADC CFA △≌△(AAS ).同理可得:_____④______.11112222ABC ADC ABD ADCF AEBD BCFE S S S S S S ah =+=+== 矩形矩形矩形. 三、解答题(共7个小题,每小题10分,共70分)19. 在“世界读书日”到来之际,学校开展了课外阅读主题周活动,活动结束后,经初步统计,所有学生的课外阅读时长都不低于6小时,但不足12小时,从七,八年级中各随机抽取了20名学生,对他们在活动期间课外阅读时长(单位:小时)进行整理、描述和分析(阅读时长记为x ,67x ≤<,记为6;78x ≤<,记为7;89x ≤<,记为8;…以此类推),下面分别给出了抽取的学生课外阅读时长的部分信息,七年级抽取的学生课外阅读时长:6,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,10,10,11, 七、八年级抽取的学生课外阅读时长统计表年级七年级 八年级 平均数8.3 8.3 众数a 9 中位数 8 b8小时及以上所占百分比 75% c根据以上信息,解答下列问题:(1)填空:=a ______________,b =______________,c =______________.(2)该校七年级有400名学生,估计七年级在主题周活动期间课外阅读时长在9小时及以上学生人数.(3)根据以上数据,你认为该校七,八年级学生在主题周活动中,哪个年级学生的阅读积极性更高?请说明理由,(写出一条理由即可)20. 反比例函数4y x =的图象如图所示,一次函数y kx b =+(0k ≠)的图象与4y x =的图象交于(,4)A m ,(2,)B n -两点,(1)求一次函数的表达式,并在所给的平面直角坐标系中面出该函数的图象;(2)观察图象,直接写出不等式4kx b x+<解集; (3)一次函数y kx b =+的图象与x 轴交于点C ,连接OA ,求OAC 的面积. 21. 为保障蔬菜基地种植用水,需要修建灌溉水渠.(1)计划修建灌溉水渠600米,甲施工队施工5天后,增加施工人员,每天比原来多修建20米,再施工2天完成任务,求甲施工队增加人员后每天修建灌溉水渠多少米?(2)因基地面积扩大,现还需修建另一条灌溉水渠1800米,为早日完成任务,决定派乙的的施工队与甲施工队同时开工合作修建这条水渠,直至完工.甲施工队按(1)中增加人员后的修建速度进行施工.乙施工队修建360米后,通过技术更新,每天比原来多修建20%,灌溉水渠完工时,两施工队修建的长度恰好相同.求乙施工队原来每天修建灌溉水渠多少米?22. 湖中小岛上码头C 处一名游客突发疾病,需要救援.位于湖面B 点处的快艇和湖岸A 处的救援船接到通知后立刻同时出发前往救援.计划由快艇赶到码头C 接该游客,再沿CA 方向行驶,与救援船相遇后将该游客转运到救援船上.已知C 在A 的北偏东30°方向上,B 在A 的北偏东60°方向上,且B 在C 的正南方向900米处.(1)求湖岸A 与码头C 的距离(结果精确到11.732=);(2)救援船的平均速度为150米/分,快艇的平均速度为400米/分,在接到通知后,快艇能否在5分钟内将该游客送上救援船?请说明理由.(接送游客上下船的时间忽略不计) 23. 对于一个各数位上的数字均不为0的三位自然数N ,若N 能被它的各数位上的数字之和m 整除,则称N 是m 的“和倍数”.例如:∵247(247)2471319÷++=÷=,∴247是13的“和倍数”.又如:∵214(214)2147304÷++=÷= ,∴214不是“和倍数”.(1)判断357,441否是“和倍数”?说明理由;(2)三位数A 是12的“和倍数”,a ,b ,c 分别是数A 其中一个数位上的数字,且a b c >>.在a ,b ,c 中任选两个组成两位数,其中最大的两位数记为()F A ,最小的两位数记为()G A ,若()()16F AG A +为整数,求出满足条件的所有数A . 24. 如图,在平面直角坐标系中,抛物线234y x bx c =-++与x 轴交于点(4,0)A ,与y 轴交于点(0,3)B .是(1)求抛物线的函数表达式;(2)点P 为直线AB 上方抛物线上一动点,过点P 作PQ x ⊥轴于点Q ,交AB 于点M ,求65PM AM +的最大值及此时点P 的坐标; (3)在(2)的条件下,点P '与点P 关于抛物线234y x bx c =-++的对称轴对称.将抛物线234y x bx c =-++向右平移,使新抛物线的对称轴l 经过点A .点C 在新抛物线上,点D 在l 上,直接写出所有使得以点A 、P '、C 、D 为顶点的四边形是平行四边形的点D 的坐标,并把求其中一个点D 的坐标的过程写出来.25. 在ABC 中,90BAC ∠=︒,AB AC ==D 为BC 的中点,E ,F 分别为AC ,AD 上任意一点,连接EF ,将线段EF 绕点E 顺时针旋转90°得到线段EG ,连接FG ,AG .(1)如图1,点E 与点C 重合,且GF 的延长线过点B ,若点P 为FG 的中点,连接PD ,求PD 的长;(2)如图2,EF 的延长线交AB 于点M ,点N 在AC 上,AGN AEG ∠=∠且GN MF =,求证:AM AF +=;(3)如图3,F 为线段AD 上一动点,E 为AC 的中点,连接BE ,H 为直线BC 上一动点,连接EH ,将BEH △沿EH 翻折至ABC 所在平面内,得到B EH '△,连接B G ',直接写出线段B G '的长度的最小值。
2017年重庆市中考数学试卷(B卷)(含答案解析)
2017年重庆市中考数学试卷(B卷)一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)5的相反数是()A.﹣5 B.5 C.﹣ D.2.(4分)下列图形中是轴对称图形的是()A.B.C.D.3.(4分)计算a5÷a3结果正确的是()A.a B.a2C.a3D.a44.(4分)下列调查中,最适合采用抽样调查的是()A.对某地区现有的16名百岁以上老人睡眠时间的调查B.对“神舟十一号”运载火箭发射前零部件质量情况的调查C.对某校九年级三班学生视力情况的调查D.对某市场上某一品牌电脑使用寿命的调查5.(4分)估计+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间6.(4分)若x=﹣3,y=1,则代数式2x﹣3y+1的值为()A.﹣10 B.﹣8 C.4 D.107.(4分)若分式有意义,则x的取值范围是()A.x>3 B.x<3 C.x≠3 D.x=38.(4分)已知△ABC∽△DEF,且相似比为1:2,则△ABC与△DEF的面积比为()A.1:4 B.4:1 C.1:2 D.2:19.(4分)如图,在矩形ABCD中,AB=4,AD=2,分别以A、C为圆心,AD、CB 为半径画弧,交AB于点E,交CD于点F,则图中阴影部分的面积是()A.4﹣2πB.8﹣C.8﹣2πD.8﹣4π10.(4分)下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为()A.116 B.144 C.145 D.15011.(4分)如图,已知点C与某建筑物底端B相距306米(点C与点B在同一水平面上),某同学从点C出发,沿同一剖面的斜坡CD行走195米至坡顶D处,斜坡CD的坡度(或坡比)i=1:2.4,在D处测得该建筑物顶端A的俯视角为20°,则建筑物AB的高度约为(精确到0.1米,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)()A.29.1米B.31.9米C.45.9米D.95.9米12.(4分)若数a使关于x的不等式组有且仅有四个整数解,且使关于y的分式方程+=2有非负数解,则所有满足条件的整数a的值之和是()A.3 B.1 C.0 D.﹣3二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)据统计,2017年五一假日三天,重庆市共接待游客约为14300000人次,将数14300000用科学记数法表示为.14.(4分)计算:|﹣3|+(﹣4)0=.15.(4分)如图,OA、OC是⊙O的半径,点B在⊙O上,连接AB、BC,若∠ABC=40°,则∠AOC=度.16.(4分)某同学在体育训练中统计了自己五次“1分钟跳绳”成绩,并绘制了如图所示的折线统计图,这五次“1分钟跳绳”成绩的中位数是个.17.(4分)甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B 地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需分钟到达终点B.18.(4分)如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则△EMN的周长是.三、解答题(本大题共2个小题,每小题8分,共16分)19.(8分)如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠FAC=72°,∠ACD=58°,点D在GH上,求∠BDC的度数.20.(8分)中央电视台的“中国诗词大赛”节目文化品位高,内容丰富,某校初二年级模拟开展“中国诗词大赛”比赛,对全年级同学成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:(1)扇形统计图中“优秀”所对应的扇形的圆心角为度,并将条形统计图补充完整.(2)此次比赛有四名同学获得满分,分别是甲、乙、丙、丁,现从这四名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丁的概率.四、简答题(本大题共4个小题,每小题10分,共40分)21.(10分)计算:(1)(x+y)2﹣x(2y﹣x);(2)(a+2﹣)÷.22.(10分)如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y=(k≠0)的图象交于A、B两点,与x轴交于点C,过点A作AH⊥x轴于点H,点O是线段CH的中点,AC=4,cos∠ACH=,点B的坐标为(4,n)(1)求该反比例函数和一次函数的解析式;(2)求△BCH的面积.23.(10分)某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.24.(10分)如图,△ABC中,∠ACB=90°,AC=BC,点E是AC上一点,连接BE.(1)如图1,若AB=4,BE=5,求AE的长;(2)如图2,点D是线段BE延长线上一点,过点A作AF⊥BD于点F,连接CD、CF,当AF=DF时,求证:DC=BC.五、解答题(本大题2个小题,第25小题10分、第26小题12分,共22分)25.(10分)对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F (n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=,当F(s)+F(t)=18时,求k的最大值.26.(12分)如图,在平面直角坐标系中,抛物线y=x2﹣x﹣与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.(1)求直线AE的解析式;(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值;(3)点G是线段CE的中点,将抛物线y=x2﹣x﹣沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在一点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.2017年重庆市中考数学试卷(B卷)参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)(2017•重庆)5的相反数是()A.﹣5 B.5 C.﹣ D.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:5的相反数是﹣5,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(4分)(2017•重庆)下列图形中是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、不是轴对称图形,不合题意;D、是轴对称图形,符合题意.故选:D.【点评】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(4分)(2017•重庆)计算a5÷a3结果正确的是()A.a B.a2C.a3D.a4【分析】根据同底数幂的除法法则:同底数幂相除,底数不变,指数相减,求出a5÷a3的计算结果是多少即可.【解答】解:a5÷a3=a2故选:B.【点评】此题主要考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.4.(4分)(2017•重庆)下列调查中,最适合采用抽样调查的是()A.对某地区现有的16名百岁以上老人睡眠时间的调查B.对“神舟十一号”运载火箭发射前零部件质量情况的调查C.对某校九年级三班学生视力情况的调查D.对某市场上某一品牌电脑使用寿命的调查【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【解答】解:A、人数不多,容易调查,适合普查.B、对“神舟十一号”运载火箭发射前零部件质量情况的调查必须准确,故必须普查;C、班内的同学人数不多,很容易调查,因而采用普查合适;D、数量较大,适合抽样调查;故选D.【点评】本题考查全面调查与抽样调查,理解全面调查与抽样调查的意义是解题的关键.5.(4分)(2017•重庆)估计+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【分析】先估算出的范围,即可得出答案.【解答】解:∵3<<4,∴4<+1<5,即+1在4和5之间,故选C.【点评】本题考查了估算无理数的大小,能估算出的范围是解此题的关键.6.(4分)(2017•重庆)若x=﹣3,y=1,则代数式2x﹣3y+1的值为()A.﹣10 B.﹣8 C.4 D.10【分析】代入后求出即可.【解答】解:∵x=﹣3,y=1,∴2x﹣3y+1=2×(﹣3)﹣3×1+1=﹣8,故选B.【点评】本题考查了求代数式的值,能正确代入是解此题的关键,注意:代入负数时要有括号.7.(4分)(2017•重庆)若分式有意义,则x的取值范围是()A.x>3 B.x<3 C.x≠3 D.x=3【分析】分式有意义的条件是分母不为0.【解答】解:∵分式有意义,∴x﹣3≠0,∴x≠3;故选:C.【点评】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.8.(4分)(2017•重庆)已知△ABC∽△DEF,且相似比为1:2,则△ABC与△DEF的面积比为()A.1:4 B.4:1 C.1:2 D.2:1【分析】利用相似三角形面积之比等于相似比的平方计算即可.【解答】解:∵△ABC∽△DEF,且相似比为1:2,∴△ABC与△DEF的面积比为1:4,故选A【点评】此题考查了相似三角形的性质,熟练掌握相似三角形的性质是解本题的关键.9.(4分)(2017•重庆)如图,在矩形ABCD中,AB=4,AD=2,分别以A、C为圆心,AD、CB为半径画弧,交AB于点E,交CD于点F,则图中阴影部分的面积是()A.4﹣2πB.8﹣C.8﹣2πD.8﹣4π【分析】用矩形的面积减去半圆的面积即可求得阴影部分的面积.【解答】解:∵矩形ABCD,∴AD=CB=2,∴S阴影=S矩形﹣S半圆=2×4﹣π×22=8﹣2π,故选C.【点评】本题考查了扇形的面积的计算及矩形的性质,能够了解两个扇形构成半圆是解答本题的关键,难度不大.10.(4分)(2017•重庆)下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为()A.116 B.144 C.145 D.150【分析】根据题意图形得出小星星的个数变化规律,即可的得出答案.【解答】解:∵4=1×2+2,11=2×3+2+321=3×4+2+3+4第4个图形为:4×5+2+3+4+5,∴第⑨个图形中的颗数为:9×10+2+3+4+5+6+7+8+9+10=144.故选:B.【点评】此题主要考查了图形变化规律,正确得出每个图形中小星星的变化情况是解题关键.11.(4分)(2017•重庆)如图,已知点C与某建筑物底端B相距306米(点C 与点B在同一水平面上),某同学从点C出发,沿同一剖面的斜坡CD行走195米至坡顶D处,斜坡CD的坡度(或坡比)i=1:2.4,在D处测得该建筑物顶端A的俯视角为20°,则建筑物AB的高度约为(精确到0.1米,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)()A.29.1米B.31.9米C.45.9米D.95.9米【分析】根据坡度,勾股定理,可得DE的长,再根据平行线的性质,可得∠1,根据同角三角函数关系,可得∠1的坡度,根据坡度,可得DF的长,根据线段的和差,可得答案.【解答】解:作DE⊥AB于E点,作AF⊥DE于F点,如图,设DE=xm,CE=2.4xm,由勾股定理,得x2+(2.4x)2=1952,解得x≈75m,DE=75m,CE=2.4x=180m,EB=BC﹣CE=306﹣180=126m.∵AF∥DG,∴∠1=∠ADG=20°,tan∠1=tan∠ADG==0.364.AF=EB=126m,tan∠1==0.364,DF=0.364AF=0.364×126=45.9,AB=FE=DE﹣DF=75﹣45.9≈29.1m,故选:A.【点评】本题考查了解直角三角形,利用坡度及勾股定理得出DE,CE的长是解题关键.12.(4分)(2017•重庆)若数a使关于x的不等式组有且仅有四个整数解,且使关于y的分式方程+=2有非负数解,则所有满足条件的整数a的值之和是()A.3 B.1 C.0 D.﹣3【分析】先解不等式组,根据不等式组有且仅有四个整数解,得出﹣4<a≤3,再解分式方程+=2,根据分式方程有非负数解,得到a≥﹣2且a≠2,进而得到满足条件的整数a的值之和.【解答】解:解不等式组,可得,∵不等式组有且仅有四个整数解,∴﹣1≤﹣<0,∴﹣4<a≤3,解分式方程+=2,可得y=(a+2),又∵分式方程有非负数解,∴y≥0,且y≠2,即(a+2)≥0,(a+2)≠2,解得a≥﹣2且a≠2,∴﹣2≤a≤3,且a≠2,∴满足条件的整数a的值为﹣2,﹣1,0,1,3,∴满足条件的整数a的值之和是1.故选:B.【点评】本题主要考查了分式方程的解,解题时注意:使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)(2017•重庆)据统计,2017年五一假日三天,重庆市共接待游客约为14300000人次,将数14300000用科学记数法表示为 1.43×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:14300000=1.43×107,故答案为:1.43×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(4分)(2017•重庆)计算:|﹣3|+(﹣4)0=4.【分析】分别计算﹣3的绝对值和(﹣4)的0次幂,然后把结果求和.【解答】原式=3+1=4.【点评】本题考查了绝对值的意义和零指数幂.a0=1(a≠0).15.(4分)(2017•重庆)如图,OA、OC是⊙O的半径,点B在⊙O上,连接AB、BC,若∠ABC=40°,则∠AOC=80度.【分析】直接根据圆周角定理即可得出结论.【解答】解:∵∠ABC与AOC是同弧所对的圆周角与圆心角,∠ABC=40°,∴∠AOC=2∠ABC=80°.故答案为:80.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.16.(4分)(2017•重庆)某同学在体育训练中统计了自己五次“1分钟跳绳”成绩,并绘制了如图所示的折线统计图,这五次“1分钟跳绳”成绩的中位数是183个.【分析】把这组数据从小到大排列,处于中间位置的数就是这组数据的中位数.【解答】解:由图可知,把数据从小到大排列的顺序是:180、182、183、185、186,中位数是183.故答案是:183.【点评】此题考查了中位数和折线统计图,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.17.(4分)(2017•重庆)甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需78分钟到达终点B.【分析】根据路程与时间的关系,可得甲乙的速度,根据相遇前甲行驶的路程除以乙行驶的速度,可得乙到达A站需要的时间,根据相遇前乙行驶的路程除以甲行驶的速度,可得甲到达B站需要的时间,再根据有理数的减法,可得答案.【解答】解:由纵坐标看出甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟,甲的速度是1÷6=千米/分钟,由纵坐标看出AB两地的距离是16千米,设乙的速度是x千米/分钟,由题意,得10x+16×=16,解得x=千米/分钟,相遇后乙到达A站还需(16×)÷=2分钟,相遇后甲到达B站还需(10×)÷=80分钟,当乙到达终点A时,甲还需80﹣2=78分钟到达终点B,故答案为:78.【点评】本题考查了函数图象,利用同路程与时间的关系得出甲乙的速度是解题关键.18.(4分)(2017•重庆)如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG 沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则△EMN 的周长是.【分析】解法一:如图1,作辅助线,构建全等三角形,根据全等三角形对应边相等证明FQ=BQ=PE=1,△DEF是等腰直角三角形,利用勾理计算DE=EF=,PD==3,如图2,由平行相似证明△DGC∽△FGA,列比例式可得FG 和CG的长,从而得EG的长,根据△GHF是等腰直角三角形,得GH和FH的长,利用DE∥GM证明△DEN∽△MNH,则,得EN=,从而计算出△EMN 各边的长,相加可得周长.解法二,将解法一中用相似得出的FG和CG的长,利用面积法计算得出,其它解法相同.解法三:作辅助线构建正方形和全等三角形,设EP=x,则DQ=4﹣x=FP=x﹣2,求x的值得到PF=1,AE的长;由△DGC和△FGA相似,求AG和GE的长;证△GHF 和△FKM全等,所以GH=FK=4/3,HF=MK=2/3,ML=AK=10/3,DL=AD﹣MK=10/3,即DL=LM,所以DM在正方形对角线DB上,设NI=y,列比例式可得NI的长,分别求MN和EN的长,相加可得结论.【解答】解:解法一:如图1,过E作PQ⊥DC,交DC于P,交AB于Q,连接BE,∵DC∥AB,∴PQ⊥AB,∵四边形ABCD是正方形,∴∠ACD=45°,∴△PEC是等腰直角三角形,∴PE=PC,设PC=x,则PE=x,PD=4﹣x,EQ=4﹣x,∴PD=EQ,∵∠DPE=∠EQF=90°,∠PED=∠EFQ,∴△DPE≌△EQF,∴DE=EF,易证明△DEC≌△BEC,∴DE=BE,∴EF=BE,∵EQ⊥FB,∴FQ=BQ=BF,∵AB=4,F是AB的中点,∴BF=2,∴FQ=BQ=PE=1,∴CE=,Rt△DAF中,DF==2,∵DE=EF,DE⊥EF,∴△DEF是等腰直角三角形,∴DE=EF==,∴PD==3,如图2,∵DC∥AB,∴△DGC∽△FGA,∴==2,∴CG=2AG,DG=2FG,∴FG=×=,∵AC==4,∴CG=×=,∴EG=﹣=,连接GM、GN,交EF于H,∵∠GFE=45°,∴△GHF是等腰直角三角形,∴GH=FH==,∴EH=EF﹣FH=﹣=,由折叠得:GM⊥EF,MH=GH=,∴∠EHM=∠DEF=90°,∴DE∥HM,∴△DEN∽△MNH,∴,∴==3,∴EN=3NH,∵EN+NH═EH=,∴EN=,∴NH=EH﹣EN=﹣=,Rt△GNH中,GN===,由折叠得:MN=GN,EM=EG,∴△EMN的周长=EN+MN+EM=++=;解法二:如图3,过G作GK⊥AD于K,作GR⊥AB于R,∵AC平分∠DAB,∴GK=GR,∴====2,∵==2,∴,同理,==3,其它解法同解法一,可得:∴△EMN的周长=EN+MN+EM=++=;解法三:如图4,过E作EP⊥AP,EQ⊥AD,∵AC是对角线,∴EP=EQ,易证△DQE和△FPE全等,∴DE=EF,DQ=FP,且AP=EP,设EP=x,则DQ=4﹣x=FP=x﹣2,解得x=3,所以PF=1,∴AE==3,∵DC∥AB,∴△DGC∽△FGA,∴同解法一得:CG=×=,∴EG=﹣=,AG=AC=,过G作GH⊥AB,过M作MK⊥AB,过M作ML⊥AD,则易证△GHF≌△FKM全等,∴GH=FK=,HF=MK=,∵ML=AK=AF+FK=2+=,DL=AD﹣MK=4﹣=,即DL=LM,∴∠LDM=45°∴DM在正方形对角线DB上,过N作NI⊥AB,则NI=IB,设NI=y,∵NI∥EP∴∴,解得y=1.5,所以FI=2﹣y=0.5,∴I为FP的中点,∴N是EF的中点,∴EN=0.5EF=,∵△BIN是等腰直角三角形,且BI=NI=1.5,∴BN=,BK=AB﹣AK=4﹣=,BM=,MN=BN﹣BM=﹣=,∴△EMN的周长=EN+MN+EM=++=;故答案为:.【点评】本题考查了正方形的性质、翻折变换的性质、三角形全等、相似的性质和判定、勾股定理,三角函数,计算比较复杂,作辅助线,构建全等三角形,计算出PE的长是关键.三、解答题(本大题共2个小题,每小题8分,共16分)19.(8分)(2017•重庆)如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠FAC=72°,∠ACD=58°,点D在GH上,求∠BDC的度数.【分析】由平行线的性质求出∠ABD=108°,由三角形的外角性质得出∠ABD=∠ACD+∠BDC,即可求出∠BDC的度数.【解答】解:∵EF∥GH,∴∠ABD+∠FAC=180°,∴∠ABD=180°﹣72°=108°,∵∠ABD=∠ACD+∠BDC,∴∠BDC=∠ABD﹣∠ACD=108°﹣58°=50°.【点评】本题考查了平行线的性质以及三角形的外角性质;熟练掌握平行线的性质是解决问题的关键.20.(8分)(2017•重庆)中央电视台的“中国诗词大赛”节目文化品位高,内容丰富,某校初二年级模拟开展“中国诗词大赛”比赛,对全年级同学成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:(1)扇形统计图中“优秀”所对应的扇形的圆心角为72度,并将条形统计图补充完整.(2)此次比赛有四名同学获得满分,分别是甲、乙、丙、丁,现从这四名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丁的概率.【分析】(1)由周角乘以“优秀”所对应的扇形的百分数,得出“优秀”所对应的扇形的圆心距度数;求出全年级总人数,得出“良好”的人数,补全统计图即可;(2)画出树状图,由概率公式即可得出答案.【解答】解:(1)360°(1﹣40%﹣25%﹣15%)=72°;故答案为:72;全年级总人数为45÷15%=300(人),“良好”的人数为300×40%=120(人),将条形统计图补充完整,如图所示:(2)画树状图,如图所示:共有12个可能的结果,选中的两名同学恰好是甲、丁的结果有2个,∴P(选中的两名同学恰好是甲、丁)==.【点评】此题主要考查了列表法与树状图法,以及扇形统计图、条形统计图的应用,要熟练掌握.四、简答题(本大题共4个小题,每小题10分,共40分)21.(10分)(2017•重庆)计算:(1)(x+y)2﹣x(2y﹣x);(2)(a+2﹣)÷.【分析】(1)按从左往右的顺序进行运算,先乘方再乘法;(2)把(a+2}看成分母是1的分数,通分后作乘法,最后的结果需化成最简分式.【解答】解:(1)(x+y)2﹣x(2y﹣x)=x2+2xy+y2﹣2xy+x2=2x2+y2;(2)(a+2﹣)÷=()×==.【点评】本题主要考查了分式的混合运算,运算过程中注意运算顺序.分式的运算顺序:先乘方,再乘除,最后加减.有括号的先算括号里面的.注意分式运算的结果需化为最简分式.22.(10分)(2017•重庆)如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y=(k≠0)的图象交于A、B两点,与x轴交于点C,过点A作AH⊥x轴于点H,点O是线段CH的中点,AC=4,cos∠ACH=,点B 的坐标为(4,n)(1)求该反比例函数和一次函数的解析式;(2)求△BCH的面积.【分析】(1)首先利用锐角三角函数关系得出HC的长,再利用勾股定理得出AH 的长,即可得出A点坐标,进而求出反比例函数解析式,再求出B点坐标,即可得出一次函数解析式;(2)利用B点坐标的纵坐标再利用HC的长即可得出△BCH的面积.【解答】解:(1)∵AH⊥x轴于点H,AC=4,cos∠ACH=,∴==,解得:HC=4,∵点O是线段CH的中点,∴HO=CO=2,∴AH==8,∴A(﹣2,8),∴反比例函数解析式为:y=﹣,∴B(4,﹣4),∴设一次函数解析式为:y=kx+b,则,解得:,∴一次函数解析式为:y=﹣2x+4;(2)由(1)得:△BCH的面积为:×4×4=8.【点评】此题主要考查了反比例函数与一次函数解析式求法以及三角形面积求法,正确得出A点坐标是解题关键.23.(10分)(2017•重庆)某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.【分析】(1)利用枇杷的产量不超过樱桃产量的7倍,表示出两种水果的质量,进而得出不等式求出答案;(2)根据果农今年运往市场销售的这部分樱桃和枇杷的销售总金额比他去年樱桃和枇杷的市场销售总金额相同得出等式,进而得出答案.【解答】解:(1)设该果农今年收获樱桃x千克,根据题意得:400﹣x≤7x,解得:x≥50,答:该果农今年收获樱桃至少50千克;(2)由题意可得:100(1﹣m%)×30+200×(1+2m%)×20(1﹣m%)=100×30+200×20,令m%=y,原方程可化为:3000(1﹣y)+4000(1+2y)(1﹣y)=7000,整理可得:8y2﹣y=0解得:y1=0,y2=0.125∴m1=0(舍去),m2=12.5∴m2=12.5,答:m的值为12.5.【点评】此题主要考查了一元一次不等式的应用以及一元二次方程的应用,正确表示出水果的销售总金额是解题关键.24.(10分)(2017•重庆)如图,△ABC中,∠ACB=90°,AC=BC,点E是AC上一点,连接BE.(1)如图1,若AB=4,BE=5,求AE的长;(2)如图2,点D是线段BE延长线上一点,过点A作AF⊥BD于点F,连接CD、CF,当AF=DF时,求证:DC=BC.【分析】(1)根据等腰直角三角形的性质得到AC=BC=AB=4,根据勾股定理得到CE==3,于是得到结论;(2)根据等腰直角三角形的性质得到∠CAB=45°,由于∠AFB=∠ACB=90°,推出A,F,C,B四点共圆,根据圆周角定理得到∠CFB=∠CAB=45°,求得∠DFC=∠AFC=135°,根据全等三角形的性质即可得到结论.【解答】解:(1)∵∠ACB=90°,AC=BC,∴AC=BC=AB=4,∵BE=5,∴CE==3,∴AE=4﹣3=1;(2)∵∠ACB=90°,AC=BC,∴∠CAB=45°,∵AF⊥BD,∴∠AFB=∠ACB=90°,∴A,F,C,B四点共圆,∴∠CFB=∠CAB=45°,∴∠DFC=∠AFC=135°,在△ACF与△DCF中,,∴△ACF≌△DCF,∴CD=AC,∵AC=BC,∴AC=BC.【点评】本题考查了全等三角形的判定和性质,四点共圆,等腰直角三角形的性质,勾股定理,熟练掌握全等三角形的判定和性质是解题的关键.五、解答题(本大题2个小题,第25小题10分、第26小题12分,共22分)25.(10分)(2017•重庆)对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=,当F(s)+F(t)=18时,求k的最大值.【分析】(1)根据F(n)的定义式,分别将n=243和n=617代入F(n)中,即可求出结论;(2)由s=100x+32、t=150+y结合F(s)+F(t)=18,即可得出关于x、y的二元一次方程,解之即可得出x、y的值,再根据“相异数”的定义结合F(n)的定义式,即可求出F(s)、F(t)的值,将其代入k=中,找出最大值即可.【解答】解:(1)F(243)=(423+342+234)÷111=9;F(617)=(167+716+671)÷111=14.(2)∵s,t都是“相异数”,s=100x+32,t=150+y,。
2017年重庆市中考数学试卷(b卷)(含答案)
2017年重庆市中考数学试卷(B卷)一、选择题(每小题4分,共48分)1.5的相反数是()A.﹣5 B.5 C.﹣ D.2.下列图形中是轴对称图形的是()A.B.C.D.3.计算a5÷a3结果正确的是()A.a B.a2C.a3D.a44.下列调查中,最适合采用抽样调查的是()A.对某地区现有的16名百岁以上老人睡眠时间的调查B.对“神舟十一号”运载火箭发射前零部件质量情况的调查C.对某校九年级三班学生视力情况的调查D.对某市场上某一品牌电脑使用寿命的调查5.估计+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间6.若x=﹣3,y=1,则代数式2x﹣3y+1的值为()A.﹣10 B.﹣8 C.4 D.107.若分式有意义,则x的取值范围是()A.x>3 B.x<3 C.x≠3 D.x=38.已知△ABC∽△DEF,且相似比为1:2,则△ABC与△DEF的面积比为()A.1:4 B.4:1 C.1:2 D.2:19.如图,在矩形ABCD中,AB=4,AD=2,分别以A、C为圆心,AD、CB为半径画弧,交AB于点E,交CD于点F,则图中阴影部分的面积是()A.4﹣2πB.8﹣C.8﹣2πD.8﹣4π10.下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为()A.116 B.144 C.145 D.15011.如图,已知点C与某建筑物底端B相距306米(点C与点B在同一水平面上),某同学从点C出发,沿同一剖面的斜坡CD行走195米至坡顶D处,斜坡CD的坡度(或坡比)i=1:2.4,在D处测得该建筑物顶端A的俯视角为20°,则建筑物AB的高度约为(精确到0.1米,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)()A.29.1米B.31.9米C.45.9米D.95.9米12.若数a使关于x的不等式组有且仅有四个整数解,且使关于y的分式方程+=2有非负数解,则所以满足条件的整数a的值之和是()A.3 B.1 C.0 D.﹣3二、填空题(每小题4分,共24分)13.据统计,2017年五一假日三天,重庆市共接待游客约为14300000人次,将数14300000用科学记数法表示为.14.计算:|﹣3|+(﹣4)0=.15.如图,OA、OC是⊙O的半径,点B在⊙O上,连接AB、BC,若∠ABC=40°,则∠AOC=度.16.某同学在体育训练中统计了自己五次“1分钟跳绳”成绩,并绘制了如图所示的折线统计图,这五次“1分钟跳绳”成绩的中位数是个.17.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需分钟到达终点B.18.如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E 作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则△EMN的周长是.三、解答题(每小题8分,共16分)19.如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠FAC=72°,∠ACD=58°,点D在GH上,求∠BDC的度数.20.中央电视台的“中国诗词大赛”节目文化品位高,内容丰富,某校初二年级模拟开展“中国诗词大赛”比赛,对全年级同学成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:(1)扇形统计图中“优秀”所对应的扇形的圆心角为度,并将条形统计图补充完整.(2)此次比赛有四名同学活动满分,分别是甲、乙、丙、丁,现从这四名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丁的概率.四、简答题(每小题10分,共40分)21.计算:(1)(x+y)2﹣x(2y﹣x);(2)(a+2﹣)÷.22.如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y=(k≠0)的图象交于A、B两点,与x轴交于点C,过点A作AH⊥x轴于点H,点O是线段CH的中点,AC=4,cos∠ACH=,点B的坐标为(4,n)(1)求该反比例函数和一次函数的解析式;(2)求△BCH的面积.23.某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.24.如图,△ABC中,∠ACB=90°,AC=BC,点E是AC上一点,连接BE.(1)如图1,若AB=4,BE=5,求AE的长;(2)如图2,点D是线段BE延长线上一点,过点A作AF⊥BD于点F,连接CD、CF,当AF=DF时,求证:DC=BC.五、解答题(第25小题10分、第26小题12分,共22分)25.对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F计算:F;(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=,当F(s)+F(t)=18时,求k的最大值.26.如图,在平面直角坐标系中,抛物线y=x2﹣x﹣与x轴交于A、B 两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.(1)求直线AE的解析式;(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值;(3)点G是线段CE的中点,将抛物线y=x2﹣x﹣沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在一点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.2017年重庆市中考数学试卷(B卷)参考答案与试题解析一、选择题(每小题4分,共48分)1.5的相反数是()A.﹣5 B.5 C.﹣ D.【考点】14:相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:5的相反数是﹣5,故选:A.2.下列图形中是轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、不是轴对称图形,不合题意;D、是轴对称图形,符合题意.故选:D.3.计算a5÷a3结果正确的是()A.a B.a2C.a3D.a4【考点】48:同底数幂的除法.【分析】根据同底数幂的除法法则:同底数幂相除,底数不变,指数相减,求出a5÷a3的计算结果是多少即可.【解答】解:a5÷a3=a2故选:B.4.下列调查中,最适合采用抽样调查的是()A.对某地区现有的16名百岁以上老人睡眠时间的调查B.对“神舟十一号”运载火箭发射前零部件质量情况的调查C.对某校九年级三班学生视力情况的调查D.对某市场上某一品牌电脑使用寿命的调查【考点】V2:全面调查与抽样调查.【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【解答】解:A、人数不多,容易调查,适合普查.B、对“神舟十一号”运载火箭发射前零部件质量情况的调查必须准确,故必须普查;C、班内的同学人数不多,很容易调查,因而采用普查合适;D、数量较大,适合抽样调查;故选D.5.估计+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【考点】2B:估算无理数的大小.【分析】先估算出的范围,即可得出答案.【解答】解:∵3<<4,∴4<+1<5,即+1在4和5之间,故选C.6.若x=﹣3,y=1,则代数式2x﹣3y+1的值为()A.﹣10 B.﹣8 C.4 D.10【考点】33:代数式求值.【分析】代入后求出即可.【解答】解:∵x=﹣3,y=1,∴2x﹣3y+1=2×(﹣3)﹣3×1+1=﹣8,故选B.7.若分式有意义,则x的取值范围是()A.x>3 B.x<3 C.x≠3 D.x=3【考点】62:分式有意义的条件.【分析】分式有意义的条件是分母不为0.【解答】解:∵分式有意义,∴x﹣3≠0,∴x≠3;故选:C.8.已知△ABC∽△DEF,且相似比为1:2,则△ABC与△DEF的面积比为()A.1:4 B.4:1 C.1:2 D.2:1【考点】S7:相似三角形的性质.【分析】利用相似三角形面积之比等于相似比的平方计算即可.【解答】解:∵△ABC∽△DEF,且相似比为1:2,∴△ABC与△DEF的面积比为1:4,故选A9.如图,在矩形ABCD中,AB=4,AD=2,分别以A、C为圆心,AD、CB为半径画弧,交AB于点E,交CD于点F,则图中阴影部分的面积是()A.4﹣2πB.8﹣C.8﹣2πD.8﹣4π【考点】MO:扇形面积的计算;LB:矩形的性质.【分析】用矩形的面积减去半圆的面积即可求得阴影部分的面积.【解答】解:∵矩形ABCD,∴AD=CB=2,∴S阴影=S矩形﹣S半圆=2×4﹣π×22=8﹣2π,故选C.10.下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为()A.116 B.144 C.145 D.150【考点】38:规律型:图形的变化类.【分析】根据题意图形得出小星星的个数变化规律,即可的得出答案.【解答】解:∵4=1×2+2,11=2×3+2+321=3×4+2+3+4第4个图形为:4×5+2+3+4+5,∴第⑨个图形中的颗数为:9×10+2+3+4+5+6+7+8+9+10=144.故选:B.11.如图,已知点C与某建筑物底端B相距306米(点C与点B在同一水平面上),某同学从点C出发,沿同一剖面的斜坡CD行走195米至坡顶D处,斜坡CD的坡度(或坡比)i=1:2.4,在D处测得该建筑物顶端A的俯视角为20°,则建筑物AB的高度约为(精确到0.1米,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)()A.29.1米B.31.9米C.45.9米D.95.9米【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】根据坡度,勾股定理,可得DE的长,再根据平行线的性质,可得∠1,根据同角三角函数关系,可得∠1的坡度,根据坡度,可得DF的长,根据线段的和差,可得答案.【解答】解:作DE⊥AB于E点,作AF⊥DE于F点,如图,设DE=xm,CE=2.4xm,由勾股定理,得x2+(2.4x)2=1952,解得x≈75m,DE=75m,CE=2.4x=180m,EB=BC﹣CE=306﹣180=126m.∵AF∥DG,∴∠1=∠ADG=20°,tan∠1=tan∠ADG==0.364.AF=EB=126m,tan∠1==0.364,DF=0.364AF=0.364×126=45.9,AB=FE=DE﹣DF=75﹣45.9≈29.1m,故选:A.12.若数a使关于x的不等式组有且仅有四个整数解,且使关于y的分式方程+=2有非负数解,则所以满足条件的整数a的值之和是()A.3 B.1 C.0 D.﹣3【考点】B2:分式方程的解;CC:一元一次不等式组的整数解.【分析】先解不等式组,根据不等式组有且仅有四个整数解,得出a≤3,再解分式方程+=2,根据分式方程有非负数解,得到a≥﹣2,进而得到满足条件的整数a的值之和.【解答】解:解不等式组,可得,∵不等式组有且仅有四个整数解,∴﹣≥﹣1,∴a≤3,解分式方程+=2,可得y=(a+2),又∵分式方程有非负数解,∴y≥0,即(a+2)≥0,解得a≥﹣2,∴﹣2≤a≤3,∴满足条件的整数a的值为﹣2,﹣1,0,1,2,3,∴满足条件的整数a的值之和是3,故选:A.二、填空题(每小题4分,共24分)13.据统计,2017年五一假日三天,重庆市共接待游客约为14300000人次,将数14300000用科学记数法表示为 1.43×107.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:14300000=1.43×107,故答案为:1.43×107.14.计算:|﹣3|+(﹣4)0=4.【考点】2C:实数的运算;6E:零指数幂.【分析】分别计算﹣3的绝对值和(﹣4)的0次幂,然后把结果求和.【解答】原式=3+1=4.15.如图,OA、OC是⊙O的半径,点B在⊙O上,连接AB、BC,若∠ABC=40°,则∠AOC=80度.【考点】M5:圆周角定理.【分析】直接根据圆周角定理即可得出结论.【解答】解:∵∠ABC与AOC是同弧所对的圆周角与圆心角,∠ABC=40°,∴∠AOC=2∠ABC=80°.故答案为:80.16.某同学在体育训练中统计了自己五次“1分钟跳绳”成绩,并绘制了如图所示的折线统计图,这五次“1分钟跳绳”成绩的中位数是183个.【考点】VD:折线统计图;W4:中位数.【分析】把这组数据从小到大排列,处于中间位置的数就是这组数据的中位数.【解答】解:由图可知,把数据从小到大排列的顺序是:180、182、183、185、186,中位数是183.故答案是:183.17.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需18分钟到达终点B.【考点】E6:函数的图象.【分析】根据路程与时间的关系,可得甲乙的速度,根据相遇前甲行驶的路程除以乙行驶的速度,可得乙到达A站需要的时间,根据相遇前乙行驶的路程除以甲行驶的速度,可得甲到达B站需要的时间,再根据有理数的减法,可得答案.【解答】解:由纵坐标看出甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟,甲的速度是1÷6=千米/分钟,由纵坐标看出AB两地的距离是16千米,设乙的速度是x千米/分钟,由题意,得10x+16×=16m,解得x=千米/分钟,相遇后乙到达A站还需(16×)÷=2分钟,相遇后甲到达B站还需(10×)÷=20分钟,当乙到达终点A时,甲还需20﹣2=18分钟到达终点B,故答案为:18.18.如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E 作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则△EMN的周长是.【考点】PB:翻折变换(折叠问题);LE:正方形的性质.【分析】如图1,作辅助线,构建全等三角形,根据全等三角形对应边相等证明FQ=BQ=PE=1,△DEF是等腰直角三角形,利用勾理计算DE=EF=,PD==3,如图2,由平行相似证明△DGC∽△FGA,列比例式可得FG 和CG的长,从而得EG的长,根据△GHF是等腰直角三角形,得GH和FH的长,利用DE∥GM证明△DEN∽△MNH,则,得EN=,从而计算出△EMN 各边的长,相加可得周长.【解答】解:如图1,过E作PQ⊥DC,交DC于P,交AB于Q,连接BE,∵DC∥AB,∴PQ⊥AB,∵四边形ABCD是正方形,∴∠ACD=45°,∴△PEC是等腰直角三角形,∴PE=PC,设PC=x,则PE=x,PD=4﹣x,EQ=4﹣x,∴PD=EQ,∵∠DPE=∠EQF=90°,∠PED=∠EFQ,∴△DPE≌△EQF,∴DE=EF,易证明△DEC≌△BEC,∴DE=BE,∴EF=BE,∵EQ⊥FB,∴FQ=BQ=BF,∵AB=4,F是AB的中点,∴BF=2,∴FQ=BQ=PE=1,∴CE=,Rt△DAF中,DF==2,∵DE=EF,DE⊥EF,∴△DEF是等腰直角三角形,∴DE=EF==,∴PD==3,如图2,∵DC∥AB,∴△DGC∽△FGA,∴==2,∴CG=2AG,DG=2FG,∴FG=×=,∵AC==4,∴CG=×=,∴EG=﹣=,连接GM、GN,交EF于H,∵∠GFE=45°,∴△GHF是等腰直角三角形,∴GH=FH==,∴EH=EF﹣FH=﹣=,由折叠得:GM⊥EF,MH=GH=,∴∠EHM=∠DEF=90°,∴DE∥HM,∴△DEN∽△MNH,∴,∴==3,∴EN=3NH,∵EN+NH═EH=,∴EN=,∴NH=EH﹣EN=﹣=,Rt△GNH中,GN===,由折叠得:MN=GN,EM=EG,∴△EMN的周长=EN+MN+EM=++=;故答案为:.三、解答题(每小题8分,共16分)19.如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠FAC=72°,∠ACD=58°,点D在GH上,求∠BDC的度数.【考点】JA:平行线的性质.【分析】由平行线的性质求出∠ABD=108°,由三角形的外角性质得出∠ABD=∠ACD+∠BDC,即可求出∠BDC的度数.【解答】解:∵EF∥GH,∴∠ABD+∠FAC=180°,∴∠ABD=180°﹣72°=108°,∵∠ABD=∠ACD+∠BDC,∴∠BDC=∠ABD﹣∠ACD=108°﹣58°=50°.20.中央电视台的“中国诗词大赛”节目文化品位高,内容丰富,某校初二年级模拟开展“中国诗词大赛”比赛,对全年级同学成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:(1)扇形统计图中“优秀”所对应的扇形的圆心角为72度,并将条形统计图补充完整.(2)此次比赛有四名同学活动满分,分别是甲、乙、丙、丁,现从这四名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丁的概率.【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.【分析】(1)由周角乘以“优秀”所对应的扇形的百分数,得出“优秀”所对应的扇形的圆心距度数;求出全年级总人数,得出“良好”的人数,补全统计图即可;(2)画出树状图,由概率公式即可得出答案.【解答】解:(1)360°(1﹣40%﹣25%﹣15%)=72°;故答案为:72;全年级总人数为45÷15%=300(人),“良好”的人数为300×40%=120(人),将条形统计图补充完整,如图所示:(2)画树状图,如图所示:共有12个可能的结果,选中的两名同学恰好是甲、丁的结果有2个,∴P(选中的两名同学恰好是甲、丁)==.四、简答题(每小题10分,共40分)21.计算:(1)(x+y)2﹣x(2y﹣x);(2)(a+2﹣)÷.【考点】6C:分式的混合运算;4A:单项式乘多项式;4C:完全平方公式.【分析】(1)按从左往右的顺序进行运算,先乘方再乘法;(2)把(a+2}看成分母是1的分数,通分后作乘法,最后的结果需化成最简分式.【解答】解:(1)(x+y)2﹣x(2y﹣x)=x2+2xy+y2﹣2xy+x2=2x2+y2;(2)(a+2﹣)÷=()×==.22.如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y=(k≠0)的图象交于A、B两点,与x轴交于点C,过点A作AH⊥x轴于点H,点O是线段CH的中点,AC=4,cos∠ACH=,点B的坐标为(4,n)(1)求该反比例函数和一次函数的解析式;(2)求△BCH的面积.【考点】G8:反比例函数与一次函数的交点问题;T7:解直角三角形.【分析】(1)首先利用锐角三角函数关系得出HC的长,再利用勾股定理得出AH 的长,即可得出A点坐标,进而求出反比例函数解析式,再求出B点坐标,即可得出一次函数解析式;(2)利用B点坐标的纵坐标再利用HC的长即可得出△BCH的面积.【解答】解:(1)∵AH⊥x轴于点H,AC=4,cos∠ACH=,∴==,解得:HC=4,∵点O是线段CH的中点,∴HO=CO=2,∴AH==8,∴A(﹣2,8),∴反比例函数解析式为:y=﹣,∴B(4,﹣4),∴设一次函数解析式为:y=kx+b,则,解得:,∴一次函数解析式为:y=﹣2x+4;(2)由(1)得:△BCH的面积为:×4×4=8.23.某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.【考点】AD:一元二次方程的应用;C9:一元一次不等式的应用.【分析】(1)利用枇杷的产量不超过樱桃产量的7倍,表示出两种水果的质量,进而得出不等式求出答案;(2)根据果农今年运往市场销售的这部分樱桃和枇杷的销售总金额比他去年樱桃和枇杷的市场销售总金额相同得出等式,进而得出答案.【解答】解:(1)设该果农今年收获樱桃x千克,根据题意得:400﹣x≤7x,解得:x≥50,答:该果农今年收获樱桃至少50千克;(2)由题意可得:100(1﹣m%)×30+200×(1+2m%)×20(1﹣m%)=100×30+200×20,令m%=y,原方程可化为:3000(1﹣y)+4000(1+2y)(1﹣y)=7000,整理可得:8y2﹣y=0解得:y1=0,y2=0.125∴m1=0(舍去),m2=12.5∴m2=12.5,答:m的值为12.5.24.如图,△ABC中,∠ACB=90°,AC=BC,点E是AC上一点,连接BE.(1)如图1,若AB=4,BE=5,求AE的长;(2)如图2,点D是线段BE延长线上一点,过点A作AF⊥BD于点F,连接CD、CF,当AF=DF时,求证:DC=BC.【考点】KD:全等三角形的判定与性质;KQ:勾股定理.【分析】(1)根据等腰直角三角形的性质得到AC=BC=AB=4,根据勾股定理得到CE==3,于是得到结论;(2)根据等腰直角三角形的性质得到∠CAB=45°,由于∠AFB=∠ACB=90°,推出A,F,C,B四点共圆,根据圆周角定理得到∠CFB=∠CAB=45°,求得∠DFC=∠AFC=135°,根据全等三角形的性质即可得到结论.【解答】解:(1)∵∠ACB=90°,AC=BC,∴AC=BC=AB=4,∵BE=5,∴CE==3,∴AE=4﹣3=1;(2)∵∠ACB=90°,AC=BC,∴∠CAB=45°,∵AF⊥BD,∴∠AFB=∠ACB=90°,∴A,F,C,B四点共圆,∴∠CFB=∠CAB=45°,∴∠DFC=∠AFC=135°,在△ACF与△DCF中,,∴△ACF≌△DCF,∴CD=AC,∵AC=BC,∴AC=BC.五、解答题(第25小题10分、第26小题12分,共22分)25.对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F计算:F;(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=,当F(s)+F(t)=18时,求k的最大值.【考点】59:因式分解的应用;95:二元一次方程的应用.【分析】(1)根据F(n)的定义式,分别将n=243和n=617代入F(n)中,即可求出结论;(2)由s=100x+32、t=150+y结合F(s)+F(t)=18,即可得出关于x、y的二元一次方程,解之即可得出x、y的值,再根据“相异数”的定义结合F(n)的定义式,即可求出F(s)、F(t)的值,将其代入k=中,找出最大值即可.【解答】解:(1)F÷111=9;F÷111=14.(2)∵s,t都是“相异数”,s=100x+32,t=150+y,∴F(s)=÷111=x+5,F(t)=÷111=y+6.∵F(t)+F(s)=18,∴x+5+y+6=x+y+11=18,∴x+y=7.∵1≤x≤9,1≤y≤9,且x,y都是正整数,∴或或或或或.∵s是“相异数”,∴x≠2,x≠3.∵t是“相异数”,∴y≠1,y≠5.∴或或,∴或或,∴或或,∴k的最大值为.26.如图,在平面直角坐标系中,抛物线y=x2﹣x﹣与x轴交于A、B 两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.(1)求直线AE的解析式;(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值;(3)点G是线段CE的中点,将抛物线y=x2﹣x﹣沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在一点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)抛物线的解析式可变形为y=(x+1)(x﹣3),从而可得到点A 和点B的坐标,然后再求得点E的坐标,设直线AE的解析式为y=kx+b,将点A 和点E的坐标代入求得k和b的值,从而得到AE的解析式;(2)设直线CE的解析式为y=mx﹣,将点E的坐标代入求得m的值,从而得到直线CE的解析式,过点P作PF∥y轴,交CE与点F.设点P的坐标为(x,x2﹣x﹣),则点F(x,x﹣),则FP=x2+x.由三角形的面积公式得到△EPC的面积=﹣x2+x,利用二次函数的性质可求得x的值,从而得到点P的坐标,作点K关于CD和CP的对称点G、H,连接G、H交CD和CP与N、M.然后利用轴对称的性质可得到点G和点H的坐标,当点O、N、M、H在条直线上时,KM+MN+NK有最小值,最小值=GH;(3)由平移后的抛物线经过点D,可得到点F的坐标,利用中点坐标公式可求得点G的坐标,然后分为QG=FG、QG=QF,FQ=FQ三种情况求解即可.【解答】解:(1)∵y=x2﹣x﹣,∴y=(x+1)(x﹣3).∴A(﹣1,0),B(3,0).当x=4时,y=.∴E(4,).设直线AE的解析式为y=kx+b,将点A和点E的坐标代入得:,解得:k=,b=.∴直线AE的解析式为y=x+.(2)设直线CE的解析式为y=mx﹣,将点E的坐标代入得:4m﹣=,解得:m=.∴直线CE的解析式为y=x﹣.过点P作PF∥y轴,交CE与点F.设点P的坐标为(x,x2﹣x﹣),则点F(x,x﹣),则FP=(x﹣)﹣(x2﹣x﹣)=x2+x.∴△EPC的面积=×(x2+x)×4=﹣x2+x.∴当x=2时,△EPC的面积最大.∴P(2,﹣).如图2所示:作点K关于CD和CP的对称点G、H,连接G、H交CD和CP与N、M.∵K是CB的中点,∴k(,﹣).∵点H与点K关于CP对称,∴点H的坐标为(,﹣).∵点G与点K关于CD对称,∴点G(0,0).∴KM+MN+NK=MH+MN+GN.当点O、N、M、H在条直线上时,KM+MN+NK有最小值,最小值=GH.∴GH==3.∴KM+MN+NK的最小值为3.(3)如图3所示:∵y′经过点D,y′的顶点为点F,∴点F(3,﹣).∵点G为CE的中点,∴G(2,).∴FG==.∴当FG=FQ时,点Q(3,),Q′(3,).当GF=GQ时,点F与点Q″关于y=对称,∴点Q″(3,2).当QG=QF时,设点Q1的坐标为(3,a).由两点间的距离公式可知:a+=,解得:a=﹣.∴点Q1的坐标为(3,﹣).综上所述,点Q的坐标为(3,)或′(3,)或(3,2)或(3,﹣).2017年6月23日。
2023年重庆市中考数学试卷(B卷)含答案解析
绝密★启用前2023年重庆市中考数学试卷(B卷)学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
一、选择题(本大题共10小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. 4的相反数是( )A. 14B. −14C. −4D. 42.四个大小相同的正方体搭成的几何体如图所示,从正面看到的视图是( )A.B.C.D.3.如图,直线a,b被直线c所截,若a//b,∠1=63°,则∠2的度数为( )A. 27°B. 53°C. 63°D. 117°4.如图,已知△ABC∽△EDC,AC:EC=2:3,若AB的长度为6,则DE 的长度为( )A. 4B. 9C. 12D. 13.55. 反比例函数y=6的图象一定经过的点是( )xA. (−3,2)B. (2,−3)C. (−2,−4)D. (2,3)6. 用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为( )A. 14B. 20C. 23D. 267. 估计√ 5×(√ 6)的值应在( )√ 5A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间8. 如图,AB为⊙O的直径,直线CD与⊙O相切于点C,连接AC,若∠ACD=50°,则∠BAC的度数为( )A. 30°B. 40°C. 50°D. 60°9.如图,在正方形ABCD中,O为对角线AC的中点,E为正方形内一点,连接BE,BE=BA,连接CE并延长,与∠ABE的平分线交于点F,连接OF,若AB=2,则OF的长度为( )A. 2B. √ 3C. 1D. √ 210. 在多项式x−y−z−m−n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x−y−|z−m|−n=x−y−z+m−n,|x−y|−z−|m−n|=x−y−z−m+n,….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是( )A. 0B. 1C. 2D. 3二、填空题(本大题共8小题,共32.0分)11. 计算:|−5|+(2−√ 3)0=______ .12. 有四张完全一样正面分别写有汉字“清”“风”“朗”“月”的卡片,将其背面朝上并洗匀,从中随机抽取一张,记下卡片正面上的汉字后放回,洗匀后再从中随机抽取一张,则抽取的两张卡片上的汉字相同的概率是______ .13. 若七边形的内角中有一个角为100°,则其余六个内角之和为______ .14. 如图,在△ABC中,AB=AC,AD是BC边的中线,若AB=5,BC=6,则AD的长度为______ .15. 为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301个充电桩,第三个月新建了500个充电桩,设该市新建智能充电桩个数的月平均增长率为x,根据题意,请列出方程______ .16.如图,在矩形ABCD中,AB=2,BC=4,E为BC的中点,连接AE.DE.以E为圆心,EB长为半径画弧,分别与AE,DE交于点M,N.则图中阴影部分的面积为______ (结果保留π).17. 若关于x的不等式组{x+23>x2+14x+a<x−1的解集为x<−2,且关于y的分式方程a+2y−1+y+21−y=2的解为正数,则所有满足条件的整数a的值之和为______ .18. 对于一个四位自然数M,若它的千位数字比个位数字多6,百位数字比十位数字多2,则称M为“天真数”.如:四位数7311,∵7−1=6,3−1=2,∴7311是“天真数”;四位数8421,∵8−1≠6,∴8421不是“天真数”,则最小的“天真数”为______ ;一个“天真数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记P(M)=3(a+b)+c+d,Q(M)=a−5,若P(M)Q(M)能被10整除,则满足条件的M的最大值为______ .三、解答题(本大题共8小题,共78.0分。
2016年重庆市中考数学试卷含答案
()
A. 3
B. 2
C. 3
D. 1
2
2
第Ⅱ卷(非选择题 共 102 分)
二、填空题(本大题 6 个小题,每小题 4 分,共 24 分.请把答案填在题中的横线上) 13.据报道,2015 年某市城镇非私营单位就业人员年平均工资超过 60 500 元,将数 60 500
用科学记数法表示为
.
