1-2工程静力学基础
1-2压强、静力学方程及应用
设大气压为Pa
2023/10/30
pA pa 油gh1 水 gh2 pA' 水gh pa
pA pA'
pa 油gh1 水 gh2 pa 水 gh
8000.7 10பைடு நூலகம்00.6 1000h
h 1.16m
2023/10/30
3、静力学方程的应用
(1) 压强与压强差的测量 1)U形管压差计
p2 pa gh p1 p2
pa 10.7 103 pa gh
h 1.09m
2023/10/30
小结
1、压强的表示方法、单位换算 2、静力学方程及应用
2023/10/30
移项,得 p2 p1 gz1 z2
令 z1 z2 h 写成 p2 p1 gh
若取液柱的上底面在液面上,并设液面上方的压强
为 p0,取下底面在距离液面 h 处,作用在它上面
的压强为 p
p p0 gh
——流体静力学方程
表明在重力作用下,静止液体内部压强的变化规律
2023/10/30
2、方程的讨论
5)方程是也可写成
p2
gz2
p1
gz1
即 p gz 常数
各项的单位?
2023/10/30
例:图中开口的容器内盛有油和水,油层高度h1=0.7m,
密度 1 800 kg / m3 ,水层高度h2=0.6m,密度 2 1000 kg / m3
1)判断下列两关系是否成立?
pA=pA’,pB=p’B
pa pb
根据流体静力学方程
pa p1 B gz R
pb p2 B gz AgR
p1 B gz R p2 B gz AgR
2023/10/30
工程力学(材料力学)2-2工程力学-静力学知识 物体受力分析
C FCy CD P
D RD
A FAX
FAy
B RBC 整体D RD例qA
B
C
P D
q
q
P
A
B
C F/CxFCX
FAy
RB AC
F/Cy q
C FCy CD P
D RD
A FAX
FAy
B RB
C 整体
D RD
例P
C
A
B
C
C
NC
NA A
P
C NC NC*
NC* NB
P C C
B
NC NA
NC NB
(1)选铰C为研究对象; (2)取分离体画受力图,如图所示; (3)列平衡方程为
X 0 FAC cos 45 FBC cos 45 0
Y 0 P FAC sin 45 FBC sin 45 0
(4)解平衡方程,得
FAC
FBC
P 2sin 450
15 2
2
kN
工程力学-静力学知识
物体的受力分析和受力图
静力学研究物体受力平衡的规律; 静力学包含物体受力分析、力系简化和力系平衡
条件;
1、物体的受力分析:分析物体(包括物体系)受哪些力, 每个力的作用位置和方向,并画出物体的受力图。 2、力系的等效替换(或简化):用一个简单力系等效代 替一个复杂力系。
物体受力分析步骤
P B
F
FAy A FAx
FBy P
FCy
FCx C FCy
C
B FBx
C FCx FC (附销钉)
Q
Q FDy
FC
C
FBx B F FBy
FDy D FDx
工程力学判断选择
第一章静力学基础一、判断题1-1、如物体相对于地面保持静止或匀速运动状态,则物体处于平衡。
()1-2、作用在同一刚体上的两个力,使物体处于平衡的必要和充分条件是:这两个力大小相等、方向相反、沿同一条直线。
( ) 1-3、静力学公理中,二力平衡公理和加减平衡力系公理仅适用于刚体。
( ) 1-4、二力构件是指两端用铰链连接并且指受两个力作用的构件。
( ) 1-5、对刚体而言,力是滑移矢量,可沿其作用线移动。
()1-6、对非自由体的约束反力的方向总是与约束所能阻止的物体的运动趋势的方向相反。
()1-7、作用在同一刚体的五个力构成的力多边形自行封闭,则此刚体一定处于平衡状态。
()1-8、只要两个力偶的力偶矩相等,则此两力偶就是等效力偶。
