多边形的内角和与外角和说课稿02
11.3.2多边形的内角和说课稿
11.3.2多边形的内角和说课稿一、说教材本文为《11.3.2多边形的内角和》,在初中数学课程中具有重要作用和地位。
它是学生在学习了三角形、四边形的内角和的基础上,对多边形内角和概念进行拓展和深化的内容。
本节主要内容包括:多边形内角和的定义、计算公式及其推导过程,通过实际操作和例题分析,让学生更好地理解多边形的内角和性质,提高学生的空间想象能力和逻辑思维能力。
(1)作用与地位:多边形的内角和是几何学中的基础概念,对于培养学生的空间观念和逻辑思维具有重要作用。
它是连接平面几何与立体几何的桥梁,为后续学习多面体的内角和、表面积和体积等内容打下基础。
(2)主要内容:本节课主要围绕多边形的内角和展开,包括以下小节内容:1. 多边形内角和的定义;2. 多边形内角和的计算公式;3. 多边形内角和的推导过程;4. 应用多边形内角和解决实际问题。
二、说教学目标学习本课,学生需要达到以下教学目标:(1)理解多边形内角和的定义,掌握多边形内角和的计算公式;(2)通过实际操作和推导过程,培养学生的空间想象能力和逻辑思维能力;(3)能够运用多边形内角和的性质解决实际问题,提高学生的应用能力;(4)激发学生对几何学的兴趣,培养学生的探究精神。
三、说教学重难点(1)重点:多边形内角和的定义、计算公式及其推导过程。
(2)难点:多边形内角和的推导过程,以及运用多边形内角和解决实际问题。
在教学过程中,要注意引导学生理解多边形内角和的定义,突破推导过程的难点,同时注重培养学生的空间想象能力和逻辑思维能力,为解决实际问题打下基础。
四、说教法在教学《11.3.2多边形的内角和》这一课时,我计划采用以下几种教学方法,旨在提高学生的理解和应用能力,同时突出我的教学特色:1. 启发法:- 通过提出问题引导学生思考,例如:“一个三角形的内角和是多少?四边形的内角和又是多少?那么五边形、六边形呢?它们之间是否存在某种规律?”- 利用学生已知的三角形和四边形的内角和知识,启发学生发现多边形内角和的规律。
北师大版数学八年级下册6.4《多边形的内角和与外角和》说课稿
北师大版数学八年级下册6.4《多边形的内角和与外角和》说课稿一. 教材分析北师大版数学八年级下册6.4《多边形的内角和与外角和》这一节主要讲述了多边形的内角和与外角和的概念及其计算方法。
多边形的内角和是指多边形所有内角的度数之和,而外角和则是指多边形所有外角的度数之和。
这部分内容是初中数学的重要知识点,对于学生来说,掌握这部分内容对于理解和掌握整个初中数学知识体系具有重要意义。
二. 学情分析在教学之前,我们需要对学生的学习情况进行分析。
学生们在学习了多边形的概念、四边形的性质等基础知识后,对于多边形的内角和与外角和的学习已具备了一定的基础。
然而,由于多边形的内角和与外角和的概念较为抽象,部分学生可能对其理解和运用存在一定的困难。
因此,在教学过程中,我们需要关注学生的学习情况,针对性地进行教学,帮助学生理解和掌握这部分内容。
三. 说教学目标1.知识与技能目标:使学生理解和掌握多边形的内角和与外角和的概念及其计算方法,能够运用所学知识解决实际问题。
2.过程与方法目标:通过观察、操作、推理等过程,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:激发学生对数学学科的兴趣,培养学生的团队合作意识,使学生在解决实际问题的过程中感受到数学的价值。
四. 说教学重难点1.教学重点:多边形的内角和与外角和的概念及其计算方法。
2.教学难点:多边形内角和与外角和计算方法的推导过程,以及如何运用所学知识解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动、合作探究的教学方法,引导学生通过观察、操作、推理等过程主动学习,提高学生的学习兴趣和参与度。
2.教学手段:利用多媒体课件、实物模型等教学辅助手段,帮助学生直观地理解多边形的内角和与外角和的概念及其计算方法。
六. 说教学过程1.导入新课:通过展示一些多边形的图片,引导学生观察多边形的特征,从而引出多边形的内角和与外角和的概念。
2.自主学习:让学生通过阅读教材,了解多边形的内角和与外角和的概念及其计算方法。
多边形的内角和与外角和(第2课时)
探究新知
6.4 多边形的内角和与外角和
问题解决:
(1)小明每从一条街道转到下一条街道时,身体转过的 角是哪个角?
∠1,∠2,∠3,∠4,∠5
1A
(2)他每跑完一圈,身体转过
B
5Hale Waihona Puke 的角度之和是多少?2 1+2+3+4+5
E
(3)你能求出1+2+3+4+5的 C 结果吗?