14.计算: 4 (2)0
数学试卷 第 8页(共 20页)
由.
重庆市 2016 年初中毕业暨高中招生考试
数学答案解析
第Ⅰ卷
一、选择题 1.【答案】A 【解析】2 1 0 2 ,最小的数为-2,故选 A. 【考点】实数的大小比较 2.【答案】D 【解析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,
数学试卷 第 6页(共 20页)
24.(本小题满分 10 分) 我们知道,任意一个正整数 n 都可以进行这样的分解 n p q ( p , q 是正整数,且 p≤q ),在 n 的所有这种分解中,如果 p , q 两因数之差的绝对值最小,我们就称 p q 是 n 的最佳分解,并规定: F(n) p .例如 12 可以分解成112 , 2 6 或 3 4 ,因为 q 12 1>6 2>4 3 ,所以 3 4 是 12 的最佳分解,所以 F(12) 3 . 4 (1)如果一个正整数 a 是另外一个正整数 b 的平方,我们称正整数 a 是完全平方数.求 证:对任意一个完全平方数 m ,总有 F (m) 1 ; (2)如果一个两位正整数 t , t 10x y (1≤x≤y≤9 , x , y 为自然数),交换其个位上
.
17.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1 500
2020年重庆市中考数学试卷(B卷)(附答案,解析)
2020年重庆市中考数学试卷(B卷)一.选择题(共12小题)1.5的倒数是()A.5B.C.﹣5D.﹣2.围成下列立体图形的各个面中,每个面都是平的是()A.长方体B.圆柱体C.球体D.圆锥体3.计算a•a2结果正确的是()A.a B.a2C.a3D.a44.如图,AB是⊙O的切线,A为切点,连接OA,OB.若∠B=35°,则∠AOB的度数为()A.65°B.55°C.45°D.35°5.已知a+b=4,则代数式1++的值为()A.3B.1C.0D.﹣16.如图,△ABC与△DEF位似,点O为位似中心.已知OA:OD=1:2,则△ABC与△DEF的面积比为()A.1:2B.1:3C.1:4D.1:57.小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元,小明买了7支签字笔,他最多还可以买的作业本个数为()A.5B.4C.3D.28.下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,…,按此规律排列下去,第⑥个图形中实心圆点的个数为()A.18B.19C.20D.219.如图,垂直于水平面的5G信号塔AB建在垂直于水平面的悬崖边B点处,某测量员从山脚C点出发沿水平方向前行78米到D点(点A,B,C在同一直线上),再沿斜坡DE方向前行78米到E点(点A,B,C,D,E在同一平面内),在点E处测得5G信号塔顶端A的仰角为43°,悬崖BC的高为144.5米,斜坡DE的坡度(或坡比)i=1:2.4,则信号塔AB的高度约为()(参考数据:sin43°≈0.68,cos43°≈0.73,tan43°≈0.93)A.23米B.24米C.24.5米D.25米10.若关于x的一元一次不等式组的解集为x≥5,且关于y的分式方程+=﹣1有非负整数解,则符合条件的所有整数a的和为()A.﹣1B.﹣2C.﹣3D.011.如图,在△ABC中,AC=2,∠ABC=45°,∠BAC=15°,将△ACB沿直线AC翻折至△ABC所在的平面内,得△ACD.过点A作AE,使∠DAE=∠DAC,与CD的延长线交于点E,连接BE,则线段BE的长为()A.B.3C.2D.412.如图,在平面直角坐标系中,矩形ABCD的顶点A,C分别在x轴,y轴的正半轴上,点D(﹣2,3),AD=5,若反比例函数y=(k>0,x>0)的图象经过点B,则k的值为()A.B.8C.10D.二.填空题(共6小题)13.计算:()﹣1﹣=.14.经过多年的精准扶贫,截至2019年底,我国的农村贫困人口减少了约94000000人.请把数94000000用科学记数法表示为.15.盒子里有3张形状、大小、质地完全相同的卡片,上面分别标着数字1,2,3,从中随机抽出1张后不放回,再随机抽出1张,则两次抽出的卡片上的数字之和为奇数的概率是.16.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=120°,AB=2,以点O为圆心,OB 长为半径画弧,分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)17.周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A地出发前往B地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的继续骑行,经过一段时间,甲先到达B地,乙一直保持原速前往B地.在此过程中,甲、乙两人相距的路程y(单位:米)与乙骑行的时间x(单位:分钟)之间的关系如图所示,则乙比甲晚分钟到达B地.18.为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为元.三.解答题19.计算:(1)(x+y)2+y(3x﹣y);(2)(+a)÷.20.如图,在平行四边形ABCD中,AE,CF分别平分∠BAD和∠DCB,交对角线BD于点E,F.(1)若∠BCF=60°,求∠ABC的度数;(2)求证:BE=DF.21.每年的4月15日是我国全民国家安全教育日.某中学在全校七、八年级共800名学生中开展“国家安全法”知识竞赛,并从七、八年级学生中各抽取20名学生,统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据统计、整理如下:八年级抽取的学生的竞赛成绩:4,4,6,6,6,6,7,7,7,8,8,8,8,8,8,9,9,9,10,10.七、八年级抽取的学生的竞赛成绩统计表年级七年级八年级平均数7.47.4中位数a b众数7c合格率85%90%根据以上信息,解答下列问题:(1)填空:a=,b=,c=;(2)估计该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数;(3)根据以上数据分析,从一个方面评价两个年级“国家安全法”知识竞赛的学生成绩谁更优异.22.在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数﹣﹣“好数”.定义:对于三位自然数n,各位数字都不为0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数n为“好数”.例如:426是“好数”,因为4,2,6都不为0,且4+2=6,6能被6整除;643不是“好数”,因为6+4=10,10不能被3整除.(1)判断312,675是否是“好数”?并说明理由;(2)求出百位数字比十位数字大5的所有“好数”的个数,并说明理由.23.探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画出函数y=﹣的图象并探究该函数的性质.x…﹣4﹣3﹣2﹣101234…y…﹣a﹣2﹣4b﹣4﹣2﹣﹣…(1)列表,写出表中a,b的值:a=,b=;描点、连线,在所给的平面直角坐标系中画出该函数的图象.(2)观察函数图象,判断下列关于函数性质的结论是否正确(在答题卡相应位置正确的用“√”作答,错误的用“×”作答):①函数y=﹣的图象关于y轴对称;②当x=0时,函数y=﹣有最小值,最小值为﹣6;③在自变量的取值范围内函数y的值随自变量x的增大而减小.(3)已知函数y=﹣x﹣的图象如图所示,结合你所画的函数图象,直接写出不等式﹣<﹣x﹣的解集.24.为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对A,B两个玉米品种进行实验种植对比研究.去年A、B两个品种各种植了10亩.收获后A、B两个品种的售价均为2.4元/kg,且B品种的平均亩产量比A品种高100千克,A、B两个品种全部售出后总收入为21600元.(1)求A、B两个品种去年平均亩产量分别是多少千克?(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A、B两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B品种深受市场欢迎,预计每千克售价将在去年的基础上上涨a%,而A品种的售价保持不变,A、B两个品种全部售出后总收入将增加a%.求a的值.25.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与y轴交于点C,与x轴交于A,B两点(点A在点B的左侧),且A点坐标为(﹣,0),直线BC的解析式为y=﹣x+2.(1)求抛物线的解析式;(2)过点A作AD∥BC,交抛物线于点D,点E为直线BC上方抛物线上一动点,连接CE,EB,BD,DC.求四边形BECD面积的最大值及相应点E的坐标;(3)将抛物线y=ax2+bx+2(a≠0)向左平移个单位,已知点M为抛物线y=ax2+bx+2(a≠0)的对称轴上一动点,点N为平移后的抛物线上一动点.在(2)中,当四边形BECD的面积最大时,是否存在以A,E,M,N为顶点的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.26.△ABC为等边三角形,AB=8,AD⊥BC于点D,E为线段AD上一点,AE=2.以AE为边在直线AD右侧构造等边三角形AEF,连接CE,N为CE的中点.(1)如图1,EF与AC交于点G,连接NG,求线段NG的长;(2)如图2,将△AEF绕点A逆时针旋转,旋转角为α,M为线段EF的中点,连接DN,MN.当30°<α<120°时,猜想∠DNM的大小是否为定值,并证明你的结论;(3)连接BN,在△AEF绕点A逆时针旋转过程中,当线段BN最大时,请直接写出△ADN的面积.2020年重庆市中考数学试卷(B卷)参考答案与试题解析一.选择题(共12小题)1.5的倒数是()A.5B.C.﹣5D.﹣【分析】根据倒数的定义,可得答案.【解答】解:5得倒数是,故选:B.2.围成下列立体图形的各个面中,每个面都是平的是()A.长方体B.圆柱体C.球体D.圆锥体【分析】根据平面与曲面的概念判断即可.【解答】解:A、六个面都是平面,故本选项正确;B、侧面不是平面,故本选项错误;C、球面不是平面,故本选项错误;D、侧面不是平面,故本选项错误;故选:A.3.计算a•a2结果正确的是()A.a B.a2C.a3D.a4【分析】根据同底数幂的乘法法则计算即可.【解答】解:a•a2=a1+2=a3.故选:C.4.如图,AB是⊙O的切线,A为切点,连接OA,OB.若∠B=35°,则∠AOB的度数为()A.65°B.55°C.45°D.35°【分析】根据切线的性质得到∠OAB=90°,根据直角三角形的两锐角互余计算即可.【解答】解:∵AB是⊙O的切线,∴OA⊥AB,∴∠OAB=90°,∴∠AOB=90°﹣∠B=55°,故选:B.5.已知a+b=4,则代数式1++的值为()A.3B.1C.0D.﹣1【分析】将a+b的值代入原式=1+(a+b)计算可得.【解答】解:当a+b=4时,原式=1+(a+b)=1+×4=1+2=3,故选:A.6.如图,△ABC与△DEF位似,点O为位似中心.已知OA:OD=1:2,则△ABC与△DEF的面积比为()A.1:2B.1:3C.1:4D.1:5【分析】根据位似图形的概念求出△ABC与△DEF的相似比,根据相似三角形的性质计算即可.【解答】解:∵△ABC与△DEF是位似图形,OA:OD=1:2,∴△ABC与△DEF的位似比是1:2.∴△ABC与△DEF的相似比为1:2,∴△ABC与△DEF的面积比为1:4,故选:C.7.小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元,小明买了7支签字笔,他最多还可以买的作业本个数为()A.5B.4C.3D.2【分析】设还可以买x个作业本,根据总价=单价×数量结合总价不超过40元,即可得出关系x的一元一次不等式,解之取其中的最大整数值即可得出结论.【解答】解:设还可以买x个作业本,依题意,得:2.2×7+6x≤40,解得:x≤4.又∵x为正整数,∴x的最大值为4.故选:B.8.下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,…,按此规律排列下去,第⑥个图形中实心圆点的个数为()A.18B.19C.20D.21【分析】根据已知图形中实心圆点的个数得出规律:第n个图形中实心圆点的个数为2n+n+2,据此求解可得.【解答】解:∵第①个图形中实心圆点的个数5=2×1+3,第②个图形中实心圆点的个数8=2×2+4,第③个图形中实心圆点的个数11=2×3+5,……∴第⑥个图形中实心圆点的个数为2×6+8=20,故选:C.9.如图,垂直于水平面的5G信号塔AB建在垂直于水平面的悬崖边B点处,某测量员从山脚C点出发沿水平方向前行78米到D点(点A,B,C在同一直线上),再沿斜坡DE方向前行78米到E点(点A,B,C,D,E在同一平面内),在点E处测得5G信号塔顶端A的仰角为43°,悬崖BC的高为144.5米,斜坡DE的坡度(或坡比)i=1:2.4,则信号塔AB的高度约为()(参考数据:sin43°≈0.68,cos43°≈0.73,tan43°≈0.93)A.23米B.24米C.24.5米D.25米【分析】过点E作EF⊥DC交DC的延长线于点F,过点E作EM⊥AC于点M,根据斜坡DE的坡度(或坡比)i=1:2.4可设EF=x,则DF=2.4x,利用勾股定理求出x的值,进而可得出EF与DF的长,故可得出CF的长.由矩形的判定定理得出四边形EFCM是矩形,故可得出EM=FC,CM=EF,再由锐角三角函数的定义求出AM的长,进而可得出答案.【解答】解:过点E作EF⊥DC交DC的延长线于点F,过点E作EM⊥AC于点M,∵斜坡DE的坡度(或坡比)i=1:2.4,BE=CD=78米,∴设EF=x,则DF=2.4x.在Rt△DEF中,∵EF2+DF2=DE2,即x2+(2.4x)2=782,解得x=30,∴EF=30米,DF=72米,∴CF=DF+DC=72+78=150米.∵EM⊥AC,AC⊥CD,EF⊥CD,∴四边形EFCM是矩形,∴EM=CF=150米,CM=EF=30米.在Rt△AEM中,∵∠AEM=43°,∴AM=EM•tan43°≈150×0.93=139.5米,∴AC=AM+CM=139.5+30=169.5米.∴AB=AC﹣BC=169.5﹣144.5=25米.故选:D.10.若关于x的一元一次不等式组的解集为x≥5,且关于y的分式方程+=﹣1有非负整数解,则符合条件的所有整数a的和为()A.﹣1B.﹣2C.﹣3D.0【分析】不等式组整理后,根据已知解集确定出a的范围,分式方程去分母转化为正整数方程,由分式方程有非负整数解,确定出a的值,求出之和即可.【解答】解:不等式组整理得:,由解集为x≥5,得到2+a≤5,即a≤3,分式方程去分母得:y﹣a=﹣y+2,即2y﹣2=a,解得:y=+1,由y为非负整数,且y≠2,得到a=0,﹣2,之和为﹣2,故选:B.11.如图,在△ABC中,AC=2,∠ABC=45°,∠BAC=15°,将△ACB沿直线AC翻折至△ABC所在的平面内,得△ACD.过点A作AE,使∠DAE=∠DAC,与CD的延长线交于点E,连接BE,则线段BE的长为()A.B.3C.2D.4【分析】延长BC交AE于H,由折叠的性质∠DAC=∠BAC=15°,∠ADC=∠ABC=45°,∠ACB =∠ACD=120°,由外角的性质可求∠AED=∠EAC,可得AC=EC,由“SAS”可证△ABC≌△EBC,可得AB=BE,∠ABC=∠EBC=45°,利用等腰直角三角形的性质和直角三角形的性质可求解.【解答】解:如图,延长BC交AE于H,∵∠ABC=45°,∠BAC=15°,∴∠ACB=120°,∵将△ACB沿直线AC翻折,∴∠DAC=∠BAC=15°,∠ADC=∠ABC=45°,∠ACB=∠ACD=120°,∵∠DAE=∠DAC,∴∠DAE=∠DAC=15°,∴∠CAE=30°,∵∠ADC=∠DAE+∠AED,∴∠AED=45°﹣15°=30°,∴∠AED=∠EAC,∴AC=EC,又∵∠BCE=360°﹣∠ACB﹣∠ACE=120°=∠ACB,BC=BC,∴△ABC≌△EBC(SAS),∴AB=BE,∠ABC=∠EBC=45°,∴∠ABE=90°,∵AB=BE,∠ABC=∠EBC,∴AH=EH,BH⊥AE,∵∠CAE=30°,∴CH=AC=,AH=CH=,∴AE=2,∵AB=BE,∠ABE=90°,∴BE==2,故选:C.12.如图,在平面直角坐标系中,矩形ABCD的顶点A,C分别在x轴,y轴的正半轴上,点D(﹣2,3),AD=5,若反比例函数y=(k>0,x>0)的图象经过点B,则k的值为()A.B.8C.10D.【分析】过D作DE⊥x轴于E,过B作BF⊥x轴,BH⊥y轴,得到∠BHC=90°,根据勾股定理得到AE==4,根据矩形的性质得到AD=BC,根据全等三角形的性质得到BH=AE=4,求得AF=2,根据相似三角形的性质即可得到结论.【解答】解:过D作DE⊥x轴于E,过B作BF⊥x轴,BH⊥y轴,∴∠BHC=90°,∵点D(﹣2,3),AD=5,∴DE=3,∴AE==4,∵四边形ABCD是矩形,∴AD=BC,∴∠BCD=∠ADC=90°,∴∠DCP+∠BCH=∠BCH+∠CBH=90°,∴∠CBH=∠DCH,∵∠DCG+∠CPD=∠APO+∠DAE=90°,∠CPD=∠APO,∴∠DCP=∠DAE,∴∠CBH=∠DAE,∵∠AED=∠BHC=90°,∴△ADE≌△BCH(AAS),∴BH=AE=4,∵OE=2,∴OA=2,∴AF=2,∵∠APO+∠P AO=∠BAF+∠P AO=90°,∴∠APO=∠BAF,∴△APO∽△BAF,∴,∴=,∴BF=,∴B(4,),∴k=,故选:D.二.填空题(共6小题)13.计算:()﹣1﹣=3.【分析】先计算负整数指数幂和算术平方根,再计算加减可得.【解答】解:原式=5﹣2=3,故答案为:3.14.经过多年的精准扶贫,截至2019年底,我国的农村贫困人口减少了约94000000人.请把数94000000用科学记数法表示为9.4×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:94000000=9.4×107,故答案为:9.4×107.15.盒子里有3张形状、大小、质地完全相同的卡片,上面分别标着数字1,2,3,从中随机抽出1张后不放回,再随机抽出1张,则两次抽出的卡片上的数字之和为奇数的概率是.【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:列表如下123134235345由表可知,共有6种等可能结果,其中两次抽出的卡片上的数字之和为奇数的有4种结果,所以两次抽出的卡片上的数字之和为奇数的概率为=,故答案为:.16.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=120°,AB=2,以点O为圆心,OB 长为半径画弧,分别与菱形的边相交,则图中阴影部分的面积为3﹣π.(结果保留π)【分析】由菱形的性质可得AC⊥BD,BO=DO,OA=OC,AB=AD,∠DAB=60°,可证△BEO,△DFO是等边三角形,由等边三角形的性质可求∠EOF=60°,由扇形的面积公式和面积和差关系可求解.【解答】解:如图,设连接以点O为圆心,OB长为半径画弧,分别与AB,AD相交于E,F,连接EO,FO,∵四边形ABCD是菱形,∠ABC=120°,∴AC⊥BD,BO=DO,OA=OC,AB=AD,∠DAB=60°,∴△ABD是等边三角形,∴AB=BD=2,∠ABD=∠ADB=60°,∴BO=DO=,∵以点O为圆心,OB长为半径画弧,∴BO=OE=OD=OF,∴△BEO,△DFO是等边三角形,∴∠DOF=∠BOE=60°,∴∠EOF=60°,∴阴影部分的面积=2×(S△ABD﹣S△DFO﹣S△BEO﹣S扇形OEF)=2×(×12﹣×3﹣×3﹣)=3﹣π,故答案为:3﹣π.17.周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A地出发前往B地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的继续骑行,经过一段时间,甲先到达B地,乙一直保持原速前往B地.在此过程中,甲、乙两人相距的路程y(单位:米)与乙骑行的时间x(单位:分钟)之间的关系如图所示,则乙比甲晚12分钟到达B地.【分析】首先确定甲乙两人的速度,求出总里程,再求出甲到达B地时,乙离B地的距离即可解决问题.【解答】解:由题意乙的速度为1500÷5=300(米/分),设甲的速度为x米/分.则有:7500﹣20x=2500,解得x=250,25分钟后甲的速度为250×=400(米/分).由题意总里程=250×20+61×400=29400(米),86分钟乙的路程为86×300=25800(米),∴=12(分钟).故答案为12.18.为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为1230元.【分析】设第一时段摸到红球x次,摸到黄球y次,摸到绿球z次,(x,y,z均为非负整数),则第一时段返现(50x+30y+10z),根据“第三时段返现金额比第一时段多420元”,得出z=42﹣9y,进而确定出y≤,再根据“三个时段返现总金额为2510元”,得出25x=42y﹣43,进而得出≤y≤,再将满足题意的y的知代入④,计算x,进而得出x,z,即可得出结论.【解答】解:设第一时段摸到红球x次,摸到黄球y次,摸到绿球z次,(x,y,z均为非负整数),则第一时段返现金额为(50x+30y+10z),第二时段摸到红球3x次,摸到黄球2y次,摸到绿球4z次,则第二时段返现金额为(50×3x+30×2y+10×4z),第三时段摸到红球x次,摸到黄球4y次,摸到绿球2z次,则第三时段返现金额为(50x+30×4y+10×2z),∵第三时段返现金额比第一时段多420元,∴(50x+30×4y+10×2z)﹣(50x+30y+10z)=420,∴z=42﹣9y①,∵z为非负整数,∴42﹣9y≥0,∴y≤,∵三个时段返现总金额为2510元,∴(50x+30y+10z)+(50x+30×4y+10×2z)+(50x+30×4y+10×2z)=2510,∴25x+21y+7z=251②,将①代入②中,化简整理得,25x=42y﹣43,∴x=④,∵x为非负整数,∴≥0,∴y≥,∴≤y≤,∵y为非负整数,∴y=2,34,当y=2时,x=,不符合题意,当y=3时,x=,不符合题意,当y=4时,x=5,则z=6,∴第二时段返现金额为50×3x+30×2y+10×4z=10(15×5+6×4+4×6)=1230(元),故答案为:1230.三.解答题19.计算:(1)(x+y)2+y(3x﹣y);(2)(+a)÷.【考点】4A:单项式乘多项式;4C:完全平方公式;6C:分式的混合运算.【专题】512:整式;513:分式;66:运算能力;69:应用意识.【分析】(1)利用完全平方公式和多项式的乘法,进行计算即可;(2)根据分式的四则计算的法则进行计算即可,【解答】解:(1)(x+y)2+y(3x﹣y),=x2+2xy+y2+3xy﹣y2,=x2+5xy;(2)(+a)÷,=(+)×,=×,=﹣.20.如图,在平行四边形ABCD中,AE,CF分别平分∠BAD和∠DCB,交对角线BD于点E,F.(1)若∠BCF=60°,求∠ABC的度数;(2)求证:BE=DF.【考点】KD:全等三角形的判定与性质;L5:平行四边形的性质.【专题】555:多边形与平行四边形;67:推理能力.【分析】(1)根据平行四边形的性质得到AB∥CD,根据平行线的性质得到∠ABC+∠BCD=180°,根据角平分线的定义得到∠BCD=2∠BCF,于是得到结论;(2)根据平行四边形的性质得到AB∥CD,AB=CD,∠BAD=∠DCB,求得∠ABE=∠CDF,根据角平分线的定义得到∠BAE=∠DCE,根据全等三角形的性质即可得到结论.【解答】解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABC+∠BCD=180°,∵CF平分∠DCB,∴∠BCD=2∠BCF,∵∠BCF=60°,∴∠BCD=120°,∴∠ABC=180°﹣120°=60°;(2)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠BAD=∠DCB,∴∠ABE=∠CDF,∵AE,CF分别平分∠BAD和∠DCB,∴∠BAE=,∠DCF=,∴∠BAE=∠DCE,∴△ABE≌△CDF(ASA),∴BE=CF.21.每年的4月15日是我国全民国家安全教育日.某中学在全校七、八年级共800名学生中开展“国家安全法”知识竞赛,并从七、八年级学生中各抽取20名学生,统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据统计、整理如下:八年级抽取的学生的竞赛成绩:4,4,6,6,6,6,7,7,7,8,8,8,8,8,8,9,9,9,10,10.七、八年级抽取的学生的竞赛成绩统计表年级七年级八年级平均数7.47.4中位数a b众数7c合格率85%90%根据以上信息,解答下列问题:(1)填空:a=7.5,b=8,c=8;(2)估计该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数;(3)根据以上数据分析,从一个方面评价两个年级“国家安全法”知识竞赛的学生成绩谁更优异.【考点】V5:用样本估计总体;W4:中位数;W5:众数.【专题】542:统计的应用;69:应用意识.【分析】(1)由图表可求解;(2)利用样本估计总体思想求解可得;(3)由八年级的合格率高于七年级的合格率,可得八年级“国家安全法”知识竞赛的学生成绩更优异.【解答】解:(1)由图表可得:a==7.5,b==8,c=8,故答案为:7.5,8,8;(2)该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数=800×=200(人),答:该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数为200人;(3)∵八年级的合格率高于七年级的合格率,∴八年级“国家安全法”知识竞赛的学生成绩更优异.22.在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数﹣﹣“好数”.定义:对于三位自然数n,各位数字都不为0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数n为“好数”.例如:426是“好数”,因为4,2,6都不为0,且4+2=6,6能被6整除;643不是“好数”,因为6+4=10,10不能被3整除.(1)判断312,675是否是“好数”?并说明理由;(2)求出百位数字比十位数字大5的所有“好数”的个数,并说明理由.【考点】#3:数的整除性.【专题】32:分类讨论;66:运算能力.【分析】(1)根据“好数”的意义,判断即可得出结论;(2)设十位数数字为a,则百位数字为a+5(0<a≤4的整数),得出百位数字和十位数字的和为2a+5,再分别取a=1,2,3,4,计算判断即可得出结论.【解答】解:(1)312是“好数”,因为3,1,2都不为0,且3+1=4,6能被2整除,675不是“好数”,因为6+7=13,13不能被5整除;(2)611,617,721,723,729,831,941共7个,理由:设十位数数字为a,则百位数字为a+5(0<a≤4的整数),∴a+a+5=2a+5,当a=1时,2a+5=7,∴7能被1,7整除,∴满足条件的三位数有611,617,当a=2时,2a+5=9,∴9能被1,3,9整除,∴满足条件的三位数有721,723,729,当a=3时,2a+5=11,∴11能被1整除,∴满足条件的三位数有831,当a=4时,2a+5=13,∴13能被1整除,∴满足条件的三位数有941,即满足条件的三位自然数为611,617,721,723,729,831,941共7个.23.探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画出函数y=﹣的图象并探究该函数的性质.x…﹣4﹣3﹣2﹣101234…y…﹣a﹣2﹣4b﹣4﹣2﹣﹣…(1)列表,写出表中a,b的值:a=﹣,b=﹣6;描点、连线,在所给的平面直角坐标系中画出该函数的图象.(2)观察函数图象,判断下列关于函数性质的结论是否正确(在答题卡相应位置正确的用“√”作答,错误的用“×”作答):①函数y=﹣的图象关于y轴对称;②当x=0时,函数y=﹣有最小值,最小值为﹣6;③在自变量的取值范围内函数y的值随自变量x的增大而减小.(3)已知函数y=﹣x﹣的图象如图所示,结合你所画的函数图象,直接写出不等式﹣<﹣x﹣的解集.【考点】F3:一次函数的图象;F5:一次函数的性质;FD:一次函数与一元一次不等式;P5:关于x 轴、y轴对称的点的坐标.【专题】533:一次函数及其应用;64:几何直观.【分析】(1)将x=﹣3,0分别代入解析式即可得y的值,再画出函数的图象;(2)结合图象可从函数的增减性及对称性进行判断;(3)根据图象求得即可.【解答】解:(1)x=﹣3、0分别代入y=﹣,得a=﹣=﹣,b=﹣=﹣6,故答案为﹣,﹣6;画出函数的图象如图:,故答案为﹣,﹣6;(2)根据函数图象:①函数y=﹣的图象关于y轴对称,说法正确;②当x=0时,函数y=﹣有最小值,最小值为﹣6,说法正确;③在自变量的取值范围内函数y的值随自变量x的增大而减小,说法错误.(3)由图象可知:不等式﹣<﹣x﹣的解集为x<﹣4或﹣2<x<1.24.为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对A,B两个玉米品种进行实验种植对比研究.去年A、B两个品种各种植了10亩.收获后A、B两个品种的售价均为2.4元/kg,且B品种的平均亩产量比A品种高100千克,A、B两个品种全部售出后总收入为21600元.(1)求A、B两个品种去年平均亩产量分别是多少千克?(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A、B两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B品种深受市场欢迎,预计每千克售价将在去年的基础上上涨a%,而A品种的售价保持不变,A、B两个品种全部售出后总收入将增加a%.求a的值.【考点】9A:二元一次方程组的应用;AD:一元二次方程的应用.【专题】523:一元二次方程及应用;69:应用意识.【分析】(1)设A、B两个品种去年平均亩产量分别是x千克和y千克;根据题意列方程组即可得到结论;(2)根据题意列方程即可得到结论.【解答】解:(1)设A、B两个品种去年平均亩产量分别是x千克和y千克;根据题意得,,解得:,答:A、B两个品种去年平均亩产量分别是400千克和500千克;(2)2.4×400×10(1+a%)+2.4(1+a%)×500×10(1+2a%)=21600(1+a%),解得:a=10,答:a的值为10.25.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与y轴交于点C,与x轴交于A,B两点(点A在点B的左侧),且A点坐标为(﹣,0),直线BC的解析式为y=﹣x+2.(1)求抛物线的解析式;(2)过点A作AD∥BC,交抛物线于点D,点E为直线BC上方抛物线上一动点,连接CE,EB,BD,DC.求四边形BECD面积的最大值及相应点E的坐标;(3)将抛物线y=ax2+bx+2(a≠0)向左平移个单位,已知点M为抛物线y=ax2+bx+2(a≠0)的对称轴上一动点,点N为平移后的抛物线上一动点.在(2)中,当四边形BECD的面积最大时,是否存在以A,E,M,N为顶点的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【专题】153:代数几何综合题;32:分类讨论;65:数据分析观念.【分析】(1)利用直线BC的解析式求出点B、C的坐标,则y=ax2+bx+2=a(x+)(x﹣3)=ax2﹣2a﹣6a,即﹣6a=2,解得:a=,即可求解;(2)四边形BECD的面积S=S△BCE+S△BCD=×EF×OB+×(x D﹣x C)×BH,即可求解;(3)分AE是平行四边形的边、AE是平行四边形的对角线两种情况,分别求解即可.。
重庆市2022年中考数学真题试题(B卷,含解析)
重庆市2017年中考数学真题试题一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.5的相反数是( )A .﹣5B .5C .15-D .15【答案】A .【解析】 试题分析:5的相反数是﹣5,故选A .考点:相反数.2.下列图形中是轴对称图形的是( ) A .B .C .D .【答案】D .考点:轴对称图形.3.计算53a a ÷结果正确的是( )A .aB .2aC .3aD .4a【答案】B .【解析】试题分析:53a a ÷=2a .故选B .考点:同底数幂的除法.4.下列调查中,最适合采用抽样调查的是()A.对某地区现有的16名百岁以上老人睡眠时间的调查B.对“神舟十一号”运载火箭发射前零部件质量情况的调查C.对某校九年级三班学生视力情况的调查D.对某市场上某一品牌电脑使用寿命的调查【答案】D.考点:全面调查与抽样调查.5131的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【答案】C.【解析】试题分析:∵3134,∴4131<5131在4和5之间,故选C.考点:估算无理数的大小.6.若x=﹣3,y=1,则代数式2x﹣3y+1的值为()A.﹣10 B.﹣8 C.4 D.10【答案】B.【解析】试题分析:∵x=﹣3,y=1,∴2x﹣3y+1=2×(﹣3)﹣3×1+1=﹣8,故选B.考点:代数式求值.7.若分式13x-有意义,则x的取值范围是()A.x>3 B.x<3 C.x≠3 D.x=3 【答案】C.【解析】 试题分析:∵分式13x -有意义,∴x ﹣3≠0,∴x ≠3;故选C . 考点:分式有意义的条件.8.已知△ABC ∽△DEF ,且相似比为1:2,则△ABC 与△DEF 的面积比为( )A .1:4B .4:1C .1:2D .2:1【答案】A .考点:相似三角形的性质;图形的相似.9.如图,在矩形ABCD 中,AB =4,AD =2,分别以A 、C 为圆心,AD 、CB 为半径画弧,交AB 于点E ,交CD 于点F ,则图中阴影部分的面积是( )A .42π-B .82π-C .82π-D .84π- 【答案】C .【解析】试题分析:∵矩形ABCD ,∴AD =CB =2,∴S 阴影=S 矩形﹣S 半圆=2×4﹣12π×22=8﹣2π,故选C . 考点:扇形面积的计算;矩形的性质.10.下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为( )A .116B .144C .145D .150【答案】B.考点:规律型:图形的变化类.11.如图,已知点C与某建筑物底端B相距306米(点C与点B在同一水平面上),某同学从点C出发,沿同一剖面的斜坡CD行走195米至坡顶D处,斜坡CD的坡度(或坡比)i=1:2.4,在D处测得该建筑物顶端A的俯视角为20°,则建筑物AB的高度约为(精确到0.1米,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)()A.29.1米B.31.9米C.45.9米D.95.9米【答案】A.【解析】试题分析:作DE⊥AB于E点,作AF⊥DE于F点,如图,设DE=xm,CE=2.4xm,由勾股定理,得x2+(2.4x)2=1952,解得x≈75m,DE=75m,CE=2.4x=180m,EB=BC﹣CE=306﹣180=126m.∵AF∥DG,∴∠1=∠ADG=20°,tan∠1=tan∠ADG=sin20cos20=0.364.AF=EB=126m,tan∠1=DFAF=0.364,DF=0.364AF=0.364×126=45.9,AB=FE=DE﹣DF=75﹣45.9≈29.1m,故选A.考点:解直角三角形的应用﹣坡度坡角问题.12.若数a 使关于x 的不等式组2122274x x x a-⎧≤-+⎪⎨⎪+>-⎩有且仅有四个整数解,且使关于y 的分式方程2222a y y+=--有非负数解,则所以满足条件的整数a 的值之和是( ) A .3 B .1 C .0 D .﹣3【答案】A .考点:分式方程的解;一元一次不等式组的整数解;含待定字母的不等式(组);综合题.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.据统计,2017年五一假日三天,重庆市共接待游客约为14300000人次,将数14300000用科学记数法表示为.【答案】1.43×107.【解析】试题分析:14300000=1.43×107,故答案为:1.43×107.考点:科学记数法—表示较大的数.14.计算:0|3|(4)-+- .【答案】4.【解析】试题分析:原式=3+1=4.故答案为:4.考点:实数的运算;零指数幂.15.如图,OA、OC是⊙O的半径,点B在⊙O上,连接AB、BC,若∠ABC=40°,则∠AOC= 度.【答案】80.考点:圆周角定理.16.某同学在体育训练中统计了自己五次“1分钟跳绳”成绩,并绘制了如图所示的折线统计图,这五次“1分钟跳绳”成绩的中位数是个.【答案】183.【解析】试题分析:由图可知,把数据从小到大排列的顺序是:180、182、183、185、186,中位数是183.故答案为:183.考点:折线统计图;中位数.17.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需分钟到达终点B.【答案】18.考点:函数的图象.18.如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则△EMN的周长是.【答案】52102+. 【解析】 ∴CG =2423⨯=823,∴EG =8223-=523,连接GM 、GN ,交EF 于H ,∵∠GFE =45°,∴△GHF 是等腰直角三角形,∴GH =FH =2532=103,∴EH =EF ﹣FH =10﹣103=2103,∴∠NDE =∠AEF ,∴tan ∠NDE =tan ∠AEF =EN GH DE EH =,∴103102103EN = =12,∴EN =102,∴NH =EH ﹣EN 2101010,Rt △GNH 中,GN 22GH NH +221010()()36+526,由折叠得:MN =GN ,EM =EG ,∴△EMN 的周长=EN+MN+EM=102+526+523=52102+;故答案为:52102+.考点:翻折变换(折叠问题);正方形的性质;综合题.三、解答题(共5小题)19.如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠FAC=72°,∠ACD=58°,点D在GH上,求∠BDC的度数.【答案】50°.考点:平行线的性质.20.中央电视台的“中国诗词大赛”节目文化品位高,内容丰富,某校初二年级模拟开展“中国诗词大赛”比赛,对全年级同学成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:(1)扇形统计图中“优秀”所对应的扇形的圆心角为度,并将条形统计图补充完整.(2)此次比赛有四名同学活动满分,分别是甲、乙、丙、丁,现从这四名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丁的概率.【答案】(1)72;(2)16.【解析】(2)画树状图,如图所示:共有12个可能的结果,选中的两名同学恰好是甲、丁的结果有2个,∴P(选中的两名同学恰好是甲、丁)=212=16.考点:列表法与树状图法;扇形统计图;条形统计图.21.计算:(1)2(2)()x x y x y --+ ; (2)2321(2)22a a a a a -++-÷++. 【答案】(1)24xy y --;(2)11a a +-.考点:分式的混合运算;单项式乘多项式;完全平方公式.22.如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数k y x=(k ≠0)的图象交于A 、B 两点,与x 轴交于点C ,过点A 作AH ⊥x 轴于点H ,点O 是线段CH 的中点,AC =45cos ∠ACH =55,点B 的坐标为(4,n )(1)求该反比例函数和一次函数的解析式;(2)求△BCH 的面积.【答案】(1)16yx=-,y=﹣2x+4;(2)8.考点:反比例函数与一次函数的交点问题;解直角三角形.23.某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.【答案】(1)50;(2)12.5.考点:一元二次方程的应用;一元一次不等式的应用.24.如图,△ABC中,∠ACB=90°,AC=BC,点E是AC上一点,连接BE.(1)如图1,若AB=42,BE=5,求AE的长;(2)如图2,点D是线段BE延长线上一点,过点A作AF⊥BD于点F,连接CD、CF,当AF=DF时,求证:DC=BC.【答案】(1)1;(2)证明见解析.【解析】试题分析:(1)根据等腰直角三角形的性质得到AC=BC 2AB=4,根据勾股定理得到CE22BE BC=3,于是得到结论;考点:全等三角形的判定与性质;勾股定理.25.对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=()()F sF t,当F(s)+F(t)=18时,求k的最大值.【答案】(1)F(243)=9,F(617)=14;(2)54.【解析】试题分析:(1)根据F(n)的定义式,分别将n=243和n=617代入F(n)中,即可求出结论;(2)由s=100x+32、t=150+y结合F(s)+F(t)=18,即可得出关于x、y的二元一次方程,解之即可得出x、y的值,再根据“相异数”的定义结合F(n)的定义式,即可求出F(s)、F(t)的值,将其代入k=() () F s F t中,找出最大值即可.试题解析:(1)F(243)=(423+342+234)÷111=9;F (617)=(167+716+671)÷111=14.考点:因式分解的应用;二元一次方程的应用;新定义;阅读型;最值问题;压轴题.26.如图,在平面直角坐标系中,抛物线2323333y x x =--与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴与x 轴交于点D ,点E (4,n )在抛物线上.(1)求直线AE 的解析式;(2)点P 为直线CE 下方抛物线上的一点,连接PC ,PE .当△PCE 的面积最大时,连接CD ,CB ,点K 是线段CB 的中点,点M 是CP 上的一点,点N 是CD 上的一点,求KM +MN +NK 的最小值;(3)点G 是线段CE 的中点,将抛物线2323333y x x =--沿x 轴正方向平移得到新抛物线y ′,y ′经过点D ,y ′的顶点为点F .在新抛物线y ′的对称轴上,是否存在一点Q ,使得△FGQ 为等腰三角形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)3333y x =+;(2)3;(3)Q 的坐标为(3,42213-+)或′(3,42213--)或(3,23)或(3,235-). (3)由平移后的抛物线经过点D ,可得到点F 的坐标,利用中点坐标公式可求得点G 的坐标,然后分为QG =FG 、QG =QF ,FQ =FQ 三种情况求解即可.试题解析:(1)∵2323333y x x =--,∴y =33(x +1)(x ﹣3),∴A (﹣1,0),B (3,0). 当x =4时,y =533,∴E (4,533). 设直线AE 的解析式为y =kx +b ,将点A 和点E 的坐标代入得:,解得:k =,b =,∴直线AE 的解析式为3333y x =+.设点P 的坐标为(x ,2323333x x --),则点F (x ,2333x -),则FP =(2333x -)﹣(2323333x x --)=234333x x -+,∴△EPC 的面积=12×(234333x x -+)×4=2238333x x -+,∴当x =2时,△EPC 的面积最大,∴P (2,﹣3). 如图2所示:作点K 关于CD 和CP 的对称点G 、H ,连接G 、H 交CD 和CP 与N 、M .∵K 是CB 的中点,∴k (323.∵点H 与点K 关于CP 对称,∴点H 的坐标为(32,﹣332). ∵点G 与点K 关于CD 对称,∴点G (0,0),∴KM +MN +NK =MH +MN +GN . 当点O 、N 、M 、H 在条直线上时,KM +MN +NK 有最小值,最小值=GH ,∴GH =22333()()22=3,∴KM +MN +NK 的最小值为3.考点:二次函数综合题;最值问题;分类讨论;存在型;压轴题.。
2020年重庆市中考数学试卷(B)及答案
重庆市2016年初中毕业曁高中招生考试数学试题(B 卷)(全卷共五个大题,满分150分,考试时间120分钟)一、选择题:1.4的倒数是 ( D )A.-4B.4C.41- D.41 2.下列交通指示标识中,不是轴对称图形的是( C )3.据重庆商报2016年5月23日报道,第十九届中国(重庆)国际驼子曁全球采购会(简称渝洽会)集中签约86个项目,投资总额1636亿元人民币,将数1636用科学记数法表示是( B )4.如图,直线a ,b 被直线c 所截,且a //b ,若∠1=55°,则∠2等于( C )A.35°B.45°C.55°D.125°5.计算(x 2y )3的结果是( A )A.x 6y 3B.x 5y 3C.x 5y 3D.x 2y 36.下列调查中,最适合采用全面调查(普查)方式的是 ( D )A.对重庆市居民日平均用水量的调查;B.对一批LED 节能灯使用寿命的调查;C.对重庆新闻频道“天天630”栏目收视率的调查;D.对某校九年级(1)班同学的身高情况的调查7.若二次根式2-a 有意义,则a 的取值范围是( A )A.a ≥2B.a ≤2C.a >2D.a ≠28.若m =-2,则代数式m 2-2m -1的值是( B )A.9B.7C.-1D.-99.观察下列一组图形,其中图形1中共有2颗星,图形2中共有6颗星,图形3中共有11颗星,图形4中共有17颗星,。
,按此规律,图形8中星星的颗数是( C )A.43B.45C.51D.5310.如图,在边长为6的菱形ABCD 中,∠DAB =60°,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图形阴影部分的面积是( A ) A.π9-318 B.π3-18 C.29-39π D.π3-31811.如图所示,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公大楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆低端D 到大楼前梯砍底边的距离DC 是20米,梯坎坡长BC 是12米,梯坎坡度i =1:3,则大楼AB 的高度约为(精确到0.1米,参考数据:45.2673.1341.12≈≈≈,,) ( D )B.32.1 米12.如果关于x 的分式方程1131+-=-+x x x a 有负分数解,且关于x 的不等式组⎪⎩⎪⎨⎧+<+--≥-1243,4)(2x x x x a 的解集为x <-2,那么符合条件的所有整数a 的积是 ( D ) A.-3 B.0 C.3 D.9二、填空题13.在21-,0,-1,1这四个数中,最小的数是__-1___. 14.计算:02-3)1(318--+⎪⎭⎫ ⎝⎛+π=____8______. 15.如图,CD 是○O 的直径,若AB ⊥CD ,垂足为B ,∠OAB =40°,则∠C =__25__度.16.点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是_ 51____. 17.为增强学生体质,某中学在体育课中加强了学生的长跑训练。