()二、单项选择题1-1、刚体受三力作用而处于平衡状态,则此三力的作用线( )。
A、必汇交于一点B、必互相平行C、必都为零D、必位于同一平面内1-2、力的可传性()。
A、适用于同一刚体B、适用于刚体和变形体C、适用于刚体系统D、既适用于单个刚体,又适用于刚体系统1-3、如果力F R是F1、F2二力的合力,且F1、F2不同向,用矢量方程表示为F R= F1+ F2,则三力大小之间的关系为()。
A、必有F R= F1+ F2B、不可能有F R= F1+ F2C、必有F R>F1, F R>F2D、必有F R<F1, F R<F21-4、作用在刚体上的一个力偶,若使其在作用面内转移,其结果是()。
A、使刚体转动B、使刚体平移C、不改变对刚体的作用效果D、将改变力偶矩的大小第二章平面力系一、判断题2-1、平面任意力系向作用面内任一点简化,主矢与简化中心有关. ()2-2、平面任意力系向作用面内任一点简化,主矩与简化中心有关。
( ) 2-3、当平面一任意力系对某点的主矩为零时,该力系向任一点简化的结果必为一个合力。
( ) 2-4、当平面一任意力系对某点的主矢为零时,该力系向任一点简化的结果必为一个合力偶。
工程力学(二)第1章 静力学基础
FT' FT P P
‹#› 10
§1-3 约束和约束力
1.3.1 约束的概念 1. 自由体与非自由体 在空间能向一切方向自由运动的物体,称 为自由体。 当物体受到了其他物体的限制,因而不能沿 某些方向运动时,这种物体为非自由体。 2. 约束 限制非自由体运动的物 体是该非自由体的约束。
F
A
P B
‹#› 22
例 题 1-2
解:碾子的受力图为:
F F
A
P P B A FNA B FNB
‹#› 23
例 题 1- 3
在图示的平面系统中,匀
H C
E A K D B
质球 A 重P1,物块B重P2,借其
G
本身重量与滑轮C 和柔绳维持
在仰角是q 的光滑斜面上。试
q
P2
分析物块B ,球A的受力情况,
连 接 , 底 边 AC 固 定 , 而 AB
边的中点D 作用有平行于固
C
F
A
定边AC 的力F,如图所示。
不计各杆自重,试画出杆AB 和BC 的受力图。
‹#› 27
例 题 1-4
B D
解:1. 杆 BC 的受力图。 杆两端B、C为光滑铰链连 接,当杆自重不计时,根据二 力平衡公理知B、C两处的约束 力FB、FC 必是沿BC且等值反 向。
并分别画出平衡时它们的受力 图。
P1
‹#› 24
例 题 1-3
解: 1.物块 B 的受力图。
H
FD E G
C D B P1 P2
D B K
A
q
P2
‹#› 25
例 题 1-3
工程力学练习册第2版答案
工程力学练习册第2版答案工程力学是研究物体在外力作用下的运动规律和内部应力分布的科学。
本练习册旨在帮助学生更好地理解和掌握工程力学的基本概念、原理和计算方法。
以下是《工程力学练习册第2版》的部分习题及答案。
习题一:静力学基础1. 某物体受到三个共点力的作用,分别为F1=200N,F2=300N,F3=100N。
若F1和F2的夹角为120°,求这三个力的合力大小。
答案:首先,根据矢量合成法则,我们可以使用余弦定理计算合力的大小: \[ F_{合} = \sqrt{F1^2 + F2^2 + 2 \cdot F1 \cdot F2 \cdot\cos(120°)} \]\[ F_{合} = \sqrt{200^2 + 300^2 + 2 \cdot 200 \cdot 300\cdot (-0.5)} \]\[ F_{合} = \sqrt{40000 + 90000 - 60000} \]\[ F_{合} = \sqrt{70000} \approx 264.58N \]2. 一个物体在水平面上,受到一个斜向上的拉力F=150N,与水平方向夹角为30°。
求物体受到的支持力和摩擦力的大小。