3
4 D
探究新知
6.4 多边形的内角和与外角和
A.6
B.12
C.16
D.18
探究新知
6.4 多边形的内角和与外角和
例2 一个多边形的内角和等于它的外角和的3倍,它是几边形?
解:设这个多边形是n边形, 则它的内角和为(n-2)·180°,外角和为360°. 则根据题意,得(n-2)·180°=3×360°. 解得n=8,所以这个多边形是八边形.
问题1:任意一个外角和它相邻的内角有什么关系?
互补
问题2:五个外角加上它们分别相邻的五个内角和是多少? 5×180°=900°
探究新知
6.4 多边形的内角和与外角和
问题3:这五个平角和与五边形的内角和、外角和有什么 关系?
五边形外角和 =5个平角 -五边形内角和 =5×180°-(5-2) × 180° =360 °
2.某正多边形的一个外角的度数为60°,则这个正多边形的边 数为( A )
A.6
B.8
C. 10
D. 12
课堂检测
6.4 多边形的内角和与外角和
拓广探索题
如图,AP,CP分别是四边形ABCD的外角∠DAM, ∠DCN的
平分线,设∠ABC=α, ∠APC=β,则∠ADC的度数为( C )
北师大版数学八年级下册6.4《多边形的内角与外角和》说课稿
北师大版数学八年级下册6.4《多边形的内角与外角和》说课稿一. 教材分析《多边形的内角与外角和》是北师大版数学八年级下册第6.4节的内容。
本节课主要让学生理解并掌握多边形的内角和定理以及外角和定理,能够运用这些定理解决一些简单的问题。
教材通过引出多边形的内角和外角的概念,引导学生探究多边形的内角和外角和与边数的关系,从而得出多边形的内角和定理和外角和定理。
二. 学情分析学生在学习本节课之前,已经学习了三角形的内角和定理,四边形的内角和定理,以及多边形的定义。
他们已经具备了一定的探究能力,能够通过观察和操作来发现规律。
但是,学生对于多边形的内角和外角的概念可能还不够清晰,需要通过实例和活动来进一步理解和掌握。
三. 说教学目标1.知识与技能目标:学生能够理解并掌握多边形的内角和定理和外角和定理,能够运用这些定理解决一些简单的问题。
2.过程与方法目标:学生通过观察和操作,培养观察能力、操作能力和推理能力。
3.情感态度与价值观目标:学生能够积极参与学习活动,克服困难,增强自信心,培养合作精神。
四. 说教学重难点1.教学重点:学生能够理解并掌握多边形的内角和定理和外角和定理。
2.教学难点:学生能够运用多边形的内角和定理和外角和定理解决一些简单的问题。
五. 说教学方法与手段1.教学方法:本节课采用问题驱动法、观察法、操作法、合作学习法等教学方法,引导学生主动探究,发现规律。
2.教学手段:利用多媒体课件、几何画板等教学手段,直观地展示多边形的内角和外角的概念和性质。
六. 说教学过程1.导入:通过展示一些多边形的图片,引导学生回顾多边形的定义,激发学生对多边形的内角和外角的好奇心。
2.探究多边形的内角和:引导学生观察多边形的内角,发现多边形的内角和与边数的关系,通过操作和推理得出多边形的内角和定理。
3.探究多边形的外角和:引导学生观察多边形的外角,发现多边形的外角和与边数的关系,通过操作和推理得出多边形的外角和定理。
苏科版数学七年级下册7.5.2《多边形的内角和与外角和》说课稿
苏科版数学七年级下册7.5.2《多边形的内角和与外角和》说课稿一. 教材分析《多边形的内角和与外角和》这一节内容,主要让学生了解多边形的内角和、外角和的概念,掌握多边形内角和与外角和的计算方法。
为学生进一步研究多边形的性质和计算打下基础。
二. 学情分析学生在学习这一节内容前,已经掌握了多边形的基本概念,如边的概念,角的概念等。
同时,学生也已经学习了四边形的内角和是360度,对多边形的内角和有一定的认识。
但是,学生可能对多边形的外角和的概念以及计算方法较为陌生,需要在本节课中进行讲解和引导。
三. 说教学目标1.知识与技能:让学生了解多边形的内角和、外角和的概念,掌握多边形内角和与外角和的计算方法。
2.过程与方法:通过学生自主探究,培养学生的观察能力、思考能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。
四. 说教学重难点1.教学重点:多边形的内角和、外角和的概念,多边形内角和与外角和的计算方法。
2.教学难点:多边形外角和的计算方法,以及如何引导学生发现多边形内角和与外角和的关系。
五. 说教学方法与手段1.教学方法:采用问题驱动法、探究法、合作学习法等,引导学生主动参与课堂,培养学生的自主学习能力。
2.教学手段:利用多媒体课件,直观展示多边形的内角和与外角和的概念及计算方法。
同时,利用板书,帮助学生理解和记忆多边形的内角和与外角和的知识点。