重庆市中考数学模拟试卷(B卷)含答案解析
重庆市中考数学模拟试卷(B卷)一、选择题:本大题共12小题,每小题4分,共48分.1.在﹣1,0,﹣2,1四个数中,最小的数是()A.﹣1B.0C.﹣2D.12.计算8a3÷(﹣2a)的结果是()A.4aB.﹣4aC.4a2D.﹣4a23.在下列四个图案中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.4.下列调查中,适合采用全面调查(普查)方式的是()A.了解某班同学“立定跳远”的成绩B.了解全国中学生的心理健康状况C.了解外地游客对我市旅游景点“磁器口”的满意程度D.了解端午节期间重庆市场上的粽子质量情况5.如图所示,AB∥CD,AF与CD交于点E,BE⊥AF,∠B=65°,则∠DEF的度数是()A.15°B.25°C.30°D.35°6.一个多边形内角和是1080°,则这个多边形是()A.六边形B.七边形C.八边形D.九边形7.计算sin245°+tan60°•cos30°值为()A.2B. C.1D.8.若关于x的一元二次方程x2﹣x﹣m=0的一个根是x=1,则m的值是()A.1B.0C.﹣1D.29.如图,PA、PB是⊙O的切线,A、B是切点,点C是劣弧AB上的一个动点,若∠ACB=110°,则∠P的度数是()A.55°B.30°C.35°D.40°10.某星期六上午,小明从家出发跑步去公园,在公园停留了一会儿打车回家.图中折线表示小明离开家的路程y(米)和所用时间x(分)之间的函数关系,则下列说法中错误的是()A.小明在公园休息了5分钟B.小明乘出租车用了17分C.小明跑步的速度为180米/分D.出租车的平均速度是900米/分11.将一些半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依次规律,第7个图形的小圆个数是()A.56B.58C.63D.7212.如图,在▱ABCD中,∠ABC,∠BCD的平分线BE,CF分别与AD相交于点E、F,BE与CF相交于点G,若AB=3,BC=5,CF=2,则BE的长为()A.2B.4C.4D.5二、填空题:本大题共6小题,每小题4分,共24分.13.化简:1﹣|1﹣|=.14.方程的解是.15.如果△ABC∽△DEF,且对应高之比为2:3,那么△ABC和△DEF的面积之比是.16.如图,△ABC是边长为4个等边三角形,D为AB边的中点,以CD为直径画圆,则图中阴影部分的面积为(结果保留π).17.把三张形状、大小相同但画面不同的风景图片,都按同样的方式剪成相同的两片,然后堆放到一起混合洗匀,从这堆图片中随机抽出两张,这两张图片恰好能组成一张原风景图片的概率是.18.如图,四边形OABC是边长为2的正方形,函数y=的图象经过点B,将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′,NA′BC.设线段MC′,NA′分别与函数y=的图象交于点E、F,则直线EF与x轴的交点坐标为.三、解答题:本大题共2小题,每小题7分,共14分.19.解不等式组:.20.为调查七年级某班学生每天完成家庭作业所需的时间,在该班随机抽查了8名学生,他们每天完成作业所需时间(单位:分)分别为:60,55,75,55,55,43,65,40.(1)求这组数据的众数、中位数;(2)求这8名学生每天完成家庭作业的平均时间;如果按照学校要求,学生每天完成家庭作业时间不能超过60分钟,问该班学生每天完成家庭作业的平均时间是否符合学校的要求?四、解答题:本大题共4个小题,每小题10分,共40分.21.化简:(1)(a+b)2+(a﹣b)(2a+b)﹣3a2;(2)(x+1﹣).22.如图,在东西方向的海岸线l上有一长为1千米的码头MN,在码头西端M的正西方向30 千米处有一观察站O.某时刻测得一艘匀速直线航行的轮船位于O的北偏西30°方向,且与O相距千米的A处;经过40分钟,又测得该轮船位于O的正北方向,且与O相距20千米的B处.(1)求该轮船航行的速度;(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.(参考数据:,)23.某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?24.阅读材料,解答问题:我们可以利用解二元一次方程组的代入消元法解形如的二元二次方程组,实质是将二元二次方程组转化为一元一次方程或一元二次方程来求解.其解法如下:解:由②得:y=2x﹣5 ③将③代入①得:x2+(2x﹣5)2=10整理得:x2﹣4x+3=0,解得x1=1,x2=3将x1=1,x2=3代入③得y1=1×2﹣5=﹣3,y2=2×3﹣5=1∴原方程组的解为,.(1)请你用代入消元法解二元二次方程组:;(2)若关x,y的二元二次方程组有两组不同的实数解,求实数a 的取信范围.五、解答题:本大题共2个小题,每小题12分,共24分.25.如图1,△ABC中,BE⊥AC于点E,AD⊥BC于点D,连接DE.(1)若AB=BC,DE=1,BE=3,求△ABC的周长;(2)如图2,若AB=BC,AD=BD,∠ADB的角平分线DF交BE于点F,求证:BF=DE;(3)如图3,若AB≠BC,AD=BD,将△ADC沿着AC翻折得到△AGC,连接DG、EG,请猜想线段AE、BE、DG之间的数量关系,并证明你的结论.26.如图,已知抛物线y=ax2+bx﹣3(a≠0)与x轴交于A,B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,﹣3).(1)求抛物线解析式;(2)点M是(1)中抛物线上一个动点,且位于直线AC的上方,试求△ACM的最大面积以及此时点M的坐标;(3)抛物线上是否存在点P,使得△PAC是以AC为直角边的直角三角形?如果存在,求出P点的坐标;如果不存在,请说明理由.重庆市中考数学模拟试卷(B卷)参考答案与试题解析一、选择题:本大题共12小题,每小题4分,共48分.1.在﹣1,0,﹣2,1四个数中,最小的数是()A.﹣1B.0C.﹣2D.1【考点】有理数大小比较.【分析】根据在有理数中:负数<0<正数;两个负数,绝对值大的反而小;据此可求得最小的数.【解答】解:在﹣1,0.﹣2,1四个数中,最小的数是﹣2;故选C.2.计算8a3÷(﹣2a)的结果是()A.4aB.﹣4aC.4a2D.﹣4a2【考点】整式的除法.【分析】原式利用单项式除以单项式法则计算即可得到结果.【解答】解:原式=﹣4a2,故选D3.在下列四个图案中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.【考点】中心对称图形;轴对称图形.【分析】结合选项根据轴对称图形与中心对称图形的概念求解即可.【解答】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,也是中心对称图形;C、不是轴对称图形,也不是中心对称图形;D、是轴对称图形,不是中心对称图形.故选B.4.下列调查中,适合采用全面调查(普查)方式的是()A.了解某班同学“立定跳远”的成绩B.了解全国中学生的心理健康状况C.了解外地游客对我市旅游景点“磁器口”的满意程度D.了解端午节期间重庆市场上的粽子质量情况【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解某班同学“立定跳远”的成绩,适合普查,故A正确;B、了解全国中学生的心理健康状况,调查范围广,适合抽样调查,故B错误;C、了解外地游客对我市旅游景点“磁器口”的满意程度,无法普查,故C错误;D、了解端午节期间重庆市场上的粽子质量情况,调查具有破坏性,适合抽样调查,故D 错误;故选:A.5.如图所示,AB∥CD,AF与CD交于点E,BE⊥AF,∠B=65°,则∠DEF的度数是()A.15°B.25°C.30°D.35°【考点】平行线的性质.【分析】直接利用平行线的性质得出∠BED=65°,进而利用平角的定义得出答案.【解答】解:∵AB∥CD,∠B=65°,∴∠BED=65°,∵BE⊥AF,∴∠DEF=180°﹣65°﹣90°=25°.故选:B.6.一个多边形内角和是1080°,则这个多边形是()A.六边形B.七边形C.八边形D.九边形【考点】多边形内角与外角.【分析】设这个多边形是n(n≥3)边形,则它的内角和是(n﹣2)180°,得到关于n的方程组,就可以求出边数n.【解答】解:设这个多边形是n边形,由题意知,(n﹣2)×180°=1080°,∴n=8,所以该多边形的边数是八边形.故选C.7.计算sin245°+tan60°•cos30°值为()A.2B. C.1D.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得实数的运算,根据实数的运算,可得答案.【解答】解:原式=()2+×=+=2,故选:A.8.若关于x的一元二次方程x2﹣x﹣m=0的一个根是x=1,则m的值是()A.1B.0C.﹣1D.2【考点】一元二次方程的解.【分析】根据一元二次方程的解的定义,把x=1代入一元二次方程可得到关于m的一元一次方程,然后解一次方程即可.【解答】解:把x=1代入x2﹣x﹣m=0得1﹣1﹣m=0,解得m=0.故选B.9.如图,PA、PB是⊙O的切线,A、B是切点,点C是劣弧AB上的一个动点,若∠ACB=110°,则∠P的度数是()A.55°B.30°C.35°D.40°【考点】切线的性质.【分析】首先在优弧AB上取点D,连接BD,AD,OB,OA,由圆的内接四边形的性质与圆周角定理,可求得∠AOB的度数,然后由PA、PB是⊙O的切线,求得∠OAP与∠OBP的度数,继而求得答案.【解答】解:在优弧AB上取点D,连接BD,AD,OB,OA,∵∠ACB=110°,∴∠D=180°﹣∠ACB=70°,∴∠AOB=2∠D=140°,∵PA、PB是⊙O的切线,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠A=360°﹣∠OAP﹣∠AOB﹣∠OBP=40°.故选D.10.某星期六上午,小明从家出发跑步去公园,在公园停留了一会儿打车回家.图中折线表示小明离开家的路程y(米)和所用时间x(分)之间的函数关系,则下列说法中错误的是()A.小明在公园休息了5分钟B.小明乘出租车用了17分C.小明跑步的速度为180米/分D.出租车的平均速度是900米/分【考点】函数的图象.【分析】根据情境的叙述,结合图象,逐一分析得出答案即可.【解答】解:A、在公园停留的时间为15﹣10=5分钟,也就是在公园休息了5分钟,此选项正确,不合题意;B、小明乘出租车的时间是17﹣15=2分钟,此选项错误,符合题意;C、小明1800米用了10分钟,跑步的速度为180米/分,此选项正确,不合题意;D、出租车1800米用了2分钟,速度为900米/分,此选项正确,不合题意.故选:B.11.将一些半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依次规律,第7个图形的小圆个数是()A.56B.58C.63D.72【考点】规律型:图形的变化类.【分析】由题意可知:第一个图形有2+1×2=4个小圆,第二个图形有2+2×3=8个小圆,第三个图形有2+3×4=14个小圆,第四个图形有2+4×5=22个小圆…由此得出,第7个图形的小圆个数为2+7×8=58,由此得出答案即可.【解答】解:∵第一个图形有2+1×2=4个小圆,第二个图形有2+2×3=8个小圆,第三个图形有2+3×4=14个小圆,第四个图形有2+4×5=22个小圆,…∴第七个图形的小圆个数为2+7×8=58,故选B.12.如图,在▱ABCD中,∠ABC,∠BCD的平分线BE,CF分别与AD相交于点E、F,BE与CF相交于点G,若AB=3,BC=5,CF=2,则BE的长为()A.2B.4C.4D.5【考点】平行四边形的性质.【分析】根据平行四边形两组对边分别平行可得∠ABC+∠BCD=180°,再根据角平分线的性质可得∠EBC+∠FCB=90°,可得BE⊥CF;过A作AM∥FC,∠BC于M,证明△ABE 是等腰三角形,进而得到BO=EO,再利用勾股定理计算出EO的长,进而可得答案.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABC+∠BCD=180°,∵∠ABC、∠BCD的平分线BE、CF分别与AD相交于点E、F,∴∠EBC+∠FCB=∠ABC+∠DCB=90°∴EB⊥FC;过A作AM∥FC,交BC于M,如图所示:∵AM∥FC,∴∠AOB=∠FGB,∵EB⊥FC,∴∠FGB=90°,∴∠AOB=90°,∵BE平分∠ABC,∴∠ABE=∠EBC,∵AD∥BC,∴∠AEB=∠CBE,∴∠ABE=∠AEB,∴AB=AE=3,∵AO⊥BE,∴BO=EO,在△AOE和△MOB中,,∴△AOE≌△MOB(ASA),∴AO=MO,∵AF∥CM,AM∥FC,∴四边形AMCF是平行四边形,∴AM=FC=2,∴AO=1,∴EO==2,∴BE=4;故选:C.二、填空题:本大题共6小题,每小题4分,共24分.13.化简:1﹣|1﹣|=2﹣\sqrt{2}.【考点】实数的运算.【分析】先根据绝对值性质去绝对值符号,再去括号,最后合并可得答案.【解答】解:原式=1﹣(﹣1)=1﹣+1=2﹣,故答案为:2﹣.14.方程的解是x=1.【考点】解分式方程.【分析】观察方程可得最简公分母是:2(x+1),两边同时乘最简公分母可把分式方程化为整式方程来解答.【解答】解:方程两边同乘以2(x+1),得2x=x+1,解得x=1.经检验:x=1是原方程的解.故答案为:x=1.15.如果△ABC∽△DEF,且对应高之比为2:3,那么△ABC和△DEF的面积之比是4:9.【考点】相似三角形的性质.【分析】根据相似三角形的性质求出两个三角形的相似比,根据相似三角形面积的比等于相似比的平方得到答案.【解答】解:∵△ABC∽△DEF,对应高之比为2:3,∴△ABC和△DEF的相似比为2:3,∴△ABC和△DEF的面积之比是4:9,故答案为:4:9.16.如图,△ABC是边长为4个等边三角形,D为AB边的中点,以CD为直径画圆,则图中阴影部分的面积为 2.5\sqrt{3}﹣π(结果保留π).【考点】扇形面积的计算.【分析】根据等边三角形的性质以及勾股定理得出△COF,△COM,△ABC以及扇形FOM的面积,进而得出答案.【解答】解:过点O作OE⊥AC于点E,连接FO,MO,∵△ABC是边长为4的等边三角形,D为AB边的中点,以CD为直径画圆,∴CD⊥AB,∠ACD=∠BCD=30°,AC=BC=AB=4,∴∠FOD=∠DOM=60°,AD=BD=2,∴CD=2,则CO=DO=,∴EO=,EC=EF=,则FC=3,∴S△COF=S△COM=××3=,==π,S扇形OFMS△ABC=×CD×4=4,∴图中影阴部分的面积为:4﹣2×﹣π=2.5﹣π.故答案为:2.5﹣π.17.把三张形状、大小相同但画面不同的风景图片,都按同样的方式剪成相同的两片,然后堆放到一起混合洗匀,从这堆图片中随机抽出两张,这两张图片恰好能组成一张原风景图片的概率是\frac{1}{5}.【考点】列表法与树状图法.【分析】把三张风景图片剪成相同的两片后用A1,A2,B1,B2,C1,C2来表示,根据题意画树形图,数出可能出现的结果利用概率公式即可得出答案.【解答】解:设三张风景图片分别剪成相同的两片为:A1,A2,B1,B2,C1,C2;如图所示:,所有的情况有30种,符合题意的有6种,故这两张图片恰好能组成一张原风景图片的概率是:.故答案为:.18.如图,四边形OABC是边长为2的正方形,函数y=的图象经过点B,将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′,NA′BC.设线段MC′,NA′分别与函数y=的图象交于点E、F,则直线EF与x轴的交点坐标为(5,0).【考点】反比例函数图象上点的坐标特征;正方形的性质.【分析】根据正方形的性质可得出点B的坐标,由点B的坐标结合反比例函数图象上点的坐标特征可求出反比例函数的解析式,由翻折的性质可得出线段MC′所在的直线的解析式为x=4,线段NA′所在的直线的解析式为y=4,令反比例函数解析式中x=4或y=4,即可求出点E、F的坐标,再由点E、F的坐标利用待定系数法即可求出直线EF的解析式,令其中的y=0求出x值,即可得出结论.【解答】解:补充完整图形,如下图所示.∵四边形OABC是边长为2的正方形,∴点B的坐标为(2,2),∵函数y=的图象经过点B,∴k=2×2=4,∴反比例函数解析式为y=.∵将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′,NA′BC,∴线段MC′所在的直线的解析式为x=4,线段NA′所在的直线的解析式为y=4,令y=中x=4,则y=1,∴点E的坐标为(4,1);令y=中y=4,则=4,解得:x=1,∴点F的坐标为(1,4).设直线EF的解析式为y=ax+b,∴,解得:,∴直线EF的解析式为y=﹣x+5,令y=﹣x+5中y=0,则﹣x+5=0,解得:x=5,∴直线EF与x轴的交点坐标为(5,0).故答案为:(5,0).三、解答题:本大题共2小题,每小题7分,共14分.19.解不等式组:.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x>1;由②得,x>3,故此不等式组的解集为:x>3.20.为调查七年级某班学生每天完成家庭作业所需的时间,在该班随机抽查了8名学生,他们每天完成作业所需时间(单位:分)分别为:60,55,75,55,55,43,65,40.(1)求这组数据的众数、中位数;(2)求这8名学生每天完成家庭作业的平均时间;如果按照学校要求,学生每天完成家庭作业时间不能超过60分钟,问该班学生每天完成家庭作业的平均时间是否符合学校的要求?【考点】众数;算术平均数;中位数.【分析】(1)用众数、中位数、平均数的定义去解.(2)求出这8名学生每天完成家庭作业的平均时间.把这个样本的平均数与60分钟进行比较就可以.【解答】解:(1)在这8个数据中,55出现了3次,出现的次数最多,即这组数据的众数是55;将这8个数据按从小到大的顺序排列,其中最中间的两个数据都是55,即这组数据的中位数是55.(2)这8个数据的平均数是=(60+55×3+75+43+65+40)=56(分).∴这8名学生完成家庭作业的平均时间为56分钟,因为56<60,因此估计该班学生每天完成家庭作业的平均时间符合学校的要求.四、解答题:本大题共4个小题,每小题10分,共40分.21.化简:(1)(a+b)2+(a﹣b)(2a+b)﹣3a2;(2)(x+1﹣).【考点】分式的混合运算;多项式乘多项式;完全平方公式.【分析】(1)先利用乘法公式展开,然后合并即可;(2)先把括号内通分和除法运算化为乘法运算,然后把分子分母因式分解后约分即可.【解答】解:(1)原式=a2+2ab+b2+2a2+ab﹣2ab﹣b2﹣3a2=ab;(2)原式=•=﹣•=﹣.22.如图,在东西方向的海岸线l上有一长为1千米的码头MN,在码头西端M的正西方向30 千米处有一观察站O.某时刻测得一艘匀速直线航行的轮船位于O的北偏西30°方向,且与O相距千米的A处;经过40分钟,又测得该轮船位于O的正北方向,且与O相距20千米的B处.(1)求该轮船航行的速度;(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.(参考数据:,)【考点】解直角三角形的应用-方向角问题.【分析】(1))过点A作AC⊥OB于点C.可知△ABC为直角三角形.根据勾股定理解答.(2)延长AB交l于D,比较OD与AM、AN的大小即可得出结论.【解答】解(1)过点A作AC⊥OB于点C.由题意,得OA=千米,OB=20千米,∠AOC=30°.∴(千米).∵在Rt△AOC中,OC=OA•cos∠AOC==30(千米).∴BC=OC﹣OB=30﹣20=10(千米).∴在Rt△ABC中, ==20(千米).∴轮船航行的速度为:(千米/时).(2)如果该轮船不改变航向继续航行,不能行至码头MN靠岸.理由:延长AB交l于点D.∵AB=OB=20(千米),∠AOC=30°.∴∠OAB=∠AOC=30°,∴∠OBD=∠OAB+∠AOC=60°.∴在Rt△BOD中,OD=OB•tan∠OBD=20×tan60°=(千米).∵>30+1,∴该轮船不改变航向继续航行,不能行至码头MN靠岸.23.某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?【考点】二元一次方程组的应用;一元一次不等式的应用.【分析】(1)题中有两个等量关系:购买A种商品进价+购买B种商品进价=36000,出售甲种商品利润+出售乙种商品利润=6000,由此可以列出二元一次方程组解决问题.(2)根据不等关系:出售甲种商品利润+出售乙种商品利润≥8160,可以列出一元一次不等式解决问题.【解答】解:(1)设商场购进甲种商品x件,乙种商品y件,根据题意得:,解得:.答:该商场购进甲种商品200件,乙种商品120件.(2)设乙种商品每件售价z元,根据题意,得120(z﹣100)+2×200×≥8160,解得:z≥108.答:乙种商品最低售价为每件108元.24.阅读材料,解答问题:我们可以利用解二元一次方程组的代入消元法解形如的二元二次方程组,实质是将二元二次方程组转化为一元一次方程或一元二次方程来求解.其解法如下:解:由②得:y=2x﹣5 ③将③代入①得:x2+(2x﹣5)2=10整理得:x2﹣4x+3=0,解得x1=1,x2=3将x1=1,x2=3代入③得y1=1×2﹣5=﹣3,y2=2×3﹣5=1∴原方程组的解为,.(1)请你用代入消元法解二元二次方程组:;(2)若关x,y的二元二次方程组有两组不同的实数解,求实数a的取信范围.【考点】高次方程.【分析】(1)先消去一个未知数再解关于另一个未知数的次方程,把求得结果代入一个较简单的方程中即可;(2)先消去一个未知数,得到关于另一个未知数的一元二次方程,根据一元二次方程根的判别式解答即可.【解答】解:(1)由①得,y=2x﹣3③,把③代入②得,(2x﹣3)2﹣4x2+6x﹣3=0,整理的,6x=6,解得x=1,把x=1代入③得,y=﹣1,故原方程组的解为;(2)由①得,y=1﹣2x③,把③代入②得,ax2+(1﹣2x)2+2x+1=0,整理得,(a+4)x2﹣2x+2=0,由题意得,4﹣4×2×(a+4)>0,解得a<﹣,∵a+4≠0,∴a≠﹣4,∴a<﹣且a≠﹣4.五、解答题:本大题共2个小题,每小题12分,共24分.25.如图1,△ABC中,BE⊥AC于点E,AD⊥BC于点D,连接DE.(1)若AB=BC,DE=1,BE=3,求△ABC的周长;(2)如图2,若AB=BC,AD=BD,∠ADB的角平分线DF交BE于点F,求证:BF=DE;(3)如图3,若AB≠BC,AD=BD,将△ADC沿着AC翻折得到△AGC,连接DG、EG,请猜想线段AE、BE、DG之间的数量关系,并证明你的结论.【考点】全等三角形的判定与性质;直角三角形斜边上的中线;平行四边形的判定与性质.【分析】(1)由直角三角形斜边上的中线性质得出DE=AC=AE,AC=2DE=2,AE=1,由勾股定理求出AB,得出BC,即可得出结果;(2)连接AF,由等腰三角形的性质得出∠3=∠4,证出△ABD是等腰直角三角形,得出∠DAB=∠DBA=45°,∠3=22.5°,由ASA证明△ADF≌△BDF,得出AF=BF,∠2=∠3=22.5°,证出△AEF是等腰直角三角形,得出AF=AE,即可得出结论;(3)作DH⊥DE交BE于H,先证明△ADE≌△BDH,得出DH=DE,AE=BH,证出△DHE是等腰直角三角形,得出∠DEH=45°,∠3=45°,由翻折的性质得出DE=GE,∠3=∠4=45°,证出DH=GE,DH∥GE,证出四边形DHEG是平行四边形,得出DG=EH,即可得出结论.【解答】(1)解:如图1所示:∵AB=BC,BE⊥AC,∴AE=CE,∠AEB=90°,∵AD⊥BC,∴∠ADC=90°,∴DE=AC=AE,∴AC=2DE=2,AE=1,∴AB==,∴BC=,∴△ABC的周长=AB+BC+AC=2+2;(2)证明:连接AF,如图2所示:∵AB=BC,BE⊥AC,∴∠3=∠4,∵∠ADC=90°,AD=BD,∴△ABD是等腰直角三角形,∴∠DAB=∠DBA=45°,∴∠3=22.5°,∵∠1+∠C=∠3+∠C=90°,∴∠1=∠3=22.5°,∵DF平分∠ABD,∴∠ADF=∠BDF,在△ADF和△BDF中,,∴△ADF≌△BDF(SAS),∴AF=BF,∠2=∠3=22.5°,∴∠EAF=∠1+∠2=45°,∴△AEF是等腰直角三角形,∴AF=AE,∵DE=AE,∴BF=DE;(3)解:BE=DG+AE;理由如下:作DH⊥DE交BE于H,如图3所示:∵BE⊥AC,AD⊥BC,∴∠1+∠ACD=∠2+∠ACD=90°,∴∠1=∠2,∴∠ADE=90°﹣∠ADH=∠BDH,在△ADE和△BDH中,,∴△ADE≌△BDH(ASA),∴DH=DE,AE=BH,∴△DHE是等腰直角三角形,∴∠DEH=45°,∴∠3=90°﹣∠DEH=45°,∵△ACD翻折至△ACG,∴DE=GE,∠3=∠4=45°,∴∠DEG=∠EDH=90°,DH=GE,∴DH∥GE,∴四边形DHEG是平行四边形,∴DG=EH,∴BE=EH+BH=DG+AE.26.如图,已知抛物线y=ax2+bx﹣3(a≠0)与x轴交于A,B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,﹣3).(1)求抛物线解析式;(2)点M是(1)中抛物线上一个动点,且位于直线AC的上方,试求△ACM的最大面积以及此时点M的坐标;(3)抛物线上是否存在点P,使得△PAC是以AC为直角边的直角三角形?如果存在,求出P点的坐标;如果不存在,请说明理由.【考点】二次函数综合题.【分析】(1)代入A,C两点,列出方程,解得a,b即可;(2)设M(a,﹣a2+4a﹣3),求出直线直线AC的解析式为:y=1﹣x,过M作x轴的垂线交AC于N,则N(a,1﹣a),即有三角形ACM的面积为△AMN和△CMN的面积之和,化简运用二次函数的最值,即可得到;(3)讨论当∠ACP=90°,当∠CAP=90°,运用直线方程和抛物线方程求交点即可.【解答】解:(1)由于A点的坐标是(1,0),C点坐标是(4,﹣3),则a+b﹣3=0,且16a+4b﹣3=﹣3,解得,a=﹣1,b=4,即抛物线的解析式为:y=﹣x2+4x﹣3;(2)设M(a,﹣a2+4a﹣3),设直线AC的解析式为y=kx+b,根据题意得:,解得:,∴直线AC的解析式为:y=1﹣x,过M作x轴的垂线交AC于N,如图所示:则N(a,1﹣a),即有三角形ACM的面积为△AMN与△CMN的面积之和,即为(a﹣1+4﹣a)(﹣a2+4a﹣3﹣1+a)=(﹣a2+5a﹣4),当a=时,面积取得最大,且为,此时M(,);(3)存在,理由如下:当∠ACP=90°,即有此时CP:y=x﹣7,由CP解析式和抛物线解析式得:,解得:,或(不合题意舍去),∴P(﹣1,﹣8);当∠CAP=90°,由AC的斜率为﹣1,即有AP的斜率为1,此时AP:y=x﹣1,由AP解析式和抛物线解析式得:,解得:,或,(不合题意舍去),∴P(2,1).故存在点P,且为(﹣1,﹣8)或(2,1),使得△PAC是以AC为直角边的直角三角形.7月13日。
2016年重庆中考数学真题卷含答案解析
重庆市2016年初中毕业暨高中招生考试数学试题(含答案全解全析)(满分:150分时间:120分钟)参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(-b2a ,4ac-b24a),对称轴为x=-b2a.第Ⅰ卷(选择题,共48分)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D 的四个答案,其中只有一个是正确的.1.在实数-2,2,0,-1中,最小的数是( )A.-2B.2C.0D.-12.下列图形中是轴对称图形的是( )3.计算a3·a2正确的是( )A.aB.a5C.a6D.a94.下列调查中,最适合采用全面调查(普查)方式的是( )A.对重庆市辖区内长江流域水质情况的调查B.对乘坐飞机的旅客是否携带违禁物品的调查C.对一个社区每天丢弃塑料袋数量的调查D.对重庆电视台“天天630”栏目收视率的调查5.如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠2=80°,则∠1等于( )A.120°B.110°C.100°D.80°6.若a=2,b=-1,则a+2b+3的值为( )A.-1B.3C.6D.57.函数y=1x+2中,x的取值范围是( )A.x≠0B.x>-2C.x<-2D.x≠-28.△ABC与△DEF的相似比为1∶4,则△ABC与△DEF的周长比为( )A.1∶2B.1∶3C.1∶4D.1∶169.如图,以AB为直径,点O为圆心的半圆经过点C,若AC=BC=√2,则图中阴影部分的面积是( )A.π4B.12+π4C.π2D.12+π210.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,……,按此规律排列下去,第⑦个图形中小圆圈的个数为( )A.64B.77C.80D.8511.某数学兴趣小组同学进行测量大树CD 高度的综合实践活动.如图,在点A 处测得直立于地面的大树顶端C 的仰角为36°.然后沿在同一剖面的斜坡AB 行走13米至坡顶B 处,然后再沿水平方向行走6米至大树底端D 处,斜面AB 的坡度(或坡比)i=1∶2.4,那么大树CD 的高度约为(参考数据: sin 36°≈0.59,cos 36°≈0.81,tan 36°≈0.73)( )A.8.1米B.17.2米C.19.7米D.25.5米12.从-3,-1,12,1,3这五个数中,随机抽取一个数,记为a.若数a 使关于x 的不等式组{13(2x +7)≥3,x -a <0无解,且使关于x 的分式方程x x -3-a -23-x =-1有整数解,那么这5个数中所有满足条件的a 的值之和是( ) A.-3B.-2C.-32D.12第Ⅱ卷(非选择题,共102分)二、填空题:(本大题6个小题,每小题4分,共24分)13.据报道,2015年某市城镇非私营单位就业人员年平均工资超过60 500元,将数60 500用科学记数法表示为 . 14.计算:√4+(-2)0= .15.如图,OA,OB 是☉O 的半径,点C 在☉O 上,连接AC,BC.若∠AOB=120°,则∠ACB= 度.16.从数-2,-12,0,4中任取一个数记为m,再从余下的三个数中,任取一个数记为n.若k=mn,则正比例函数y=kx 的图象经过第三、第一象限的概率是 .17.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1 500米,先到终点的人原地休息.已知甲先出发30秒后,乙才出发.在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示.则乙到终点时,甲距终点的距离是米.18.正方形ABCD中,对角线AC,BD相交于点O,DE平分∠ADO交AC于点E,把△ADE沿AD翻折,得到△ADE',点F是DE的中点,连接AF,BF,E'F.若AE=√2,则四边形ABFE'的面积是.三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形.19.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.20.为响应“全民阅读”号召,某校在七年级800名学生中随机抽取100名学生,对该年级学生在2015年全年阅读中外名著的情况进行调查.整理调查结果发现,学生阅读中外名著的本数,最少的有5本,最多的有8本,并根据调查结果绘制了如图所示的不完整的条形统计图.其中阅读了6本的人数占被调查人数的30%.根据图中提供的信息,补全条形统计图并估计该校七年级全体学生在2015年全年阅读中外名著的总本数.七年级部分学生阅读中外名著本数条形统计图四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形.21.计算:(1)(a+b)2-b(2a+b);(2)(2-2xx+1+x-1)÷x2-xx+1.22.在平面直角坐标系中,一次函数y=ax+b(a ≠0)的图象与反比例函数y=kx (k ≠0)的图象交于第二、第四象限内的A 、B 两点,与y 轴交于C 点.过点A 作AH ⊥y 轴,垂足为H,OH=3,tan ∠AOH=43,点B 的坐标为(m,-2). (1)求△AHO 的周长;(2)求该反比例函数和一次函数的解析式.23.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元? (2)5月20日猪肉价格为每千克40元.5月21日,某市决定投入储备猪肉,并规定其销售价在5月20日每千克40元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的34,两种猪肉销售的总金额比5月20日提高了110a%,求a 的值.24.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这.例如12种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:F(n)=pq.可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F(12)=34(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”.求所有“吉祥数”中F(t)的最大值.五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形.25.在△ABC中,∠B=45°,∠C=30°.点D是BC上一点,连接AD.过点A作AG⊥AD.在AG上取点F,连接DF.延长DA至E,使AE=AF,连接EG,DG,CG,且GE=DF.(1)若AB=2√2,求BC的长;(2)如图1,当点G 在AC 上时,求证:BD=12CG;(3)如图2,当点G 在AC 的垂直平分线上时,直接..写出ABCG的值.26.如图1,在平面直角坐标系中,抛物线y=-13x 2+2√33x+3与x 轴交于A,B 两点(点A 在点B 左侧),与y轴交于点C,抛物线的顶点为点E. (1)判断△ABC 的形状,并说明理由;(2)经过B,C 两点的直线交抛物线的对称轴于点D,点P 为直线BC 上方抛物线上的一动点,当△PCD 的面积最大时,点Q 从点P 出发,先沿适当的路径运动到抛物线的对称轴上点M 处,再沿垂直于抛物线对称轴的方向运动到y 轴上的点N 处,最后沿适当的路径运动到点A 处停止.当点Q 的运动路径最短时,求点N 的坐标及点Q 经过的最短路径的长;(3)如图2,平移抛物线,使抛物线的顶点E 在射线AE 上移动,点E 平移后的对应点为点E',点A 的对应点为点A'.将△AOC 绕点O 顺时针旋转至△A 1OC 1的位置,点A,C 的对应点分别为点A 1,C 1,且点A 1恰好落在AC 上,连接C 1A',C 1E'.△A'C 1E'是否能为等腰三角形?若能,请求出所有符合条件的点E'的坐标;若不能,请说明理由.答案全解全析:一、选择题1.A 在实数中,负数小于正数、0,两个负数,绝对值大的反而小,所以-2,2,0,-1中,最小的数是-2,故选A.2.D 根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,知选项D中的图形是轴对称图形,符合题意,故选D.3.B 根据“同底数幂相乘,底数不变,指数相加”得a3·a2=a3+2=a5.故选B.4.B 事关重大的调查往往选用普查,所以对乘坐飞机的旅客是否携带违禁物品的调查,应采用全面调查,故选B.评析本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要调查的对象的特征灵活选用.一般来说,对于具有破坏性的调查、无法进行普查的调查、普查的意义或价值不大的调查,应选择抽样调查;对于精确度要求高的调查、事关重大的调查往往选用普查.5.C ∵AB∥CD,∴∠1+∠DFE=180°,∵∠DFE=∠2=80°,∴∠1=180°-80°=100°.故选C.6.B 当a=2,b=-1时,原式=2+2×(-1)+3=3,故选B.7.D 由分式有意义的条件得x+2≠0,解得x≠-2.故选D.8.C 因为△ABC与△DEF的相似比为1∶4,所以由相似三角形周长的比等于相似比,得△ABC与△DEF 的周长比为1∶4,故选C. 9.A ∵AB 为直径,∴∠ACB=90°.又∵AC=BC=√2,∴△ACB 为等腰直角三角形, ∴OC ⊥AB,△AOC 和△BOC 都是等腰直角三角形, ∴S △AOC =S △BOC ,OA=1, ∴S 阴影部分=S 扇形AOC =90·π·12360=π4.故选A.评析 求阴影部分的面积往往都是求不规则图形的面积,所以把不规则图形的面积转化为规则图形的面积是解决这类问题的主要思路.几种常用的方法:(1)将待求面积的图形分割成几个规则图形后,将规则图形的面积相加;(2)将阴影中部分图形等积变形后移位,组成规则图形求解;(3)将待求面积的图形分割后,利用平移、旋转将部分图形移位,最后组成规则图形求解. 10.D 通过观察,第①个图形中小圆圈的个数为(1+2)×22+12=4,第②个图形中小圆圈的个数为(1+3)×32+22=10,第③个图形中小圆圈的个数为(1+4)×42+32=19,第④个图形中小圆圈的个数为(1+5)×52+42=31,以此类推,第个图形中小圆圈的个数为(n+2)(n+1)2+n 2,当n=7时,(7+2)×(7+1)2+72=85,故第⑦个图形中小圆圈的个数为85.故选D. 11.A 作BF ⊥AE 于F,如图所示,易知四边形BDEF 为矩形,则FE=BD=6米,DE=BF, ∵斜面AB 的坡度i=1∶2.4,∴AF=2.4BF, 设BF=x 米,则AF=2.4x 米,在Rt △ABF 中,x 2+(2.4x)2=132,解得x=5,∴DE=BF=5米,AF=12米,∴AE=AF+FE=18米,在Rt △ACE 中,CE=AE ·tan 36°≈18×0.73=13.14米,∴CD=CE-DE=13.14-5≈8.1米,故选A.12.B 由{13(2x +7)≥3,x -a <0解得{x ≥1,x <a , ∵不等式组{13(2x +7)≥3,x -a <0无解,∴a ≤1, 由x x -3-a -23-x =-1,得x=5-a 2, 由题意得x=5-a 2为整数,5-a 2≠3,又a ≤1, ∴在-3,-1,12,1,3中,a 只能取-3或1,∴所有满足条件的a 的值之和是-2,故选B.二、填空题13.答案 6.05×104解析 利用科学记数法表示一个比较大的数就是将该数表示为a ×10n (1≤a<10,n 为正整数)的形式,确定n 时遵循:n 等于原数的整数位数减去1.易知60 500=6.05×104.14.答案 3解析 √4+(-2)0=2+1=3.15.答案 60解析 根据圆周角定理,知∠ACB=12∠AOB=12×120°=60°.16.答案 16解析 画树状图如下:共有12种情况,当正比例函数y=kx 的图象经过第三、第一象限时,k>0,∵k=mn,∴mn>0,∴符合条件的情况有2种,∴正比例函数y=kx 的图象经过第三、第一象限的概率是212=16. 17.答案 175解析 由题图得,甲的速度为75÷30=2.5米/秒,设乙的速度为m 米/秒,则(m-2.5)×(180-30)=75,解得m=3,故乙从起点跑到终点所用的时间为1 5003=500(秒),所以乙到终点时,甲跑的路程是2.5×(500+30)=1 325(米),甲距终点的距离是1 500-1 325=175(米).评析 本题考查了函数图象的应用,求解此类题时要善于从抽象的函数图象中找出实际的量,然后根据实际情况列出方程(组)进行求解.18.答案 6+3√22解析 如图,连接EB 、EE',设EE'交AD 于点N.作EM ⊥AB 于M,易知四边形AMEN 为正方形.∵AE=√2,∴AM=EM=EN=AN=1,∵ED 平分∠ADO,EN ⊥DA,EO ⊥DB,∴EO=EN=1,∴AO=√2+1,∴AB=√2AO=2+√2,∵四边形ABCD 是正方形,∴根据对称性及翻折的性质,得△ADE ≌△ADE'≌△ABE,∴AE=AE',∠DAE=∠DAE'=45°,∴△AEE'为等腰直角三角形,∵AB=2+√2,EM=1,∴S △AEB =12AB ·EM=1+√22, ∴S △AED =S △ADE'=S △AEB =1+√22,∴S △BDE =S △ADB -S △AEB -S △AED =12×(2+√2)2-2×(1+√22)=1+√2,S 四边形AEDE'=2S △AED =2+√2, ∵S △AEE'=12×(√2)2=1,∴S △DEE'=(2+√2)-1=1+√2,∵DF=EF,∴S △EFE'=12S △DEE'=1+√22,∵DF=EF,S △BDE =1+√2,∴S △FEB =12S △BDE =1+√22,∴S 四边形ABFE'=S △AEE'+S △EFE'+S △AEB +S △EFB =1+1+√22+1+√22+1+√22=6+3√22. 评析 本题考查正方形的性质、翻折(轴对称)的性质、全等三角形的性质、角平分线的性质等,解题的关键是转化思想的应用.三、解答题19.证明 ∵CE ∥DF,∴∠ACE=∠D.(3分)在△ACE 和△FDB 中,∵EC=BD,∠ACE=∠D,AC=FD,(5分)∴△ACE ≌△FDB.(6分)∴AE=FB.(7分)20.解析 补全条形统计图,如图所示.七年级部分学生阅读中外名著本数条形统计图(4分)被抽查学生阅读中外名著的本数的平均数为5×20+6×30+7×35+8×15100=6.45(本).七年级800名学生阅读中外名著的总本数约为6.45×800=5 160(本).答:根据调查数据,估计该校七年级全体学生在2015年全年阅读中外名著的总本数约为5 160本.(7分)四、解答题21.解析 (1)原式=a 2+2ab+b 2-2ab-b 2(3分)=a 2.(5分)(2)原式=2-2x+(x+1)(x -1)x+1·x+1x (x -1)(7分) =x 2-2x+1x+1·x+1x (x -1)(8分) =(x -1)2x+1·x+1x (x -1)(9分) =x -1x .(10分)22.解析 (1)∵AH ⊥y 轴于H,∴∠AHO=90°.∵tan ∠AOH=AH OH =43,OH=3,∴AH=4.(2分)在Rt △AHO 中,OA=2+OH 22+32分)∴△AHO 的周长为3+4+5=12.(5分)(2)由(1)知,点A 的坐标为(-4,3),∵点A 在反比例函数y=k x (k ≠0)的图象上,∴3=k -4.∴k=-12. ∴反比例函数的解析式为y=-12x .(7分)∵点B(m,-2)在反比例函数y=-12x 的图象上, ∴-12m =-2.∴m=6. ∴点B 的坐标为(6,-2).(8分)∵点A(-4,3),B(6,-2)在一次函数y=ax+b(a ≠0)的图象上,∴{-4a +b =3,6a +b =-2.解这个方程组,得{a =-12,b =1.∴一次函数的解析式为y=-12x+1.(10分)23.解析 (1)设今年年初的猪肉价格为每千克x 元.根据题意,得2.5×(1+60%)x ≥100.(3分)解这个不等式,得x ≥25.∴今年年初猪肉的最低价格为每千克25元.(4分)(2)设5月20日该超市猪肉的销售量为1,根据题意,得40×14(1+a%)+40(1-a%)×34(1+a%)=40(1+110a %). 令a%=y,原方程可化为40×14(1+y)+40(1-y)×34(1+y)=40(1+110y).(7分)整理这个方程,得5y 2-y=0.解这个方程,得y 1=0,y 2=0.2.∴a 1=0(不合题意,舍去),a 2=20.(9分)∴a 的值是20.(10分)24.解析 (1)证明:对任意一个完全平方数m,设m=n 2(n 为正整数).∵|n-n|=0,∴n ×n 是m 的最佳分解.∴对任意一个完全平方数m,总有F(m)=n n =1.(3分) (2)设交换t 的个位上的数与十位上的数得到的新数为t',则t'=10y+x.∵t 为“吉祥数”,∴t'-t=(10y+x)-(10x+y)=9(y-x)=18.∴y=x+2.(6分)∵1≤x ≤y ≤9,x,y 为自然数,∴“吉祥数”有:13,24,35,46,57,68,79.(7分)易知F(13)=113,F(24)=46=23,F(35)=57,F(46)=223,F(57)=319,F(68)=417,F(79)=179.∵57>23>417>319>223>113>179,∴所有“吉祥数”中F(t)的最大值是57.(10分)五、解答题25.解析 (1)过点A 作AH ⊥BC 于H.∴∠AHB=∠AHC=90°.在Rt △AHB 中,∵AB=2√2,∠B=45°,∴BH=AB ·cos B=2√2×√22=2.AH=AB·sin B=2√2×√2=2.(1分)2在Rt△AHC中,∵∠C=30°,∴AC=2AH=4.=2√3.(2分)∴CH=AC·cos C=4×√32∴BC=BH+CH=2+2√3.(3分)(2)证明:∵AG⊥AD,∴∠DAF=∠EAG=90°.在Rt△DAF和Rt△GAE中,∵AF=AE,DF=GE,∴Rt△DAF≌Rt△GAE.∴AD=AG.(4分)过点A作AP⊥AB交BC于点P,连接PG.∴∠BAP=90°,即∠BAD+∠DAP=90°.∵∠DAG=90°,即∠DAP+∠PAG=90°.∴∠BAD=∠PAG.∵∠B=45°,∠BAP=90°,∴∠APB=∠B=45°.∴AB=AP.在△ABD和△APG中,∵AB=AP,∠BAD=∠PAG,AD=AG,∴△ABD≌△APG.∴BD=PG,∠B=∠APG.(8分)∴∠APG=45°.∴∠BPG=∠APB+∠APG=45°+45°=90°.∴∠CPG=90°.在Rt △CPG 中,∠C=30°.∴PG=12CG.(9分)∴BD=12CG.(10分) (3)AB CG =√3+12.(12分)26.解析 (1)△ABC 为直角三角形.理由如下:当y=0时,-13x 2+2√33x+3=0, 解这个方程,得x 1=-√3,x 2=3√3.∴点A(-√3,0),B(3√3,0).∴OA=√3,OB=3√3.当x=0时,y=3,∴点C(0,3),∴OC=3.在Rt △AOC 中,AC 2=OA 2+OC 2=(√3)2+32=12.在Rt △BOC 中,BC 2=OB 2+OC 2=(3√3)2+32=36.又∵AB 2=[3√3-(-√3)]2=48,12+36=48,∴AC 2+BC 2=AB 2.∴△ABC 为直角三角形.(3分)(2)如图,∵点B(3√3,0),C(0,3),∴直线BC 的解析式为y=-√33x+3.过点P 作PG ∥y 轴交直线BC 于点G.设点P (a ,-13a 2+2√33a +3),则点G (a ,-√33a +3), ∴PG=(-13a 2+2√33a +3)-(-√33a +3)=-13a 2+√3a. 设D 点横坐标为x D ,C 点横坐标为x C .S △PCD =12×(x D -x C )×PG =12×√3×(-13a 2+√3a) =-√36(a -3√32)2+9√38. ∵0<a<3√3,∴当a=3√32时,△PCD 的面积最大, 此时点P (3√32,154).(5分)将点P 向左平移√3个单位至点P',连接AP'交y 轴于点N,过点N 作NM ⊥抛物线对称轴于点M,连接PM.点Q 沿P →M →N →A 运动,所走的路径最短,即最短路径的长为PM+MN+NA 的长.(6分) ∵点P (3√32,154),∴点P'(√32,154). 又∵点A(-√3,0),∴直线AP'的解析式为y=5√36x+52. 当x=0时,y=52,∴点N (0,52).过点P'作P'H ⊥x 轴于点H,则有HA=3√32,P'H=154,AP'=3√374. ∴点Q 运动的最短路径的长为PM+MN+AN=3√374+√3=3√37+4√34.(8分) (3)如图,在Rt △AOC 中,∵tan ∠OAC=OC OA =√3=√3,∴∠OAC=60°.∵OA=OA 1,∴△OAA 1为等边三角形.∴∠AOA 1=60°. ∴∠BOC 1=30°.又由OC 1=OC=3,得点C 1(3√32,32). ∵点A(-√3,0),E(√3,4),∴AE=2√7. ∴A'E'=AE=2√7.∵直线AE 的解析式为y=2√33x+2, 设点E'(a ,2√33a +2),则点A'(a -2√3,2√3a 3-2).(9分) ∴C 1E'2=(a -3√32)2+(2√33a +2-32)2=73a 2-7√33a+7. C 1A'2=(a -2√3-3√32)2+(2√33a -2-32)2=73a 2-35√33a+49.若C 1A'=C 1E',则有C 1A'2=C 1E'2, 即73a 2-7√33a+7=73a 2-35√33a+49. 解这个方程,得a=3√32,∴点E'(3√32,5). 若A'C 1=A'E',则有A'C 12=A'E'2,即73a 2-35√33a+49=28. 解这个方程,得a 1=5√3+√392,a 2=5√3-√392. ∴点E'(5√3+√392,7+√13)或(5√3-√392,7-√13). 若E'A'=E'C 1,则有E'A'2=E'C 12,即73a 2-7√33a+7=28.解这个方程,得a 1=√3+√392,a 2=√3-√392(舍去). ∴点E'(√3+√392,3+√13).综上所述,符合条件的点E'的坐标为3√32,5或5√3+√392,7+√13或5√3-√392,7-√13或 √3+√392,3+√13.(12分)评析 此题是二次函数综合题,主要考查了二次函数的图象与性质,等边三角形的判定和性质,勾股定理的逆定理,等腰三角形的性质.问题(2)先求出当S △PCD 最大时的点P 的坐标,然后判断出点Q 运动的最短路径,最后求最短路径的长,问题(3)主要涉及分类讨论思想,在分类的时候要注意考虑各种情况,不能遗漏.。