答案:将拉力分解为水平和垂直分量:\[ F_{水平} = F \cdot \cos(30°) = 150 \cdot 0.866 \approx 129.9N \]\[ F_{垂直} = F \cdot \sin(30°) = 150 \cdot 0.5 = 75N \] 物体在水平面上,支持力等于垂直向上的力,即:\[ N = F_{垂直} = 75N \]摩擦力的大小由水平力决定:\[ f = \mu \cdot N \]其中μ为摩擦系数,由于题目未给出,我们无法计算具体数值。
习题二:材料力学1. 一根直径为d=20mm,长度为L=2m的圆杆,在一端受到一个拉力P=10kN。
工程力学(1)-第2章
力的平移定理:可以把作用在刚体上点 的力 平行移到任一 力的平移定理 可以把作用在刚体上点A的力 F 可以把作用在刚体上点 点B,但必须同时附加一个力偶。这个力偶 ,但必须同时附加一个力偶。 对新作用点B的矩 的矩。 的矩等于原来的力 F对新作用点 的矩。 [证] 力F 证 力系 F,F′, F′ ′
• 简化的含义
力系的简化
力系简化的基础是力向一点平移定理 力系简化的基础是力向一点平移定理。 力向一点平移定理。
力系的简化
♣ 力向一点平移定理
力系的简化
♣ 力向一点平移定理
力向一点平移
F :力; O :简化中心; α :F与O所在平面;
r
n :α 平面的法线; en :n 方向的单位矢。
F
力系的简化ห้องสมุดไป่ตู้
平面一般力系向一点简化
向一点简化 一般力系(任意力系) 汇交力系+力偶系 一般力系(任意力系) 汇交力系 力偶系 未知力系) 已知力系) (未知力系) (已知力系) 主矢) 作用在简化中心) 汇交力系 力 , R'(主矢 , (作用在简化中心 主矢 作用在简化中心 主矩) 作用在该平面上) 力偶系 力偶 ,MO (主矩 , (作用在该平面上 主矩 作用在该平面上
Ry Y −1 ∑ =tg Rx ∑X
简化中心 (与简化中心位置无关) [因主矢等于各力的矢量和]
大小: 大小 主矩M 主矩 O 方向: 方向
MO =∑mO (Fi )
方向规定 + —
(转动效应 转动效应) 简化中心: (与简化中心有关 转动效应 简化中心: 与简化中心有关 与简化中心有关) (因主矩等于各力对简化中心取矩的代数和) 因主矩等于各力对简化中心取矩的代数和)
(完整版)工程力学课后习题答案
工程力学练习册学校学院专业学号教师姓名第一章静力学基础 1第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。
(a)(b)(c)2 第一章静力学基础(d)(e)(f)(g)第一章静力学基础 3 1-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)4 第一章静力学基础1-3 画出图中指定物体的受力图。
所有摩擦均不计,各物自重除图中已画出的外均不计。
(a)第一章静力学基础 5 (b)(c)(d)6 第一章静力学基础(e)第一章静力学基础7 (f)(g)8 第二章 平面力系第二章 平面力系2-1 电动机重P=5000N ,放在水平梁AC 的中央,如图所示。
梁的A 端以铰链固定,另一端以撑杆BC 支持,撑杆与水平梁的夹角为30 0。
如忽略撑杆与梁的重量,求绞支座A 、B 处的约束反力。
题2-1图∑∑=︒+︒==︒-︒=PF F FF F F B A yA B x 30sin 30sin ,0030cos 30cos ,0解得: N P F F B A 5000===2-2 物体重P=20kN ,用绳子挂在支架的滑轮B 上,绳子的另一端接在绞车D 上,如第二章 平面力系 9图所示。
转动绞车,物体便能升起。
设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C 三处均为铰链连接。