六. 说教学过程1.导入新课:通过展示一些生活中的多边形图片,引导学生回顾多边形的基本概念,为新课的学习做好铺垫。
2.探究多边形的内角和:提出问题,引导学生观察和思考多边形的内角和是多少。
学生通过分组讨论、探究,发现多边形的内角和是(n-2)×180度。
3.探究多边形的外角和:提出问题,引导学生观察和思考多边形的外角和是多少。
学生通过分组讨论、探究,发现多边形的外角和是360度。
4.总结与讲解:对学生的探究结果进行总结和讲解,让学生理解和掌握多边形的内角和、外角和的概念及计算方法。
初中数学多边形的内角和与外角和教案
初中数学多边形的内角和与外角和教案一、教学目标1. 让学生理解多边形的内角和与外角和的概念。
2. 引导学生掌握多边形内角和与外角和的计算方法。
3. 培养学生运用多边形的内角和与外角和解决实际问题的能力。
二、教学内容1. 多边形的内角和a. 定义:多边形内角和是指多边形所有内角的度数之和。
b. 计算公式:n边形的内角和= (n-2) ×180°,其中n表示多边形的边数。
2. 多边形的外角和a. 定义:多边形外角和是指多边形所有外角的度数之和。
b. 计算公式:n边形的外角和= 360°,与多边形的边数无关。
三、教学重点与难点1. 教学重点:a. 多边形的内角和与外角和的概念。
b. 多边形内角和与外角和的计算方法。
2. 教学难点:a. 理解并应用多边形的内角和计算公式。
b. 理解并应用多边形的外角和特点。
四、教学方法1. 采用直观演示法,通过实物模型展示多边形的内角和与外角和。
2. 利用几何画板软件,动态演示多边形内角和与外角和的变化。
3. 运用小组合作学习法,让学生在探讨中掌握内角和与外角和的计算方法。
五、教学过程1. 导入:通过展示生活中常见的多边形物体,如正方体、长方体等,引导学生关注多边形的内角和与外角和。
2. 新课讲解:a. 讲解多边形的内角和概念,引导学生理解内角和的意义。
b. 推导多边形内角和的计算公式,让学生掌握计算方法。
c. 讲解多边形的外角和概念,引导学生理解外角和的意义。
d. 阐述多边形外角和的特点,让学生掌握外角和的计算方法。
3. 课堂练习:a. 布置练习题,让学生运用内角和与外角和的知识解决问题。
b. 引导学生相互讨论,分享解题心得。
5. 课后作业:布置相关作业,巩固所学知识。
六、教学活动1. 小组讨论:让学生分组讨论如何应用多边形的内角和与外角和解决实际问题,如计算房屋面积、设计图形等。
2. 案例分析:给出一个实际问题,如计算一个四边形的内角和与外角和,让学生分组解决,并分享解题过程和答案。
《多边形的内角和与外角和》教案2
《多边形的内角和与外角和》教案2教学目标一、知识与技能1、会用多边形内角和公式与外角和进行计算。
2、理解并掌握多边形外角和公式与外角和。
二、过程与方法经历质疑、猜想、归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法.三、情感态度和价值观让学生在观察、合作、讨论、交流中感受数学转化思想和实际应用价值,同时培养学生善于发现、积极思考、合作学习、勇于创新的学习态度。
教学重点:多边形的内角和与外角和的应用.教学难点:探索多边形的内角和与外角和公式过程.教学方法:本节课采用“探究与互动”的教学方式,并配以真的情境来引题。
课前准备:多媒体课件课时安排:2课时教学过程:一、导入新课问题1:你还记得三角形内角和与外角和是多少度吗?问题2:你能根据三角形内角和与外角和,求出五边形的内角和与外角和吗?引出本课课题---多边形形内角和与外角和二、新课学习(一)探索多边形的内角和活动1:判断下列图形,从多边形上任取一点c,作对角线,判断分成三角形的个数。
边形边形边形活动2:①从多边形的一个顶点出发,可以引多少条对角线?他们将多边形分成多少个三角形?②总结多边形内角和,你会得到什么样的结论?多边形边数分成三角形的个数图形内角和计算规律三角形 3 1 180°(3-2) ·180°四边形 4五边形 5六边形 6七边形7。
n边形n活动3:把一个五边形分成几个三角形,还有其他的分法吗?总结多边形的内角和公式一般的,从n边形的一个顶点出发可以引____条对角线,他们将n边形分为____个三角形,n边形的内角和等于180 º×______。
例1:已知四边形ABCD,∠A+∠C=180°,求∠B+∠D=?学生自主完成解题过程:解:∵∠A+∠B +∠C+∠D=(4-2)×180º= 360°∴∠B +∠D=360º-(∠A+∠C)=360º-180°=180º(点评:四边形的一组对角互补,另一组对角也互补。
多边形的内角和与外角和说课稿
《多边形的内角和与外角和》说课稿祖山兰亭中学岳书红一、说教材本节课是河北教育出版社义务教育课程标准实验教科书八年级下册第二十二章四边形第八节《多边形的内角和与外角和》。