2018年重庆中考数学试卷(B卷)(含解析)
重庆市2018年初中学业水平暨高中招生考试数学试题(B卷)(全卷共五个大题,满分150分,考试时间120分钟)注意事项1.试题的答案书写在答题卡上,不得在试卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色签字笔完成;4.考试结束,由监考人员将试题和答题卡一并收回.参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(-2ba,244ac ba),对称轴为x=-2ba.一、选择题(本大题12个小题,每小题4分,共48分.在每小题所给的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上)1.(2018·重庆B卷,1,4)下列四个数中,是正整数的是()A.-1 B.0 C.12D.1【答案】D.【解析】易知-1是负整数,12是分数,1是正整数,而整数包括正整数、0和负整数,故选D.【知识点】实数的概念整数正整数.2.(2018·重庆B卷,2,4)下列图形中,是轴对称图形的是()【答案】D.【解析】根据轴对称图形的定义,沿某条直线将图形折叠,直线两旁的部分能够完全重合的图形才是轴对称图形,故只有选项D满足要求,因此选D.【知识点】图形的变换轴对称图形.3.(2018·重庆B卷,3,4)下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图形中有3张黑色正方形纸片,第②个图形中有5张黑色正方形纸片,第③个图形中有7张黑色正方形纸片,…,按此规律排列下去,第⑥个图形中黑色正方形纸片的张数为()③②①A.B.C.D.A.11 B.13 C.15 D.17【答案】B.【解析】根据第1个图形中小正方形的个数为2×1+1,第1个图形中小正方形的个数为2×1+1,第2个图形中小正方形的个数为2×2+1;第3个图形中小正方形的个数为2×3+1,……,第n个图形中小正方形的个数为2n+1,故第6个图形中小正方形的个数为2×6+1=13,故选B.【知识点】规律探究题代数式代数式的值.4.(2018·重庆B卷,4,4)下列调查中,最适合采用全面调查(普查)的是()A.对我市中学生每周课外阅读时间情况的调查B.对我市市民知晓“礼让行人”交通新规情况的调查C.对我市中学生观看电影《厉害了,我的国》情况的调查D.对我国首艘国产航母002型各零部件质量情况的调查【答案】D.【解析】选项A、B、C中,调查的对象的数量多,分布广,不适合普查;选项D中,由于对我国首艘国产航母002型各零部件质量情况的调查,每一个零部件都不能有任何的疏忽懈怠,必须一个一个检查,要采用普查方式,故选择D.【知识点】普查与抽样调查5.(2018·重庆B卷,5,4)制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大到原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元【答案】C.【解析】∵将此广告牌的四边都扩大到原来的3倍后面积为原长方形面积的9倍,而120×9=1080(元),∴扩大后长方形广告牌的成本是1080元.故选C.【知识点】有理数的应用6.(2018·重庆B卷,6,4)下列命题是真命题的是()A.如果一个数的相反数等于这个数的本身,那么这个数一定是0B.如果一个数的倒数等于这个数本身,那么这个数一定是1C.如果一个数的平方等于这个数的本身,那么这个数一定是0D.如果一个数的算术平方根等于这个数的本身,那么这个数一定是0【答案】A.【解析】易知A选项正确,因为倒数等于其本身的数是±1,平方数等于其本身的数有0和1,算术平方根等于其本身的数有0和1,故选A.【知识点】有理数的概念相反数倒数平方数算术平方根7.(2018·重庆B卷,7,4)估计的值应在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间【答案】C.【解析】∵-=7=8,∴7和8之间,故选C.【知识点】二次根式的计算估算8.(2018·重庆B卷,8,4)根据如图所示的程序计算函数y的值,若输入的x的值是4或7时,输出的y的值相等,则b 等于 ( )A .9B . 7C .-9D .-7【答案】C .【解析】由题意得2×4+b =6-7,解得b =-9,故选C .【知识点】代数式 求代数式的值 程序求值题 函数值 分段函数9.(2018·重庆B 卷,9,4)如图,AB 是一垂直于水平面的建筑物.某同学从建筑物底端B 出发,先沿水平方向向右行走20米到达点C ,再经过一段坡度(或坡比)为i =1﹕0.75、坡长为10米的斜坡CD 到达点D ,然后再沿水平方向向右行走40米到达点E (A ,B ,C ,D ,E 均在同一平面内).在E 处测得建筑物顶端A 的仰角为24°,则建筑物AB 的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°≈0.45) ( )A .21.7米B .22.4米C .27.4米D .28.8米【答案】A . 【解析】过点C 作CN ⊥DE 于点N ,延长AB 交ED 的延长线于点M ,则BM ⊥DE 于点M ,则MN =BC =20米.∵斜坡CD 的坡比i =1﹕0.75,∴令CN =x ,则DN =0.75x .在Rt △CDN 中,由勾股定理,得x 2+(0.75x )2=102,解得x =8,从而CN =8米,DN =6米.∵DE =40米,∴ME =MN +ND +DE =66米,AM =(AB +8)米.在Rt △AME 中,tan E =AMEM, 即8tan 2466AB +=︒,从而0.45=866AB +,解得AB =21.7,故选A .【知识点】解直角三角形 坡度9题图8题图10.(2018·重庆B 卷,10,4)如图,△ABC 中,∠A =30°,点O 是边AB 上一点,以点O 为圆心,以OB为半径作圆,⊙O 恰好与AC 相切于点D ,连接BD .若BD 平分∠ABC ,AD =,则线段CD 的长是 ( )A .2 BC .32 D【答案】B .【解析】如下图,连接OD ,则由AD 切⊙O 于点D ,得OD ⊥AC .∵在Rt △AOD 中,∠A =30°,AD =,tan A =ODAD, ∴OD =AD •,tanA =tan30°=3=2. ∴AO =2OD =4,AB =OA +OB =6. ∵∠AOD =90°-∠A =60°, ∴∠ABD =12∠AOD =30°. ∵BD 平分∠ABC ,∴∠ABC =2∠ABD =60°. ∴∠C =90°=∠ADO . ∴OD ∥BC . ∴AD AODC OB=42=. ∴DC【知识点】圆 圆的切线 相似三角形11.(2018·重庆B 卷,11,4)如图,菱形ABCD 的边AD ⊥y 轴,垂足为点E ,顶点A 在第二象限,顶点B10题图在y 轴的正半轴上,反比例函数y =kx(k ≠0,x >0)的图象同时经过顶点C ,D .若点C 的横坐标为5,BE =3DE ,则k 的值为 ( ) A .52 B .3 C .154D .5【答案】C . 【解析】.∵菱形ABCD 的边AD ⊥y 轴,点C 的横坐标为5, ∴BC =5,DE =1. ∵BE =3DE , ∴BE =3.令OB =m ,则OE =m +3,C (5,m ),D (1,m +3),由C 、D 两点均在双曲线y =kx上,得5m =m +3,解得m =34,从而k =5m =154,故选C . 【知识点】反比例函数 菱形 反比例函数的图像与性质12.(2018·重庆B 卷,12,4)若数a 使关于x 的不等式组111(1)3223(1)x x x a x ⎧-≤-⎪⎨⎪-≤-⎩有且仅有三个整数解,且使关于y的分式方程312122y a y y++=--有整数解,则满足条件的所有a 的值之和是 ( )A .-10B .-12C .-16D .-18 【答案】B .【解析】解不等式组,得-3≤x ≤35a +,由该不等式组有且仅有三个整数解,得-1≤35a +<0,从而-8≤a <-3.解方程312122y a y y ++=--,得y =2a+5. 又∵y ≠2,即2a+5≠2, ∴a ≠-6. 又∵y 为整数,∴满足条件的整数a 为-8和-4,其和为-12.故选B . 【知识点】一元一次不等式组的解法 分式方程的解法11题图二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上).13.(2018·重庆B卷,13,4)计算:1-+20=.【答案】2.【解析】∵原式=1+1=2,∴答案为2.【知识点】实数的运算绝对值零指数14.(2018·重庆B卷,14,4)如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π).【答案】8-2π.【解析】∵正方形ABCD的边长为4,∴∠BAD=90°,∠ABD=45°,AB=AD=4.∴S阴影=S Rt△ABD-S扇形BAE=12×4×4-2454360π⋅=8-2π.【知识点】圆的有关计算扇形面积正方形15.(2018·重庆B卷,15,4)某企业对一工人在五个工作日里生产零件的数量进行调查,并绘制了如图所示的折线统计图,则在这五天里该工人每天生产零件的平均数年是个.【答案】34.【解析】由图可知这组数据是36,34,31,34,35,故x=15(36+34+31+34+35)=15×170=34,因此答案为34.14题图15题图期五期四期三期二期一【知识点】.统计 平均数 折线统计图16.(2018·重庆B 卷,16,4)如图,在Rt △ABC 中,∠ACB =90°,BC =6,CD 是斜边AB 上的中线,将△BCD 沿直线CD 翻折至△ECD 的位置,连接AE .若DE ∥AC ,计算AE 的长度等于 .【答案】.【解析】∵在Rt △ABC 中,∠ACB =90°,BC =6,CD 是斜边AB 上的中线, ∴CD =12AB =DA =DB . 令∠B =x °,则∠DCB =∠B =x °,由翻折知,DE =DB ,∠ECD =∠DCB =x °=∠CED . ∵DE ∥AC ,∴∠ACE =∠CED =x °.∴由∠ACB =90°,得3x =90,x =30,从而∠B =30°,于是AC =12AB . 在Rt △ABC 中,tan B =ACBC,得AC =BC tan B =6tan30°=∴AC ∥DE ,AC =DE ,从而四边形ACDE 是平行四边形. 又∵CD =DE ,∴四边形ACDE 是菱形. ∴AE =AC =OEDC BA【知识点】翻折 直角三角形 菱形 三角函数17.(2018·重庆B 卷,17,4)一天早晨,小玲从家出发匀速步行到学校.小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲.妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来的一半.小玲继续以原速度步行前往学校.妈妈与小玲之间的距离y (米)与小玲从家出发后步行的时间x (分)之间的函数关系如图所示(小玲和妈妈上、下楼以及妈妈交学习用品给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为 米.16题图EDCBA【答案】200.【解析】由图可知:玲玲用30分钟从家里步行到距家1200米的学校,因此玲玲的速度为40米/分;妈妈在玲玲步行10分钟后从家时出发,用5分钟追上玲玲,因此妈妈的速度为40×15÷5=120米/分,返回家的速度为120÷2=60米/分.设妈妈用x 分钟返回到家里,则60x =40×15,解得x =10,此时玲玲已行走了25分钟,共步行25×40=1000米,还离学校1200-1000=200(米),故答案为200. 【知识点】一次函数的实际应用18.(2018·重庆B 卷,18,4)为实现营养套餐的合理搭配,某电商推出两款适合不同人群的甲、乙两种袋装的混合粗粮.甲种袋装粗粮每袋含有3千克A 粗粮,1千克B 粗粮,1千克C 粗粮;乙种袋装粗粮每袋含有1千克A 粗粮,2千克B 粗粮,2千克C 粗粮.甲、乙两种袋装粗粮每袋成本分别等于袋中的A 、B 、C 三种粗粮的成本之和.已知每袋甲粗粮的成本是每千克A 种粗粮成本的7.5倍,每袋乙种粗粮售价比每袋甲种粗粮的售价高20%,乙种袋装粗粮的销售利润率是20%.当销售这两款袋装粗粮的销售利润率为24%时,该电商销售甲、乙两种袋装粗粮的袋数之比是 .(商品的销售利润率=100%-⨯商品的售价商品的成本价商品的成本价)【答案】4﹕7.【解析】设1千克A 粗粮的成本为m 元,则甲袋成本为7.5m 元,且B 、C 两种粗粮各1千克的成本之和为7.5m -3m =4.5m 元,从而乙袋粗粮的成本为m +2×4.5m =10m 元,由乙种袋装粗粮的销售利润率是20%,得乙种袋装粗粮的销售利润为10m ×20%=2m 元;而由每袋乙种粗粮售价比每袋甲种粗粮的售价高20%,知甲种袋装粗粮的售价为12m ÷(1+20%)=10m 元,其利润为2.5m 元,现将以上信息列表如下:2m2.5m10m 12m 10m 7.5m221113CBA每袋粗粮组成成分(千克)每袋售价(元)每袋成本(元)每袋利润(元)乙袋甲袋设甲袋装粗粮销售x 袋,乙袋装粗粮销售y 袋时,销售这两款袋装粗粮的销售利润率为24%,根据题意,得2.5224%7.510m x m ym x m y⋅+⋅=⋅+⋅,整理,得7x =4y ,从而x ﹕y =4﹕7,故答案为4﹕7.【知识点】方程组的应用 销售问题三、解答题(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画17题图分出必要的图形,请将解答过程书写在答题卡中对应的位置上.19.(2018·重庆B 卷,19,8)如图,AB ∥CD ,△EFG 的顶点F ,G 分别落在直线AB ,CD 上,GE 交AB 于点H ,GE 平分∠FGD .若∠EFG =90°,∠E =35°,求∠EFB 的度数.【思路分析】本题解答分四步走:一是由三角形内角和定理,求出∠EGF =55°;二是由角平分线定义,得∠EGD =55°;三是由平行线性质,得∠EHB =55°;四是由三角形外角性质,求得∠EFB =∠EGB -∠E =55°-35°=20°.【解题过程】19.解:∵在△EFG 中,∠EFG =90°,∠E =35°,∴∠EGF =90°-∠E =55°. ∵GE 平分∠FGD ,∴∠EGF =∠EGD =55°. ∵AB ∥CD ,∴∠EHB =∠EGD =55°. 又∵∠EHB =∠EFB +∠E ,∴∠EFB =∠EGB -∠E =55°-35°=20°.【知识点】平行线 三角形内角和 角平分线20.(2018·重庆B 卷,20,8)某学校开展以素质提升为主题的研学活动,推出了以下四个项目供学生选择:A .模拟驾驶;B .军事竞技;C .家乡导游;D .植物识别.学校规定:每个学生都必须报名且只能选择其中一个项目.八年级(3)班班主任刘老师对全班学生选择的项目情况进行了统计,并绘制了如下两幅不完整的统计图.请结合统计图中的信息,解决下列问题:(1) 八年级(3)班学生总人数是___________,并将条形统计图补充完整;(2)刘老师发现报名参加“植物识别”的学生中恰有两名男生,现准备从这些学生中任意挑选两名担任活动记录员,请用列表或画树状图的方法,求恰好选中1名男生和1名女生担任活动记录员的概率.【思路分析】数.(1)由条形图可知,A 选项有12人;由扇形图可知,A 选项占全班人数的30%,两者相除即可得到全班总人数为40;再用全班人数分别减去A 、B 、D 三个选项的人数可知C 选项的人数为10人,在条形图中补图即可;(2)由条形图知D 选项有4人,且男生有2人,用列表法或画树状图法,可求得恰好选中1名H GFEDCBA19题图20题图DCBA 30%八年级(3)班研学项目选择情况的扇形统计图八年级(3)班研学项目选择情况的条形统计图男生和1名女生担任活动记录员的概率为23. 【解题过程】 20.解:(1)∵12÷30%=40(人),40-12-14-4=10(人),∴八年级(3)班学生总人数是40,补图如下:八年级(3)班研学项目选择情况的条形统计图(2)由题意可知从4名学生(其中男、女生各2人)任选2人,记男生为a 1,a 2,女生为b 1,b 2,现列表和画树状图分别如下:(b 2,b 1)(b 2,a 2)(b 2,a 1)(b 1,b 2)(b 1,a 1)(a 2,b 2)(a 2,b 1)(a 1,b 2)(b 1,a 2)(a 2,a 1)(a 1,b 1)(a 1,a 2)b 1b 2a 1a 2b 2b 1a 2a 1(b 2,b 1)(b 2,a 2)(b 2,a 1)(b 1,b 2)(b 1,a 2)(b 1,a 1)(a 2,b 2)(a 2,b 1)(a 2,a 1)(a 1,b 2)(a 1,b 1)(a 1,a 2)结果:第2人:第1人:开始b 2a 1a 21a 1a 2b 1b 21a 2b 2a 1a 2b 1b 1b 2由上面表格或树状图可知,共有12种等可能结果,其中“恰好选中1名男生和1名女生担任活动记录员”的共有8种,故P (恰好选中1名男生和1名女生担任活动记录员)=812=23. 【知识点】统计 概率 条形统计图 扇形统计图 列表法或画树状图求概率四、解答题(本大题5个小题,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上.21.(2018·重庆B 卷,21,10)计算:(1)(x +2y )2-(x +y )(x -y );(2)(a -1-411a a -+)÷28161a a a -++.【思路分析】(1)利用乘法公式将式子展开,然后合并同类项即可得到结果;(2)按分式的运算法则和运算顺序进行计算即可,注意结果的化简.【解题过程】 21.解:(1)原式=x 2+4xy +4y 2-(x 2-y 2)=x 2+4xy +4y 2-x 2+y 2=4xy +5y 2. (2)原式=2(1)(1)(41)11(4)a a a a a a -+--+⋅+- =2(4)11(4)a a a a a -+⋅+- =4a a -. 【知识点】整式的乘法 乘法公式 分式的运算22.(2018·重庆B 卷,22,10)如图,在平面直角坐标系中,直线l 1:y =12x 与直线l 2交点A 的横坐标为2,将直线l 1沿y 轴向下平移4个单位长度,得到直线l 3,直线l 3与y 轴交于点B ,与直线l 2交于点C ,点C 的纵坐标为-2,直线l 2与y 轴交于点D . (1)求直线l 2的解析式; (2)求△BDC 的面积.【思路分析】(1)先求出点A 的坐标,再由平移求出直线l 3的为y =12x -4,进而求出点C 的坐标;直线l 2的解析式为y =kx +b ,将A 、C 两点坐标代入得方程组解答即可锁定直线l 2的解析式;(2)先求出B 、D 两点坐标,进而得到线段BD 的长,C 点的横坐标的绝对值即为△BDC 的边BD 上的高,由三角形的面积公式计算即可. 【解题过程】 22.解:(1)在y =12x 中,当x =2时,y =1;易知直线l 3的解析式为y =12x -4,当y =-2时,x =4,故A (2,1),C (4,-2).设直线l 2的解析式为y =kx +b ,则2142k b k b +=⎧⎨+=-⎩,解得324k b ⎧=-⎪⎨⎪=⎩,故直线l 2的解析式为y=-32x +4. (2)易知D (0,4),B (0,-4),从而DB =8.由C (4,-2),知C 点到y 轴的距离为4, 故S △BDC =12BD •C x =12×8×4=16. 【知识点】一次函数的应用 平移 一次函数解析式的求法23.(2018·重庆B 卷,23,10)在美丽乡村建设中,某县政府投入专项资金,用于乡村沼气池和垃圾集中处理点建设.该县政府计划:2018年前5个月,新建沼气池和垃圾集中处理点共计50个,且沼气池的个数不低于垃圾集中处理点个数的4倍.(1)按计划,2018年前5个月至少要修建多少个沼气池?(2)到2018年5月底前,该县按原计划刚好完成了任务,共花费资金78万元,且修建的沼气池个数恰好是原计划的最小值.据核算,前5个月,修建每个沼气池与垃圾集中处理点的平均费用之比为1﹕2.为加大美丽乡村建设的力度,政府计划加大投入,今年后7个月,在前5个月花费资金的基础上增加投入10a %,全部用于沼气池和垃圾集中处理点建设.经测算:从今年6月起,修建每个沼气池与垃圾集中处理点的平均费用在2018年前5个月的基础上分别增加a %,5a %,新建沼气池与垃圾集中处理点的个数将会在2018年前5个月的基础上分别增加5a %,8a %.求a 的值. 【思路分析】(1)根据“沼气池的个数不低于垃圾集中处理点个数的4倍”列不等式,并求不等式的最小整数解即可;(2)先求出到2018年5月底前,该县修建的沼气池40个,修建垃圾集中处理点10个;再求出前5个月修建每个沼气池与垃圾集中处理点的平均费用;最后根据题意,列出关于a 的一元二次方程,解方程即可求出a 的值.【解题过程】 23.解:(1)设2018年前5个月要修建x 个沼气池,则修建垃圾集中处理点(50-x )个,根据题意,得x ≥4(50-x ),解得x ≥40.答:按计划,2018年前5个月至少要修建40个沼气池.(2)由题意可知,到2018年5月底前,该县修建的沼气池40个,修建垃圾集中处理点10个,若令修建的沼气池每个y 元,则修建的垃圾集中处理点的每个2y 元,从而由题意得40y +10×2y =78,解得y =1.3,即到2018年5月底前,修建的每个沼气池与垃圾集中处理点的费用分别为1.3万元和2.6万元. 根据题意,得40•(1+5a %)•1.3(1+a %)+10•(1+8a %)•2.6(1+5a %)=78•(1+10a %). 令a %=t ,则52(1+5t )(1+t )+26(1+8t )(1+5t )=78(1+10t ),整理,得 10t 2-t =0,解得t 1=0.1,t 2=0(不合题意,舍去),从而a %=0.1,a =10. 答:a 的值为10.【知识点】一元一次不等式的应用 一元二次方程的应用24.(2018·重庆B 卷,24,10)如图,在□ABCD 中,∠ACB =45°,点E 在对角线AC 上,BE =BA ,BF ⊥AC 于点F ,BF 的延长线交AD 于点G .点H 在BC 的延长线上,且CH =AG ,连接EH . (1)若BC =,AB =13,求AF 的长; (2)求证:EB =EH .【思路分析】(1)在Rt △FBC 中,由sin ∠FCB =BFBC,求出BF =×sin45°=×2=12;在Rt△ABF 中,由勾股定理,得AF5.(2)本题有两种证法,一是在BF 上取点M ,使AM =AG ,连接ME 、GE .通过证明四边形AMEG 是正方形,进而得到∠AMB =∠HCE =45°,BM =CE ,AM =CH ,于是△AMB ≌△CHE ,从而EH =AB ,进而EB =EH .第二种方法是连接EG ,GH .通过证明△GBE ≌△GHE (SAS )锁定答案.24题图HG FEDC BA【解题过程】 24.解:(1)∵BF ⊥AC ,∴∠BFC =∠AFB =90°.在Rt △FBC 中,sin ∠FCB =BFBC,而∠ACB =45°,BC =, ∴sin45. ∴BF =sin45°=×2=12. 在Rt △ABF 中,由勾股定理,得AF=5.(2)方法一:如下图,在BF 上取点M ,使AM =AG ,连接ME 、GE .MABC DEF G H∵∠BFC =90°,∠ACB =45°,∴△FBC 是等腰直角三角形. ∴FB =FC .∵在□ABCD 中,AD ∥BC , ∴∠GAC =∠ACB =45°. ∴∠AGB =45°.∵AM =AG ,AF ⊥MG ,∴∠AMG =∠AGM =45°,MF =GF . ∴∠AMB =∠ECG =135°. ∵BA =BE ,BF ⊥AE , ∴AF =EF .∴四边形AMEG 是正方形. ∴FM =FE . ∴BM =CE . 又∵CH =AG , ∴CH =AM .∴△AMB ≌△CHE . ∴EH =AB . ∴EH =EB .方法二:如下图,连接EG ,GH .A BC DEFG H∵BF ⊥AC 于点F ,BA =BE , ∴∠ABF =∠EBF . ∵GB =GB ,∴△GBA ≌△GBE (SAS ). ∴∠AGB =∠EGB .在△FBC 中,∵∠BFC =90°,∠ACB =45°, ∴∠FBC =45°.∵在□ABCD 中,AD ∥BC ,∴∠GAC =∠ACB =45°,∠AGB =∠FBC =45°. ∴∠EGB =45°. ∵CH =AG ,∴四边形AGHC 是平行四边形. ∴∠BHG =∠GAC =45°. ∴∠BHG =∠GBH =45°. ∴GB =GH ,∠BGH =90°. ∴∠HGE =∠BGE =45°. ∵GE =GE ,∴△GBE ≌△GHE (SAS ). ∴EH =EB .【知识点】勾股定理 等腰三角形的性质 全等三角形 平行四边形 25.(2018·重庆B 卷,25,10)对任意一个四位数n ,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n 为“极数”. (1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a 是另一个正整数b 的平方,则称正整数a 是完全平方数.若四位数m 为“极数”,记D (m )=33m,求满足D (m )是完全平方数的所有m . 【思路分析】(1)先根据“极数”的定义,较易写出千位与十位上的数字之和为9且百位与个位上的数字之和为9的四位数三个,答案不唯一;再设n 的千位数字为s ,百位数字为t (1≤s ≤9,0≤t ≤9且s 、t 均为整数),用代数式表示出n ,化简后因式分解,即可证明n 是99的倍数;(2)先求出D (m )=33m,其中m =1000s +100t +10(9-s )+9-t ,化简后得D (m )=33m=3(10s +t +1);再根据D (m )是完全平方数,且10s +t +1是一个两位数,从而10s +t +1=3×22、3×32、3×42、3×52,即10s +t +1=12或27或48或75,于是得到方程组112s t =⎧⎨+=⎩或217s t =⎧⎨+=⎩或418s t =⎧⎨+=⎩或715s t =⎧⎨+=⎩,解方程组即可锁定符合条件的所有m . 【解题过程】25.解:(1)答案不唯一,如5346,1782,9405,等.任意一个“极数”都是99的倍数,理由如下: 设n 的千位数字为s ,百位数字为t (1≤s ≤9,0≤t ≤9且s 、t 均为整数),则n =1000s +100t +10(9-s )+9-t =990s +99t +99=99(10s +t +1),而10s +t +1是整数,故n 是99的倍数.(2)易由(1)设m =1000s +100t +10(9-s )+9-t =990s +99t +99=99(10s +t +1),其中1≤s ≤9,0≤t ≤9且s 、t 均为整数,从而D (m )=33m=3(10s +t +1),而D (m )是完全平方数,故3(10s +t +1)是完全平方数. ∵10<10s +t +1<100, ∴30<3(10s +t +1)<300.∴10s +t +1=3×22、3×32、3×42、3×52. ∴(s ,t )=(1,1),(2,6),(4,7),(7,4). ∴m =1188,2673,4752,7425.【知识点】整式的运算 完全平方数 不等式的解法 新定义运算题 二元一次方程的特殊解五、解答题(本大题1个小题,共12分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上. 26.(2018·重庆B 卷,26,12)抛物线y2x与x 轴交于点A ,B (点A 在点B 的左边),与y 轴交于点C ,点D 是该抛物线的顶点.(1)如图1,连接CD ,求线段CD 的长;(2)如图2,点P 是直线AC 上方抛物线上一点,PF ⊥x 轴于点F ,PF 与线段AC 交于点E ;将线段OB 沿x 轴左右平移,线段OB 的对应线段是O 1B 1.当PE +12EC 的值最大时,求四边形P O 1B 1C 周长的最小值,并求出对应的点O 1的坐标;(3)如图3,点H 是线段AB 的中点,连接CH ,将△OBC 沿直线CH 翻折至△O 2B 2C 的位置,再将△O 2B 2C 绕点B 2旋转一周,在旋转过程中,点O 2,C 的对应点分别是O 3,C 1,直线O 3C 1分别与直线AC ,x 轴交于点M ,N .那么,在△O 2B 2C 的整个旋转过程中,是否存在恰当的位置,使△OMN 是以MN 为腰的等腰三角形?若存在,请直接写出所有符合条件的线段O 2M 的长;若不存在,请说明理由.【思路分析】(1)过点D 作DE ⊥y 轴于点E ,由题意易知点C (0),再根据抛物线的顶点公式求出D 点坐标,最后在Rt △CDE 中,由勾股定理,易求出CD 的长度;(2)①在y2x中,令y =0,得到关于x 的一元二次方程,求解得A 、B 两点的坐标;②再设直线AC 的解析式为y =kx,将A 点坐标代入即可得到kP (t2t), E (t),从而PE2t ,并根据两点间的距离公式求出EC 的长;④计算出PE +12EC =-6(t +22)2+46,由二次函数的性质易知当t =-22时,PE +12EC 取最大值463,此时P (-22,6),且PC ∥x 轴,易知PC =22,O 1B 1=OB =2,要使四边形PO 1B 1C 周长的值最小,就是要求PO 1+B 1C 的值最小,此时利用平移、轴对称知识,先将点P 向右平移2个单位长度,得点P 1(-2,6),则PO 1=P 1B 1.再作P 1关于x 轴的对称点P 2(-2,-6),则P 1B 1=P 2B 1.连接P 2C 与x 轴的交点即为使PO 1+B 1C 的值最小的点B 1.⑤在Rt △P 1P 2C 中,由勾股定理,得PO 1+B 1C =P 2C =22(26)(2)+=26,从而四边形P O 1B 1C 周长的最小值为32+26,所求的点O 1的坐标为(-322,0). (3)分类讨论如下:如答图3,通过计算可得O 2M =226-时,NA =NM ;如答图4,若点C 与M 点重合时,MA =MN ,此时,O 2M =O 2C =12AC =6;如答图5,通过计算可得O 2M =226+时,NA =NM ;如答图6,通过计算可得O 2M =63时,MA =MN ,此时C 1,H ,N 重合.综上,符合条件的O 2M 的长为63或6或22+6或22-6.【解题过程】26.解:(1)如下图,过点D 作DE ⊥y 轴于点E ,由题意易知点C (0,6).第26题答图3 第26题答图4第26题答图5 第26题答图6∵2ba-==224((443ac ba⨯-==,∴D(),从而CEDE.∴在Rt△CDE中,由勾股定理,得CD23=.(2)在y2x中,令y=02x=0,解得x1=-,x2,从而A(-,0),B,0).令直线AC的解析式为y=kx,则-k=0,解得k.∴直线AC的解析式为y.令P(t2t),E(tt),从而PE2t,EC3=-.∴PE+12EC=-6t2t-3t2-tt+)2.∴当t=-时,PE+12EC,此时P(-).∴PC=,O1B1=OB.要使四边形PO1B1C周长的值最小,就是要求PO1+B1C的值最小,将点P个单位长度,得点P1),则PO1=P1B1.再作P1关于x轴的对称点P2),则P1B1=P2B1.连接P2C与x轴的交点即为使PO1+B1C的值最小的点B1.∴B1(-2,0),将B1个单位长度即得点O1.此时,PO1+B1C=P2CP O1B1C周长的最小值为,所求的点O1的坐标为(-2,0).2(3)O2M或或.【知识点】二次函数;一元二次方程的解法;勾股定理;平移;旋转;轴对称;最值问题;等腰三角形;分类思想;数形结合思想;探究性问题;压轴题;。
2023年重庆市中考数学试卷(B卷)及其答案
2023年重庆市中考数学试卷(B卷)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑. 1.(4分)4的相反数是()A.B.C.﹣4D.42.(4分)四个大小相同的正方体搭成的几何体如图所示,从正面看到的视图是()A.B.C.D.3.(4分)如图,直线a,b被直线c所截,若a∥b,∠1=63°,则∠2的度数为()A.27°B.53°C.63°D.117°4.(4分)如图,已知△ABC∽△EDC,AC:EC=2:3,若AB的长度为6,则DE的长度为()A.4B.9C.12D.13.55.(4分)反比例函数y=的图象一定经过的点是()A.(﹣3,2)B.(2,﹣3)C.(﹣2,﹣4)D.(2,3)6.(4分)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为()A.14B.20C.23D.267.(4分)估计×(﹣)的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间8.(4分)如图,AB为⊙O的直径,直线CD与⊙O相切于点C,连接AC,若∠ACD=50°,则∠BAC 的度数为()A.30°B.40°C.50°D.60°9.(4分)如图,在正方形ABCD中,O为对角线AC的中点,E为正方形内一点,连接BE,BE=BA,连接CE并延长,与∠ABE的平分线交于点F,连接OF,若AB=2,则OF的长度为()A.2B.C.1D.10.(4分)在多项式x﹣y﹣z﹣m﹣n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n,|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n,….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A.0B.1C.2D.3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.(4分)计算:|﹣5|+(2﹣)0=.12.(4分)有四张完全一样正面分别写有汉字“清”“风”“朗”“月”的卡片,将其背面朝上并洗匀,从中随机抽取一张,记下卡片正面上的汉字后放回,洗匀后再从中随机抽取一张,则抽取的两张卡片上的汉字相同的概率是.13.(4分)若七边形的内角中有一个角为100°,则其余六个内角之和为.14.(4分)如图,在△ABC中,AB=AC,AD是BC边的中线,若AB=5,BC=6,则AD的长度为.15.(4分)为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301个充电桩,第三个月新建了500个充电桩,设该市新建智能充电桩个数的月平均增长率为x,根据题意,请列出方程.16.(4分)如图,在矩形ABCD中,AB=2,BC=4,E为BC的中点,连接AE.DE.以E为圆心,EB长为半径画弧,分别与AE,DE交于点M,N.则图中阴影部分的面积为(结果保留π).17.(4分)若关于x的不等式组的解集为x<﹣2,且关于y的分式方程+=2的解为正数,则所有满足条件的整数a的值之和为.18.(4分)对于一个四位自然数M,若它的千位数字比个位数字多6,百位数字比十位数字多2,则称M为“天真数”.如:四位数7311,∵7﹣1=6,3﹣1=2,∴7311是“天真数”;四位数8421,∵8﹣1≠6,∴8421不是“天真数”,则最小的“天真数”为;一个“天真数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记P(M)=3(a+b)+c+d,Q(M)=a﹣5,若能被10整除,则满足条件的M的最大值为.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(8分)计算:(1)x(x+6)+(x﹣3)2;(2)(3+)÷.20.(10分)在学习了平行四边形的相关知识后,小虹进行了拓展性研究,她发现,如果作平行四边形一条对角线的垂直平分线,那么这条垂直平分线在该四边形内部的线段被这条对角线平分.其解决问题的思路为通过证明对应线段所在两个三角形全等即可得出结论.请根据她的思路完成以下作图和填空:用直尺和圆规作平行四边形ABCD对角线AC的垂直平分线,交DC于点E,交AB于点F,垂足为O.(只保留作图痕迹)如图,四边形ABCD是平行四边形,AC是对角线,EF垂直平分AC,垂足为O.求证:EO=FO.证明:∵四边形ABCD是平行四边形∴DC∥AB.∴∠ECO=.∵EF垂直平分AC,∴.又∠EOC=,∴△COE≌△AOF(ASA).∴EO=FO.再进一步研究发现,过平行四边形对角线中点的所有与该四边形一组对边相交所得的线段均具备此特征,请你依照题目中的相关表述完成下面命题的填空:过平行四边形对角线中点的直线.21.(10分)某洗车公司安装了A,B两款自动洗车设备,工作人员从消费者对A、B两款设备的满意度评分中各随机抽取20份,并对数据进行整理、描述和分析(评分分数用x表示,分为四个等级:不满意x<70,比较满意70≤x<80,满意80≤x<90,非常满意x≥90),下面给出了部分信息:抽取的对A款设备的评分数据中“满意”包含的所有数据:83,85,85,87,87,89;抽取的对B款设备的评分数据:68,69,76,78,81,84,85,86,87,87,87,89,95,97,98,98,98,98,99,100.抽取的对A,B款设备的评分统计表设备平均数中位数众数“非常满意”所占百分比A88m9645%B8887n40%根据以上信息,解答下列问题:(1)填空:a=,m=,n=;(2)5月份,有600名消费者对A款自动洗车设备进行评分,估计其中对A款自动洗车设备“比较满意”的人数;(3)根据以上数据,你认为哪一款自动洗车设备更受消费者欢迎?请说明理由(写出一条理由即可).22.(10分)如图,△ABC是边长为4的等边三角形,动点E,F均以每秒1个单位长度的速度同时从点A出发,E沿折线A→B→C方向运动,F沿折线A→C→B方向运动,当两点相遇时停止运动.设运动的时间为t秒,点E,F的距离为y.(1)请直接写出y关于t的函数关系式并注明自变量t的取值范围;(2)在给定的平面直角坐标系中,画出这个函数图象,并写出该函数的一条性质;(3)结合函数图象,直接写出点E,F相距3个单位长度时t的值.23.(10分)某粮食生产基地为了落实在适宜地区开展双季稻中间季节再种一季油菜的号召,积极扩大粮食生产规模,计划用基地的甲、乙两区农田进行油菜试种,甲区的农田比乙区的农田多10000亩,甲区农田的80%和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同.(1)求甲、乙两区各有农田多少亩?(2)在甲、乙两区适宜试种的农田全部种上油菜后,为加强油菜的虫害治理,基地派出一批性能相同的无人机,对试种农田喷洒除虫药,由于两区地势差别,派往乙区的无人机架次是甲区的1.2倍(每架次无人机喷洒时间相同),喷洒任务完成后,发现派往甲区的每架次无人机比乙区的平均多喷洒亩,求派往甲区每架次无人机平均喷洒多少亩?24.(10分)人工海产养殖合作社安排甲、乙两组人员分别前往海面A,B养殖场捕捞海产品.经测量,A在灯塔C的南偏西60°方向,B在灯塔C的南偏东45°方向,且在A的正东方向,AC=3600米.(1)求B养殖场与灯塔C的距离(结果精确到个位);(2)甲组完成捕捞后,乙组还未完成捕捞,甲组决定前往B处协助捕捞,若甲组航行的平均速度为600米每分钟,请计算说明甲组能否在9分钟内到达B处?(参考数据:≈1.414,≈1.732)25.(10分)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于点A,B,与y轴交于点C,其中B(3,0),C(0,﹣3).(1)求该抛物线的表达式;(2)点P是直线AC下方抛物线上一动点,过点P作PD⊥AC于点D,求PD的最大值及此时点P的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,Q为平移后的抛物线的对称轴上任意一点.写出所有使得以QF为腰的△QEF是等腰三角形的点Q的坐标,并把求其中一个点Q的坐标的过程写出来.26.(10分)如图,在等边△ABC中,AD⊥BC于点D,E为线段AD上一动点(不与A,D重合),连接BE,CE,将CE绕点C顺时针旋转60°得到线段CF,连接AF.(1)如图1,求证:∠CBE=∠CAF;(2)如图2,连接BF交AC于点G,连接DG,EF,EF与DG所在直线交于点H,求证:EH=FH;(3)如图3,连接BF交AC于点G,连接DG,EG,将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,连接PQ,QF.若AB=4,直接写出PQ+QF的最小值.2023年重庆市中考数学试卷(B卷)参考答案与试题解析一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑. 1.(4分)4的相反数是()A.B.C.﹣4D.4【解答】解:4的相反数是﹣4.故选:C.2.(4分)四个大小相同的正方体搭成的几何体如图所示,从正面看到的视图是()A.B.C.D.【解答】解:从正面看,可得选项A的图形.故选:A.3.(4分)如图,直线a,b被直线c所截,若a∥b,∠1=63°,则∠2的度数为()A.27°B.53°C.63°D.117°【解答】解:∵a∥b,∴∠1=∠2,∵∠1=63°,∴∠2=63°,故选:C.4.(4分)如图,已知△ABC∽△EDC,AC:EC=2:3,若AB的长度为6,则DE的长度为()A.4B.9C.12D.13.5【解答】解:∵△ABC∽△EDC,AC:EC=2:3.∴,∴当AB=6时,DE=9.故选:B.5.(4分)反比例函数y=的图象一定经过的点是()A.(﹣3,2)B.(2,﹣3)C.(﹣2,﹣4)D.(2,3)【解答】解:反比例函数y=中k=6,A、∵(﹣3)×2=﹣6≠6,∴此点不在函数图象上,故本选项不合题意;B、∵2×(﹣3)=﹣6≠6,∴此点不在函数图象上,故本选项不合题意;C、∵﹣2×(﹣4)=8≠6,∴此点不在函数图象上,故本选项不合题意;D、∵2×3=6,∴此点在函数图象上,故本选项符合题意.故选:D.6.(4分)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为()A.14B.20C.23D.26【解答】解:第①个图案中有2个圆圈,第②个图案中有2+3×1=5个圆圈,第③个图案中有2+3×2=8个圆圈,第④个图案中有2+3×3=11个圆圈,...,则第⑦个图案中圆圈的个数为:2+3×6=20,故选:B.7.(4分)估计×(﹣)的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【解答】解:原式=﹣1.∵5<<6.∴4<﹣1<5.故选:A.8.(4分)如图,AB为⊙O的直径,直线CD与⊙O相切于点C,连接AC,若∠ACD=50°,则∠BAC 的度数为()A.30°B.40°C.50°D.60°【解答】解:连接OC,∵直线CD与⊙O相切于点C,∴∠OCD=90°,∵∠ACD=50°,∴∠ACO=90°﹣50°=40°,∵OC=OA,∴∠BAC=∠ACO=40°,故选:B.9.(4分)如图,在正方形ABCD中,O为对角线AC的中点,E为正方形内一点,连接BE,BE=BA,连接CE并延长,与∠ABE的平分线交于点F,连接OF,若AB=2,则OF的长度为()A.2B.C.1D.【解答】解:如图,连接AF,∵四边形ABCD是正方形,∴AB=BE=BC,∠ABC=90°,AC=AB=2,∴∠BEC=∠BCE,∴∠EBC=180°﹣2∠BEC,∴∠ABE=∠ABC﹣∠EBC=2∠BEC﹣90°,∵BF平分∠ABE,∴∠ABF=∠EBF=∠ABE=∠BEC﹣45°,∴∠BFE=∠BEC﹣∠EBF=45°,在△BAF与△BEF中,,∴△BAF≌△BEF(SAS),∴∠BFE=∠BFA=45°,∴∠AFC=∠BAF+∠BFE=90°,∵O为对角线AC的中点,∴OF=AC=,故选:D.10.(4分)在多项式x﹣y﹣z﹣m﹣n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n,|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n,….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A.0B.1C.2D.3【解答】解:|x﹣y|﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,故说法①正确.若使其运算结果与原多项式之和为0,需出现﹣x,显然无论怎么添加绝对值,都无法使x的符号为负号,故说法②正确.当添加一个绝对值时,共有4种情况,分别是|x﹣y|﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n;x﹣|y﹣z|﹣m ﹣n=x﹣y+z﹣m﹣n;x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n;x﹣y﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n.