当物体处于平衡状态时,求拉杆AB 和支杆BC 所受的力。
题2-2图∑∑=-︒-︒-==︒-︒--=030cos 30sin ,0030sin 30cos ,0P P F FP F F F BC yBC AB x解得: PF P F AB BC 732.2732.3=-=2-3 如图所示,输电线ACB 架在两电线杆之间,形成一下垂线,下垂距离CD =f =1m ,两电线杆间距离AB =40m 。
电线ACB 段重P=400N ,可近视认为沿AB 直线均匀分布,求电线的中点和两端的拉力。
工 程 力 学1-2章
第1篇
静力学
• 静力学是研究物体在力的作用下处于平衡状态 的一般规律的科学。平衡是指物体相对于地球 处于静止或匀速直线运动的状态,是物体机械 运动中的一种特殊状态。 • 静力学的主要内容包括:确定研究对象,进行 受力分析,力系的简化,建立不同类型力系的 平衡条件等。力系的平衡条件在工程实际中极 为重要,它是设计结构、构件及机械零件时进 行静力计算的基础。静力学是学习材料力学、 运动学和动力学的基础。
• 1.2 静力学公理 • 1.2.1 二力平衡公理 • 作用于刚体上的两个力平衡的充分与必要 条件是:这两个力大小相等、方向相反、 作用在同一条直线上(等值、反向、共 线),即 FA=-FB (1.1)
图1.2
图1.3
• 对于变形体来说,该条件是平衡的必要条 件,但不是充分条件。如柔索受两个等值、 反向、共线的压力作用就不能平衡。 • 在两个力作用下处于平衡的物体称为二力 体,若为杆件,则称为二力杆。 • 1.2.2 加减平衡力系公理 • 推论1 力的可传性原理 • 作用于刚体上的力,可沿其作用线移动到 刚体内任一点,而不改变该力对刚体的作 用效应。
图1.4
• 对刚体来说,力的三要素为:力的大小、 方向和作用线。 • 1.2.3 力的平行四边形法则 • 作用于物体同一点的两个力可以合成为一 个合力,合力作用于该点,其大小和方向 由这两个力为邻边构成的平行四边形的对 角线决定。其矢量表达式为
FR=F1+F2 (1.2) • 即合力矢等于两分力矢的矢量和。
• • •
•
用点是物体相互作用位置的抽象化。 按照力系中各力作用线在空间的分布情况, 力系可分为: ①汇交力系 各力作用 线相交于一点的力系。 ②平行力系 各力作用 线相互平行的力系。 ③一般力系 各力作用 图1.1 线既不相互平行又不相 交的力系。
工程力学基础第2章 静力学的基本概念和受力分析
(二)常见约束的约束力性质
图2-33
(二)常见约束的约束力性质
几个构件固连在一起的连接处称为刚接点,构件之间的夹角保 持不变,如曲杆的拐角处。刚接点处的约束与固定端相似。 固定端与光滑铰链都是刚性铰,可以看做是柔性铰的两种极限 情况。在通常情况下,将构件的连接简化为刚性铰进行分析计 算,得到的结果就可以满足工程的要求。更精确的分析则要求 采用复杂的柔性铰模型,如机器人的柔性关节(图2-34
(二)常见约束的约束力性质 1 柔索 柔索指不计自重的、不可伸长且无限柔软的细长物 体。
图2-15
(二)常见约束的约束力性质
图2-16
(二)常见约束的约束力性质 2 光滑接触面 光滑接触面指摩擦阻力可以忽略不计的两物 体的刚性接触面。
图2-17
(二)常见约束的约束力性质
图2-18
(二)常见约束的约束力性质
(二)分离体和受力图
在进行受力分析时,为了清晰和便于计算,需要把研究对象从 其周围物体中分离出来,画出其简图,单独地考察它,这种被 解除了约束的物体就称为分离体或自由体;然后,将分离体所 受的全部力,包括主动力和约束力,以力矢的形式画在简图上, 这种图形称为分离体的受力图或自由体图。受力图形象地表示 了研究对象的受力情况。 解除约束原理:受约束的物体在某些主动力和约束的作用下处 于平衡状态,若将其部分或全部约束除去,代之以相应的约束 力,则物体的平衡不受影响。