本节是三角形有关知识的拓展,教科书力求突出多边形内角和与外角和的探索过程,让学生通过简单推理,自主探索出多边形内角和与外角和公式,领悟不同的分析方法,如类比和扩展方法的使用、把复杂问题化为简单问题、化未知为已知的思想方法等,进一步发展合情推理意识能力和说理的基本方法。
二、说学生八年级第二学期的学生已经学习了初中阶段包括全等三角形、特殊四边形的性质、识别在内的绝大多数几何概念及定理,学生的抽象思维能力、逻辑推理能力有了很大的提高。
另外,八年级的同学,有较强的理解和模仿能力,对于新鲜的知识也充满着好奇心和强烈的求知欲望。
三、说教学目标1、知识与技能:(1)了解多边形、正多边形等有关概念。
(2)经历探索多边形内角和与外角和公式的过程。
(3)会用多边形内角和与外角和公式解决简单问题。
2、过程与方法:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。
3、情感态度价值观:通过探索过程进一步体会知识点之间的联系,感受数学活动充满着探索以及数学结论的确定性,体现出生活中处处有数学。
重点是多边形的内角和与外角和公式。
难点是学会善于运用三角形的有关知识来研究多边形的问题,能够灵活运用多边形内角和与外角和解决相关问题。
四、说教法没有学生参与的教学活动几乎是无效的教学活动,结合本节课教学内容,在多边形的内角和与外角和中有许多颇有思考价值的问题。
因此,我在组织教学过程中,让学生合作交流、自主探索多边形内角和与外角和公式让学生参与整个教学过程,自己得出并总结出结论,不仅使学生学到科学的探究方法,而且体验到探究的乐趣,享受到成功的喜悦。
因此,我采用以“激—导—探—结”为主线的教学方法。
五、说学法学生是学习的主体,分析学生是教师实施教学行为的关键,所以教师要在教学过程中让学生增长主体意识,达到预期的目的,学生自主参与整堂课的知识构建,从参与问题的发生、发展到问题的解决,让学生积累自己的知识经验,形成完整的知识体系。
《多边形的内角和》的说课稿(精选9篇)
《多边形的内角和》的说课稿(精选9篇)《多边形的内角和》的篇1一、教材分析1、教学内容“多边形的内角和”一节包括的内容主要有多边形的有关概念以及多边形内角和公式的推导和运用。
2、本章及本节的地位与作用本章《多边形》,探索的是三角形和多边形的有关概念和性质,是学生在上学期初步认识和感受空间图形之后的延伸,也为今后进一步学习各种多边形打好基础。
本节课“多边形的内角和”作为本章的一个重点,是三角形有关知识的拓展,学习四边形的基础,公式的运用还充分地体现了图形与客观世界的密切联系。
3、重点与难点多边形内角和的公式及公式的推导和运用是本节课的重点;因为公式的得出可以用多种不同的方法推导,所以我确定本节课的难点是如何引导学生通过自主学习,探索多边形内角和的公式。
二、教学目标根据新课程标准的要求,课改应体现学生身心发展特点;应有利于引导学生主动探索和发现;有利于进行创造性的教学。
因此,我把本节课的教学目标确定为以下三个方面:知识目标:①识别多边形的顶点、边、内角及对角线;②理解多边形内角和公式的推导过程;③掌握多边形内角和公式的内涵及其运用。
能力目标:①培养学生类比归纳、转化的能力;②培养学生观察分析、猜想和概括的能力。
思想情感目标:通过体会数学图形的美感,提高审美能力,树立认识数学来源于生活,又服务于实践的观点。
三、教法分析在教法上树立以学生为本的思想,通过创设问题情境,启发引导学生观察————分析————猜想————概括,培养学生积极思考,勇于探索的精神,充分发挥其自主能动性。
学法指导是培养学生学习能力的关键,本节课针对学生的认知规律,指导他们动手操作、交流合作,体验发现问题、探索问题和解决问题的学习过程。
教学手段上采用多媒体辅助教学,通过直观演示,更好地实现了“数形结合”的教学,切实有效地提高了课堂教学的效果。
四、过程设计1、创设问题情境,引入新课我是这样设计问题的:在一个平面内,把一个三角形的三个顶点固定,一边套上橡皮筋往外拉成一条折线,该折线与三角形的另外两边围成一个什么图形?再把橡皮筋的一边又往外拉,再固定,又围成什么图形?……不断地向外拉,结果围成什么图形?如果上述情况不是往外拉而是往里推,那是什么图形?在学生的回答中引出主题:今天我们来学习多边形的有关知识。
苏科版七年级数学下册:7.5《多边形的内角和与外角和(2)》说课稿)
苏科版七年级数学下册:7.5《多边形的内角和与外角和(2)》说课稿)一. 教材分析《多边形的内角和与外角和(2)》这一节的内容,是在学生已经掌握了多边形的内角和与外角和的基础上进行进一步的深入学习。
在上节课中,学生已经了解了多边形的内角和定理以及外角和定理,这节课我将引导学生通过探究活动,发现并证明多边形的内角和与外角和的性质。