当添加两个绝对值时,共有3种情况,分别是|x﹣y|﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n;|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n;x﹣|y﹣z|﹣|m﹣n|=x﹣y+z﹣m+n.共有7种情况;有两对运算结果相同,故共有5种不同运算结果,故说法③不符合题意.故选:C.二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.(4分)计算:|﹣5|+(2﹣)0=6.【解答】解:|﹣5|+(2﹣)0=5+1=6.故答案为:6.12.(4分)有四张完全一样正面分别写有汉字“清”“风”“朗”“月”的卡片,将其背面朝上并洗匀,从中随机抽取一张,记下卡片正面上的汉字后放回,洗匀后再从中随机抽取一张,则抽取的两张卡片上的汉字相同的概率是.【解答】解:树状图如图所示,由上可得,一共有16种等可能性,其中抽取的两张卡片上的汉字相同的有4种可能性,∴抽取的两张卡片上的汉字相同的概率为=,故答案为:.13.(4分)若七边形的内角中有一个角为100°,则其余六个内角之和为800°.【解答】解:由题意可得七边形的内角和为:(7﹣2)×180°=900°,∵该七边形的一个内角为100°,∴其余六个内角之和为900°﹣100°=800°,故答案为:800°.14.(4分)如图,在△ABC中,AB=AC,AD是BC边的中线,若AB=5,BC=6,则AD的长度为4.【解答】解:∵AB=AC,AD是BC边的中线,∴AD⊥BC,∴∠ADB=90°,∵AB=5,BC=6,∴BD=CD=3,在Rt△ABD中,根据勾股定理,得AD===4,故答案为:4.15.(4分)为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301个充电桩,第三个月新建了500个充电桩,设该市新建智能充电桩个数的月平均增长率为x,根据题意,请列出方程301(1+x)2=500.【解答】解:设该市新建智能充电桩个数的月平均增长率为x,依题意得:301(1+x)2=500.故答案为:301(1+x)2=500.16.(4分)如图,在矩形ABCD中,AB=2,BC=4,E为BC的中点,连接AE.DE.以E为圆心,EB 长为半径画弧,分别与AE,DE交于点M,N.则图中阴影部分的面积为4﹣π(结果保留π).【解答】解:∵AD=2AB=4,E为BC的中点,∴BE=CE=2,∴∠BAE=∠AEB=∠CDE=∠DEC=45°,∴阴影部分的面积为﹣2×=4﹣π.故答案为:4﹣π.17.(4分)若关于x的不等式组的解集为x<﹣2,且关于y的分式方程+=2的解为正数,则所有满足条件的整数a的值之和为13.【解答】解:解不等式组,得:,∵原不等式组的解集为:x<﹣2,∴﹣≥﹣2,∴a≤5,解分式方程+=2,得y=,∵y>0且y≠1,∴>0且≠1,∴a>﹣2且a≠1,∴﹣2<a≤5,且a≠1,∴符合条件的整数a有:﹣1,0,2,3,4,5,∴﹣1+0+2+3+4+5=13.故答案为:13.18.(4分)对于一个四位自然数M,若它的千位数字比个位数字多6,百位数字比十位数字多2,则称M为“天真数”.如:四位数7311,∵7﹣1=6,3﹣1=2,∴7311是“天真数”;四位数8421,∵8﹣1≠6,∴8421不是“天真数”,则最小的“天真数”为6200;一个“天真数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记P(M)=3(a+b)+c+d,Q(M)=a ﹣5,若能被10整除,则满足条件的M的最大值为9313.【解答】解:求最小的“天真数”,首先知道最小的自然数的0.先看它的千位数字比个位数字多6,个位数为最小的自然数0时,千位数为6;百位数字比十位数字多2,十位数为最小的的自然数0时,百位数是2;则最小的“天真数”为6200.故答案为:6200.一个“天真数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d.由“天真数”的定义得a=d+6,所以6≤a≤9,b=c+2,所以0≤c≤7,又P(M)=3(a+b)+c+d=3(a+c+2)+c+a﹣6=4a+4c;Q(M)=a﹣5.=论能被10整除当a取最大值9时,即当a=9时,满足能被10整除,则c=1,“天真数”M为9313.故答案为:9313.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(8分)计算:(1)x(x+6)+(x﹣3)2;(2)(3+)÷.【解答】解:(1)x(x+6)+(x﹣3)2=x2+6x+x2﹣6x+9=2x2+9;(2)===.20.(10分)在学习了平行四边形的相关知识后,小虹进行了拓展性研究,她发现,如果作平行四边形一条对角线的垂直平分线,那么这条垂直平分线在该四边形内部的线段被这条对角线平分.其解决问题的思路为通过证明对应线段所在两个三角形全等即可得出结论.请根据她的思路完成以下作图和填空:用直尺和圆规作平行四边形ABCD对角线AC的垂直平分线,交DC于点E,交AB于点F,垂足为O.(只保留作图痕迹)如图,四边形ABCD是平行四边形,AC是对角线,EF垂直平分AC,垂足为O.求证:EO=FO.证明:∵四边形ABCD是平行四边形∴DC∥AB.∴∠ECO=∠FAO.∵EF垂直平分AC,∴OA=OC.又∠EOC=∠FOA,∴△COE≌△AOF(ASA).∴EO=FO.再进一步研究发现,过平行四边形对角线中点的所有与该四边形一组对边相交所得的线段均具备此特征,请你依照题目中的相关表述完成下面命题的填空:过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分.【解答】解:图形如图所示:理由:∵四边形ABCD是平行四边形,∴DC∥AB.∴∠ECO=∠FAO,∵EF垂直平分AC,∴AO=OC.又∠EOC=∠FOA,∴△COE≌△AOF(ASA).∴EO=FO.再进一步研究发现,过平行四边形对角线中点的所有与该四边形一组对边相交所得的线段均具备此特征,所以过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分,故答案为:∠FAO,OA=OC,∠FOA,过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分.21.(10分)某洗车公司安装了A,B两款自动洗车设备,工作人员从消费者对A、B两款设备的满意度评分中各随机抽取20份,并对数据进行整理、描述和分析(评分分数用x表示,分为四个等级:不满意x<70,比较满意70≤x<80,满意80≤x<90,非常满意x≥90),下面给出了部分信息:抽取的对A款设备的评分数据中“满意”包含的所有数据:83,85,85,87,87,89;抽取的对B款设备的评分数据:68,69,76,78,81,84,85,86,87,87,87,89,95,97,98,98,98,98,99,100.抽取的对A,B款设备的评分统计表设备平均数中位数众数“非常满意”所占百分比A88m9645%B8887n40%根据以上信息,解答下列问题:(1)填空:a=15,m=88,n=98;(2)5月份,有600名消费者对A款自动洗车设备进行评分,估计其中对A款自动洗车设备“比较满意”的人数;(3)根据以上数据,你认为哪一款自动洗车设备更受消费者欢迎?请说明理由(写出一条理由即可).【解答】解:(1)由题意得,a%=1﹣10%﹣45%﹣=15%,即a=15;把A款设备的评分数据从小到大排列,排在中间的两个数是87,89,故中位数m==88;在B款设备的评分数据中,98出现的次数最多,故众数n=98.故答案为:15;88;98;(2)600×15%=90(名),答:估计其中对A款自动洗车设备“比较满意”的人数大约为90名;(3)A款自动洗车设备更受消费者欢迎,理由如下:因为两款自动洗车设备的评分数据的平均数相同,但A款自动洗车设备的评分数据的中位数比B 款高,所以A款自动洗车设备更受消费者欢迎(答案不唯一).22.(10分)如图,△ABC是边长为4的等边三角形,动点E,F均以每秒1个单位长度的速度同时从点A出发,E沿折线A→B→C方向运动,F沿折线A→C→B方向运动,当两点相遇时停止运动.设运动的时间为t秒,点E,F的距离为y.(1)请直接写出y关于t的函数关系式并注明自变量t的取值范围;(2)在给定的平面直角坐标系中,画出这个函数图象,并写出该函数的一条性质;(3)结合函数图象,直接写出点E,F相距3个单位长度时t的值.【解答】解:(1)当点E、F分别在AB、AC上运动时,△AEF为边长等于t的等边三角形,∴点E,F的距离等于AE、AF的长,∴当0<t≤4时,y关于t的函数表达式为y=t,当点E、F都在BC上运动时,点E,F的距离等于4﹣2(t﹣4),∴当4<t≤6时,y关于t的函数表达式为y=4﹣2(t﹣4)=12﹣2t,∴y关于t的函数表达式为;(2)由(1)中得到的函数表达式可知:当t=0时,y=0;当t=4时,y=4;当t=6时,y=0,分别描出三个点(0,0),(4,4)(6,0),然后顺次连线,如图:根据函数图象可知这个函数的其中一条性质:当0<t≤4时,y随t的增大而增大.(答案不唯一,正确即可)(3)把y=3分别代入y=t和y=12﹣2t中,得:3=t,3=12﹣2t,解得:t=3或t=4.5,∴点E,F相距3个单位长度时t的值为3或4.5.23.(10分)某粮食生产基地为了落实在适宜地区开展双季稻中间季节再种一季油菜的号召,积极扩大粮食生产规模,计划用基地的甲、乙两区农田进行油菜试种,甲区的农田比乙区的农田多10000亩,甲区农田的80%和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同.(1)求甲、乙两区各有农田多少亩?(2)在甲、乙两区适宜试种的农田全部种上油菜后,为加强油菜的虫害治理,基地派出一批性能相同的无人机,对试种农田喷洒除虫药,由于两区地势差别,派往乙区的无人机架次是甲区的1.2倍(每架次无人机喷洒时间相同),喷洒任务完成后,发现派往甲区的每架次无人机比乙区的平均多喷洒亩,求派往甲区每架次无人机平均喷洒多少亩?【解答】解:(1)设乙区有农田x亩,则甲区有农田(x+10000)亩,根据题意得:80%(x+10000)=x,解得:x=40000,∴x+10000=40000+10000=50000.答:甲区有农田50000亩,乙区有农田40000亩;(2)设派往甲区每架次无人机平均喷洒y亩,则派往乙区每架次无人机平均喷洒(y﹣)亩,根据题意得:=×1.2,解得:y=100,经检验,y=100是所列分式方程的解,且符合题意.答:派往甲区每架次无人机平均喷洒100亩.24.(10分)人工海产养殖合作社安排甲、乙两组人员分别前往海面A,B养殖场捕捞海产品.经测量,A在灯塔C的南偏西60°方向,B在灯塔C的南偏东45°方向,且在A的正东方向,AC=3600米.(1)求B养殖场与灯塔C的距离(结果精确到个位);(2)甲组完成捕捞后,乙组还未完成捕捞,甲组决定前往B处协助捕捞,若甲组航行的平均速度为600米每分钟,请计算说明甲组能否在9分钟内到达B处?(参考数据:≈1.414,≈1.732)【解答】解:(1)过点C作CD⊥AB于点D,在Rt△ACD中,∠ACD=60°,AC=3600米,cos60°=,sin60°=,∴AD=3600×=1800(米),CD=×3600=1800(米).在Rt△BCD中,∠BCD=45°,∴∠B=45°=∠BCD,∴BD=CD=1800(米),∴BC==1800≈1800×1.414≈2545(米).答:B养殖场与灯塔C的距离约为2545米;(2)AB=AD+BD=1800+1800≈1800×1.732+1800≈4917.6(米),600×9=5400(米),∵5400米>4917.6米,∴能在9分钟内到达B处.25.(10分)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于点A,B,与y轴交于点C,其中B(3,0),C(0,﹣3).(1)求该抛物线的表达式;(2)点P是直线AC下方抛物线上一动点,过点P作PD⊥AC于点D,求PD的最大值及此时点P的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,Q为平移后的抛物线的对称轴上任意一点.写出所有使得以QF为腰的△QEF是等腰三角形的点Q的坐标,并把求其中一个点Q的坐标的过程写出来.【解答】解:(1)由题意得:,解得:,则抛物线的表达式为:y=x2+x﹣3;(2)令y=x2+x﹣3=0,则x=﹣4或3,则点A(﹣4,0),由点A、C知,直线AC的表达式为:y=﹣x﹣3,过点P作y轴的平行线交AC于点H,则∠PHC=∠ACO,则tan∠PHC=tan∠ACO=,则sin∠PHC=,则PD=PH•sin∠PHC=PH,设点H(x,﹣x﹣3),则点P(x,x2+x﹣3),则PD=PH=(﹣x﹣3﹣x2﹣x+3)=﹣(x+2)2+,即PD的最大值为:,此时点P(﹣2,﹣);(3)平移后的抛物线的表达式为:y=(x﹣5)2+(x﹣5)﹣3=x2﹣x+2,则点F(0,2),设点Q(,m),则QF2=()2+(m﹣2)2,QE2=+(m+)2,EF2=9+,当QE=QF时,则()2+(m﹣2)2=+(m+)2,解得:m=,则点Q的坐标为(,);当QF=EF时,则()2+(m﹣2)2=9+,解得:m=5或﹣1,则点Q的坐标为:(,5)或(,﹣1);综上,点Q的坐标为:(,)或(,5)或(,﹣1).26.(10分)如图,在等边△ABC中,AD⊥BC于点D,E为线段AD上一动点(不与A,D重合),连接BE,CE,将CE绕点C顺时针旋转60°得到线段CF,连接AF.(1)如图1,求证:∠CBE=∠CAF;(2)如图2,连接BF交AC于点G,连接DG,EF,EF与DG所在直线交于点H,求证:EH=FH;(3)如图3,连接BF交AC于点G,连接DG,EG,将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,连接PQ,QF.若AB=4,直接写出PQ+QF的最小值.【解答】(1)证明:∵△ABC为等边三角形,∴∠ACB=60°,AC=BC,∵将CE绕点C顺时针旋转60°得到线段CF,∴CE=CF,∠ECF=60°,∵△ABC是等边三角形,∴∠BCA=∠ECF,∴∠BCE=∠ACF,∴△BCE≌△ACF(SAS),∴∠CBE=∠CAF;(2)证明:如图所示,过点F作FK∥AD,交DH点的延长线于点K,连接EK,FD,∵△ABC是等边三角形,∴AB=AC=BC,∵AD⊥BC,∴BD=CD,∴AD垂直平分BC,∴EB=EC,又∵△BCE≌△ACF,∴AF=BE,CF=CE,∴AF=CF,∴F在AC的垂直平分线上,∵AB=BC,∴B在AC的垂直平分线上,∴BF垂直平分AC,∴AC⊥BF,AG=CG=AC,∴∠AGF=90°,又∵DG=AC=CG,∠ACD=60°,∴△DCG是等边三角形,∴∠CGD=∠CDG=60°,∴∠AGH=∠DGC=60°,∴∠KGF=∠AGF﹣∠AGH=90°﹣60°=30°,又∵∠ADK=∠ADC﹣∠GDC=90°﹣60=30°,KF∥AD,∴∠FKG=∠KGF=30°,∴FG=FK,在Rt△CED与Rt△CGF中,,∴Rt△CED≌Rt△CFG,∴GF=ED,∴ED=FK,∴四边形EDFK是平行四边形,∴EH=HF;(3)解:依题意,如图所示,延长AP,DQ交于点R,由(2)可知△DCG是等边三角形,∴∠EDG=30°,∵将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,∴∠PAG=∠EAG=30°,∠QDG=∠EDG=30°,∴∠PAE=∠QDE=60°,∴△ADR是等边三角形,∴∠QDC=∠ADC﹣∠ADQ=90°﹣60°=30°,由(2)可得Rt△CED≌Rt△CFG,∴DE=GF,∴DE=DQ,∴GF=DQ,∵∠GBC=∠QDC=30°,∴GF∥DQ,∴四边形GDQF是平行四边形,∴QF=DG=AC=2,由(2)可知G是AC的中点,则GA=GD,∴∠AGD=120°,∵折叠,∴∠AGP+∠DGQ=∠AGE+∠DGE=∠AGD=120°,∴∠PGQ=360°﹣2∠AGD=120°,又PG=GE=GQ,∴PQ=PG=GQ,∴当GQ取得最小值时,即GQ⊥DR时,PQ取得最小值,此时如图所示,∴GQ=GC=DC=1,∴PQ=,∴PQ+QF=+2.。
2018年重庆市中考数学试卷(B,含答案)
2018年重庆市初中学业水平暨高中招生考试数 学 试 题( B 卷)(全卷共五个大题,满分150分。
考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色签字笔完成;4.考试结束,由监考人员将试题和答题卡一并收回。
参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24,24b ac b a a ⎛⎫- ⎪⎝⎭,对称轴为2b x a =。
一、选择题:(本大题12 个小题,每小题4分 ,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.下列四个数中,是正整数的是( )A.-1B.0C.21 D.1 2下列图形中,是轴对称图形的是( )3.下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,..,按此规律排列下去,第⑥个图中黑色正方形纸片的张数为( )A.11B.13C.15D.174.下列调查中,最适合采用全面调查(普查)的是( )A.对我市中学生每周课外阅读时间情况的调查B.对我市市民知晓“礼让行人”交通新规情况的调查C.对我市中学生观看电影(厉害了,我的国》情况的调查D.对我国首艘国产航母002型各零部件质量情况的调查5.制作一块m m 23⨯长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是( )A.360元B.720元C.1080元D.2160元6.下列命题是真命题的是( )A.如果一个数的相反数等于这个数本身,那么这个数一定是0 。
B.如果一个数的倒数等于这个数本身,那么这个数一定是1 。
C.如果一个数的平方等于这个数本身,那么这个数定是0 。
2023年重庆市中考数学真题(B卷)(解析版)
重庆市2023年初中学业水平暨高中招生考试数学试题(B 卷)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A ,B ,C ,D 的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.1. 4的相反数是( ) A.14B. 14−C. 4D. 4−【答案】D 【解析】【分析】只有符号不同的两个数叫做互为相反数,由此即可得到答案. 【详解】解:4的相反数是4−, 故选:D .【点睛】本题考查相反数的概念,关键是掌握相反数的定义.2. 四个大小相同的正方体搭成的几何体如图所示,从正面看到的视图是( )A. B. C. D.【答案】A 【解析】【分析】从正面看到的有三列,从左到右正方形的个数依次是1,1,2,据此判断即可. 【详解】解:从正面看到视图是:,故选:A .【点睛】本题考查了几何体的视图,明确从正面看到的视图是解题关键. 3. 如图,直线a ,b 被直线c 所截,若a b ,163∠=°,则2∠度数为( ).的的A. 27°B. 53°C. 63°D. 117°【答案】C 【解析】【分析】求2∠的度数,根据平行线的性质求解即可. 【详解】�a b , �1263∠=∠=°, 故选:C .【点睛】此题考查了平行线的性质,解题的关键熟练掌握两直线平行,内错角相等的性质. 4. 如图,已知ABC EDC ∽,:2:3AC EC =,若AB 的长度为6,则DE 的长度为( )A. 4B. 9C. 12D. 13.5【答案】B 【解析】【分析】根据相似三角形的性质即可求出. 【详解】解:∵ABC EDC ∽, ∴::AC EC AB DE =, ∵:2:3AC EC =,6AB =, ∴2:36:DE =, ∴9DE =, 故选:B.【点睛】此题考查的是相似三角形的性质,掌握相似三角形的边长比等于相似比是解决此题的关键. 5. 反比例函数6y x=的图象一定经过的点是( ) A. ()3,2− B. ()2,3−C. ()2,4−−D. ()2,3【答案】D【分析】根据反比例函数的定义,只要点的横纵坐标之积等于k 即可判断该点在函数图象上,据此求解. 【详解】解:∵()()326,236,248,236−×=−×−=−−×−=×=, ∴点()2,3在反比例函数6y x=的图象上, 故选:D .【点睛】本题考查了反比例函数图象上点的坐标特点,熟知点的横纵坐标满足函数解析式是解题关键. 6. 用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为( )A. 14B. 20C. 23D. 26【答案】B 【解析】【分析】根据前四个图案圆圈的个数找到规律,即可求解. 【详解】解:因为第①个图案中有2个圆圈,2311=×−; 第②个图案中有5个圆圈,5321=×−; 第③个图案中有8个圆圈,8331=×−; 第④个图案中有11个圆圈,11341=×−; …,所以第⑦个图案中圆圈的个数为37120×−=; 故选:B .【点睛】本题考查了图形类规律探究,根据前四个图案圆圈的个数找到第n 个图案的规律为31n −是解题的关键.7. −的值应在( ) A. 4和5之间 B. 5和6之间C. 6和7之间D. 7和8之间【答案】A【分析】先计算二次根式的乘法,再根据无理数的估算即可得.1=−,253036<<,<<56<<,415∴<−<,故选:A.【点睛】本题考查了二次根式的乘法、无理数的估算,熟练掌握二次根式的乘法法则是解题关键.8. 如图,AB为O的直径,直线CD与O相切于点C,连接AC,若50ACD∠=°,则BAC∠的度数为()A. 30°B. 40°C. 50°D. 60°【答案】B【解析】【分析】连接OC,先根据圆的切线的性质可得90OCD∠=°,从而可得40OCA∠=°,再根据等腰三角形的性质即可得.【详解】解:如图,连接OC,直线CD与O相切,OC CD ∴⊥,90OCD ∴∠=°,50ACD ∠=° ,40OCA ∴∠=°,OA OC = ,40BAC OCA ∴∠=∠=°,故选:B .【点睛】本题考查了圆的切线的性质、等腰三角形的性质,熟练掌握圆的切线的性质是解题关键. 9. 如图,在正方形ABCD 中,O 为对角线AC 的中点,E 为正方形内一点,连接BE ,BE BA =,连接CE 并延长,与ABE ∠的平分线交于点F ,连接OF ,若2AB =,则OF 的长度为( )A. 2B.C. 1D.【答案】D 【解析】【分析】连接AF ,根据正方形ABCD 得到AB BC BE ==,90ABC ∠=°,根据角平分线的性质和等腰三角形的性质,求得45BFE ∠=°,再证明ABF EBF ≌,求得90AFC ∠=°,最后根据直角三角形斜边上的中点等于斜边的一半,即可求出OF 的长度. 【详解】解:如图,连接AF ,四边形ABCD 是正方形,AB BE BC ∴==,90ABC ∠=°,AC=,BEC BCE ∴∠=∠,1802EBC BEC ∴∠=°−∠,290ABE ABC EBC BEC ∴∠=∠−∠=∠−°, BF 平分ABE ∠,1452ABF EBF ABE BEC ∴∠=∠=∠=∠−°,45BFE BEC EBF ∴∠=∠−∠=°,在BAF △与BEF △,AB EB ABF EBF BF BF =∠=∠ =, ()SAS BAF BEF ∴△≌△,45BFE BFA ∴∠=∠=°,90AFC BAF BFE ∴∠=∠+∠=°,O 为对角线AC 的中点,12OF AC ∴==,故选:D .【点睛】本题考查了等腰三角形的判定和性质,三角形内角和定理,正方形的性质,直角三角形特征,作出正确的辅助线,求得45BFE ∠=°是解题的关键.10. 在多项式x y z m n −−−−(其中x y z m n >>>>)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x y z m n x y z m n −−−−=−−+−,x y z m n x y z m n −−−−=−−−+,…….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等; ②不存在“绝对操作”,使其运算结果与原多项式之和为0; ③所有的“绝对操作”共有7种不同运算结果. 其中正确的个数是( ) A. 0 B. 1C. 2D. 3【答案】C【解析】【分析】根据“绝对操作”的定义及绝对值的性质对每一项判断即可解答. 【详解】解:∵x y z m n >>>>, ∴x y z m n x y z m n −−−−=−−−−,∴存在“绝对操作”,使其运算结果与原多项式相等, 故①正确;根据绝对操作的定义可知:在多项式x y z m n −−−−(其中x y z m n >>>>)中,经过绝对操作后,z n m 、、的符号都有可能改变,但是x y 、的符合不会改变,∴不存在“绝对操作”,使其运算结果与原多项式之和为0, 故②正确;∵在多项式x y z m n −−−−(其中x y z m n >>>>)中,经过“绝对操作”可能产生的结果如下: ∴x y z m n x y z m n −−−−=−−−−,x y z m n x y z m n −−−−=−+−−,x y z m n x y z m n x y z m n −−−−=−−−−=−−+−, x y z m n x y z m n x y z m n −−−−=−−−−=−−−+, x y z m n x y z m n −−−−=−+−+,共有5种不同运算结果, 故③错误; 故选C .【点睛】本题考查了新定义“绝对操作”,绝对值的性质,整式的加减运算,掌握绝对值的性质是解题的关键.二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡...中对应的撗线上.11. 计算:05(2−+=________. 【答案】6 【解析】【分析】根据绝对值、零指数幂法则计算即可.【详解】解:05(2516−+−=+=.故答案为:6.【点睛】本题考查了实数的混合运算,熟练掌握相关运算法则是解决本题的关键.12. 有四张完全一样正面分别写有汉字“清”“风”“朗”“月”的卡片,将其背面朝上并洗匀,从中随机抽取一张,记下卡片正面上的汉字后放回,洗匀后再从中随机抽取一张,则抽取的两张卡片上的汉字相同的概率是________. 【答案】14【解析】【分析】根据列表法求概率即可求解. 【详解】解:列表如下, 清 风 朗 月 清 清清 清风 清朗 清月 风 风清 风风 风朗 风月 朗 朗清 朗风 朗朗 朗月 月月清月风月朗月月共有16中等可能结果,其中,抽取的两张卡片上的汉字相同的情形有4种, ∴抽取的两张卡片上的汉字相同的概率是14, 故答案为:14. 【点睛】本题考查了列表法求概率,熟练掌握列表法求概率是解题的关键. 13. 若七边形的内角中有一个角为100°,则其余六个内角之和为________. 【答案】800°##800度 【解析】【分析】根据多边形的内角和公式()1802n °−即可得. 【详解】解:�七边形的内角中有一个角为100°,�其余六个内角之和为()18072100800°×−−°=°, 故答案为:800°.【点睛】本题考查了多边形的内角和,熟记多边形的内角和公式是解题关键.14. 如图,在ABC 中,AB AC =,AD 是BC 边中线,若5AB =,6BC =,则AD 的长度为________.【答案】4 【解析】【分析】根据等腰三角形的性质和勾股定理求解即可.【详解】解:∵在ABC 中,AB AC =,AD 是BC 边的中线, ∴AD BC ⊥,12BD BC =, 在Rt △ABD 中,5AB =,132BD BC ==,∴4AD ==,故答案为:4.【点睛】本题考查等腰三角形的性质、勾股定理,熟练掌握等腰三角形的三线合一性质是解答的关键. 15. 为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301个充电桩,第三个月新建了500个充电桩,设该市新建智能充电桩个数的月平均增长率为x ,根据题意,请列出方程________.【答案】2301(1)500x += 【解析】【分析】根据变化前数量2(1)x ×+=变化后数量,即可列出方程. 【详解】 第一个月新建了301个充电桩,该市新建智能充电桩个数的月平均增长率为x .∴第二个月新建了301(1)x +个充电桩, ∴第三个月新建了2301(1)x +个充电桩,第三个月新建了500个充电桩,于是有2301(1)500x +=,的故答案为2301(1)500x +=.【点睛】本题考查了一元二次方程的实际应用中的增长率问题,若设平均增长率为x ,则有(1)n a x b +=,其中a 表示变化前数量,b 表示变化后数量,n 表示增长次数.解决增长率问题时要注意区分变化前数量和变化后数量,同时也要注意变化前后经过了几次增长.16. 如图,在矩形ABCD 中,2AB =,4BC =,E 为BC 的中点,连接AE DE ,,以E 为圆心,EB 长为半径画弧,分别与AE DE ,交于点M ,N ,则图中阴影部分的面积为________.(结果保留π)【答案】4π− 【解析】【分析】利用矩形的性质求得2,2AB CD BE CE ====,进而可得45BAE AEB DEC CDE ∠=∠=∠=∠=°,然后根据()2ABE BEM S S S =− 阴影扇形解答即可. 【详解】解:�四边形ABCD 是矩形,2AB =,4BC =,E 为BC 的中点,∴12,22ABCD BE CE BC =====,90ABC DCB ∠=∠=°, ∴45BAE AEB DEC CDE ∠=∠=∠=∠=°, ∴()2145212=22222423602ABEBEM S S S πππ ×=−×××−=×−=−阴影扇形; 故答案为:4π−.【点睛】本题考查了矩形的性质和不规则面积的计算,熟练掌握矩形的性质、明确阴影面积为两个全等的等腰直角三角形的面积减去两个圆心角为45°的扇形面积是解题关键.17. 若关于x 的不等式组213241x x x a x + >++<− 的解集为<2x −,且关于y 的分式方程22211a y y y +++=−−的解为正数,则所有满足条件的整数a 的值之和为________. 【答案】13 【解析】【分析】先求出一元一次不等式组中两个不等式的解集,从而可得5a ≤,再解分式方程可得2a >−且1a ≠,从而可得25a −<≤且1a ≠,然后将所有满足条件的整数a 的值相加即可得.【详解】解:213241x x x a x + >+ +<− ①②, 解不等式①得:<2x −, 解不等式②得:13a x +<−, ∵关于x 的不等式组213241x x x a x + >+ +<− 的解集为<2x −, 123a +∴−≥−, 解得5a ≤, 方程22211a y y y+++=−−可化为()2221a y y +−−=−, 解得23a y +=, 关于y 的分式方程22211a y y y+++=−−的解为正数, 203a +∴>且2103a +−≠, 解得2a >−且1a ≠,52a ∴−<≤且1a ≠,则所有满足条件的整数a 的值之和为10234513−+++++=,故答案为:13.【点睛】本题考查了一元一次不等式组、分式方程,熟练掌握不等式组和分式方程的解法是解题关键. 18. 对于一个四位自然数M ,若它的千位数字比个位数字多6,百位数字比十位数字多2,则称M 为“天真数”.如:四位数7311,�716−=,312−=,�7311是“天真数”;四位数8421,�816−≠,�8421不是“天真数”,则最小的“天真数”为________;一个“天真数”M 的千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,记()()3P M a b c d =+++,()5Q M a =−,若()()P M Q M 能被10整除,则满足条件的M 的最大值为________.【答案】 �. 6200 �. 9313【解析】【分析】根据题中“天真数”可求得最小的“天真数”;先根据题中新定义得到()8c d a b +=+−,进而()()()485P M M a Q b a +−−=,若M 最大,只需千位数字a 取最大,即9a =,再根据()()P M Q M 能被10整除求得3b =,进而可求解.【详解】解:根据题意,只需千位数字和百位数字尽可能的小,所以最小的“天真数”为6200;根据题意,6a d −=,2b c −=,69a ≤≤,29b ≤≤,则()8c d a b +=+−,∴()()()348P M a b c d a b =+++=+−, ∴()()()485P M M a Q b a +−−=, 若M 最大,只需千位数字a 取最大,即9a =, ∴()()()498795b P Q b M M =+−=+−, ∵()()P M Q M 能被10整除, ∴3b =,∴满足条件的M 的最大值为9313,故答案为:6200,9313.【点睛】本题是一道新定义题,涉及有理数的运算、整式的加减、数的整除等知识,理解新定义是解答的关键.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡...中对应的位置上. 19. 计算:(1)()()263x x x ++−; (2)2293n m n m m − +÷. 【答案】(1)229x +(2)13m n− 【解析】【分析】(1)先根据单项式乘以多项式的法则、完全平方公式计算,再合并同类项;(2)根据分式混合运算的法则解答即可.【小问1详解】解:()()263x x x ++− 22669x x x x =++−+229x +;【小问2详解】 解:2293n m n m m − +÷()()333m n m m m n m n +⋅+− 13m n=−. 【点睛】本题考查了整式和分式的运算,属于基本计算题型,熟练掌握整式和分式混合运算的法则是解题的关键.20. 学习了平行四边形后,小虹进行了拓展性研究.她发现,如果作平行四边形一条对角线的垂直平分线,那么这个平行四边形的一组对边截垂直平分线所得的线段被垂足平分. 她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:用直尺和圆规,作AC 的垂直平分线交DC 于点E ,交AB 于点F ,垂足为点O .(只保留作图痕迹)已知:如图,四边形ABCD 是平行四边形,AC 是对角线,EF 垂直平分AC ,垂足为点O . 求证:OE OF =.证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠= ① . ∵EF 垂直平分AC ,∴ ② .又EOC ∠=___________③ .∴()COE AOF ASA ∆≅∆.∴OE OF =.小虹再进一步研究发现,过平行四边形对角线AC 中点的直线与平行四边形一组对边相交形成的线段均有此特征.请你依照题意完成下面命题:过平行四边形对角线中点的直线 ④ .【答案】作图:见解析;FAO ∠;AO CO =;FOA ∠;被平行四边形一组对边所截,截得的线段被对角线中点平分【解析】【分析】根据线段垂直平分线的画法作图,再推理证明即可并得到结论.【详解】解:如图,即为所求;证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠=FAO ∠. ∵EF 垂直平分AC ,∴AO CO =.又EOC ∠=FOA ∠.∴()COE AOF ASA ≅ .∴OE OF =.故答案为:FAO ∠;AO CO =;FOA ∠;由此得到命题:过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分,故答案为:被平行四边形一组对边所截,截得的线段被对角线中点平分.【点睛】此题考查了平行四边形的性质,作线段的垂直平分线,全等三角形的判定和性质,熟练掌握平行四边形的性质及线段垂直平分线的作图方法是解题的关键.21. 某洗车公司安装了A ,B 两款自动洗车设备,工作人员从消费者对A ,B 两款设备的满意度评分中各随机抽取20份,并对数据进行整理、描述和分析(评分分数用x 表示,分为四个等级,不满意70x <,比较满意7080x ≤<,满意8090x ≤<,非常满意90x ≥),下面给出了部分信息.抽取的对A 款设备的评分数据中“满意”包含的所有数据:83,85,85,87,87,89;抽取对B 款设备的评分数据:68,69,76,78,81,84,85,86,87,87,87,89,95,97,98,98,98,98,99,100.抽取的对A ,B 款设备的评分统计表 设备 平均数 中位数 众数 “非常满意”所占百分比A88 m 96 45% B 88 87 n40% 根据以上信息,解答下列问题:(1)填空:=a _______,m =_______,n =_______;(2)5月份,有600名消费者对A 款自动洗车设备进行评分,估计其中对A 款自动洗车设备“比较满意”的人数;(3)根据以上数据,你认为哪一款自动洗车设备更受消费者欢迎?请说明理由(写出一条理由即可).【答案】(1)15,88,98(2)90 (3)A 款,理由:评分数据中A 款的中位数比B 款的中位数高(答案不唯一)【解析】【分析】(1)先根据“满意”的人数除以总人数求得“满意”所占百分比,进而求得a ,再根据中位数和众数的定义求得m ,n ;(2)利用样本估计总体即可;(3)根据平均数、中位数、众数及“非常满意”所占百分比即可得出结论.【小问1详解】解: 抽取的对A 款设备的评分数据中“满意”的有6份,∴“满意”所占百分比为:6100%30%20×=, 的∴“比较满意”所占百分比为:130%45%10%15%−−−=,15a ∴=,抽取的对A 款设备的评分数据中的中位数是第10份和第11份数据的平均数,“不满意”和“满意”的评分有()2010%15%5×+=(份),∴第10份和第11份数据为“满意”,评分分别为87,89, ∴8789882m +==, 抽取的对B 款设备的评分数据中出现次数最多的是98,98n ∴=,故答案为:15,88,98;【小问2详解】解:600名消费者对A 款自动洗车设备“比较满意”的人数为:60015%90×=(人), 答:600名消费者对A 款自动洗车设备“比较满意”的人数为90人.【小问3详解】解:A 款自动洗车设备更受欢迎,理由:评分数据中A 款的中位数比B 款的中位数高(答案不唯一). 【点睛】本题考查了扇形统计图,中位数,众数,样本估计总体,从统计图表中获取信息时,认真观察、分析,理解各个数据之间的关系是解题的关键.22. 如图,ABC 是边长为4的等边三角形,动点E ,F 分别以每秒1个单位长度的速度同时从点A 出发,点E 沿折线A B C →→方向运动,点F 沿折线A C B →→方向运动,当两者相遇时停止运动.设运动时间为t 秒,点E ,F 的距离为y .(1)请直接写出y 关于t 的函数表达式并注明自变量t 的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,写出点E ,F 相距3个单位长度时t 的值.【答案】(1)当04t <≤时,y t =;当46t <≤时,122y t =−; (2)图象见解析,当04t <≤时,y 随x 的增大而增大(3)t 的值为3或4.5【解析】【分析】(1)分两种情况:当04t <≤时,根据等边三角形的性质解答;当46t <≤时,利用周长减去2AE 即可;(2)在直角坐标系中描点连线即可;(3)利用3y =分别求解即可.【小问1详解】解:当04t <≤时,连接EF ,由题意得AE AF =,60A ∠=°,∴AEF △是等边三角形,∴y t =;当46t <≤时,122y t =−;【小问2详解】函数图象如图:当04t <≤时,y 随x 的增大而增大;【小问3详解】当04t <≤时,3y =即3t =;当46t <≤时,3y =即1223t −=,解得 4.5t =,故t 的值为3或4.5.【点睛】此题考查了动点问题,一次函数的图象及性质,解一元一次方程,正确理解动点问题是解题的关键.23. 某粮食生产基地为了落实在适宜地区开展双季稻中间季节再种一季油菜的号召,积极扩大粮食生产规模,计划用基地的甲、乙两区农田进行油菜试种.甲区的农田比乙区的农田多10000亩,甲区农田的80%和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同.(1)求甲、乙两区各有农田多少亩?(2)在甲、乙两区适宜试种的农田全部种上油菜后,为加强油菜的虫害治理,基地派出一批性能相同的无人机,对试种农田喷洒除虫药,由于两区地势差别,派往乙区的无人机架次是甲区的1.2倍(每架次无人机喷洒时间相同),喷洒任务完成后,发现派往甲区的每架次无人机比乙区的平均多喷洒503亩,求派往甲区每架次无人机平均喷洒多少亩?【答案】(1)甲区有农田50000亩,乙区有农田40000亩(2)100亩【解析】【分析】(1)设甲区有农田x 亩,则乙区有农田()10000x −亩,根据甲区农田的80%和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同建立方程,解方程即可得;(2)设派往甲区每架次无人机平均喷洒y 亩,派往甲区的无人机架次为a 架次,则派往乙区每架次无人机平均喷洒503y −亩,派往乙区的无人机架次为1.2a 架次,根据两区喷洒的面积相同建立方程,解方程即可得.【小问1详解】解:设甲区有农田x 亩,则乙区有农田()10000x −亩,由题意得:80%10000x x =−,解得50000x =,则10000500001000040000x −=−=,答:甲区有农田50000亩,乙区有农田40000亩.【小问2详解】解:设派往甲区每架次无人机平均喷洒y 亩,派往甲区的无人机架次为a 架次,则派往乙区每架次无人机平均喷洒503y−亩,派往乙区的无人机架次为1.2a 架次, 由题意得:5031.2ay a y=− ,即5031.2y y − , 解得100y =,答:派往甲区每架次无人机平均喷洒100亩.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确建立方程是解题关键.24. 人工海产养殖合作社安排甲、乙两组人员分别前往海面A ,B 养殖场捕捞海产品,经测量,A 在灯塔C 的南偏西60°方向,B 在灯塔C 的南偏东45°方向,且在A 的正东方向,3600AC =米.(1)求B 养殖场与灯塔C 的距离(结果精确到个位);(2)甲组完成捕捞后,乙组还未完成捕捞,甲组决定前往B 处协助捕捞,若甲组航行的平均速度为600米/每分钟,请计算说明甲组能否在9分钟内到达B 1.414≈ 1.732≈)【答案】(1)2545米(2)能,说明过程见解析【解析】【分析】(1)过点C 作CD AB ⊥于点D ,先根据含30度角的直角三角形的性质、等腰三角形的判定可得118002BD CD AC ===米,再解直角三角形即可得; (2)先解直角三角形求出AD 的长,从而可得AB 的长,再根据时间等于路程除以速度即可得.【小问1详解】解:如图,过点C 作CD AB ⊥于点D ,由题意得:60,45ACD BCD ∠=°∠=°, 30,45A B BCD ∴∠=°∠=∠=°,118002BD CD AC ∴===米, 2545sin 45CD BC ∴=≈°米, 答:B 养殖场与灯塔C 的距离为2545米.【小问2详解】解:sin 60AD AC =⋅°=()1800AB AD BD ∴=+=+米,则甲组到达B 处所需时间为()180060038.196+÷=≈(分钟)9<分钟, 所以甲组能在9分钟内到达B 处.【点睛】本题考查了解直角三角形的应用,熟练掌握解直角三角形的方法是解题关键. 25. 如图,在平面直角坐标系中,抛物线214y x bx c =++与x 轴交于点A ,B ,与y 轴交于点C ,其中()3,0B ,()0,3C −.(1)求该抛物线的表达式;(2)点P 是直线AC 下方抛物线上一动点,过点P 作PD AC ⊥于点D ,求PD 的最大值及此时点P 的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E 为点P 的对应点,平移后的抛物线与y 轴交于点F ,Q 为平移后的抛物线的对称轴上任意一点.写出所有使得以QF 为腰的QEF △是等腰三角形的点Q 的坐标,并把求其中一个点Q 的坐标的过程写出来.【答案】(1)211344y x x =+− (2)PD 取得最大值为45,52,2P −−(3)Q 点的坐标为9,12 −或9,52 或97,24. 【解析】 【分析】(1)待定系数法求二次函数解析式即可求解;(2)直线AC 的解析式为334y x =−−,过点P 作PE x ⊥轴于点E ,交AC 于点Q ,设211,344P t t t +− ,则3,34Q t t −− ,则45PD PQ =,进而根据二次函数的性质即可求解; (3)根据平移的性质得出219494216y x =−− ,对称轴为直线92x =,点52,2P −− 向右平移5个单位得到53,2E−,()0,2F ,勾股定理分别表示出222,,EF QE QF ,进而分类讨论即可求解. 【小问1详解】解:将点()3,0B ,()0,3C −.代入214y x bx c =++得, 2133043b c c ×++= =− 解得:143b c = =− ,�抛物线解析式为:211344y x x =+−, 【小问2详解】 �211344y x x =+−与x 轴交于点A ,B , 当0y =时,2113044x x +−= 解得:124,3x x =−=, �()4,0A −,�()0,3C −.设直线AC 的解析式为3y kx =−, ∴430k −−= 解得:34k =− ∴直线AC 的解析式为334y x =−−, 如图所示,过点P 作PE x ⊥轴于点E ,交AC 于点Q ,设211,344P t t t +− ,则3,34Q t t −− , ∴223111334444PQ t t t t t =−−−+−=−−, �AQE PQD ∠=∠,90AEQ QDP ∠=∠=°, ∴OAC QPD ∠=∠, ∵4,3OA OC ==, ∴5AC =, ∴4cos cos =5PD AO QPD OAC PQ AC ∠==∠=, ∴()222441141425545555PD PQ t t t t t ==−−=−−=−++, ∴当2t =−时,PD 取得最大值为45,()()2211115322344442t t +−=×−+×−−=−, ∴52,2P−−; 【小问3详解】�抛物线211344y x x =+−211494216x =+−将该抛物线向右平移5个单位,得到219494216y x =−− ,对称轴为直线92x =, 点52,2P−− 向右平移5个单位得到53,2E −∵平移后的抛物线与y 轴交于点F ,令0x =,则2194924216y =×−= , ∴()0,2F , ∴22251173224EF =++= ∵Q 为平移后的抛物线的对称轴上任意一点.则Q 点的横坐标为92, 设9,2Q m, ∴22295322QE m =−++ ,()222922QF m =+−, 当QF EF =时,()22922m +− =1174, 解得:1m =−或5m =, 当QE QF =时,2295322m −++=()22922m +− , 解得:74m = 综上所述,Q 点的坐标为9,12 − 或9,52 或97,24.【点睛】本题考查了二次函数综合问题,解直角三角形,待定系数法求解析式,二次函数的平移,线段周长问题,特殊三角形问题,熟练掌握二次函数的性质是解题的关键.26. 如图,在等边ABC 中,AD BC ⊥于点D ,E 线段AD 上一动点(不与A ,D 重合),连接BE ,CE ,将CE 绕点C 顺时针旋转60°得到线段CF ,连接AF .(1)如图1,求证:CBE CAF ∠=∠;(2)如图2,连接BF 交AC 于点G ,连接DG ,EF ,EF 与DG 所在直线交于点H ,求证:EH FH =;(3)如图3,连接BF 交AC 于点G ,连接DG ,EG ,将AEG 沿AG 所在直线翻折至ABC 所在平面内,得到APG ,将DEG 沿DG 所在直线翻折至ABC 所在平面内,得到DQG ,连接PQ ,QF .若4AB =,直接写出PQ QF +的最小值.【答案】(1)见解析 (2)见解析(32【解析】【分析】(1)根据旋转的性质得出CE CF =,60ECF ∠=°,进而证明()SAS BCE ACF ≌△△,即可得为证;(2)过点F 作∥FK AD ,交DH 点的延长线于点K ,连接EK ,FD ,证明四边形四边形EDFK 是平行四边形,即可得证;(3)如图所示,延长,AP DQ 交于点R ,由(2)可知DCG △是等边三角形,根据折叠的性质可得30PAG EAG ∠=∠=°,30QDG EDG ∠=∠=°,进而得出ADR 是等边三角形,由(2)可得Rt Rt CED CFG ≌,得出四边形GDQF 是平行四边形,则122QF DC AC ===,进而得出3602120PGQ AGD ∠=°−∠=°,则PQ=,当GQ 取得最小值时,即GQ DR ⊥时,PQ 取得最小值,即可求解. 【小问1详解】证明:�ABC 为等边三角形,�60ACB ∠=°,AC BC =,�将CE 绕点C 顺时针旋转60°得到线段CF ,∴CE CF =,60ECF ∠=°∴ACB ECF ∠=∠∴ACB ACE ECF ACE −=−∠∠∠∠即BCE ACF ∠=∠在BCE 和ACF △中EC FC BCE ACF BC AC = ∠=∠ =, ∴()SAS BCE ACF ≌△△,∴CBE CAF ∠=∠;【小问2详解】证明:如图所示,过点F 作∥FK AD ,交DH 点的延长线于点K ,连接EK ,FD ,�ABC 是等边三角形,�AB AC BC ==,�AD BC ⊥∴BD CD =∴AD 垂直平分BC ,∴EB EC =又∵BCE ACF ≌,∴,AF BECF CE ==, ∴AF CF =,∴F 在AC 的垂直平分线上,∵AB BC =∴B 在AC 的垂直平分线上,∴BF 垂直平分AC∴AC BF ⊥,12AGCG AC == ∴90AGF ∠=° 又∵12DG AC CG ==,60ACD ∠=° ∴DCG △是等边三角形,∴60CGD CDG ∠=∠=°∴60AGH DGC ∠=∠=°∴906030KGF AGF AGH ∠=∠−∠=°−°=°,又∵906030ADK ADC GDC ∠=∠−∠=°−°=°,KF AD ∥∴30HKF ADK ∠=∠=°∴30FKG KGF ∠=∠=°,∴FG FK =在Rt CED 与Rt CGF △中,CF CE CD CG = =∴Rt Rt CED CFG ≌∴GF ED =∴ED FK =∴四边形EDFK 是平行四边形,∴EH HF =;【小问3详解】解:依题意,如图所示,延长,AP DQ 交于点R ,由(2)可知DCG △是等边三角形,∴30EDG ∠=°�将AEG 沿AG 所在直线翻折至ABC 所在平面内,得到APG ,将DEG 沿DG 所在直线翻折至ABC 所在平面内,得到DQG ,∴30PAG EAG ∠=∠=°,30QDG EDG ∠=∠=° ∴60PAE QDE ∠=∠=°, ∴ADR 是等边三角形,∴906030QDCADC ADQ ∠=∠−∠=°−°=° 由(2)可得Rt Rt CED CFG ≌∴DE GF =,∵DE DQ =,∴GF DQ =,∵30GBC QDC ∠=∠=°, ∴GF DQ ∥∴四边形GDQF 是平行四边形, ∴122QF DG AC === 由(2)可知G 是AC 的中点,则GA GD =∴30GAD GDA ∠=∠=°∴120AGD ∠=°∵折叠,120AGP DGQ AGE DGE AGD ∴∠+∠=∠+∠=∠=°,∴3602120PGQ AGD ∠=°−∠=°, 又PGGE GQ ==,∴PQ =,∴当GQ 取得最小值时,即GQ DR ⊥时,PQ 取得最小值,此时如图所示,∴11122GQ GC DC ===,∴PQ =,∴2PQ QF +.【点睛】本题考查了等边三角形的性质,旋转的性质,轴对称的性质,勾股定理,平行四边形的性质与判定,全等三角形的性质与判定,熟练掌握以上知识是解题的关键.。