图2-29
(二)常见约束的约束力性质 6 固定端和转动约束 固定端是一种常见的约束类型,其结 构特点为被约束体的一部分固嵌于约束体内,如车床上固定工 件的卡盘和固定刀具的刀架,固定电线杆和建筑物立柱的混凝 土地基,固定雨篷的墙壁等,如图2-30所示。
图2-30
第二张 静力学基础-(2)受力分析
2.2 受力分析基础
2. 计算简图 在实际结构中,结构的受力和变形情况非常复杂,影响因素也很多,完全按
实际情况进行结构计算是不可能的,而且计算过分精确,在工程实际中也是不必 要的。为此,我们需要用一种力学模型来代替实际结构,它能反映实际结构的主 要受力特征,同时又能使计算大大简化。
(1)反映结构实际情况——计算简图能正确反映结构的实际受力情况,使计算 结果尽可能准确。
(1)柔性约束 绳索、皮带、链条等柔
性物体构成柔体约束。柔体约 束反力的方向沿着它的中心线 且背离研究物体,即为拉力。 如图所示。
2.2 受力分析基础
(2)光滑接触面约束 当两物体在接触面处的摩擦力很小而可略去不计时,就是光滑接触面约束。
光滑接触面约束反力的方向垂直于接触面并通过接触点,指向研究物体。如图所 示。
也不能转动,因此,这种支座对构件除产生水平反力和竖向反力,还有一个阻止 转动的力偶。图2.32为固定端支座简图及支座反力。
2.2 受力分析基础
如图2.33(a)中屋面挑梁WTL1和楼面挑梁XTL1等固结于墙中,如图2.33(b) 中固结于独立基础JC2的钢筋混凝土柱KZ1。它们的固结端就是典型的固定端支座。
图2.33(a)
图2.33(b)
2.2 受力分析基础
支座的简化 可动铰支座:可以移动,绕A点可以转动,但沿支座杆轴方向不能移动。 固定铰支座:杆端A绕A点可以自由转动,但沿任何方向不能移动。
固定端支座:A端支座为固定端支座,使A端既不能移动,也不能转动。
(a)可动铰支座
(b)固定铰支座
(c)固定端支座
2.2 受力分析基础
[例2.10] 图2.43支架中,悬挂的重物重W,横梁AB和斜杆CD的自重不计。试分别 画出斜杆CD、横梁AB及整体的受力图。
第三版工程力学(大连理工出版社)知识点1,2章总结
第三版工程力学(大连理工大学出版社)第一、二章知识点总结教材主编:邹建奇、李妍、周显波第一篇静力学第一章静力学基本知识1.力的三要素:大小、方向、作用点。
2.力的平衡:二力平衡、三角形法则与平行四边形法则。
3.约束与约束力:(1)光滑接触面约束:(2)柔体约束:(3)光滑铰链约束:①固定铰链;②可动铰链。
(4)链杆约束:(5)轴承约束:①向心轴承;②止推轴承。
4.画受力图步骤:(1)确定研究对象,将其从周围物体中分离出来,并画出其简图,称为画分离体图。
研究对象可以是一个,也可以由几个物体组成,但必须将它们的约束全部解除。
(2)画出全部的主动力和约束力。
主动力一般是已知的,故必须画出,不能遗漏,约束力一般是未知的,要从解除约束处分析,不能凭空捏造。
(3)不画内力,只画外力。
内力是研究对象内部各物体之间的相互作用力,对研究对象的整体运动效应没有影响,因此不画。
但外力必须画出,一个也不能少,外力是研究对象以外的物体对该物体的作用,它包括作用在研究对象上全部的主动力和约束力。
(4)要正确地分析物体间的作用力与反作用力,当作用力的方向一经假定,反作用力的方向必须与之相反。
当研究对象由几个物体组成时,物体间的相互作用力是内力,也不必画,若想分析物体间的相互作用力必须将其分离出来,单独画受力图,内力就变成了外力。
第二章力系的简化与平衡章节复习框架平面力系1.平面汇交力系(1)几何法--力多边形法则:依据了的平行四边形法则或三角形法则(如图示例所示)。