二. 学情分析面对七年级的学生,他们已经具备了一定的几何图形的基础知识,对多边形的内角和与外角和有一定的了解。
但是,对于如何运用探究的方法去发现和证明多边形的内角和与外角和的性质,他们可能还比较陌生。
因此,在教学过程中,我需要引导学生通过观察、操作、思考、讨论等活动,去发现和证明这些性质。
三. 说教学目标1.知识与技能:理解并掌握多边形的内角和与外角和的性质,能够运用这些性质解决一些简单的问题。
2.过程与方法:通过观察、操作、思考、讨论等活动,培养学生的观察能力、操作能力、思考能力和表达能力。
3.情感态度与价值观:让学生在探究活动中,体验到数学的乐趣,培养学生的团队合作意识和解决问题的能力。
四. 说教学重难点1.教学重点:多边形的内角和与外角和的性质。
2.教学难点:如何引导学生发现并证明多边形的内角和与外角和的性质。
五. 说教学方法与手段在这一节课中,我将采用探究式教学法,引导学生通过观察、操作、思考、讨论等活动,去发现和证明多边形的内角和与外角和的性质。
同时,我会利用多媒体课件和几何画板等教学手段,帮助学生直观地理解多边形的内角和与外角和的概念。
六. 说教学过程1.导入:通过复习上节课的内容,引导学生回顾多边形的内角和与外角和的概念,为新课的学习做好铺垫。
2.探究活动:让学生通过观察、操作、思考、讨论等活动,去发现和证明多边形的内角和与外角和的性质。
3.讲解与演示:在学生探究的基础上,进行讲解和演示,帮助学生进一步理解和掌握多边形的内角和与外角和的性质。
4.练习与巩固:设计一些相关的练习题,让学生在练习中巩固所学知识,提高解决问题的能力。
多边形的内角和与外角和说课稿
多边形的内角和与外角和学校:大石岭初级中学说课教师:傅秀红《多边形的内角和与外角和》说课稿大石岭初级中学傅秀红大家好!我说课的内容是《多边形的内角和与外角和》,这节课是冀教版义务教育课程标准实验教科书八年级数学(下)第二十二章第八节“多边形的内角和与外角和”的第一课时内容。
我将从教材分析、教学方法的选择与教学手段的运用、学法指导、教学程序、教学效果预测四个方面进行阐述。
一、教材分析1、教材所处的地位和作用《多边形的内角和与外角和》这一节内容是在学生学习了三角形的有关概念和性质、三角形内角和及本章所学习的四边形、特殊四边形的有关概念、性质及识别条件等相关知识的基础上进行的,采用“先特殊的多边形(四边形),再一般的多边形”的思路,通过探索多边形内角和公式,领悟不同的分析方法,并为今后系统学习空间与图形知识做好准备。
2、教学目标及确定依据:依据新课标和教材对本节课的要求与及八年级学生的认知水平和年龄特点我确定本节课的教学目标如下:A、知识目标:①了解多边形的有关概念(定义、边、顶点、内角、外角、对角线、凸多边形).②探索并说出多边形的内角和与外角和公式,会应用多边形内角和公式与外角和公式解决简单问题。
③通过多边形内角和定理的教学,培养学生归纳、推理能力、说理能力.④通过与四边形相应概念的对比,让学生体会其中蕴含的类比方法.B、过程与方法:①经历探索多边形内角和与外角和公式的过程,通过观察、操作,充分利用多媒体课件的直观演示功能把多边形进行分割,然后小组讨论、合作交流得出结论。
②通过把多边形转化成三角形体会转化思想在几何中的应用,同时让学生体会从特殊到一般的认识问题的方法。
C、情感目标:通过对生活中数学问题的探究,进一步提高学数学、用数学的意识,在自主探究、合作交流的过程中,体会数学与生活的密切联系以及它的重要作用,提高学生学习的热情。
3、教学重、难点:重点:多边形内角和定理的探究及其应用;难点:如何引导学生把多边形通过不同方法分割三角形,并归纳出多边形内角和定理。
《多边形的内角和与外角和》教案
《多边形的内角和与外角和》教案一、教学目标1.理解多边形内角和与外角和的概念。
2.掌握多边形内角和与外角和的计算公式。
3.能够运用内角和与外角和的知识解决实际问题。
二、教学重点与难点1.教学重点:多边形内角和与外角和的概念,计算公式及应用。
2.教学难点:多边形内角和与外角和的推导过程,以及实际问题的解决。
三、教学过程1.导入(1)引导学生回顾三角形内角和的知识,提问:三角形内角和是多少?(2)让学生尝试用三角形内角和的知识解释四边形、五边形等图形的内角和。
2.探索(1)让学生分组讨论,尝试找出多边形内角和的计算规律。
(2)引导学生通过作图、观察、归纳,发现多边形内角和与边数的关系。
3.内角和公式的应用(1)讲解多边形内角和公式的应用,如求解多边形内角的度数。
(2)举例说明如何利用内角和公式求解实际问题,如求解四边形、五边形的内角度数。
(3)让学生独立完成一些内角和相关的练习题。
4.外角和的概念与计算(1)引导学生通过观察图形,发现多边形外角和的性质。