2023重庆市数学中考真题及答案(B卷)
2023年重庆市中考数学试卷(B卷)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)4的相反数是( )A.B.C.﹣4D.42.(4分)四个大小相同的正方体搭成的几何体如图所示,从正面看到的视图是( )A.B.C.D.3.(4分)如图,直线a,b被直线c所截,若a∥b,∠1=63°,则∠2的度数为( )A.27°B.53°C.63°D.117°4.(4分)如图,已知△ABC∽△EDC,AC:EC=2:3,若AB的长度为6,则DE的长度为( )A.4B.9C.12D.13.55.(4分)反比例函数y=的图象一定经过的点是( )A.(﹣3,2)B.(2,﹣3)C.(﹣2,﹣4)D.(2,3)6.(4分)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为( )A.14B.20C.23D.267.(4分)估计×(﹣)的值应在( )A.4和5之间B.5和6之间C.6和7之间D.7和8之间8.(4分)如图,AB为⊙O的直径,直线CD与⊙O相切于点C,连接AC,若∠ACD=50°,则∠BAC的度数为( )A.30°B.40°C.50°D.60°9.(4分)如图,在正方形ABCD中,O为对角线AC的中点,E为正方形内一点,连接BE ,BE=BA,连接CE并延长,与∠ABE的平分线交于点F,连接OF,若AB=2,则OF 的长度为( )A.2B.C.1D.10.(4分)在多项式x﹣y﹣z﹣m﹣n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n,|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n,….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是( )A.0B.1C.2D.3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.(4分)计算:|﹣5|+(2﹣)0= .12.(4分)有四张完全一样正面分别写有汉字“清”“风”“朗”“月”的卡片,将其背面朝上并洗匀,从中随机抽取一张,记下卡片正面上的汉字后放回,洗匀后再从中随机抽取一张,则抽取的两张卡片上的汉字相同的概率是 .13.(4分)若七边形的内角中有一个角为100°,则其余六个内角之和为 .14.(4分)如图,在△ABC中,AB=AC,AD是BC边的中线,若AB=5,BC=6,则AD 的长度为 .15.(4分)为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301个充电桩,第三个月新建了500个充电桩,设该市新建智能充电桩个数的月平均增长率为x,根据题意,请列出方程 .16.(4分)如图,在矩形ABCD中,AB=2,BC=4,E为BC的中点,连接AE.DE.以E为圆心,EB长为半径画弧,分别与AE,DE交于点M,N.则图中阴影部分的面积为 (结果保留π).17.(4分)若关于x的不等式组的解集为x<﹣2,且关于y的分式方程+=2的解为正数,则所有满足条件的整数a的值之和为 .18.(4分)对于一个四位自然数M,若它的千位数字比个位数字多6,百位数字比十位数字多2,则称M为“天真数”.如:四位数7311,∵7﹣1=6,3﹣1=2,∴7311是“天真数”;四位数8421,∵8﹣1≠6,∴8421不是“天真数”,则最小的“天真数”为 ;一个“天真数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记P(M)=3(a+b)+c+d,Q(M)=a﹣5,若能被10整除,则满足条件的M的最大值为 .三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(8分)计算:(1)x(x+6)+(x﹣3)2;(2)(3+)÷.20.(10分)在学习了平行四边形的相关知识后,小虹进行了拓展性研究,她发现,如果作平行四边形一条对角线的垂直平分线,那么这条垂直平分线在该四边形内部的线段被这条对角线平分.其解决问题的思路为通过证明对应线段所在两个三角形全等即可得出结论.请根据她的思路完成以下作图和填空:用直尺和圆规作平行四边形ABCD对角线AC的垂直平分线,交DC于点E,交AB于点F,垂足为O.(只保留作图痕迹)如图,四边形ABCD是平行四边形,AC是对角线,EF垂直平分AC,垂足为O.求证:EO=FO.证明:∵四边形ABCD是平行四边形∴DC∥AB.∴∠ECO= .∵EF垂直平分AC,∴ .又∠EOC= ,∴△COE≌△AOF(ASA).∴EO=FO.再进一步研究发现,过平行四边形对角线中点的所有与该四边形一组对边相交所得的线段均具备此特征,请你依照题目中的相关表述完成下面命题的填空:过平行四边形对角线中点的直线 .21.(10分)某洗车公司安装了A,B两款自动洗车设备,工作人员从消费者对A、B两款设备的满意度评分中各随机抽取20份,并对数据进行整理、描述和分析(评分分数用x 表示,分为四个等级:不满意x<70,比较满意70≤x<80,满意80≤x<90,非常满意x≥90),下面给出了部分信息:抽取的对A款设备的评分数据中“满意”包含的所有数据:83,85,85,87,87,89;抽取的对B款设备的评分数据:68,69,76,78,81,84,85,86,87,87,87,89,95,97,98,98,98,98,99,100.抽取的对A,B款设备的评分统计表设备平均数中位数众数“非常满意”所占百分比A88m9645%B8887n40%根据以上信息,解答下列问题:(1)填空:a= ,m= ,n= ;(2)5月份,有600名消费者对A款自动洗车设备进行评分,估计其中对A款自动洗车设备“比较满意”的人数;(3)根据以上数据,你认为哪一款自动洗车设备更受消费者欢迎?请说明理由(写出一条理由即可).22.(10分)如图,△ABC是边长为4的等边三角形,动点E,F均以每秒1个单位长度的速度同时从点A出发,E沿折线A→B→C方向运动,F沿折线A→C→B方向运动,当两点相遇时停止运动.设运动的时间为t秒,点E,F的距离为y.(1)请直接写出y关于t的函数关系式并注明自变量t的取值范围;(2)在给定的平面直角坐标系中,画出这个函数图象,并写出该函数的一条性质;(3)结合函数图象,直接写出点E,F相距3个单位长度时t的值.23.(10分)某粮食生产基地为了落实在适宜地区开展双季稻中间季节再种一季油菜的号召,积极扩大粮食生产规模,计划用基地的甲、乙两区农田进行油菜试种,甲区的农田比乙区的农田多10000亩,甲区农田的80%和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同.(1)求甲、乙两区各有农田多少亩?(2)在甲、乙两区适宜试种的农田全部种上油菜后,为加强油菜的虫害治理,基地派出一批性能相同的无人机,对试种农田喷洒除虫药,由于两区地势差别,派往乙区的无人机架次是甲区的1.2倍(每架次无人机喷洒时间相同),喷洒任务完成后,发现派往甲区的每架次无人机比乙区的平均多喷洒亩,求派往甲区每架次无人机平均喷洒多少亩?24.(10分)人工海产养殖合作社安排甲、乙两组人员分别前往海面A,B养殖场捕捞海产品.经测量,A在灯塔C的南偏西60°方向,B在灯塔C的南偏东45°方向,且在A的正东方向,AC=3600米.(1)求B养殖场与灯塔C的距离(结果精确到个位);(2)甲组完成捕捞后,乙组还未完成捕捞,甲组决定前往B处协助捕捞,若甲组航行的平均速度为600米每分钟,请计算说明甲组能否在9分钟内到达B处?(参考数据:≈1.414,≈1.732)2)25.(10分)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于点A,B,与y 轴交于点C,其中B(3,0),C(0,﹣3).(1)求该抛物线的表达式;(2)点P是直线AC下方抛物线上一动点,过点P作PD⊥AC于点D,求PD的最大值及此时点P的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,Q为平移后的抛物线的对称轴上任意一点.写出所有使得以QF为腰的△QEF是等腰三角形的点Q的坐标,并把求其中一个点Q的坐标的过程写出来.26.(10分)如图,在等边△ABC中,AD⊥BC于点D,E为线段AD上一动点(不与A,D重合),连接BE,CE,将CE绕点C顺时针旋转60°得到线段CF,连接AF.(1)如图1,求证:∠CBE=∠CAF;(2)如图2,连接BF交AC于点G,连接DG,EF,EF与DG所在直线交于点H,求证:EH=FH;(3)如图3,连接BF交AC于点G,连接DG,EG,将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,连接PQ,QF.若AB=4,直接写出PQ+QF的最小值.2023年重庆市中考数学试卷(B卷)参考答案与试题解析一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)4的相反数是( )A.B.C.﹣4D.4【分析】只有符号不同的两个数叫做互为相反数,由此即可得到答案.【解答】解:4的相反数是﹣4.故选:C.【点评】本题考查相反数,关键是掌握相反数的定义.2.(4分)四个大小相同的正方体搭成的几何体如图所示,从正面看到的视图是( )A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看,可得选项A的图形.故选:A.【点评】本题考查了简单组合体的三视图.解题的关键是理解简单组合体的三视图的定义,明确从正面看得到的图形是主视图.3.(4分)如图,直线a,b被直线c所截,若a∥b,∠1=63°,则∠2的度数为( )A.27°B.53°C.63°D.117°【分析】根据平行线的性质可以得到∠1=∠2,然后根据∠1的度数,即可得到∠2的度数.【解答】解:∵a∥b,∴∠1=∠2,∵∠1=63°,∴∠2=63°,故选:C.【点评】本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.4.(4分)如图,已知△ABC∽△EDC,AC:EC=2:3,若AB的长度为6,则DE的长度为( )A.4B.9C.12D.13.5【分析】根据相似三角形的性质联立方程即可求解.【解答】解:∵△ABC∽△EDC,AC:EC=2:3.∴,∴当AB=6时,DE=9.故选:B.【点评】本题主要考查了相似三角形的性质,找到对应的边成比例是解题的关键.5.(4分)反比例函数y=的图象一定经过的点是( )A.(﹣3,2)B.(2,﹣3)C.(﹣2,﹣4)D.(2,3)【分析】根据k=xy对各选项进行逐一判断即可.【解答】解:反比例函数y=中k=6,A、∵(﹣3)×2=﹣6≠6,∴此点不在函数图象上,故本选项不合题意;B、∵2×(﹣3)=﹣6≠6,∴此点不在函数图象上,故本选项不合题意;C、∵﹣2×(﹣4)=8≠6,∴此点不在函数图象上,故本选项不合题意;D、∵2×3=6,∴此点在函数图象上,故本选项符合题意.故选:D.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数中k=xy为定值是解答此题的关键.6.(4分)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为( )A.14B.20C.23D.26【分析】根据前4个图中的个数找到规律,再求解.【解答】解:第①个图案中有2个圆圈,第②个图案中有2+3×1=5个圆圈,第③个图案中有2+3×2=8个圆圈,第④个图案中有2+3×3=11个圆圈,...,则第⑦个图案中圆圈的个数为:2+3×6=20,故选:B.【点评】本题考查了规律型﹣图形的变化类,找到变换规律是解题的关键.7.(4分)估计×(﹣)的值应在( )A.4和5之间B.5和6之间C.6和7之间D.7和8之间【分析】先化简题干中的式子得到﹣1,明确的范围,利用不等式的性质求出﹣1的范围得出答案.【解答】解:原式=﹣1.∵5<<6.∴4<﹣1<5.故选:A.【点评】本题以计算选择为背景考查了无理数的估算,考核了学生对式子的化简和比较大小的能力,解题关键是将式子化简,确定无理数的范围最后利用不等式的性质.8.(4分)如图,AB为⊙O的直径,直线CD与⊙O相切于点C,连接AC,若∠ACD=50°,则∠BAC的度数为( )A .30°B .40°C .50°D .60°【分析】连接OC ,根据切线的性质得到∠OCD =90°,求得∠ACO =40°,根据等腰三角形的性质得到∠A =∠ACO =40°.【解答】解:连接OC ,∵直线CD 与⊙O 相切于点C ,∴∠OCD =90°,∵∠ACD =50°,∴∠ACO =90°﹣50°=40°,∵OC =OA ,∴∠BAC =∠ACO =40°,故选:B .【点评】本题考查了切线的性质,正确地作出辅助线是解题的关键.9.(4分)如图,在正方形ABCD 中,O 为对角线AC 的中点,E 为正方形内一点,连接BE ,BE =BA ,连接CE 并延长,与∠ABE 的平分线交于点F ,连接OF ,若AB =2,则OF 的长度为( )A .2B .C .1D .【分析】连接AF ,根据正方形ABCD 得到AB =BC =BE ,∠ABC =90°,根据角平分线的性质和等腰三角形的性质,求得∠BFE =45°,再证明△ABF ≌△EBF ,求得∠AFC =90°,最后根据直角三角形斜边上的中线等于斜边的一半,即可求出OF 的长度.【解答】解:如图,连接AF,∵四边形ABCD是正方形,∴AB=BE=BC,∠ABC=90°,AC=AB=2,∴∠BEC=∠BCE,∴∠EBC=180°﹣2∠BEC,∴∠ABE=∠ABC﹣∠EBC=2∠BEC﹣90°,∵BF平分∠ABE,∴∠ABF=∠EBF=∠ABE=∠BEC﹣45°,∴∠BFE=∠BEC﹣∠EBF=45°,在△BAF与△BEF中,,∴△BAF≌△BEF(SAS),∴∠BFE=∠BFA=45°,∴∠AFC=∠BAF+∠BFE=90°,∵O为对角线AC的中点,∴OF=AC=,故选:D.【点评】本题考查了等腰三角形的判定和性质,三角形内角和定理,正方形的性质,直角三角形特征,作出正确的辅助线,求得∠BFE=45°是解题的关键.10.(4分)在多项式x﹣y﹣z﹣m﹣n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n,|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n,….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是( )A.0B.1C.2D.3【分析】根据给定的定义,举出符合条件的说法①和②.说法③需要对绝对操作分析添加一个和两个绝对值的情况,并将结果进行比较排除相等的结果,汇总得出答案.【解答】解:|x﹣y|﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,故说法①正确.若使其运算结果与原多项式之和为0,需出现﹣x,显然无论怎么添加绝对值,都无法使x的符号为负号,故说法②正确.当添加一个绝对值时,共有4种情况,分别是|x﹣y|﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n;x﹣|y﹣z|﹣m﹣n=x﹣y+z﹣m﹣n;x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n;x﹣y﹣z﹣|m﹣n|=x﹣y﹣z ﹣m+n.当添加两个绝对值时,共有3种情况,分别是|x﹣y|﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n;|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n;x﹣|y﹣z|﹣|m﹣n|=x﹣y+z﹣m+n.共有7种情况;有两对运算结果相同,故共有5种不同运算结果,故说法③不符合题意.故选:C.【点评】本题考查新定义题型,根据多给的定义,举出符合条件的代数式进行情况讨论;需要注意去绝对值时的符号,和所有结果可能的比较.主要考查绝对值计算和分类讨论思想的应用.二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.(4分)计算:|﹣5|+(2﹣)0= 6 .【分析】由|﹣5|=5,(2﹣)0=1【解答】解:|﹣5|+(2﹣)0=5+1=6.故答案为:6.【点评】本题考查实数的运算.解题的关键是去绝对值注意符号;掌握任意非零实数的零次幂都等于1.12.(4分)有四张完全一样正面分别写有汉字“清”“风”“朗”“月”的卡片,将其背面朝上并洗匀,从中随机抽取一张,记下卡片正面上的汉字后放回,洗匀后再从中随机抽取一张,则抽取的两张卡片上的汉字相同的概率是 .【分析】根据题意,可以画出相应的树状图,然后即可求出相应的概率.【解答】解:树状图如图所示,由上可得,一共有16种等可能性,其中抽取的两张卡片上的汉字相同的有4种可能性,∴抽取的两张卡片上的汉字相同的概率为=,故答案为:.【点评】本题考查列表法与树状图法,解答本题的关键是明确题意,画出相应的树状图,求出相应的概率.13.(4分)若七边形的内角中有一个角为100°,则其余六个内角之和为 800° .【分析】利用多边形内角和公式求得七边形的内角和后与100°作差即可.【解答】解:由题意可得七边形的内角和为:(7﹣2)×180°=900°,∵该七边形的一个内角为100°,∴其余六个内角之和为900°﹣100°=800°,故答案为:800°.【点评】本题主要考查多边形的内角和,此为基础且重要知识点,必须熟练掌握.14.(4分)如图,在△ABC中,AB=AC,AD是BC边的中线,若AB=5,BC=6,则AD 的长度为 4 .【分析】根据等腰三角形的性质可得AD⊥BC,在Rt△ABD中,根据勾股定理即可求出AD的长.【解答】解:∵AB=AC,AD是BC边的中线,∴AD⊥BC,∴∠ADB=90°,∵AB=5,BC=6,∴BD=CD=3,在Rt△ABD中,根据勾股定理,得AD===4,故答案为:4.【点评】本题考查了等腰三角形的性质,涉及勾股定理,熟练掌握等腰三角形的性质是解题的关键.15.(4分)为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301个充电桩,第三个月新建了500个充电桩,设该市新建智能充电桩个数的月平均增长率为x,根据题意,请列出方程 301(1+x)2=500 .【分析】设该市新建智能充电桩个数的月平均增长率为x,根据第一个月新建了301个充电桩,第三个月新建了500个充电桩,即可得出关于x的一元二次方程.【解答】解:设该市新建智能充电桩个数的月平均增长率为x,依题意得:301(1+x)2=500.故答案为:301(1+x)2=500.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.16.(4分)如图,在矩形ABCD中,AB=2,BC=4,E为BC的中点,连接AE.DE.以E为圆心,EB长为半径画弧,分别与AE,DE交于点M,N.则图中阴影部分的面积为 4﹣π (结果保留π).【分析】用三角形ADE的面积减去2个扇形的面积即可.【解答】解:∵AD=2AB=4,E为BC的中点,∴AB=2,BE=CE=2,∴∠BAE=∠AEB=∠CDE=∠DEC=45°,∴阴影部分的面积为﹣2×=4﹣π.故答案为:4﹣π.【点评】此题主要考查了扇形面积求法以及等腰直角三角形的性质,应用扇形面积的计算方法进行求解是解决本题的关键.17.(4分)若关于x的不等式组的解集为x<﹣2,且关于y的分式方程+=2的解为正数,则所有满足条件的整数a的值之和为 13 .【分析】先通过不等式组的解确定a的范围,再根据分式方程的解求a值即可得出答案.【解答】解:解不等式组,得:,∵原不等式组的解集为:x<﹣2,∴﹣≥﹣2,∴a≤5,解分式方程+=2,得y=,∵y>0且y≠1,∴>0且≠1,∴a>﹣2且a≠1,∴﹣2<a≤5,且a≠1,∴符合条件的整数a有:﹣1,0,2,3,4,5,∴﹣1+0+2+3+4+5=13.故答案为:13.【点评】本题主要考查解一元一次不等式组、解分式方程,熟练掌握一元一次不等式组、分式方程的解法是解决本题的关键.18.(4分)对于一个四位自然数M,若它的千位数字比个位数字多6,百位数字比十位数字多2,则称M为“天真数”.如:四位数7311,∵7﹣1=6,3﹣1=2,∴7311是“天真数”;四位数8421,∵8﹣1≠6,∴8421不是“天真数”,则最小的“天真数”为 6200 ;一个“天真数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记P(M)=3(a+b)+c+d,Q(M)=a﹣5,若能被10整除,则满足条件的M的最大值为 9313 .【分析】它的千位数字比个位数字多6,百位数字比十位数字多2,则称M为“天真数”.分为两部分:第一部分千位数和个位数之间的关系,第二部分百位数和十位数之前的关系.【解答】解:求最小的“天真数”,首先知道最小的自然数的0.先看它的千位数字比个位数字多6,个位数为最小的自然数0时,千位数为6;百位数字比十位数字多2,十位数为最小的的自然数0时,百位数是2;则最小的“天真数”为6200.故答案为:6200.一个“天真数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d.由“天真数”的定义得a=d+6,所以6≤a≤9,b=c+2,所以0≤c≤7,又P(M)=3(a+b)+c+d=3(a+c+2)+c+a﹣6=4a+4c;Q(M)=a﹣5.=论能被10整除当a取最大值9时,即当a=9时,满足能被10整除,则c=1,“天真数”M为9313.故答案为:9313.【点评】新定义题型,各数字的取值范围,最值:最小自然数0.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(8分)计算:(1)x(x+6)+(x﹣3)2;(2)(3+)÷.【分析】(1)按照单项式乘以多项式的法则以及完全平方公式进行计算即可;(2)按照分式的混合运算法则进行计算即可.【解答】解:(1)x(x+6)+(x﹣3)2=x2+6x+x2﹣6x+9=2x2+9;(2)===.【点评】本题考查了分式的混合运算和整式的混合运算,熟练掌握混合运算法则是解题的关键,计算时一定要细心.20.(10分)在学习了平行四边形的相关知识后,小虹进行了拓展性研究,她发现,如果作平行四边形一条对角线的垂直平分线,那么这条垂直平分线在该四边形内部的线段被这条对角线平分.其解决问题的思路为通过证明对应线段所在两个三角形全等即可得出结论.请根据她的思路完成以下作图和填空:用直尺和圆规作平行四边形ABCD对角线AC的垂直平分线,交DC于点E,交AB于点F,垂足为O.(只保留作图痕迹)如图,四边形ABCD是平行四边形,AC是对角线,EF垂直平分AC,垂足为O.求证:EO=FO.证明:∵四边形ABCD是平行四边形∴DC∥AB.∴∠ECO= ∠FAO .∵EF垂直平分AC,∴ OA=OC .又∠EOC= ∠FOA ,∴△COE≌△AOF(ASA).∴EO=FO.再进一步研究发现,过平行四边形对角线中点的所有与该四边形一组对边相交所得的线段均具备此特征,请你依照题目中的相关表述完成下面命题的填空:过平行四边形对角线中点的直线 被平行四边形一组对边所截,截得的线段被对角线中点平分 .【分析】根据要求画出图形,证明△COE≌△AOF(ASA),可得结论.【解答】解:图形如图所示:理由:∵四边形ABCD是平行四边形,∴DC∥AB.∴∠ECO=∠FAO,∵EF垂直平分AC,∴AO=OC.又∠EOC=∠FOA,∴△COE≌△AOF(ASA).∴EO=FO.再进一步研究发现,过平行四边形对角线中点的所有与该四边形一组对边相交所得的线段均具备此特征,所以过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分,故答案为:∠FAO,OA=OC,∠FOA,过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分.【点评】本题考查命题与定理,平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是理解题意,正确寻找全等三角形解决问题.21.(10分)某洗车公司安装了A,B两款自动洗车设备,工作人员从消费者对A、B两款设备的满意度评分中各随机抽取20份,并对数据进行整理、描述和分析(评分分数用x 表示,分为四个等级:不满意x<70,比较满意70≤x<80,满意80≤x<90,非常满意x ≥90),下面给出了部分信息:抽取的对A款设备的评分数据中“满意”包含的所有数据:83,85,85,87,87,89;抽取的对B款设备的评分数据:68,69,76,78,81,84,85,86,87,87,87,89,95,97,98,98,98,98,99,100.抽取的对A,B款设备的评分统计表设备平均数中位数众数“非常满意”所占百分比A88m9645%B8887n40%根据以上信息,解答下列问题:(1)填空:a= 15 ,m= 88 ,n= 98 ;(2)5月份,有600名消费者对A款自动洗车设备进行评分,估计其中对A款自动洗车设备“比较满意”的人数;(3)根据以上数据,你认为哪一款自动洗车设备更受消费者欢迎?请说明理由(写出一条理由即可).【分析】(1)用“1”分别减去其他三个等级所占百分比可得a的值,根据中位数的定义可得m的值,根据众数的定义可得n的值;(2)用600乘A款自动洗车设备“比较满意”所占百分比即可;(3)通过比较A,B款设备的评分统计表的数据解答即可.【解答】解:(1)由题意得,a%=1﹣10%﹣45%﹣=15%,即a=15;把A款设备的评分数据从小到大排列,排在中间的两个数是87,89,故中位数m==88;在B款设备的评分数据中,98出现的次数最多,故众数n=98.故答案为:15;88;98;(2)600×15%=90(名),答:估计其中对A款自动洗车设备“比较满意”的人数大约为90名;(3)A款自动洗车设备更受消费者欢迎,理由如下:因为两款自动洗车设备的评分数据的平均数相同,但A款自动洗车设备的评分数据的中位数比B款高,所以A款自动洗车设备更受消费者欢迎(答案不唯一).【点评】本题考查扇形统计图,中位数、众数以及样本估计总体,理解中位数、众数的意义,掌握中位数、众数的计算方法是解决问题的前提.22.(10分)如图,△ABC是边长为4的等边三角形,动点E,F均以每秒1个单位长度的速度同时从点A出发,E沿折线A→B→C方向运动,F沿折线A→C→B方向运动,当两点相遇时停止运动.设运动的时间为t秒,点E,F的距离为y.(1)请直接写出y关于t的函数关系式并注明自变量t的取值范围;(2)在给定的平面直角坐标系中,画出这个函数图象,并写出该函数的一条性质;(3)结合函数图象,直接写出点E,F相距3个单位长度时t的值.【分析】(1)根据动点E、F运动的路线和速度分段进行分析,写出不同时间的函数表达式并注明自变量t的取值范围即可;(2)根据画函数图象的方法分别画出两段函数图象,然后写出这个函数的其中一条性质即可;(3)根据两个函数关系式分别求出当y=3时的t值即可解决问题.【解答】解:(1)当点E、F分别在AB、AC上运动时,△AEF为边长等于t的等边三角形,∴点E,F的距离等于AE、AF的长,∴当0<t≤4时,y关于t的函数表达式为y=t,当点E、F都在BC上运动时,点E,F的距离等于4﹣2(t﹣4),∴当4<t≤6时,y关于t的函数表达式为y=4﹣2(t﹣4)=12﹣2t,∴y关于t的函数表达式为;(2)由(1)中得到的函数表达式可知:当t=0时,y=0;当t=4时,y=4;当t=6时,y=0,分别描出三个点(0,0),(4,4)(6,0),然后顺次连线,如图:根据函数图象可知这个函数的其中一条性质:当0<t≤4时,y随t的增大而增大.(答案不唯一,正确即可)(3)把y=3分别代入y=t和y=12﹣2t中,得:3=t,3=12﹣2t,解得:t=3或t=4.5,∴点E,F相距3个单位长度时t的值为3或4.5.【点评】本题是一道三角形综合题,主要考查等边三角形的性质、一次函数的图象和性质,以及一次函数的应用,深入理解题意是解决问题的关键.23.(10分)某粮食生产基地为了落实在适宜地区开展双季稻中间季节再种一季油菜的号召,积极扩大粮食生产规模,计划用基地的甲、乙两区农田进行油菜试种,甲区的农田比乙区的农田多10000亩,甲区农田的80%和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同.(1)求甲、乙两区各有农田多少亩?(2)在甲、乙两区适宜试种的农田全部种上油菜后,为加强油菜的虫害治理,基地派出一批性能相同的无人机,对试种农田喷洒除虫药,由于两区地势差别,派往乙区的无人机架次是甲区的1.2倍(每架次无人机喷洒时间相同),喷洒任务完成后,发现派往甲区的每架次无人机比乙区的平均多喷洒亩,求派往甲区每架次无人机平均喷洒多少亩?【分析】(1)设乙区有农田x亩,则甲区有农田(x+10000)亩,根据“甲区农田的80%和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同”,可得出关于x的。
2020重庆(b卷)中考数学试卷
2020年重庆市中考数学试卷(B 卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A ,B ,C ,D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)5的倒数是( )A .5B .C .﹣5D .15-152.(4分)围成下列立体图形的各个面中,每个面都是平的是( )A .长方体B .圆柱体C .球体D .圆锥体3.(4分)计算a •a 2结果正确的是( )A .aB .a 2C .a 3D .a 44.(4分)如图,AB 是⊙O 的切线,A 为切点,连接OA ,OB .若∠B =35°,则∠AOB 的度数为( )A .65°B .55°C .45°D .35°5.(4分)已知a +b =4,则代数式1的值为( )+a 2+b 2A .3B .1C .0D .﹣16.(4分)如图,△ABC 与△DEF 位似,点O 为位似中心.已知OA :OD =1:2,则△ABC 与△DEF 的面积比为( )A.1:2B.1:3C.1:4D.1:57.(4分)小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元,小明买了7支签字笔,他最多还可以买的作业本个数为( )A.5B.4C.3D.28.(4分)下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,…,按此规律排列下去,第⑥个图形中实心圆点的个数为( )A.18B.19C.20D.219.(4分)如图,垂直于水平面的5G信号塔AB建在垂直于水平面的悬崖边B点处,某测量员从山脚C点出发沿水平方向前行78米到D点(点A,B,C在同一直线上),再沿斜坡DE方向前行78米到E点(点A,B,C,D,E在同一平面内),在点E处测得5G信号塔顶端A的仰角为43°,悬崖BC的高为144.5米,斜坡DE的坡度(或坡比)i=1:2.4,则信号塔AB的高度约为( )(参考数据:sin43°≈0.68,cos43°≈0.73,tan43°≈0.93)A.23米B.24米C.24.5米D.25米10.(4分)若关于x 的一元一次不等式组的解集为x ≥5,且关于{2x -1≤3(x -2),x ‒a 2>1y 的分式方程1有非负整数解,则符合条件的所有整数a 的和为( )y y ‒2+a 2‒y =‒A .﹣1B .﹣2C .﹣3D .011.(4分)如图,在△ABC 中,AC =2,∠ABC =45°,∠BAC =15°,将△ACB 沿直2线AC 翻折至△ABC 所在的平面内,得△ACD .过点A 作AE ,使∠DAE =∠DAC ,与CD 的延长线交于点E ,连接BE ,则线段BE 的长为( )A .B .3C .2D .46312.(4分)如图,在平面直角坐标系中,矩形ABCD 的顶点A ,C 分别在x 轴,y 轴的正半轴上,点D (﹣2,3),AD =5,若反比例函数y (k >0,x >0)的图象经过点B ,=k x则k 的值为( )A .B .8C .10D .163323二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算:()﹣1 .15-4=14.(4分)经过多年的精准扶贫,截至2019年底,我国的农村贫困人口减少了约94000000人.请把数94000000用科学记数法表示为 .15.(4分)盒子里有3张形状、大小、质地完全相同的卡片,上面分别标着数字1,2,3,从中随机抽出1张后不放回,再随机抽出1张,则两次抽出的卡片上的数字之和为奇数的概率是 .16.(4分)如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,∠ABC =120°,AB =2,以点O 为圆心,OB 长为半径画弧,分别与菱形的边相交,则图中阴影部分的面积3为 .(结果保留π)17.(4分)周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A 地出发前往B 地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的继续骑行,经过一段时间,甲先到达B 地,乙一直保持原速前往B 85地.在此过程中,甲、乙两人相距的路程y (单位:米)与乙骑行的时间x (单位:分钟)之间的关系如图所示,则乙比甲晚 分钟到达B 地.18.(4分)为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为 元.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程写在答题卡中对应的位置上.19.(10分)计算:(1)(x +y )2+y (3x ﹣y );(2)(a ).4‒a 2a ‒1+÷a 2‒16a ‒120.(10分)如图,在平行四边形ABCD 中,AE ,CF 分别平分∠BAD 和∠DCB ,交对角线BD 于点E ,F .(1)若∠BCF =60°,求∠ABC 的度数;(2)求证:BE =DF .21.(10分)每年的4月15日是我国全民国家安全教育日.某中学在全校七、八年级共800名学生中开展“国家安全法”知识竞赛,并从七、八年级学生中各抽取20名学生,统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据统计、整理如下:八年级抽取的学生的竞赛成绩:4,4,6,6,6,6,7,7,7,8,8,8,8,8,8,9,9,9,10,10.七、八年级抽取的学生的竞赛成绩统计表 年级七年级八年级平均数7.47.4中位数a b 众数7c 合格率85%90%根据以上信息,解答下列问题:(1)填空:a = ,b = ,c = ;(2)估计该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数;(3)根据以上数据分析,从一个方面评价两个年级“国家安全法”知识竞赛的学生成绩谁更优异.22.(10分)在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数﹣﹣“好数”.定义:对于三位自然数n ,各位数字都不为0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数n 为“好数”.例如:426是“好数”,因为4,2,6都不为0,且4+2=6,6能被6整除;643不是“好数”,因为6+4=10,10不能被3整除.(1)判断312,675是否是“好数”?并说明理由;(2)求出百位数字比十位数字大5的所有“好数”的个数,并说明理由.23.(10分)探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画出函数y 的图象=-12x 2+2并探究该函数的性质. x…﹣4﹣3﹣2﹣101234…y … -23a ﹣2﹣4b ﹣4﹣2 -1211 -23…(1)列表,写出表中a ,b 的值:a = ,b = ;描点、连线,在所给的平面直角坐标系中画出该函数的图象.(2)观察函数图象,判断下列关于函数性质的结论是否正确(在答题卡相应位置正确的用“√”作答,错误的用“×”作答):①函数y 的图象关于y 轴对称;=-12x 2+2②当x =0时,函数y 有最小值,最小值为﹣6;=-12x 2+2③在自变量的取值范围内函数y 的值随自变量x 的增大而减小.(3)已知函数y x 的图象如图所示,结合你所画的函数图象,直接写出不=-23-103等式x 的解集.-12x 2+2<‒23-10324.(10分)为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对A ,B 两个玉米品种进行实验种植对比研究.去年A 、B 两个品种各种植了10亩.收获后A 、B 两个品种的售价均为2.4元/kg ,且B 品种的平均亩产量比A 品种高100千克,A 、B 两个品种全部售出后总收入为21600元.(1)求A 、B 两个品种去年平均亩产量分别是多少千克?(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A 、B 两个品种平均亩产量将在去年的基础上分别增加a %和2a %.由于B 品种深受市场欢迎,预计每千克售价将在去年的基础上上涨a %,而A 品种的售价保持不变,A 、B 两个品种全部售出后总收入将增加a %.求a 的值.20925.(10分)如图,在平面直角坐标系中,抛物线y =ax 2+bx +2(a ≠0)与y 轴交于点C ,与x 轴交于A ,B 两点(点A 在点B 的左侧),且A 点坐标为(,0),直线BC 的-2解析式为y x +2.=-23(1)求抛物线的解析式;(2)过点A 作AD ∥BC ,交抛物线于点D ,点E 为直线BC 上方抛物线上一动点,连接CE ,EB ,BD ,DC .求四边形BECD 面积的最大值及相应点E 的坐标;(3)将抛物线y =ax 2+bx +2(a ≠0)向左平移个单位,已知点M 为抛物线y =2ax 2+bx +2(a ≠0)的对称轴上一动点,点N 为平移后的抛物线上一动点.在(2)中,当四边形BECD 的面积最大时,是否存在以A ,E ,M ,N 为顶点的四边形为平行四边形?若存在,直接写出点N 的坐标;若不存在,请说明理由.四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.26.(8分)△ABC为等边三角形,AB=8,AD⊥BC于点D,E为线段AD上一点,AE=2 3.以AE为边在直线AD右侧构造等边三角形AEF,连接CE,N为CE的中点.(1)如图1,EF与AC交于点G,连接NG,求线段NG的长;(2)如图2,将△AEF绕点A逆时针旋转,旋转角为α,M为线段EF的中点,连接DN,MN.当30°<α<120°时,猜想∠DNM的大小是否为定值,并证明你的结论;(3)连接BN,在△AEF绕点A逆时针旋转过程中,当线段BN最大时,请直接写出△ADN的面积.2020年重庆市中考数学试卷(B 卷)参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A ,B ,C ,D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)5的倒数是( )A .5B .C .﹣5D .15-15【解答】解:5得倒数是,15故选:B .2.(4分)围成下列立体图形的各个面中,每个面都是平的是( )A .长方体B .圆柱体C .球体D .圆锥体【解答】解:A 、六个面都是平面,故本选项正确;B 、侧面不是平面,故本选项错误;C 、球面不是平面,故本选项错误;D 、侧面不是平面,故本选项错误;故选:A .3.(4分)计算a •a 2结果正确的是( )A .aB .a 2C .a 3D .a 4【解答】解:a •a 2=a 1+2=a 3.故选:C .4.(4分)如图,AB 是⊙O 的切线,A 为切点,连接OA ,OB .若∠B =35°,则∠AOB 的度数为( )A .65°B .55°C .45°D .35°【解答】解:∵AB 是⊙O 的切线,∴OA ⊥AB ,∴∠OAB =90°,∴∠AOB =90°﹣∠B =55°,故选:B .5.(4分)已知a +b =4,则代数式1的值为( )+a 2+b 2A .3B .1C .0D .﹣1【解答】解:当a +b =4时,原式=1(a +b )+12=14+12×=1+2=3,故选:A .6.(4分)如图,△ABC 与△DEF 位似,点O 为位似中心.已知OA :OD =1:2,则△ABC 与△DEF 的面积比为( )A .1:2B .1:3C .1:4D .1:5【解答】解:∵△ABC 与△DEF 是位似图形,OA :OD =1:2,∴△ABC 与△DEF 的位似比是1:2.∴△ABC 与△DEF 的相似比为1:2,∴△ABC 与△DEF 的面积比为1:4,故选:C .7.(4分)小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元,小明买了7支签字笔,他最多还可以买的作业本个数为( )A .5B .4C .3D .2【解答】解:设还可以买x 个作业本,依题意,得:2.2×7+6x ≤40,解得:x ≤4.110又∵x 为正整数,∴x 的最大值为4.故选:B .8.(4分)下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,…,按此规律排列下去,第⑥个图形中实心圆点的个数为( )A .18B .19C .20D .21【解答】解:∵第①个图形中实心圆点的个数5=2×1+3,第②个图形中实心圆点的个数8=2×2+4,第③个图形中实心圆点的个数11=2×3+5,……∴第⑥个图形中实心圆点的个数为2×6+8=20,故选:C .9.(4分)如图,垂直于水平面的5G 信号塔AB 建在垂直于水平面的悬崖边B 点处,某测量员从山脚C 点出发沿水平方向前行78米到D 点(点A ,B ,C 在同一直线上),再沿斜坡DE 方向前行78米到E 点(点A ,B ,C ,D ,E 在同一平面内),在点E 处测得5G 信号塔顶端A 的仰角为43°,悬崖BC 的高为144.5米,斜坡DE 的坡度(或坡比)i=1:2.4,则信号塔AB的高度约为( )(参考数据:sin43°≈0.68,cos43°≈0.73,tan43°≈0.93)A.23米B.24米C.24.5米D.25米【解答】解:过点E作EF⊥DC交DC的延长线于点F,过点E作EM⊥AC于点M,∵斜坡DE的坡度(或坡比)i=1:2.4,BE=CD=78米,∴设EF=x,则DF=2.4x.在Rt△DEF中,∵EF2+DF2=DE2,即x2+(2.4x)2=782,解得x=30,∴EF=30米,DF=72米,∴CF=DF+DC=72+78=150米.