(2)讲解多边形外角和的概念及计算公式。
(3)举例说明如何利用外角和公式求解实际问题。
5.外角和公式的应用(1)讲解外角和公式的应用,如求解多边形外角的度数。
(2)举例说明如何利用外角和公式求解实际问题,如求解四边形、五边形的外角度数。
(3)让学生独立完成一些外角和相关的练习题。
(2)讲解多边形内角和与外角和在实际问题中的应用。
(3)布置一些拓展题目,让学生课后思考。
四、教学评价1.课堂练习:检查学生对多边形内角和与外角和的计算公式及应用的掌握情况。
2.课后作业:布置一些实际问题和拓展题目,评估学生对知识点的运用能力。
五、教学反思1.教学过程中,注意观察学生的学习反馈,及时调整教学方法和进度。
2.关注学生的个体差异,给予不同层次的学生适当的指导。
3.结合学生的实际情况,设计有趣的实际问题,提高学生的学习兴趣。
六、教学资源1.教材:初中数学教材《多边形的内角和与外角和》相关章节。
《多边形及其内角和》说课稿
《多边形及其内角和》说课稿《多边形及其内角和》说课稿1今天我说课的题目《多边形及其内角和》,这是我在进行完这节课的教学后结合着课堂进行情况以及我对《新课程标准理》的理解从以下几个方面进行的反思。
一、教材分析《多边形的内角和》选自人教版八年级上册的第十一章第三节,《多边形内角和》是本章的一个重点,是三角形有关知识的拓展,是以后学平面镶嵌的基础,多边形内角和公式的运用还充分体现了图形与客观世界的联系。
在内容上,起着承上启下的作用,是在学生学习了一元一次方程、三角形内角和知识和多种平面几何图形的基础上进行的,目的是使学生进一步了解多边形的性质,感受图形世界的现实性和丰富多彩,同时在教学中渗透类比,转化等思想方法培养学生用联系的变换的观点思考问题。
二、学情分析1、我所任教的班级,大部分学生来自农村,基础知识参差不齐,但从小独立性较强,性格活泼,喜欢合作讨论,对数学学习有较浓厚的兴趣。
经过了一年的小组合作方式的磨合,大部分学生已经养成了良好的学习习惯,具有一定的理解能力和归纳能力。
2、学生已经学习了三角形的内角和,这为本节课的学习打下了一定的基础。
八年级学生好奇心比较强,观察能力、动手能力、自主探究能力都得到一定的训练,所以在探究任意四边形内角和时学生采用了测量、拼图、折纸、分割的方法,但是把多边形转化为三角形这一过程是学生学习的难点,所以在探究的过程中注重了把难点分散,有利于学生对本课知识的学习和掌握。
三、教学目标分析根据《新课程标准》的要求,本节内容的特点以及学生的情况,我确定以下教学目标和重、难点。
【知识与技能】认识多边形,了解多边形的定义,多边形的顶点、边、对角线、内角及外角等概念;探索并掌握多边形内角和定理与外角和公式,在理解的基础上运用其解决简单的实际问题。
【数学思考】学生通过猜想、动手实践、合作交流,归纳等活动探索多边形的内角和公式与外角和公式,激发学生兴趣、调动学生积极性、鼓励学生的的创造性思维,感受数学思考过程的条理性。
6.4多边形的内角和与外角和(教案)
在实践活动中,学生们的参与度很高,他们通过折叠纸片和测量角度来直观感受内角和与外角和的关系。这种动手操作的学习方式不仅增加了课堂的趣味性,也让学生们对几何图形有了更深刻的认识。
-能够运用数学知识,解释和预测多边形现象
三、教学难点与重点
1.教学重点
-掌握多边形的内角和定理:即任意n边形的内角和为(n-2)×180°。这是本节课的核心内容,教师需通过直观演示、学生动手操作等方式,让学生深刻理解并记忆该定理。
-举例:解释三角形的内角和为180°,四边形的内角和为360°,以此类推到n边形。
2.培养学生的逻辑推理能力,通过严密的数学证明,理解多边形内角和与外角和的本质联系,提升数学论证能力。
-能够运用逻辑推理,证明多边形内角和与外角和的相关性质
-能够运用数学语言,准确表达证明过程和结果
3.培养学生的数学建模素养,通过构建数学模型,解决实际情境中的多边形问题,增强数学应用意识。
-能够建立数学模型,解决生活中的多边形相关问题
我反思到,对于难点的处理,可能需要更多的个别辅导。有些学生在理解内角和的推导过程中遇到了障碍,我计划在下一节课中提供更多的机会,让学生单独或小组内提出疑问,以便我能够针对性地解答。
此外,我还注意到,在总结回顾环节,有些学生似乎还不能完全自信地回答关于内角和与外角和的问题。我打算在下一节课的开始阶段,通过快速问答的形式,来巩固学生对这些概念的理解。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
多边形的内角和与外角和(第2课时)-北师大版八年级数学下册课件
A.45° B.60° C.72° D.90°
教学过程
课 堂 小 结
记一记
定理 多边形的外角和都等于360°.
正多边形的一个外角=
360° n
正多边形的一个内角=180°- 36n0°
教学过程
分层作业
课
第一层:第157页习题1、2题.
北师大版数学八年级(下)
第六章 平行四边形
4.多边形的内角和与外角和
第2课时 多边形的外角和
教学目标
重
1.理解并掌握多边形的外角和定理及其推导 过程(重点)
点
难
点
2.利用多边形的外角和定理解决问 题.(难点)
教学过程
温 故 知 新
答一答
1.什么是多边形?
2.什么是三角形的外角? 3.三角形的内角和是多少?
0 <180°n-2070°<180°,
解得11.5<n <12.5,
∴n =12.
∴x=180°×12-2070°=90°.
∴多边形的边数是 12,这个外角的度数为 90°
教学过程
学 以 致 用
做一做
1.已知正多边形的一个外角为 36°,则该正 多边形的边数为(B )
A.12 B.10 C.8 D.6
课
本
教学过程
新 知 归 纳
做一做
请用小刚的方法计算三角形、四边形、六边形、 八边形的外角和.
360°
360°
360°
360°
教学过程
新 知 归 纳
记一记
用上面的方法,我们计算出n边形的外角和.
定理 多边形的外角和都等于360°.
初一数学说课稿:多边形的内角和与外角和说课稿
初一数学说课稿:多边形的内角和与外角和说课稿
大多数同学认为本单元功课比较复杂,学起来比较吃力,还有的同学逻辑思维能力不强,所以就不会解题,多边形的内角和与外角和说课稿及时整理后送给大家~
一.学生起点分析
学生已经学完三角形的内角和,对内角和的问题有了一定的认识,加上八年级的学生好奇心、求知欲强,互相评价、互相提问的积极性高.因此对于学习本节内容的知识条件已经成熟,学生参加探索活动的热情已经具备,所以把这节课设计成一节探索活动课是切实可行的
二.教学任务分析
本节课是《义务教育课程标准实验教科书》北师大版八年级上册第四章第六节《探索多边形内角和与外角和》的第一课时.本节内容是七年级上册多边形相关知识的延展和升华,并且在探索学习过程中又与三角形相联系,从三角形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,联系性比较强,特别是教材中设计了现实情境,“想一想”,
“议一议”等内容,体现了课改的精神.在编写意图上,编者强调使学生经历探索、猜想、归纳等过程,回归多边形的几何特征,而不是硬背公式,发展了学生的合情推理能力.