∵EM⊥AC,AC⊥CD,EF⊥CD,∴四边形EFCM是矩形,∴EM=CF=150米,CM=EF=30米.在Rt△AEM中,∵∠AEM=43°,∴AM=EM•tan43°≈150×0.93=139.5米,∴AC=AM+CM=139.5+30=169.5米.∴AB=AC﹣BC=169.5﹣144.5=25米.故选:D.10.(4分)若关于x 的一元一次不等式组的解集为x ≥5,且关于{2x -1≤3(x -2),x ‒a 2>1y 的分式方程1有非负整数解,则符合条件的所有整数a 的和为( )y y ‒2+a2‒y=‒A .﹣1B .﹣2C .﹣3D .0【解答】解:不等式组整理得:,{x ≥5x >2+a 由解集为x ≥5,得到2+a ≤5,即a ≤3,分式方程去分母得:y ﹣a =﹣y +2,即2y ﹣2=a ,解得:y 1,=a2+由y 为非负整数,且y ≠2,得到a =0,﹣2,之和为﹣2,故选:B .11.(4分)如图,在△ABC 中,AC =2,∠ABC =45°,∠BAC =15°,将△ACB 沿直2线AC 翻折至△ABC 所在的平面内,得△ACD .过点A 作AE ,使∠DAE =∠DAC ,与CD 的延长线交于点E ,连接BE ,则线段BE 的长为( )A .B .3C .2D .463【解答】解:如图,延长BC 交AE 于H ,∵∠ABC =45°,∠BAC =15°,∴∠ACB =120°,∵将△ACB 沿直线AC 翻折,∴∠DAC =∠BAC =15°,∠ADC =∠ABC =45°,∠ACB =∠ACD =120°,∴∠DAE =∠DAC =15°,∴∠CAE =30°,∵∠ADC =∠DAE +∠AED ,∴∠AED =45°﹣15°=30°,∴∠AED =∠EAC ,∴AC =EC ,又∵∠BCE =360°﹣∠ACB ﹣∠ACE =120°=∠ACB ,BC =BC ,∴△ABC ≌△EBC (SAS ),∴AB =BE ,∠ABC =∠EBC =45°,∴∠ABE =90°,∵AB =BE ,∠ABC =∠EBC ,∴AH =EH ,BH ⊥AE ,∵∠CAE =30°,∴CH AC ,AH CH ,=12=2=3=6∴AE =2,6∵AB =BE ,∠ABE =90°,∴BE 2,=AE 2=3故选:C .12.(4分)如图,在平面直角坐标系中,矩形ABCD 的顶点A ,C 分别在x 轴,y 轴的正半轴上,点D (﹣2,3),AD =5,若反比例函数y (k >0,x >0)的图象经过点B ,=kx则k 的值为( )A .B .8C .10D .163323【解答】解:过D 作DE ⊥x 轴于E ,过B 作BF ⊥x 轴,BH ⊥y 轴,∵点D (﹣2,3),AD =5,∴DE =3,∴AE 4,=AD 2‒DE 2=∵四边形ABCD 是矩形,∴AD =BC ,∴∠BCD =∠ADC =90°,∴∠DCP +∠BCH =∠BCH +∠CBH =90°,∴∠CBH =∠DCH ,∵∠DCG +∠CPD =∠APO +∠DAE =90°,∠CPD =∠APO ,∴∠DCP =∠DAE ,∴∠CBH =∠DAE ,∵∠AED =∠BHC =90°,∴△ADE ≌△BCH (AAS ),∴BH =AE =4,∵OE =2,∴OA =2,∴AF =2,∵∠APO +∠PAO =∠BAF +∠PAO =90°,∴∠APO =∠BAF ,∴△APO ∽△BAF ,∴,OP AF =OABF∴,12×32=2BF∴BF ,=83∴B (4,),83∴k ,=323故选:D .二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算:()﹣1 3 .15-4=【解答】解:原式=5﹣2=3,故答案为:3.14.(4分)经过多年的精准扶贫,截至2019年底,我国的农村贫困人口减少了约94000000人.请把数94000000用科学记数法表示为 9.4×107 .【解答】解:94000000=9.4×107,故答案为:9.4×107.15.(4分)盒子里有3张形状、大小、质地完全相同的卡片,上面分别标着数字1,2,3,从中随机抽出1张后不放回,再随机抽出1张,则两次抽出的卡片上的数字之和为奇数的概率是 .23【解答】解:列表如下123134235345由表可知,共有6种等可能结果,其中两次抽出的卡片上的数字之和为奇数的有4种结果,所以两次抽出的卡片上的数字之和为奇数的概率为,46=23故答案为:.2316.(4分)如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,∠ABC =120°,AB =2,以点O 为圆心,OB 长为半径画弧,分别与菱形的边相交,则图中阴影部分的面积3为 3π .(结果保留π)3‒【解答】解:如图,设连接以点O 为圆心,OB 长为半径画弧,分别与AB ,AD 相交于E ,F ,连接EO ,FO ,∵四边形ABCD 是菱形,∠ABC =120°,∴AC ⊥BD ,BO =DO ,OA =OC ,AB =AD ,∠DAB =60°,∴△ABD 是等边三角形,∴AB =BD =2,∠ABD =∠ADB =60°,3∴BO =DO ,=3∵以点O 为圆心,OB 长为半径画弧,∴BO =OE =OD =OF ,∴△BEO ,△DFO 是等边三角形,∴∠DOF =∠BOE =60°,∴∠EOF =60°,∴阴影部分的面积=2×(S △ABD ﹣S △DFO ﹣S △BEO ﹣S 扇形OEF )=2×(1234×-34×33)=3π,-34×-60°×π×3360°3‒故答案为:3π.3‒17.(4分)周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A 地出发前往B 地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的继续骑行,经过一段时间,甲先到达B 地,乙一直保持原速前往B85地.在此过程中,甲、乙两人相距的路程y (单位:米)与乙骑行的时间x (单位:分钟)之间的关系如图所示,则乙比甲晚 12 分钟到达B 地.【解答】解:由题意乙的速度为1500÷5=300(米/分),设甲的速度为x 米/分.则有:7500﹣20x =2500,解得x =250,25分钟后甲的速度为250400(米/分).×85=由题意总里程=250×20+61×400=29400(米),86分钟乙的路程为86×300=25800(米),∴12(分钟).29400‒25800300=故答案为12.18.(4分)为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为 1230 元.【解答】解:设第一时段摸到红球x 次,摸到黄球y 次,摸到绿球z 次,(x ,y ,z 均为非负整数),则第一时段返现金额为(50x +30y +10z ),第二时段摸到红球3x 次,摸到黄球2y 次,摸到绿球4z 次,则第二时段返现金额为(50×3x +30×2y +10×4z ),第三时段摸到红球x 次,摸到黄球4y 次,摸到绿球2z 次,则第三时段返现金额为(50x +30×4y +10×2z ),∵第三时段返现金额比第一时段多420元,∴(50x +30×4y +10×2z )﹣(50x +30y +10z )=420,∴z =42﹣9y ①,∵z 为非负整数,∴42﹣9y ≥0,∴y ,≤429∵三个时段返现总金额为2510元,∴(50x +30y +10z )+(50x +30×4y +10×2z )+(50x +30×4y +10×2z )=2510,∴25x +21y +7z =251②,将①代入②中,化简整理得,25x =42y ﹣43,∴x ④,=42y ‒4325∵x 为非负整数,∴0,42y ‒4325≥∴y ,≥4342∴y ,4342≤≤429∵y 为非负整数,∴y =2,34,当y =2时,x ,不符合题意,=4125当y =3时,x ,不符合题意,=8325当y =4时,x =5,则z =6,∴第二时段返现金额为50×3x +30×2y +10×4z =10(15×5+6×4+4×6)=1230(元),故答案为:1230.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程写在答题卡中对应的位置上.19.(10分)计算:(1)(x +y )2+y (3x ﹣y );(2)(a ).4‒a 2a ‒1+÷a 2‒16a ‒1【解答】解:(1)(x +y )2+y (3x ﹣y ),=x 2+2xy +y 2+3xy ﹣y 2,=x 2+5xy ;(2)(a ),4‒a 2a ‒1+÷a 2‒16a ‒1=(),4‒a 2a ‒1+a 2‒a a ‒1×a ‒1(a +4)(a ‒4),=4‒a a ‒1×a ‒1(a +4)(a ‒4).=-1a +420.(10分)如图,在平行四边形ABCD 中,AE ,CF 分别平分∠BAD 和∠DCB ,交对角线BD 于点E ,F .(1)若∠BCF =60°,求∠ABC 的度数;(2)求证:BE =DF .【解答】解:(1)∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ABC +∠BCD =180°,∵CF 平分∠DCB ,∴∠BCD =2∠BCF ,∵∠BCF =60°,∴∠BCD =120°,∴∠ABC =180°﹣120°=60°;(2)∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∠BAD =∠DCB ,∴∠ABE =∠CDF ,∵AE ,CF 分别平分∠BAD 和∠DCB ,∴∠BAE ,∠DCF ,=12∠BAD =12∠BCD ∴∠BAE =∠DCE ,∴△ABE ≌△CDF (ASA ),∴BE =CF .21.(10分)每年的4月15日是我国全民国家安全教育日.某中学在全校七、八年级共800名学生中开展“国家安全法”知识竞赛,并从七、八年级学生中各抽取20名学生,统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据统计、整理如下:八年级抽取的学生的竞赛成绩:4,4,6,6,6,6,7,7,7,8,8,8,8,8,8,9,9,9,10,10.七、八年级抽取的学生的竞赛成绩统计表年级七年级八年级平均数7.47.4中位数a b 众数7c 合格率85%90%根据以上信息,解答下列问题:(1)填空:a = 7.5 ,b = 8 ,c = 8 ;(2)估计该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数;(3)根据以上数据分析,从一个方面评价两个年级“国家安全法”知识竞赛的学生成绩谁更优异.【解答】解:(1)由图表可得:a 7.5,b 8,c =8,=7+82==8+82=故答案为:7.5,8,8;(2)该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数=800×5+540200(人),=答:该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数为200人;(3)∵八年级的合格率高于七年级的合格率,∴八年级“国家安全法”知识竞赛的学生成绩更优异.22.(10分)在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数﹣﹣“好数”.定义:对于三位自然数n ,各位数字都不为0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数n 为“好数”.例如:426是“好数”,因为4,2,6都不为0,且4+2=6,6能被6整除;643不是“好数”,因为6+4=10,10不能被3整除.(1)判断312,675是否是“好数”?并说明理由;(2)求出百位数字比十位数字大5的所有“好数”的个数,并说明理由.【解答】解:(1)312是“好数”,因为3,1,2都不为0,且3+1=4,6能被2整除,675不是“好数”,因为6+7=13,13不能被5整除;(2)611,617,721,723,729,831,941共7个,理由:设十位数数字为a ,则百位数字为a +5(0<a ≤4的整数),∴a +a +5=2a +5,当a =1时,2a +5=7,∴7能被1,7整除,∴满足条件的三位数有611,617,当a =2时,2a +5=9,∴9能被1,3,9整除,∴满足条件的三位数有721,723,729,当a =3时,2a +5=11,∴11能被1整除,∴满足条件的三位数有831,当a =4时,2a +5=13,∴13能被1整除,∴满足条件的三位数有941,即满足条件的三位自然数为611,617,721,723,729,831,941共7个.23.(10分)探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画出函数y 的图象=-12x 2+2并探究该函数的性质. x …﹣4﹣3﹣2﹣101234…y…-23a﹣2﹣4b﹣4﹣2-1211-23…(1)列表,写出表中a ,b 的值:a = ,b = ﹣6 ;-1211描点、连线,在所给的平面直角坐标系中画出该函数的图象.(2)观察函数图象,判断下列关于函数性质的结论是否正确(在答题卡相应位置正确的用“√”作答,错误的用“×”作答):①函数y 的图象关于y 轴对称;=-12x 2+2②当x =0时,函数y 有最小值,最小值为﹣6;=-12x 2+2③在自变量的取值范围内函数y 的值随自变量x 的增大而减小.(3)已知函数y x 的图象如图所示,结合你所画的函数图象,直接写出不=-23-103等式x 的解集.-12x 2+2<‒23-103【解答】解:(1)x =﹣3、0分别代入y ,得a ,b =-12x 2+2=-129+2=‒1211=6,-120+2=‒故答案为,﹣6;-1211画出函数的图象如图:,故答案为,﹣6;-1211(2)根据函数图象:①函数y 的图象关于y 轴对称,说法正确;=-12x 2+2②当x =0时,函数y 有最小值,最小值为﹣6,说法正确;=-12x 2+2③在自变量的取值范围内函数y 的值随自变量x 的增大而减小,说法错误.(3)由图象可知:不等式x 的解集为x <﹣4或﹣2<x <1.-12x 2+2<‒23-10324.(10分)为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对A ,B 两个玉米品种进行实验种植对比研究.去年A 、B 两个品种各种植了10亩.收获后A 、B 两个品种的售价均为2.4元/kg ,且B 品种的平均亩产量比A 品种高100千克,A 、B 两个品种全部售出后总收入为21600元.(1)求A 、B 两个品种去年平均亩产量分别是多少千克?(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A 、B 两个品种平均亩产量将在去年的基础上分别增加a %和2a %.由于B 品种深受市场欢迎,预计每千克售价将在去年的基础上上涨a %,而A 品种的售价保持不变,A 、B两个品种全部售出后总收入将增加a %.求a 的值.209【解答】解:(1)设A 、B 两个品种去年平均亩产量分别是x 千克和y 千克;根据题意得,,{y -x =10010×2.4(x +y )=21600解得:,{x =400y =500答:A 、B 两个品种去年平均亩产量分别是400千克和500千克;(2)2.4×400×10(1+a %)+2.4(1+a %)×500×10(1+2a %)=21600(1a %),+209解得:a =0.1,答:a 的值为0.1.25.(10分)如图,在平面直角坐标系中,抛物线y =ax 2+bx +2(a ≠0)与y 轴交于点C ,与x 轴交于A ,B 两点(点A 在点B 的左侧),且A 点坐标为(,0),直线BC 的-2解析式为y x +2.=-23(1)求抛物线的解析式;(2)过点A 作AD ∥BC ,交抛物线于点D ,点E 为直线BC 上方抛物线上一动点,连接CE ,EB ,BD ,DC .求四边形BECD 面积的最大值及相应点E 的坐标;(3)将抛物线y =ax 2+bx +2(a ≠0)向左平移个单位,已知点M 为抛物线y =2ax 2+bx +2(a ≠0)的对称轴上一动点,点N 为平移后的抛物线上一动点.在(2)中,当四边形BECD 的面积最大时,是否存在以A ,E ,M ,N 为顶点的四边形为平行四边形?若存在,直接写出点N 的坐标;若不存在,请说明理由.【解答】解:(1)直线BC 的解析式为y x +2,令y =0,则x =3,令x =0,=-232则y =2,故点B 、C 的坐标分别为(3,0)、(0,2);2则y =ax 2+bx +2=a (x )(x ﹣3)=a (x 2﹣2x ﹣6)=ax 2﹣2a ﹣6a ,+2222即﹣6a =2,解得:a ,=13故抛物线的表达式为:y x 2x +2①;=-13+223(2)如图,过点B 、E 分别作y 轴的平行线分别交CD 于点H ,交BC 于点F ,∵AD ∥BC ,则设直线AD 的表达式为:y (x )②,=-23+2联立①②并解得:x =4,故点D (4,),22-103由点C 、D 的坐标得,直线CD 的表达式为:y x +2,=-223当x =3时,y BC x +2=﹣2,即点H (3,﹣2),故BH =2,2=-232设点E (x ,x 2x +2),则点F (x ,x +2),-13+223-23则四边形BECD 的面积S =S △BCE +S △BCD EF ×OB (x D ﹣x C )×BH =12×+12×=12(x 2x +2x ﹣2)×342x 2+3x +4,×-13+223+232+12×2×=-222∵0,故S 有最大值,当x 时,S 的最大值为,此时点E (,);-22<=322252432252(3)存在,理由:y x 2x +2(x )2,抛物线y =ax 2+bx +2(a ≠0)向左平移=-13+223=-13-2+83个单位,2则新抛物线的表达式为:y x 2,=-13+83点A 、E 的坐标分别为(,0)、(,);设点M (,m ),点N (n ,s ),s -2322522=n 2;-13+83①当AE 是平行四边形的边时,点A 向右平移个单位向上平移个单位得到E ,同样点M (N )向右平移个单位向52252522上平移个单位得到N (M ),52即±n ,2522=则s n 2或,=-13+83=‒11256故点N 的坐标为(,)或(,);722-112-32256②当AE 是平行四边形的对角线时,由中点公式得:n ,解得:n ,-2+322=+2=-22s n 2,=-13+83=156故点N 的坐标(,);-22156综上点N 的坐标为:(,)或(,)或(,).722-112-32256-22156四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.26.(8分)△ABC 为等边三角形,AB =8,AD ⊥BC 于点D ,E 为线段AD 上一点,AE =2.以AE 为边在直线AD 右侧构造等边三角形AEF ,连接CE ,N 为CE 的中点.3(1)如图1,EF 与AC 交于点G ,连接NG ,求线段NG 的长;(2)如图2,将△AEF 绕点A 逆时针旋转,旋转角为α,M 为线段EF 的中点,连接DN ,MN .当30°<α<120°时,猜想∠DNM 的大小是否为定值,并证明你的结论;(3)连接BN ,在△AEF 绕点A 逆时针旋转过程中,当线段BN 最大时,请直接写出△ADN 的面积.【解答】解:(1)如图1中,连接BE ,CF .∵△ABC 是等边三角形,AD ⊥BC ,∴AB =BC =AC =8,BD =CD =4,∴AD BD =4,=33∵AE =2,3∴DE =AE =2,3∴BE 2,=BD 2+DE 2=42+(23)2=7∵△ABC ,△AEF 答等边三角形,∴AB =AC ,AE =AF ,∠BAC =∠EAF =60°,∴∠BAE =∠CAF ,∴△BAE ≌△CAF (SAS ),∴CF =BE =2,7∵EN =CN ,EG =FG ,∴GN CF .=12=7(2)结论:∠DNM =120°是定值.理由:连接BE,CF.同法可证△BAE≌△CAF(SAS),∴∠ABE=∠ACF,∵∠ABC+∠ACB=60°+60°=120°,∴∠EBC+∠BCF=∠ABC﹣∠ABE+∠ACB+∠ACF=120°,∵EN=NC,EM=MF,∴MN∥CF,∴∠ENM=∠ECM,∵BD=DC,EN=NC,∴DN∥BE,∴∠CDN=∠EBC,∵∠END=∠NDC+∠ACB,∴∠DNM=∠DNE+∠ENM=∠NDC+∠ACN+∠ECM=∠EBC+∠ACB+∠ACF=∠EBC+∠BCF=120°.(3)如图3﹣1中,取AC的中点,连接BJ,BN.∵AJ=CJ,EN=NC,∴JN AE ,=12=3∵BJ =AD =4,3∴BN ≤BJ +JN ,∴BN ≤5,3∴当点N 在BJ 的延长线上时,BN 的值最大,如图3﹣2中,过点N 作NH ⊥AD 于H ,设BJ 交AD 于K ,连接AN .∵KJ =AJ •tan30°,JN ,=433=3∴KN ,=733在Rt △HKN 中,∵∠NHK =90°,∠NKH =60°,∴HN =NK •sin60°,=733×32=72∴S △ADN •AD •NH 47.=12=12×3×72=3。
2019年重庆(B)中考数学试题(解析版)
重庆市2019年初中毕业水平暨高中招生考试数学试题(B 卷)考试时间:120分钟 满分:150分{题型:1-选择题}一、选择题:本大题共12 小题,每小题4分,合计48分.{题目}1.(2019年重庆B 卷)5的绝对值是A .5B .-5C .15D .-15{答案}A{解析}本题考查了绝对值的意义,利用了绝对值的性质是解题关键,一个正数的绝对值是它本身,所以5的绝对值是5,因此本题选A . {分值}4{章节: [1-1-2-4]绝对值} {考点: 绝对值的意义} {类别:常考题} {难度:1-最简单}{题目}2.(2019年重庆B 卷)如图是一个由5个相同正方体组成的立体图形,它的主视图是A .B .C .D .{答案}D{解析}本题考查了简单组合体的三视图,从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图,画出从正面看所得到的图形可知:从正面看所得到的图形为D .因此本题选D . {分值}4{章节: [1-29-2]三视图}{考点: 简单组合体的三视图} {类别:常考题}{题目}3.(2019年重庆B 卷)下列命题是真命题的是 A .如果两个三角形相似,相似比为4∶9,那么这两个三角形的周长比为2∶3 B .如果两个三角形相似,相似比为4∶9,那么这两个三角形的周长比为4∶9 C .如果两个三角形相似,相似比为4∶9,那么这两个三角形的面积比为2∶3 D .如果两个三角形相似,相似比为4∶9,那么这两个三角形的面积比为4∶9{答案}B{解析}本题考查了相似三角形的性质,相似三角形周长的比等于相似比;相似三角形的面积比等于相似比的平方.因此在所给四个选项中只有B 是正确的,因此本题选B . {分值}4{章节: [1-27-1-2]相似三角形的性质}{考点:相似三角形周长的性质}{考点:相似三角形面积的性质} {类别:常考题} {难度:1-最简单} {题目}4.(2019年重庆B 卷)如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,若∠C =40°,则∠B 的度数为2题图A .60°B .50°C .40°D .30°{答案}B{解析}本题考查了切线的性质和直角三角形两直角互余,∵AC 是⊙O 的切线,∴AB ⊥AC ,且∠C =40°,∴∠B =50°,因此本题选B . {分值}4{章节: [1-24-2-2]直线和圆的位置关系}{考点:切线的性质}{考点:直角三角形两锐角互余} {类别:常考题} {难度:1-最简单}{题目}5.(2019年重庆B 卷)抛物线y =-3x 2+6x +2的对称轴是 A .直线x =2 B .直线x =-2 C .直线x =1 D .直线x =-1 {答案}C{解析}本题考查了二次函数的性质,∵y =-3x 2+6x +2=-3(x -1)2+5,∴抛物线顶点坐标为(1,5),对称轴为x =1.因此本题选C . {分值}4{章节: [1-22-1-4]二次函数y =ax 2+bx +c 的图象和性质} {考点:二次函数y =ax 2+bx +c 的性质} {类别:常考题} {难度:1-最简单}{题目}6.(2019年重庆B 卷)某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为 A .13 B .14 C .15 D .16 {答案}C{解析}本题考查了一元一次不等式的应用,设小玉答对了x 道题,依题意,可得10x -5(20-x )>120,解得,x >1423,∴小玉至少答对15道,因此本题选C . {分值}4{章节:[1-9-2]一元一次不等式}{考点:一元一次不等式的应用}{考点:一元一次不等式的整数解} {难度:2-简单}{题目}7.(2019年重庆BA .5和6之间B .6和7之间C .7和8之间D .8和9之间{答案}B{解析}本题考查了估算无理数的大小,正确进行二次根式的计算是解题关键.=6<7,因此本题选B . {分值}4{章节:[1-6-3]实数} {考点:无理数的估值} {类别:常考题} {类别:易错题} {难度:2-简单}{题目}8.(2019年重庆B 卷)根据如图所示的计算程序计算函数y 的值,若输入x 的值是7,则输C4题图出y 的值是-2,若输入x 的值是-8,则输出y 的值是 A .5 B .10 C .19 D .21{答案}C{解析}本题考查了函数值的计算,由于输入x 的值是7时,输出y 的值是-2,则有-2=72b-+,解得b =3,因此当x <3时,y =-2x +3,所以当输入的x 的值是-8时,y =-2×(-8)+3=19,因此本题选C . {分值}4{章节:[1-19-1-1]变量与函数} {考点:函数值} {类别:易错题} {难度:2-简单}{题目}9.(2019年重庆B 卷)如图,在平面直角坐标系中,菱形OABC的边OA 在x 轴上,点A (10,0),sin ∠COA =45.若反比例函数y =kx(k >0,x >0)经过点C ,则k 的值等于A .10B .24C .48D .50 {答案}C{解析}本题考查了反比例函数的图像和性质,在这里根据A 点的坐标和菱形的性质求得点C 的坐标是解题的关键.由于点A 的坐标是(10,0),所以OA =OC =10,设C 点的坐标为(m ,n ),因为OC =10,sin ∠COA =45,则有4105n =,m 2+n 2=102,解得m =6,n =8,即C (6,8),由于C在反比例函数图像上,所以8=6k,解得k =48,因此本题选B .{分值}4{章节:[1-26-1]反比例函数的图像和性质} {考点:反比例函数的几何意义} {考点:菱形的性质} {考点:正弦}{考点:双曲线与几何图形的综合} {类别:常考题} {难度:2-简单}{题目}10.(2019年重庆B 卷)如图,AB 是垂直于水平面的建筑物.为测量AB 的高度,小红从建筑物底端B 点出发,沿水平方向行走了52米到达点C ,然后沿斜坡CD 前进,到达坡顶D 点处,DC =B C .在点D 处放置测角仪,测角仪支架DE 高度为0.8米,在E 点处测得建筑物顶端A 点的仰角∠AEF 为27°(点A ,B ,C ,D ,E 在同一平面内).斜坡CD 的坡度(或坡比)i =162.4,那么建筑物AB 的高度约为(参考数据sin27°≈0.45,cos 27°≈0.89,tan27°≈0.51) A .65.8米 B .71.8米 C .73.8米 D .119.8米8题图9题图{答案}B{解析}本题考查了解直角三角形的应用,涉及到了仰角、与坡度两类问题.延长EF 交AB 于点M ,过D 作BC 的垂线交BC 的延长线于点H ,如下图 则ME =BH =BC +CH ,BM =EH =ED +DH ,设DH =x (x >0),由于斜坡CD 的坡度(或坡比)i =1∶2.4,则有CH =2.4x , ∵CD =BC =52,∴x 2+(2.4x )2=522,解得x =20∴BM =EH =ED +DH =20+0.8=20.8(米) CH =2.4x =48(米)∴ME =BH =BC +CH =52+48=100(米) 在Rt △AME 中,由于∠AEM =∠AE F =27°, ∴AM =ME ·tan27°≈100×0.51≈51,∴AB =AM +BM ≈51+20.8≈71.8(米),因此本题选B . {分值}4{章节:[1-28-1-2]解直角三角形}{考点:解直角三角形的应用-坡度}{考点:解直角三角形的应用-仰角} {类别:常考题} {难度:2-简单}{题目}11.(2019年重庆B 卷)若数a 使关于x 的不等式组12(7)34625(1)xx x a x ⎧-≤-⎪⎨⎪->-⎩有且仅有三个整数解,且使关于y 的分式方程12311y ay y --=---的解为正数,则所有满足条件的整数a 的值之和是 A .-3B .-2C .-1D .1{答案}A{解析}本题考查了分式方程的解以及一元一次不等式组的整数解,正确掌握解分式方程的方法和解一元一次不等式组的方法是解题的关键.12(7)34625(1)x x x a x ⎧-≤-⎪⎨⎪->-⎩①② 解不等式①得:x ≤3,解不等式②得:x >5211a+, ∴该不等式组的解集为:5211a+<x ≤3∵该不等式组有且仅有三个整数解,∴0<5211a+<1,解得-52<a <3,方程12311y ay y--=---的两边同乘以(y -1)得: M H1-2y +a =-3(y -1),解得y =2-a ,∵方程12311y ay y --=---的解为正数,且y ≠1,∴2-a >0,且2-a ≠1,即a <2且a ≠1又-52<a <3, ∴满足条件的整数a 为:-2,-1,0, 则所有满足条件的整数a 的值之和是-3, 因此本题选A . {分值}4{章节:[1-15-3]分式方程}{考点:分式方程的解}{考点:一元一次不等式组的整数解} {类别:易错题} {难度:2-简单}{题目}12.(2019年重庆B 卷)如图,在△ABC 中,∠ABC =45°,AB =3,AD ⊥BC 于点D ,BE ⊥AC 于点E ,AE =1.连接DE ,将△AED 沿直线AE 翻折至△ABC 所在的平面内,得△AEF ,连接DF .过点D 作DG ⊥DE 交BE 于点G .则四边形DFEG 的周长为 A .8 B .42 C .22+4 D .32+2{答案}D{解析}本题考查了平行四边形的判定与性质,三角形全等的判定,轴对称的性质,以及勾股定理等内容,准确求出DE 和EG 的长是解题的关键. ∵∠ABC =45°,AB =3,AD ⊥BC 于点D , ∴△ADB 是等腰直角三角形,即AD =BD , 又BE ⊥AC ,DG ⊥DE ,∴∠GBD =∠EAD ,∠GDB =∠EDA ∴△GBD ≌△EAD ,∴GD =ED , BG =AE =1∵DG ⊥DE ,∴∠DGE =∠DEG =45° ∵BE ⊥AC ,∴∠DEC =45°又△AED 沿直线AE 翻折至△ABC 所在的平面内,得△AEF , ∴ED =EF ,∠DEC =∠FEC ,即GD =EF ,∠FEC =45°, ∴∠DEF =∠DEC +∠FEC =90°,即DE ⊥EF , ∴GD ∥EF∴DFEG 是平行四边形,又AB =3,AE =1,BE ⊥AC 于点E , ∴BE 22AB AE -2, ∴EG =2-1,又DE ⊥EF ,ED =EF ,∴EF=2∴四边形DFEG 的周长=2(EG +EF )=+2, 因此本题选D . {分值}4{章节:[1-18-1-2]平行四边形的判定}{考点:一组对边平行且相等的四边形是平行四边形} {考点:平行四边形边的性质} {考点:勾股定理} {考点:轴对称的性质} {考点:几何选择压轴}{考点:全等三角形的判定ASA ,AAS } {类别:高度原创} {难度:3-中等难度}{题型:2-填空题}二、填空题:本大题共 6小题,每小题4分,合计24分.{题目}13.(2019年重庆B卷)计算:0111)()2-+= .{答案}3{解析}本题考查了实数的运算、零指数幂、负整数指数幂.原式=1+2=3,因此本题应填3. {分值}4{章节:[1-6-3]实数}{考点:简单的实数运算}{考点:零次幂}{考点:负指数参与的运算} {类别:常考题} {难度:1-最简单}{题目}14.(2019年重庆B 卷)2019年1月1日,“学习强国”平台全国上线,截至2019年3月17日止,重庆市党员“学习强国”APP 注册人数约1 180 000,参学覆盖率达71%,稳居全国前列.将数据1 180 000用科学记数法表示为 .{答案}1.18×106{解析}本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.1 180 000=1.18×106,因此本题应填:1.18×106. {分值}4{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法} {类别:常考题} {难度:1-最简单}{题目}15.(2019年重庆B 卷)一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.连续掷两次骰子,在骰子向上的一面,第二次出现的点数是第一次出现的点数的2倍的概率是 .{答案}112{解析}本题考查了概率的计算,掷二次骰子,共有36种情况,其中在骰子向上的一面,第二次出现的点数是第一次出现的点数的2倍的有3种,故在骰子向上的一面,第二次出现的点数是第一次出现的点数的2倍的概率是:336=112.因此本题应填:112.{分值}4{章节:[1-25-2]用列举法求概率}{考点:两步事件放回}{类别:常考题} {难度:2-简单} {题目}16.(2019年重庆B 卷)如图,四边形ABCD 是矩形,AB =4,AD16题图D=22,以点A 为圆心,AB 长为半径画弧,交CD 于点E ,交AD 的延长线于点F ,则图中阴影部分的面积是.{答案}82-8{解析}本题考查了扇形面积的计算以及特殊角的三角函数值. 如答图,连接AE ,则AE =AB =4,∴cos ∠EAD =222AD AE ==,∴∠EAD =45°, ∴AD =ED =22,CE =4-22S 阴影=(S 梯形ABCE -S 扇形ABE )+(S 扇形AEF -S △ADE )=(2AB CE BC +⨯-245360πAB ⨯⨯)+(245360πAB ⨯⨯-12AD ED ⨯) =442222+-⨯-122222⨯⨯=82-8因此本题应填:82-8. {分值}4{章节:[1-24-4]弧长和扇形面积} {考点:扇形的面积}{考点:特殊角的三角函数值} {类别:常考题} {难度:3-中等难度}{题目}17.(2019年重庆B 卷)一天,小明从家出发匀速步行去学校上学.几分钟后,在家休假的爸爸发现小明忘带数学书,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路跑回家.小明拿到书后以原速的54快步赶往学校,并在从家出发后23分钟到校(小明被爸爸追上时交流的时间忽略不计).两人之间相距的路程y (米)与小明从家出发到学校的步行时间x (分钟)之间的函数关系如图所示,则小明家到学校的路程为 米.{答案}2080{解析}本题考查了距离时间图象,充分挖掘函数图象中隐含的等量关系是解题的关键. 设小明的速度是m 米/分,爸爸的速度是n 米/分,由图象可知,爸爸追上小明所用的时间为16-11=5分钟,爸爸跑5分钟的路程是小明走11分钟的ED AC路程,爸爸以原速跑回家时,小明以54m 米/分速度走向学校,两人5分钟共行了1380米,所以有51155513804n m n m =⎧⎪⎨+⨯=⎪⎩,解得m =80,n =176, 所以小明家到学校的距离是80×11+54×80×(23-11)=2080(米)因此本题应填:2080. {分值}4{章节:[1-19-1-2] 函数的图象} {考点:距离时间图象} {类别:常考题} {类别:易错题} {难度:3-中等难度}{题目}18.(2019年重庆B 卷)某磨具厂共有6个生产车间,第一、二、三、四车间每天生产相同数量的产品,第五、六车间每天生产的产品数量分别是第一车间每天生产的产品数量的34和83.甲、乙两组检验员进驻该厂进行产品检验.在同时开始检验产品时,每个车间原有成品一样多,检验期间各车间继续生产.甲组用了6天时间将第一、二、三车间所有成品同时检验完;乙组先用2天将第四、五车间的所有成品同时检验完后,再用了4天检验完第六车间的所有成品(所有成品指原有的和检验期间生产的成品).如果每个检验员的检验速度一样,则甲、乙两组检验员的人数之比是 .{答案}1819{解析}本题考查了列代数式、分式以及等式的性质,设每个车间原有的产品数量为x ,第一车间每天生产的数量为y ,甲组检验员的人数为m ,乙组检验员的人数为n ,由于甲组用了6天时间将第一、二、三车间所有成品同时检验完,所以甲组检验员的速度为3366x ym+⨯,乙组先用2天将第四、五车间的所有成品同时检验完,此时乙组检验员的速度为322242x y yn ++⨯,又乙组再用了4天检验完第六车间的所有成品,此时乙组检验员的速度为8634x yn+⨯,由于每个检验员的检验速度一样,所以3366x y m +⨯=322242x y y n ++⨯=8634x y n +⨯,由3366x y m +⨯=322242x y yn ++⨯可得m n=6722x y x y++=21247x y x y ++,由322242x y yn ++⨯=8634x y n +⨯可得4x +7y =x +16y ,即x =3y ,将x =3y 带入m n =21247x y x y ++中,可得m n =1819,因此本题应填1819.{分值}4{章节:[1-15-1]分式} {考点:列代数式} {考点:等式的性质} {考点:代数填空压轴} {类别:高度原创}{难度:3-中等难度}{题型:3-解答题}三、解答题:本大题共 7小题,合计70分.{题目}19.(2019年重庆B 卷)计算:(1)(a +b )2+a (a -2b );(2)m -1+2269m m --÷223m m ++{解析}本题考查了分式的混合运算、整式的混合运算,解题的关键是明确它们各自的计算方法.. {答案}解: (1)(a +b )2+a (a -2b )=a 2+2ab +b 2+a 2-2ab =2a 2+b 2;(2)m -1+2269m m --÷223m m ++=m -1+2(3)(3)(3)m m m -+-×32(1)m m ++=m -1+11m +=2111m m -++=21m m +{分值}10{章节:[1-15-2-2]分式的加减} {难度:2-简单} {类别:常考题}{考点:分式的混合运算} {考点:完全平方公式} {考点:单项式乘以多项式} {考点:因式分解-提公因式法} {考点:因式分解-平方差}{题目}20.(2019年重庆B 卷)如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D . (1)若∠C =42°,求∠BAD 的度数; (2)若点E 在边AB 上,EF ∥AC 交AD 的延长线于点F , 求证:AE =FE .{解析}本题考查了等腰三角形的性质“等腰三角形三线合一”以及平行线的性质. {答案}解:(1)在△ABC 中,由于AB =AC ,AD ⊥BC 于点D .∴△ABC 是等腰三角形,且AD 为顶角∠BAC 的角平分线,∴∠BAD =12∠BAC , 又∠C =42°,∴∠BAC =180°-2∠C =96°,∴∠BAD =12∠BAC =48°;(2)由(1)可知,∠FAC =∠BAD =12∠BAC ,B20题图∵EF∥AC交AD的延长线于点F,∴∠AFE=∠FAC,∴∠AFE=∠BAD,∴AE=FE.{分值}10{章节:[1-13-2-1]等腰三角形}{难度:2-简单}{类别:常考题}{考点:三线合一}{考点:两直线平行内错角相等}{题目}21.(2019年重庆B卷)为落实视力保护工作,某校组织七年级学生开展了视力保健活动.活动前随机测查了30明学生的视力,活动后再次测查这部分学生的视力.两次相关数据记录如下:活动前被测查学生视力数据:4.0 4.1 4.1 4.2 4.2 4.3 4.3 4.4 4.4 4.4 4.5 4.5 4.6 4.6 4.64.7 4.7 4.7 4.7 4.8 4.8 4.8 4.8 4.8 4.9 4.9 4.95.0 5.0 5.1活动后被测查学生视力数据:4.0 4.2 4.3 4.4 4.4 4.5 4.5 4.6 4.6 4.6 4.7 4.7 4.7 4.7 4.84.8 4.8 4.8 4.8 4.8 4.8 4.9 4.9 4.9 4.9 4.95.0 5.0 5.1 5.1根据以上信息回答下列问题:(1)填空:a=,b=,活动前被测查学生视力样本数据的中位数是,活动后被测查学生视力样本数据的众数是;(2)若视力在4.8及以上为达标,估计七年级600名学生活动后视力达标的人数有多少?(3)分析活动前后相关数据,从一个方面评价学校开展视力保健活动的效果.{解析}本题考查了频数直方图、用样本估计总体的思想、统计量的选择等知识,解题的关键是搞清楚频数、合格率等概念,属于基础题.{答案}解:(1)∵频数之和为30,∴3+4+a+7+8+3=30,解得a=5;1+2+b+7+12+4=30,解得b=4;将活动前、后被测查学生数据由小到大排列可知:活动前被测查学生视力样本数据的中位数是4.6 4.74.652+=,活动后被测查学生视力样本数据的众数是4.8;因此,各空依次填入:5;4;4.65;4.8(2)活动前该校学生的视力达标率=12430+×100%≈53.33%,活动前被测查学生视力频数分布直方图注:每组数据包括左端值,不包括右端值活动后被测查学生视力频数分布表七年级600名学生活动后视力达标的人数600×1630=320(人)(3)答案不唯一,能说明问题即可,比如:①视力4.8≤x<5.0之间活动前有8人,活动后只有12人,人数明显增加.说明视力保健活动的效果比较好.②活动前合格率1430×100%≈46.67%,活动后合格率53.33%,合格率显著提升.说明视力保健活动的效果比较好.{分值}10{章节:[1-10-2]直方图}{难度:3-中等难度}{类别:常考题}{考点:频数(率)分布直方图}{考点:中位数}{考点:众数}{考点:用样本估计总体}{考点:统计量的选择}{题目}22.(2019年重庆B卷)在数学学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、合数、质数等.现在我们来研究一种特殊的自然数——“纯数”.定义:对于自然数n,在通过列竖式进行n+(n+1)+(n+2)的运算时各位都不产生进位现象,则称这个自然数n为“纯数”.例如:32是“纯数”,因为32+33+34在列竖式进行计算时个位都不产生进位现象;23不是“纯数”,因为23+24+25在列竖式进行计算时个位产生了进位.(1)请直接写出1949到2019之间的“纯数”;(2)求出不大于100的“纯数”个数,并说明理由.{解析}本题考查了新定义的理解与分析,新定义中的“不产生进位”是分析的关键,即和不能大于10,在列举时要注意“不重不漏”.{答案}解:(1)依题意n+(n+1)+(n+2)<10,即n<2.3 ,所以个位上的数字只能取0,1,2,由于十位、百位、千位上的数字可以相同,因此可取值为0,1,2,3,又所求数字在1949~2019之间,因此千位只能取2,百位只能取0,十位可取0,1,个位可取0,1,2.因此满足条件的数有六个,即:2000,2001,2002,2010,2011,2012.(2)依题意n+(n+1)+(n+2)<10,即n<2.3 ,即个位可取0,1,2由于十位、百位上的数字可以相同,所以该数字小于103,即可取值为0,1,2,3又该纯数不大于100,因此该纯数可以是单一数字、两位数字或3位数字,当“纯数”为单一数字时,“纯数”为0,1,2;当“纯数”为两位数字时,“纯数”为10,11,12,20,21,22,30,31,32;当“纯数”为三位数字时,“纯数”为100;因此不大于100的“纯数”有13个.{分值}10{章节:[1-2-2]整式的加减}难度:3-中等难度}{类别:新定义}{考点:新定义}{考点:整式加减}{考点:整式加减的实际应用}{题目}23.(2019年重庆B卷)函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数y=-2|x|的图象,经历分析解析式、列表、描点、连线过程得到函数图象如下图所示;经历同样的过程画函数y=-2|x|+2和y=-2|x+2|的图象如右图所示.(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解析式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点A、B 的坐标和函数y=-2|x+2|的对称轴.(2)探索思考:平移函数y=-2|x|的图象可以得到函数y=-2|x|+2和y=-2|x+2|的图象,分别写出平移的方向和距离.(3)拓展应用:在所给平面坐标系内画出函数y=-2|x+3|+1的图象.若点(x1,y1)和(x2,y2)在该函数图象上,且x2>x1>3,比较y1,y2的大小.{解析}本题考查了绝对值函数,绝对值函数是轴对称图形,k>0时,函数有最低点,k<0时,函数有最高点.{答案}解:(1)点A的坐标(0,2),点B的坐标为(-2,0),函数y=-2|x+2|的对称轴是x =-2;(2)y=-2|x|的图象向上平移2个单位可得到函数y=-2|x|+2的图象;y=-2|x|的图象向左平移2个单位可得到函数y=-2|x+2|的图象;(3)函数y=-2|x+3|+1的图象如下图中的红色线条由于点(x1,y1)和(x2,y2)在该函数图象上,所以函数随x的增大而减小,∵x2>x1>3,∴y1>y2.{分值}10{章节:[1-19-2-2]一次函数}{难度:3-中等难度}{类别:北京作图}{类别:发现探究}{考点:一次函数的图象}{考点:一次函数的性质}{考点:一次函数图象与几何变换}{题目}24.(2019年重庆B卷)某菜市场有2.5平方米和4平方米两种摊位,2.5平方米的摊位数是4平方米摊位数的2倍.管理单位每月底按每平米20元收取当月管理费,该菜市场全部摊位都有商户经营且各摊位均按时全额缴纳管理费.(1)菜市场每月可收取管理费4500元,求该菜市场共有多少个4平方米的摊位?(2)为推进环保袋的使用,管理单位在5月份推出活动一:“使用环保袋送礼物”,2.5平方米和4平方米两种摊位的商户分别有40%和20%参加了此项活动.为了提高大家使用环保袋的积极性,6月份准备把活动一升级为活动二:“使用环保袋抵扣管理费”,同时终止活动一.经调查与测算,参加活动一的商户会全部参加活动二,参加活动二的商户会显著增加,这样,6月份参加活动二的2.5平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加2a%,每个摊位的管理费将会减少3%10a;6月份参加活动二的4平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加6a%,每个摊位的管理费将会减少1%4a.这样,参加活动二的这部分商户6月份总共缴纳的管理费比他们按原方式共缴纳的管理费将减少5%18a,求a的值.{解析}本题考查了列代数式以及利用利用一元一次方程和一元二次方程解决实际问题.{答案}解:(1)设4平方米的摊位共有x 个,则2.5平方米的摊位有2x 个 . 依题意,得20×2.5×2x +20×4x =4500,即100x +80x =4500,解得x =25, 答:4平方米的摊位共有25个. (2)由(1)知,2.5平方米的摊位有50个,4平方米的摊位有25个, ∴参加活动一的2.5平方米摊位有50×40%=20个, 参加活动一的4平方米摊位有25×20%=5个, ∴参加活动二的2.5平方米摊位有20(1+2a %)个, 参加活动二的4平方米摊位有5(1+6a %)个, ∴2.5平方米摊位少收管理费20×2.5×3%10a ×20(1+2a %) 4平方米摊位少收管理费20×4×1%4a ×5(1+6a %)这部分商户减少的管理费〔20×2.5×20(1+2a %)+20×4×5(1+6a %)〕×5%18a ∴20×2.5×3%10a ×20(1+2a %)+20×4×1%4a ×5(1+6a %)=〔20×2.5×20(1+2a %)+20×4×5(1+6a %)〕×5%18a整理得2(a %)2-a %=0∴a %=12或a %=0(不合题意,舍去)由于a %=12,∴a =50{分值}10{章节:[1-21-4]实际问题与一元二次方程} {难度:3-中等难度} {类别:易错题}{考点:其他一元二次方程的应用问题} {考点:一元一次方程的应用(其他问题)} {考点:代数式求值}{题目}25.(2019年重庆B 卷)在□ABCD 中,BE 平分∠ABC 交AD 于点E . (1)如图1,若∠D =30°,ABABE 的面积; (2)如图2,过点A 作AF ⊥DC ,交DC 的延长线于点F ,分别交BE ,BC 于点G ,H ,且AB =AF .求证:ED -AG =F C .{解析}本题考查了三角形全等的判定与性质,线段和差的证明方法以及三角形面积的计算,解题的关键是将分散的条件通过作辅助线“作AK ⊥BE 交BE 于点K ,交DF 的延长线于点N ”使所证问题结论中的线段集中到一起.{答案}解:(1)如答图1,过点E 作AB 的垂线教BA 的延长线于点M25题图1 D25题图2 D在□ABCD 中,∵∠D =30°,∴∠ABC =30°, 又BE 平分∠ABC 交AD 于点E .∴∠ABE =∠CBE =∠AEB =12∠ABC =15°, ∴AE =ABMAE =∠ABE +∠AEB =30°∴ME =12AE,∴S △ABE =12AB ·ME =12=32.(2)如答图2,作AK ⊥BE 交BE 于点K ,交DF 的延长线于点N ,则∠NAF =∠GBA ,∵∠NAF =∠GBA ,AB =AF ,,∠BAG =∠AFN =90° ∴△ABG ≌△FAN∴AG =FN ,∠N =∠AGB ∵∠AGB =∠GAE +∠AEG∴∠AGB =∠GAE +∠KAG =∠KAE ∴∠KAE =∠N ∴DA =DN∵DE =DA -AE ,CN =DN -DC =DN -AB =DN -AE ∴DE =CN =FC +FN =FC +AG 即DE -AG =FC{分值}10{章节:[1-12-2]三角形全等的判定} {难度:4-较高难度} {类别:常考题}{考点:全等三角形的判定ASA ,AAS } {考点:全等三角形的性质}{考点:与线段和差倍分有关的问题} {考点:三角形的面积} {考点:几何综合}{题型:4-解答题}四、解答题:本大题共1小题,计8分.DB25题答图125题答图2DB{题目}26.(2019年重庆B 卷)在平面直角坐标系中,抛物线y2+x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,顶点为D ,对称轴与x 轴交于点Q . (1)如图1,连接AC ,B C .若点P 为直线BC 上方抛物线上一动点,过点P 作PE ∥y 轴交BC 于点E ,作PF ⊥BC 于点F ,过点B 作BG ∥AC 交y 轴于点G .点H ,K 分别在对称轴和y 轴上运动,连接PH ,HK .当△PEF 的周长最大时,求PH +HKKG 的最小值及点H 的坐标.(2)如图2,将抛物线沿射线AC 方向平移,当抛物线经过原点O 时停止平移,此时抛物线的顶点记为D ′,N 为直线DQ 上一点,连接D ′,C ,N ,△D ′CN 能否构成等腰三角形?若能,直接写出满足条件的点N 的坐标;若不能,请说明理由.{解析}本题考查了二次函数综合题、一次函数的应用、锐角三角函数、对称的性质、等腰三角形的判定和性质等知识,解题的关键是学会构建二次函数解决最值问题,学会利用轴对称的性质解决线段和的最短问题,学会用分类讨论的思想思考问题是解决问题的关键.{答案}解:(1)∵PE 平行于y 轴,PF ⊥BC ,∴∠FPE =∠OBC 为一定值,∴当PE 取得最大值时,EF ,PF 取得最大值,即△PEF 的周长也取得最大值。
2019年重庆市中考数学试卷(B卷)(后附答案)
2019年重庆市中考数学试卷(B卷)一、选择题(本大题共12小题,共48.0分)1.5的绝对值是()A. 5B.C.D.2.如图是一个由5个相同正方体组成的立体图形,它的主视图是()A. B.C. D.3.下列命题是真命题的是()A. 如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B. 如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C. 如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D. 如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:94.如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,若∠C=40°,则∠B的度数为()A. B. C. D.5.抛物线y=-3x2+6x+2的对称轴是()A. 直线B. 直线C. 直线D. 直线6.某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为()A. 13B. 14C. 15D. 167.估计的值应在()A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间8.根据如图所示的程序计算函数y的值,若输入x的值是7,则输出y的值是-2,若输入x的值是-8,则输出y的值是()A. 5B. 10C. 19D. 219.如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,点A(10,0),sin∠COA=.若反比例函数y=(k>0,x>0)经过点C,则k的值等于()A. 10B. 24C. 48D. 5010.如图,AB是垂直于水平面的建筑物.为测量AB的高度,小红从建筑物底端B点出发,沿水平方向行走了52米到达点C,然后沿斜坡CD前进,到达坡顶D点处,DC=BC.在点D处放置测角仪,测角仪支架DE高度为0.8米,在E点处测得建筑物顶端A点的仰角∠AEF为27°(点A,B,C,D,E在同一平面内).斜坡CD的坡度(或坡比)i=1:2.4,那么建筑物AB 的高度约为()(参考数据sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A. 米B. 米C. 米D. 米11.若数a使关于x的不等式组,>有且仅有三个整数解,且使关于y的分式方程-=-3的解为正数,则所有满足条件的整数a的值之和是()A. B. C. D. 112.如图,在△ABC中,∠ABC=45°,AB=3,AD⊥BC于点D,BE⊥AC于点E,AE=1.连接DE,将△AED沿直线AE翻折至△ABC所在的平面内,得△AEF,连接DF.过点D作DG⊥DE交BE于点G.则四边形DFEG的周长为()A. 8B.C.D.二、填空题(本大题共6小题,共24.0分)13.计算:(-1)0+()-1=______.14.2019年1月1日,“学习强国”平台全国上线,截至2019年3月17日止,重庆市党员“学习强国”APP注册人数约1180000,参学覆盖率达71%,稳居全国前列.将数据1180000用科学记数法表示为______.15.一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.连续掷两次骰子,在骰子向上的一面上,第二次出现的点数是第一次出现的点数的2倍的概率是______.16.如图,四边形ABCD是矩形,AB=4,AD=2,以点A为圆心,AB长为半径画弧,交CD于点E,交AD的延长线于点F,则图中阴影部分的面积是______.17.一天,小明从家出发匀速步行去学校上学.几分钟后,在家休假的爸爸发现小明忘带数学书,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路跑回家.小明拿到书后以原速的快步赶往学校,并在从家出发后23分钟到校(小明被爸爸追上时交流时间忽略不计).两人之间相距的路程y(米)与小明从家出发到学校的步行时间x(分钟)之间的函数关系如图所示,则小明家到学校的路程为______米.18.某磨具厂共有六个生产车间,第一、二、三、四车间毎天生产相同数量的产品,第五、六车间每天生产的产品数量分別是第一车间每天生产的产品数量的和.甲、乙两组检验员进驻该厂进行产品检验,在同时开始检验产品时,每个车间原有成品一样多,检验期间各车间继续生产.甲组用了6天时间将第一、二、三车间所有成品同时检验完;乙组先用2天将第四、五车间的所有成品同时检验完后,再用了4天检验完第六车间的所有成品(所有成品指原有的和检验期间生产的成品).如果每个检验员的检验速度一样,则甲、乙两组检验员的人数之比是______.三、计算题(本大题共1小题,共10.0分)19.计算:(1)(a+b)2+a(a-2b);(2)m-1++.四、解答题(本大题共7小题,共68.0分)20.如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.21.为落实视力保护工作,某校组织七年级学生开展了视力保健活动.活动前随机测查了30名学生的视力,活动后再次测查这部分学生的视力.两次相关数据记录如下:活动前被测查学生视力数据:4.0 4.1 4.1 4.2 4.2 4.3 4.3 4.4 4.4 4.4 4.5 4.5 4.6 4.6 4.64.7 4.7 4.7 4.7 4.8 4.8 4.8 4.8 4.8 4.9 4.9 4.95.0 5.0 5.1活动后被测查学生视力数据:4.0 4.2 4.3 4.4 4.4 4.5 4.5 4.6 4.6 4.6 4.7 4.7 4.7 4.7 4.84.8 4.8 4.8 4.8 4.8 4.8 4.9 4.9 4.9 4.9 4.95.0 5.0 5.1 5.1活动后被测查学生视力频数分布表(1)填空:a=______,b=______,活动前被测查学生视力样本数据的中位数是______,活动后被测查学生视力样本数据的众数是______;(2)若视力在4.8及以上为达标,估计七年级600名学生活动后视力达标的人数有多少?(3)分析活动前后相关数据,从一个方面评价学校开展视力保健活动的效果.22.在数的学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、合数、质数等.现在我们来研究一种特殊的自然数-“纯数”.定义:对于自然数n,在通过列竖式进行n+(n+1)+(n+2)的运算时各位都不产生进位现象,则称这个自然数n为“纯数”.例如:32是“纯数”,因为32+33+34在列竖式计算时各位都不产生进位现象;23不是“纯数”,因为23+24+25在列竖式计算时个位产生了进位.(1)请直接写出1949到2019之间的“纯数”;(2)求出不大于100的“纯数”的个数,并说明理由.23.函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数y=-2|x|的图象,经历分析解析式、列表、描点、连线过程得到函数图象如图所示;经历同样的过程画(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解折式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点A,B的坐标和函数y=-2|x+2|的对称轴.(2)探索思考:平移函数y=-2|x|的图象可以得到函数y=-2|x|+2和y=-2|x+2|的图象,分别写出平移的方向和距离.(3)拓展应用:在所给的平面直角坐标系内画出函数y=-2|x-3|+1的图象.若点(x1,y1)和(x2,y2)在该函数图象上,且x2>x1>3,比较y1,y2的大小.24.某菜市场有2.5平方米和4平方米两种摊位,2.5平方米的摊位数是4平方米摊位数的2倍.管理单位每月底按每平方米20元收取当月管理费,该菜市场全部摊位都有商户经营且各摊位均按时全额缴纳管理费.(1)菜市场毎月可收取管理费4500元,求该菜市场共有多少个4平方米的摊位?(2)为推进环保袋的使用,管理单位在5月份推出活动一:“使用环保袋送礼物”,2.5平方米和4平方米两种摊位的商户分别有40%和20%参加了此项活动.为提高大家使用环保袋的积极性,6月份准备把活动一升级为活动二:“使用环保袋抵扣管理费”,同时终止活动一.经调査与测算,参加活动一的商户会全部参加活动二,参加活动二的商户会显著增加,这样,6月份参加活动二的2.5平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加2a%,毎个摊位的管理费将会减少a%;6月份参加活动二的4平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加6a%,每个摊位的管理费将会减少a%.这样,参加活动二的这部分商户6月份总共缴纳的管理费比他们按原方式共缴纳的管理费将减少a%,求a的值.25.在▱ABCD中,BE平分∠ABC交AD于点E.(1)如图1,若∠D=30°,AB=,求△ABE的面积;(2)如图2,过点A作AF⊥DC,交DC的延长线于点F,分别交BE,BC于点G,H,且AB=AF.求证:ED-AG=FC.26.在平面直角坐标系中,抛物线y=-x2+x+2与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,顶点为D,对称轴与x轴交于点Q.(1)如图1,连接AC,BC.若点P为直线BC上方抛物线上一动点,过点P作PE∥y轴交BC于点E,作PF⊥BC于点F,过点B作BG∥AC交y轴于点G.点H,K分别在对称轴和y轴上运动,连接PH,HK.当△PEF的周长最大时,求PH+HK+KG的最小值及点H的坐标.(2)如图2,将抛物线沿射线AC方向平移,当抛物线经过原点O时停止平移,此时抛物线顶点记为D′,N为直线DQ上一点,连接点D′,C,N,△D′CN能否构成等腰三角形?若能,直接写出满足条件的点N的坐标;若不能,请说明理由.答案和解析1.【答案】A【解析】解:在数轴上,数5所表示的点到原点0的距离是5;故选:A.根据绝对值的意义:数轴上一个数所对应的点与原点(O点)的距离叫做该数的绝对值,绝对值只能为非负数;即可得解.本题考查了绝对值,解决本题的关键是一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.2.【答案】D【解析】解:从正面看易得第一层有4个正方形,第二层有一个正方形,如图所示:.故选:D.找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.【答案】B【解析】解:A、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是假命题;B、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是真命题;C、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;D、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;故选:B.根据相似三角形的性质分别对每一项进行分析即可.此题考查了命题与定理,用到的知识点是相似三角形的性质,关键是熟练掌握有关性质和定理.4.【答案】B【解析】解:∵AC是⊙O的切线,∴AB⊥AC,且∠C=40°,∴∠ABC=50°,故选:B.由题意可得AB⊥AC,根据直角三角形两锐角互余可求∠ABC=50°.本题考查了切线的性质,直角三角形两锐角互余,熟练运用切线的性质是本题的关键.5.【答案】C【解析】解:∵y=-3x2+6x+2=-3(x-1)2+5,∴抛物线顶点坐标为(1,5),对称轴为x=1.故选:C.将抛物线的一般式配方成为顶点式,可确定顶点坐标及对称轴.本题考查了二次函数的性质.抛物线y=a(x-h)2+k的顶点坐标为(h,k),对称轴为x=h.6.【答案】C【解析】解:设要答对x道.10x+(-5)×(20-x)>120,10x-100+5x>120,15x>220,解得:x>,根据x必须为整数,故x取最小整数15,即小华参加本次竞赛得分要超过120分,他至少要答对15道题.故选:C.根据竞赛得分=10×答对的题数+(-5)×未答对的题数,根据本次竞赛得分要超过120分,列出不等式即可.此题主要考查了一元一次不等式的应用,得到得分的关系式是解决本题的关键.7.【答案】B【解析】解:=+2=3,∵3=,6<<7,故选:B.化简原式等于3,因为3=,所以<<,即可求解;本题考查无理数的大小;能够将给定的无理数锁定在相邻的两个整数之间是解题的关键.8.【答案】C【解析】解:当x=7时,可得,可得:b=3,当x=-8时,可得:y=-2×(-8)+3=19,故选:C.把x=7与x=-8代入程序中计算,根据y值相等即可求出b的值.此题考查了函数值,弄清程序中的关系式和理解自变量取值范围是解本题的关键.9.【答案】C【解析】解:如图,过点C作CE⊥OA于点E,∵菱形OABC的边OA在x轴上,点A(10,0),∴OC=OA=10,∵sin∠COA==.∴CE=8,∴OE==6∴点C坐标(6,8)∵若反比例函数y=(k>0,x>0)经过点C,∴k=6×8=48故选:C.由菱形的性质和锐角三角函数可求点C(6,8),将点C坐标代入解析式可求k的值.本题考查了反比例函数性质,反比例函数图象上点的坐标特征,菱形的性质,锐角三角函数,关键是求出点C坐标.10.【答案】B【解析】解:过点E作EM⊥AB与点M,延长ED交BC于G,∵斜坡CD的坡度(或坡比)i=1:2.4,BC=CD=52米,∴设DG=x,则CG=2.4x.在Rt△CDG中,∵DG2+CG2=DC2,即x2+(2.4x)2=522,解得x=20,∴DG=20米,CG=48米,∴EG=20+0.8=20.8米,BG=52+48=100米.∵EM⊥AB,AB⊥BG,EG⊥BG,∴四边形EGBM是矩形,∴EM=BG=100米,BM=EG=20.8米.在Rt△AEM中,∵∠AEM=27°,∴AM=EM•tan27°≈100×0.51=51米,∴AB=AM+BM=51+20.8=71.8米.故选:B.过点E作EM⊥AB与点M,根据斜坡CD的坡度(或坡比)i=1:2.4可设CD=x,则CG=2.4x,利用勾股定理求出x的值,进而可得出CG与DG的长,故可得出EG的长.由矩形的判定定理得出四边形EGBM是矩形,故可得出EM=BG,BM=EG,再由锐角三角函数的定义求出AM的长,进而可得出结论.本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.11.【答案】A【解析】解:由关于x的不等式组得∵有且仅有三个整数解,∴<x≤3,x=1,2,或3.∴,∴-<a<3;由关于y的分式方程-=-3得1-2y+a=-3(y-1),∴y=2-a,∵解为正数,且y=1为增根,∴a<2,且a≠1,∴-<a<2,且a≠1,∴所有满足条件的整数a的值为:-2,-1,0,其和为-3.故选:A.先解不等式组根据其有三个整数解,得a的一个范围;再解关于y的分式方程-=-3,根据其解为正数,并考虑增根的情况,再得a的一个范围,两个范围综合考虑,则所有满足条件的整数a的值可求,从而得其和.本题属于含参一元一次不等式组和含参分式方程的综合计算题,比较容易错,属于易错题.12.【答案】D【解析】解:∵∠ABC=45°,AD⊥BC于点D,∴∠BAD=90°-∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵BE⊥AC,∴∠GBD+∠C=90°,∵∠EAD+∠C=90°,∴∠GBD=∠EAD,∵∠ADB=∠EDG=90°,∴∠ADB-∠ADG=∠EDG-∠ADG,即∠BDG=∠ADE,∴△BDG≌△ADE(ASA),∴BG=AE=1,DG=DE,∵∠EDG=90°,∴△EDG为等腰直角三角形,∴∠AED=∠AEB+∠DEG=90°+45°=135°,∵△AED沿直线AE翻折得△AEF,∴△AED≌△AEF,∴∠AED=∠AEF=135°,ED=EF,∴∠DEF=360°-∠AED-∠AEF=90°,∴△DEF为等腰直角三角形,∴EF=DE=DG,在Rt△AEB中,BE===2,∴GE=BE-BG=2-1,在Rt△DGE中,DG=GE=2-,∴EF=DE=2-,在Rt△DEF中,DF=DE=2-1,∴四边形DFEG的周长为:GD+EF+GE+DF=2(2-)+2(2-1)=3+2,故选:D.先证△BDG≌△ADE,得出AE=BG=1,再证△DGE与△EDF是等腰直角三角形,在直角△AEB中利用勾股定理求出BE的长,进一步求出GE的长,可通过解直角三角形分别求出GD,DE,EF,DF的长,即可求出四边形DFEG的周长.本题考查了等腰直角三角形的判定与性质,全等三角形的判定与性质,勾股定理,解直角三角形等,解题关键是能够灵活运用等腰直角三角形的判定与性质.13.【答案】3【解析】解:(-1)0+()-1=1+2=3;故答案为3;(-1)0=1,()-1=2,即可求解;本题考查实数的运算;熟练掌握负指数幂的运算,零指数幂的运算是解题的关键.14.【答案】1.18×106【解析】解:1180000用科学记数法表示为:1.18×106,故答案为:1.18×106.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.【答案】【解析】3种结果,所以第二次出现的点数是第一次出现的点数的2倍的概率为=,故答案为.列举出所有情况,看第二次出现的点数是第一次出现的点数的2倍的情况占总情况的多少即可.本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.16.【答案】8-8【解析】解:连接AE,∵∠ADE=90°,AE=AB=4,AD=2,∴sin∠AED=,∴∠AED=45°,∴∠EAD=45°,∠EAB=45°,∴AD=DE=2,∴阴影部分的面积是:(4×-)+()=8-8,故答案为:8-8.根据题意可以求得∠BAE和∠DAE的度数,然后根据图形可知阴影部分的面积就是矩形的面积与矩形中间空白部分的面积之差再加上扇形EAF与△ADE的面积之差的和,本题得以解决.本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.17.【答案】2080【解析】解:设小明原速度为x(米/分钟),则拿到书后的速度为1.25x(米/分钟),则家校距离为11x+(23-11)×1.25x=26x.设爸爸行进速度为y(米/分钟),由题意及图形得:.解得:x=80,y=176.∴小明家到学校的路程为:80×26=2080(米).故答案为:2080设小明原速度为x米/分钟,则拿到书后的速度为1.25x米/分钟,家校距离为11x+(23-11)×1.25x=26x.设爸爸行进速度为y米/分钟,由题意及图形得:,解得:x=80,y=176.据此即可解答.本题考查一次函数的应用、速度、路程、时间之间的关系等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.【答案】18:19【解析】解:设第一、二、三、四车间毎天生产相同数量的产品为x个,每个车间原有成品m个,甲组检验员a人,乙组检验员b人,每个检验员的检验速度为c个/天,则第五、六车间每天生产的产品数量分別是x和x,由题意得,,②×2-③得,m=3x,把m=3x分别代入①得,9x=2ac,把m=3x分别代入②得,x=2bc,则a:b=18:19,甲、乙两组检验员的人数之比是18:19,故答案为:18:19.设第一、二、三、四车间毎天生产相同数量的产品为x个,每个车间原有成品m个,甲组检验员a人,乙组检验员b人,每个检验员的检验速度为c个/天,根据题意列出三元一次方程组,解方程组得到答案.本题考查的是三元一次方程组的应用,根据题意正确列出三元一次方程组、正确解出方程组是解题的关键.19.【答案】解:(1)(a+b)2+a(a-2b);=a2+2ab+b2+a2-2ab,=2a2+b2;(2)m-1++.=++,=,=.【解析】(1)根据完全平方公式和单项式乘以多项式将原式展开,然后再合并同类项即可解答本题;(2)先通分,再将分子相加可解答本题.本题考查分式的混合运算、整式的混合运算,解题的关键是明确它们各自的计算方法.20.【答案】解:(1)∵AB=AC,AD⊥BC于点D,∴∠BAD=∠CAD,∠ADC=90°,又∠C=42°,∴∠BAD=∠CAD=90°-42°=48°;(2)∵AB=AC,AD⊥BC于点D,∴∠BAD=∠CAD,∵EF∥AC,∴∠F=∠CAD,∴∠BAD=∠F,∴AE=FE.【解析】(1)根据等腰三角形的性质得到∠BAD=∠CAD,根据三角形的内角和即可得到∠BAD=∠CAD=90°-42°=48°;(2)根据等腰三角形的性质得到∠BAD=∠CAD根据平行线的性质得到∠F=∠CAD,等量代换得到∠BAD=∠F,于是得到结论.本题考查了等腰三角形的性质,平行线的性质,正确的识别图形是解题的关键.21.【答案】5 4 4.45 4.8【解析】解:(1)由已知数据知a=5,b=4,活动前被测查学生视力样本数据的中位数是=4.45,活动后被测查学生视力样本数据的众数是4.8,故答案为:5,4,4.45,4.8;(2)估计七年级600名学生活动后视力达标的人数有600×=320(人);(3)活动开展前视力在4.8及以上的有11人,活动开展后视力在4.8及以上的有16人,视力达标人数有一定的提升(答案不唯一,合理即可).(1)根据已知数据可得a、b的值,再根据中位数和众数的概念求解可得;(2)用总人数乘以对应部分人数所占比例;(3)可从4.8及以上人数的变化求解可得(答案不唯一).本题考查频数直方图、用样本估计总体的思想、统计量的选择等知识,解题的关键是搞清楚频数、中位数和众数等概念,属于基础题,中考常考题型.22.【答案】解:(1)显然1949至1999都不是“纯数”,因为在通过列竖式进行n+(n+1)+(n+2)的运算时要产生进位.在2000至2019之间的数,只有个位不超过2时,才符合“纯数”的定义.所以所求“纯数”为2000,2001,2002,2010,2011,2012;(2)不大于100的“纯数”的个数有13个,理由如下:因为个位不超过2,十位不超过3时,才符合“纯数”的定义,所以不大于100的“纯数”有:0,1,2,10,11,12,20,21,22,30,31,32,100.共13个.【解析】(1)根据“纯数”的概念,从2000至2019之间找出“纯数”;(2)根据“纯数”的概念得到不大于100的数个位不超过2,十位不超过3时,才符合“纯数”的定义解答.本题考查的是整式的加减、有理数的加法、数字的变化,正确理解“纯数”的概念是解题的关键.23.【答案】解:(1)A(0,2),B(-2,0),函数y=-2|x+2|的对称轴为x=-2;(2)将函数y=-2|x|的图象向上平移2个单位得到函数y=-2|x|+2的图象;将函数y=-2|x|的图象向左平移2个单位得到函数y=-2|x+2|的图象;(3)将函数y=-2|x|的图象向上平移1个单位,再向右平移3个单位得到函数y=-2|x-3|+1的图象.所画图象如图所示,当x2>x1>3时,y1>y2.【解析】(1)根据图形即可得到结论;(2)根据函数图形平移的规律即可得到结论;(3)根据函数关系式可知将函数y=-2|x|的图象向上平移1个单位,再向右平移3个单位得到函数y=-2|x-3|+1的图象.根据函数的性质即可得到结论.本题考查了一次函数与几何变换,一次函数的图象,一次函数的性质,平移的性质,正确的作出图形是解题的关键.24.【答案】解:(1)设该菜市场共有x个4平方米的摊位,则有2x个2.5平方米的摊位,依题意,得:20×4x+20×2.5×2x=4500,解得:x=25.答:该菜市场共有25个4平方米的摊位.(2)由(1)可知:5月份参加活动一的2.5平方米摊位的个数为25×2×40%=20(个),5月份参加活动一的4平方米摊位的个数为25×20%=5(个).依题意,得:20(1+2a%)×20×2.5×a%+5(1+6a%)×20×4×a%=[20(1+2a%)×20×2.5+5(1+6a%)×20×4]×a%,整理,得:a2-50a=0,解得:a1=0(舍去),a2=50.答:a的值为50.【解析】(1)设该菜市场共有x个4平方米的摊位,则有2x个2.5平方米的摊位,根据菜市场毎月可收取管理费4500元,即可得出关于x的一元一次方程,解之即可得出结论;(2)由(1)可得出:5月份参加活动一的2.5平方米摊位及4平方米摊位的个数,再由参加活动二的这部分商户6月份总共缴纳的管理费比他们按原方式共缴纳的管理费将减少a%,即可得出关于a的一元二次方程,解之取其正值即可得出结论.本题考查了一元一次方程的应用以及一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)找准等量关系,正确列出一元二次方程.25.【答案】(1)解:作BO⊥AD于O,如图1所示:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∠ABC=∠D=30°,∴∠AEB=∠CBE,∠BAO=∠D=30°,∴BQ=AB=,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AE=AB=,∴△ABE的面积=AE×BO=××=;(2)证明:作AQ⊥BE交DF的延长线于P,垂足为Q,连接PB、PE,如图2所示:∵AB=AE,AQ⊥BE,∴∠ABE=∠AEB,BQ=EQ,∴PB=PE,∴∠PBE=∠PEB,∴∠ABP=∠AEP,∵AB∥CD,AF⊥CD,∴AF⊥AB,∴∠BAF=90°,∵AQ⊥BE,∴∠ABG=∠FAP,在△ABG和△FAP中,,∴△ABG≌△AFP(ASA),∴AG=FP,∵AB∥CD,AD∥BC,∴∠ABP+∠BPC=180°,∠BCP=∠D,∵∠AEP+∠PED=180°,∴∠BPC=∠PED,在△BPC和△PED中,,∴△BPC≌△PED(AAS),∴PC=ED,∴ED-AG=PC-AG=PC-FP=FC.【解析】(1)作BO⊥AD于O,由平行四边形的性质得出∠BAO=∠D=30°,由直角三角形的性质得出BQ=AB=,证出∠ABE=∠AEB,得出AE=AB=,由三角形面积公式即可得出结果;(2)作AQ⊥BE交DF的延长线于P,垂足为Q,连接PB、PE,证明△ABG≌△AFP得出AG=FP,再证明△BPC≌△PED得出PC=ED,即可得出结论.本题考查了平行四边形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、直角三角形的性质、线段垂直平分线的性质等知识;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.26.【答案】解:(1)如图1中,对于抛物线y=-x2+x+2,令x=0,得到y=2,令y=0,得到-x2+x+2=0,解得x=-2或4,∴C(0,2),A(-2,0),B(4,0),抛物线顶点D坐标(1,),∵PF⊥BC,∴∠PFE=∠BOC=90°,∵PE∥OC,∴∠PEF=∠BCO,∴△PEF∽△BCO,∴当PE最大时,△PEF的周长最大,∵B(4,0),C(0,2),∴直线BC的解析式为y=-x+2,设P(m,-m2+m+2),则E(m,-m+2),∴PE=-m2+m+2-(-m+2)=-m2+m,∴当m=2时,PE有最大值,∴P(2,2),如图,将直线GO绕点G逆时针旋转60°,得到直线l,作PM⊥直线l于M,KM′⊥直线l于M′,则PH+HK+KG=PH+HK+KM′≥PM,∵P(2,2),∴∠POB=60°,∵∠MOG=30°,∴∠MOG+∠BOC+∠POB=180°,∴P,O,M共线,可得PM=10,∴PH+HK+KG的最小值为10,此时H(1,).(2)∵A(-2,0),C(0,2),∴直线AC的解析式为y=x+2,∵DD′∥AC,D(1,),∴直线DD′的解析式为y=x+,设D′(m,m+),则平移后抛物线的解析式为y1=-(x-m)2+m+,将(0,0)代入可得m=5或-1(舍弃),∴D′(5,),设N(1,n),∵C(0,2),D′(5,),∴NC2=1+(n-2)2,D′C2=52+(-2)2,D′N2=(5-1)2+(-n)2,①当NC=CD′时,1+(n-2)2=52+(-2)2,解得:n=②当NC=D′N时,1+(n-2)2=(5-1)2+(-n)2,解得:n=③当D′C=D′N时,52+(-2)2=(5-1)2+(-n)2,解得:n=,综上所述,满足条件的点N的坐标为(1,)或(1,)或(1,)或(1,)或(1,).【解析】(1)首先证明△PEF∽△BCO,推出当PE最大时,△PEF的周长最大,构建二次函数,求出PE最大时,点P的坐标,将直线GO绕点G逆时针旋转60°,得到直线l,作PM⊥直线l于M,KM′⊥直线l于M′,则PH+HK+KG=PH+HK+KM′≥PM,求出PM即可解决问题.(2)首先利用待定系数法求出点D′坐标,设N(1,n),∵C(0,2),D′(5,),则NC2=1+(n-2)2,D′C2=52+(-2)2,D′N2=(5-1)2+(-n)2,分三种情形分别构建方程求出n的值即可解决问题.本题属于二次函数综合题,考查了一次函数的性质,二次函数的性质,垂线段最短,相似三角形的判定和性质,一元二次方程等知识,解题的关键是,学会用转化的思想思考问题,把最短问题转化为垂线段最短,学会利用参数构建方程解决问题,属于中考压轴题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年重庆市中考数学试卷(B卷)一、(共12小题,每小题4分,满分48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑)1.(4分)(2016•重庆)4的倒数是()A.﹣4 B.4 C.﹣D.2.(4分)(2016•重庆)下列交通指示标识中,不是轴对称图形的是()A.B.C.D.图2 3.(4分)(2016•重庆)据重庆商报2016年5月23日报道,第十九届中国(重庆)国际投资暨全球采购会(简称渝洽会)集中签约86个项目,投资总额1636亿元人民币,将数1636月科学记数法表示是()A.0.1636×104B.1.636×103 C.16.36×102 D.163.6×104.(4分)(2016•重庆)如图2,直线a,b被直线c所截,且a∥b,∠1=55°,∠2等于()A.35°B.45°C.55°D.125°5.(4分)(2016•重庆)计算(x2y)3的结果是()A.x6y3B.x5y3C.x5y D.x2y36.(4分)(2016•重庆)下列调查中,最适合采用全面调查(普查)的是()A.对重庆市居民日平均用水量的调查B.对一批LED节能灯使用寿命的调查C.对重庆新闻频道“天天630”栏目收视率的调查D.对某校九年级(1)班同学的身高情况的调查7.(4分)(2016•重庆)若二次根式有意义,则a的取值范围是()A.a≥2 B.a≤2 C.a>2 D.a≠28.(4分)(2016•重庆)若m=﹣2,则代数式m2﹣2m﹣1的值是()A.9 B.7 C.﹣1 D.﹣99.(4分)(2016•重庆)观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是()A.43 B.45 C.51 D.5310.(4分)(2016•重庆)如图,在边长为6的菱形ABCD中,∠DAB=60°,以点D为圆心,菱形的高DF为半径画弧,交AD于点E,交CD于点G,则图中阴影部分的面积是()A.18﹣9πB.18﹣3πC.9﹣D.18﹣3π11.(4分)(2016•重庆)如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公楼顶端A测得旗杆顶端E的俯角α是45°,旗杆底端D到大楼前梯坎底边的距离DC 是20米,梯坎坡长BC是12米,梯坎坡度i=1:,则大楼AB的高度约为()(精确到0.1米,参考数据:≈1.41,≈1.73,≈2.45)A.30.6 B.32.1 C.37.9 D.39.412.(4分)(2016•重庆)如果关于x的分式方程﹣3=有负分数解,且关于x的不等式组的解集为x<﹣2,那么符合条件的所有整数a的积是()A.﹣3 B.0 C.3 D.9二、填空题(共6小题,每小题4分,满分24分)请将每小题的答案直接填在答题卡中对应的横线上。
13.(4分)(2016•重庆)在﹣,0,﹣1,1这四个数中,最小的数是.14.(4分)(2016•重庆)计算:+()﹣2+(π﹣1)0=.15.(4分)(2016•重庆)如图,CD是⊙O的直径,若AB⊥CD,垂足为B,∠OAB=40°,则∠C等于度.16.(4分)(2016•重庆)点P的坐标是(a,b),从﹣2,﹣1,0,1,2这五个数中任取一个数作为a的值,再从余下的四个数中任取一个数作为b的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是.17.(4分)(2016•重庆)为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S(米)与所用的时间t(秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第秒.18.(4分)(2016•重庆)如图,在正方形ABCD中,AB=6,点E在边CD上,DE=DC,连接AE,将△ADE沿AE翻折,点D落在点F处,点O是对角线BD的中点,连接OF 并延长OF交CD于点G,连接BF,BG,则△BFG的周长是.三、解答题(本大题2个小题,每小题7分,满分14分)解答时每小题必须给出必要的演算过程活推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上。
19.(7分)(2016•重庆)如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.20.(7分)(2016•重庆)某学校组建了书法、音乐、美术、舞蹈、演讲五个社团,全校1600名学生每人都参加且只参加了其中一个社团的活动.校团委从这1600名学生中随机选取部分学生进行了参加活动情况的调查,并将调查结果制成了如图不完整的统计图.请根据统计图完成下列问题:参加本次调查有名学生,根据调查数据分析,全校约有名学生参加了音乐社团;请你补全条形统计图.四、解答题(本大题4个小题,每小题10分,满分40分)解答时每小题必须给出必要的演算过程活推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上。
21.(10分)(2016•重庆)(1)(x﹣y)2﹣(x﹣2y)(x+y)(2)÷(2x﹣)22.(10分)(2016•重庆)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.23.(10分)(2016•重庆)近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?(2)5月20日,猪肉价格为每千克40元.5月21日,某市决定投入储备猪肉并规定其销售价在每千克40元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的,两种猪肉销售的总金额比5月20日提高了a%,求a的值.24.(10分)(2016•重庆)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所有3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.五、解答题(本大题2个小题,每小题12分,满分24分)解答时每小题必须给出必要的演算过程活推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上。
25.(12分)(2016•重庆)已知△ABC是等腰直角三角形,∠BAC=90°,CD=BC,DE⊥CE,DE=CE,连接AE,点M是AE的中点.(1)如图1,若点D在BC边上,连接CM,当AB=4时,求CM的长;(2)如图2,若点D在△ABC的内部,连接BD,点N是BD中点,连接MN,NE,求证:MN⊥AE;(3)如图3,将图2中的△CDE绕点C逆时针旋转,使∠BCD=30°,连接BD,点N是BD中点,连接MN,探索的值并直接写出结果.26.(12分)(2016•重庆)如图1,二次函数y=x2﹣2x+1的图象与一次函数y=kx+b(k≠0)的图象交于A,B两点,点A的坐标为(0,1),点B在第一象限内,点C是二次函数图象的顶点,点M是一次函数y=kx+b(k≠0)的图象与x轴的交点,过点B作轴的垂线,垂足为N,且S△AMO:S四边形AONB=1:48.(1)求直线AB和直线BC的解析式;(2)点P是线段AB上一点,点D是线段BC上一点,PD∥x轴,射线PD与抛物线交于点G,过点P作PE⊥x轴于点E,PF⊥BC于点F.当PF与PE的乘积最大时,在线段AB上找一点H(不与点A,点B重合),使GH+BH的值最小,求点H的坐标和GH+ BH的最小值;(3)如图2,直线AB上有一点K(3,4),将二次函数y=x2﹣2x+1沿直线BC平移,平移的距离是t(t≥0),平移后抛物线上点A,点C的对应点分别为点A′,点C′;当△A′C′K 是直角三角形时,求t的值.2016年重庆市中考数学试卷(B卷)参考答案一、1.D2.C3.B4.C5.A6.D7.A8.B9.C10.A11.D12.D二、填空题13.﹣1.14.815.2516.17.12018.(+).三、解答题19.证明:∵AB∥CD,∴∠BAC=∠ECD,在△ABC和△CED中,,∴△ABC≌△CED(SAS),∴∠B=∠E.20.240,60.四、解答题21.解:(1)(x﹣y)2﹣(x﹣2y)(x+y)=x2﹣2xy+y2﹣x2+xy+2y2=﹣xy+3y2;(2)÷(2x﹣)=×=.22.解:(1)过点A作AE⊥x轴于点E,如图所示.设反比例函数解析式为y=.∵AE⊥x轴,∴∠AEO=90°.在Rt△AEO中,AO=5,sin∠AOC=,∠AEO=90°,∴AE=AO•sin∠AOC=3,OE==4,∴点A的坐标为(﹣4,3).∵点A(﹣4,3)在反比例函数y=的图象上,∴3=,解得:k=﹣12.∴反比例函数解析式为y=﹣.(2)∵点B(m,﹣4)在反比例函数y=﹣的图象上,∴﹣4=﹣,解得:m=3,∴点B的坐标为(3,﹣4).设直线AB的解析式为y=ax+b,将点A(﹣4,3)、点B(3,﹣4)代入y=ax+b中得:,解得:,∴一次函数解析式为y=﹣x﹣1.令一次函数y=﹣x﹣1中y=0,则0=﹣x﹣1,解得:x=﹣1,即点C的坐标为(﹣1,0).S△AOB=OC•(y A﹣y B)=×1×[3﹣(﹣4)]=.23.解:(1)设今年年初猪肉价格为每千克x元;根据题意得:2.5×(1+60%)x≥100,解得:x≥25.答:今年年初猪肉的最低价格为每千克25元;(2)设5月20日两种猪肉总销量为1;根据题意得:40(1﹣a%)×(1+a%)+40×(1+a%)=40(1+a%),令a%=y,原方程化为:40(1﹣y)×(1+y)+40×(1+y)=40(1+y),整理得:5y2﹣y=0,解得:y=0.2,或y=0(舍去),则a%=0.2,∴a=20;答:a的值为20.24.解:(1)对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上的数与十位上的数得到的新数为t′,则t′=10y+x,∵t为“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=18,∴y=x+2,∵1≤x≤y≤9,x,y为自然数,∴“吉祥数”有:13,24,35,46,57,68,79,∴F(13)=,F(24)==,F(35)=,F(46)=,F(57)=,F(68)=,F(79)=,∵>>>>>,∴所有“吉祥数”中,F(t)的最大值是.五、解答题25.解:(1)如图1中,连接AD.∵AB=AC=4,∠BAC=90°,∴∠B=∠ACD=45°,BC==4,∵DC=BC=2,∵ED=EC,∠DEC=90°,∴DE=EC=2,∠DCE=∠EDC=45°,∴∠ACE=90°,在RT△ACE中,AE===2,∵AM=ME,∴CM=AE=.(2)如图2中,延长DM到G使得MG=MD,连接AG、BG,延长ED交AB于F.在△AMG和△EMD中,,∴△AMG≌△EMD,∴AG=DE=EC,∠MAG=∠MED,∴EF∥AG,∴∠BAG=∠BFE=180°﹣∠FBC﹣(90°﹣∠ECB)=45°+∠BCE=∠ACE,在△ABG和△CAE中,,∴△ABG≌△CAE,∴∠ABG=∠CAE,∵∠CAE+∠BAE=90°,∴∠ABG+∠BAE=90°,∴∠AOB=90°,∴BG⊥AE,∵DN=NB,DM=MG,∴MN∥BG,∴MN⊥AE.(3)如图3中,延长DM到G使得MG=MD,连接AG、BG,延长AG、EC交于点F.∵△AMG≌△EMD,∴AG=DE=EC,∠GAM=∠DEM,∴AG∥DE,∴∠F=∠DEC=90°,∵∠FAC+∠ACF=90°,∠BCD+∠ACF=90°,∠BCD=30°,∴∠BAG=∠ACE=120°,在△ABG和△CAE中,,∴△ABG≌△CAE,∴BG=AE,∵BN=ND,DM=MG,∵BG=AE=2MN,∴∠FAC=∠BCD=30°,设BC=2a,则CD=a,DE=EC=a,AC=a,CF=a,AF=a,EF=a,∴AE==a,∴MN=a,∴==.26.解:(1)∵点C是二次函数y=x2﹣2x+1图象的顶点,∴C(2,﹣1),∵PE⊥x轴,BN⊥x轴,∴△MAO∽△MBN,∵S△AMO:S四边形AONB=1:48,∴S△AMO:S△BMN=1:49,∴OA:BN=1:7,∵OA=1∴BN=7,把y=7代入二次函数解析式y=x2﹣2x+1中,可得7=x2﹣2x+1,∴x 1=﹣2(舍),x2=6∴B(6,7),∵A的坐标为(0,1),∴直线AB解析式为y=x+1,∵C(2,﹣1),B(6,7),∴直线BC解析式为y=2x﹣5.(2)如图1,设点P(x0,x0+1),∴D(,x0+1),∴PE=x0+1,PD=3﹣x0,∵∠DPF固定不变,∴PF:PD的值固定,∴PE×PF最大时,PE×PD也最大,PE×PD=(x0+1)(3﹣x0)=﹣x02+x0+3,∴当x0=时,PE×PD最大,即:PE×PF最大.此时G(5,)∵△MNB是等腰直角三角形,过B作x轴的平行线,∴BH=B1H,GH+BH的最小值转化为求GH+HB1的最小值,∴当GH和HB1在一条直线上时,GH+HB1的值最小,此时H(5,6),最小值为7﹣=(3)令直线BC与x轴交于点I,∴I(,0)∴IN=,IN:BN=1:2,∴沿直线BC平移时,横坐标平移m时,纵坐标则平移2m,平移后A′(m,1+2m),C′(2+m,﹣1+2m),∴A′C′2=8,A′K2=5m2﹣18m+18,C′K2=5m2﹣22m+26,当∠A′KC′=90°时,A′K2+KC′2=A′C′2,解得m=,此时t=m=2±;当∠KC′A′=90°时,KC′2+A′C′2=A′K2,解得m=4,此时t=m=4;当∠KA′C′=90°时,A′C′2+A′K2=KC′2,解得m=0,此时t=0.。