教学目标
【知识与技能】掌握多边形内角和定理,进一步了解转化的数学思想
【过程与方法】经历质疑、猜想、归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法.。
数学北师大版八年级下册多边形内角和与外角和说课稿
6.4《多边形的内角和与外角和(2)》说课稿一.学生学情分析:学生已经学完三角形的内角和,对内角和的问题有了一定的认识,加上八年级的学生好奇心、求知欲强,互相评价、互相提问的积极性高.因此对于学习本节内容的知识条件已经成熟,学生参加探索活动的热情已经具备,所以把这节课设计成一节探索活动课是切实可行的。
二.教学任务分析:本节课是《义务教育课程标准实验教科书》北师大版八年级下册第六章第四节《多边形内角和与外角和》的第二课时.本节内容是多边形相关知识的延展和升华,并且在探索学习过程中又与三角形相联系,从三角形的外角和到多边形的外角和环环相扣,前面的知识为后边的知识做了铺垫,联系性比较强,特别是教材中设计了现实情境,“想一想”,“议一议”等内容,体现了课改的精神.在编写意图上,编者强调使学生经历探索、猜想、归纳等过程,回归多边形的几何特征,而不是硬背公式,发展了学生的合情推理能力.教学目标:【知识与技能】掌握多边形内角和定理,进一步了解转化的数学思想【过程与方法】经历质疑、猜想、归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法.【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造.教学重难点:【教学重点】多边形外角和定理的探索和应用.【教学难点】灵活运用公式解决简单的实际问题;转化的数学思维方法的渗透三.教学过程设计:本节课分成七个环节:第一环节:创设现实情境,提出问题,引入新课;第二环节:概念形成;第三环节:实验探究;第四环节:思维升华;第五环节:能力拓展;第六环节:课时小结;第七环节:布置作业。
1、探究:问题:三角形的外角和等于多少度?长方形的外角和等于多少度?正方形的外角和等于多少度?任意一个四边形的外角和等于多少度?2、合作:活动1 如何把四边形的外角和转化为三角形的外角和?你是怎样实现的?你能找到几种方法?多边形边数分成三角形的个数内角和计算规律三角形 3 1 180°1×180°四边形 4 2 360°2×180°五边形 5 3 540°3×180°六边形 6 4 720°4×180°七边形7 5 900°5×180°……………n边形n n-2 (n-2)×180°(n-2)×180°活动2 请你选择一种方法探索五边形、六边形、七边形的外角和归纳、得出公式:归纳:多边形的外角和都等于360度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《多边形的内角和与外角和》说课稿
尹金辉
我的教学设计是华师大版七年级数学(下)第九章第二节“多边形的内角和与外角和”。
根据新的课程标准,我从以下七个方面说一下本节课的教学设想:
一、教材分析
从教材的编排上,本节课作为第九章的第二节是承上启下的一节,在内容上,从三角形的内角和到四边形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,知识联系性比较强,特别是教材中设计了一些“想一想”“试一试”“做一做”等内容,体现了课改的精神。
在编写意图上,编者有意从简单的几何图形入手,让学生经历探索、猜想、归纳等过程,发展了学生的合情推理能力。
二、学生分析
学生上节课刚刚学完三角形的内角和,对内角和的问题有了一定的认识,加上七年级的学生具有好奇心、求知欲强、互相评价互相提问的积极性高。
因此对于学习本节内容的知识条件已经成熟,学生参加探索活动的热情已经具备,因此把这节课设计成一节探索活动课是切实可行的。
三、教学目标及重点、难点的确定
新的课程标准注重学生所学内容与现实生活的联系,注重学生经历观察、操作、推理、想象等探索过程。
根据新课标和本节课的内容特点我确定以下教学目标及重点、难点
【知识与技能】掌握多边形内角和与外角和定理,进一步了解转化的数学思想
【过程与方法】经历质疑、猜想、归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法。
【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造。
【教学重点】多边形内角和及外角和定理
【教学难点】转化的数学思维方法
四、教法和学法
本次课改很大程度上借鉴了美国教育家杜威的“在做中学”的理论,突出学生独立数学思考活动,希望通过活动使学生主动探索、实践、交流,达到掌握知识的目的,尤其是本节课更是一节难得的探索活动课,按新的课程理论和叶圣陶先生所倡导的“解放学生的手,解放学生的大脑,解放学生的时间”及初一学生的特点,我确定如下教法和学法。
【课堂组织策略】利用学生的好奇心,设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与、大胆猜想、积极思考,使学生在自主探索和合作交流中理解和掌握本节课的有关内容。
【学生学习策略】明确学习目标,在教师的组织、引导、点拨下进行主动探索、实践、交流等活动。
【辅助策略】利用多媒体课件展示三角形内角和向多边形内角和转化,突破这一教学难点,另外利用演示法、归纳法、讨论法、分组竟赛法,使不同学生的知识水平得到恰当的发展和提高。
五、教学过程设计
整个教学过程分五步完成。
1、创设情景、引入新课
首先解决四边形内角的问题,通过转化为三角形问题来解决。
2、合作交流,探索新知。
更进一步解决五边形内角和,乃至六边形、七边形直到N边形的内角和,都能用同样的方法解决。
学生分组讨论。
3、归纳总结、建构体系。
多边形内角和已得出,对外角和更是水到渠成,这时要适当的总结,让学生自己得到零散的知识体系。
4、实际应用、提高能力。
“木工师傅可以用边角余料铺地板的原因是什么?”这既是对本节所学知识在现实生活中的应用,又是本章第一节的延伸,同时也为下节打下了一个铺垫
5、分组竞赛、升华情感
四组不同难度的电子试卷,既巩固本节课所学的知识,又使学生本节课产生的激情得以释放。
六、板书设计
板书本节课学生所需掌握的知识目标:即多边形内角和与外角和定理
七、创意说明
本节课在知识上由简单到复杂,学生经历质疑、猜想、验证的同时,在情感上,由好奇到疑惑,由解决单个问题的一点点快感,到解决整个问题串的极大兴奋,产生了强烈的学习激情。
这时,一次有效的教学竞赛活动,使学生的学习激情得到释放,学科个性得以张扬,教师稍加点拨,适可而止,把更多的思考空间留给学生。