推广到由n个力组成的平面汇交力系,可得如下结论:平面汇交力系的合力是将力系中各力矢量依次首尾相连得折线,并将折线由起点向终点作有向线段,该有向线段(封闭边)表示该力系合力的大小和方向,且合力的作用线通过汇交点。
表达式为:iRFF∑=(2)解析法:①在力F所在的平面内建立直角坐标系Oxy,x与y轴的单位矢量为i、j,有力的投影定义可得。
⎪⎩⎪⎨⎧=⋅==⋅=),cos(),cos(jFFjFFiFFjFFyx力F的解析式为:jFiFFyx+=。
工程力学——1-2力
一、力的定义
力是物体间的相互作用, 力是物体间的相互作用,其效果是使物体的 运动状态发生改变或 运动状态发生改变或物体发生变形
静力学只研究刚体,因此, 静力学只研究刚体,因此,只讨论物体在力 刚体 的作用下整体的平衡问题。 的作用下整体的平衡问题。
力的效应: 二、 力的效应: ①运动效应(外效应) :力使物体运动状态发生改变。 ②变形效应(内效应):力使物体形状发生改变。 三、力的三要素:大小,方向,作用点 力的三要素: a力的大小是指物体间相互作用的 强弱程度。 b力的方向包含方位和指向两个含 义。 c力的作用点是指力对物体作用的 位置。 力的作用线: 力的作用线:沿力矢F的 直线KL称为力的作用黑体 印刷体用黑体 字,手写时用 字,手写时用 表示。 表示。
L
v 或 F或F
F
四、力的图示法
力是一个具有大小和方向的量,所以力是 矢量。图示时,通常用一条带箭头的有向线段 来表示。 • 线段的长度(按选定的比例尺)表示力的大 小;线段的方位和箭头的指向表示力的方向; 线段的起点或终点表示力的作用点。 • 通过力的作用点沿力的方向的直线,称为 力的作用线。 如图1.1所示。 • •
•
图1.1
• d、力的单位 力的单位 力的单位,采用国际单位时为: 力的单位,采用国际单位时为: 牛顿(N)或 千牛(顿)kN 牛顿( ) 千牛(
理论力学第1章 1-2
刚体
F
变形体
P
P
P
P
• 不平行三力平衡
基本原理
作用在刚体上、作用线处于同一平面 内的三个互不平行力平衡的必要与充分 条件是:三力的作用线必须汇交于一点, 三力矢量按首尾相连的顺序构成一封闭 三角形,或称为力三角形封闭。
• 不平行三力平衡
作用在刚体上的三个力相 互平衡时,若其中两个力的 作用线相交于一点,则第三 个力的作用线必通过该点 (且在同一个平面内)
第一篇 静力学
主要内容: 研究刚体在力系作用下的 平衡规律
1. 物体的受力分析 2. 力系的简化 3. 刚体的平衡条件
第一章 静力学基础
§1-1 静力学基本概念
1. 质点与刚体 2. 力与力系 3. 力系平衡
基本概念
1.刚体的概念
刚体是指在力的作用下不变形的物体
F
B A
2.力与力系的概念
• 4.刚化原理
若变形体在某个力系作用下处于平衡 状态,则将此物体固化成刚体(刚化)时其 平衡不受影响.
§1-2 静力学基本原理
1. 二力平衡公理 2. 加减平衡力系原理 3. 作用与反作用定律 4. 刚化原理
• 1.二力平衡公理
基本原理
作用在刚体上的两个力平衡的 必要和充分条件是:两力等值 . 反向. 共线
F2 F2
F1
F1
二力构件:在两个力作用下 处于平衡的构件。
P
基本原理
B
FB
B
A
C
ቤተ መጻሕፍቲ ባይዱ
C
FC
• 2.加减平衡力系原理
基本原理
在作用于刚体的力系中,加上或减去任 意个平衡力系,不改变原力系对刚体的作 用效应。
专升本工程力学第1-2章 绪论和刚体静力分析基础
模型一:质点——具有质量而形状、大小可忽略不计的力学 模型。 模型二:刚体——在受力时保持形状、大小不变的力学模型。
一个物体究竟应该看作质点还是刚体,完全取决于所研究问
题的性质,而不决定于物体本身的形状和尺寸。
模型三:变形体——当分析强度、刚度和稳定性问题时, 由于这些问题都与变形密切相关,因而即使极其微小的变
形也必须加以考虑。
9
机电工程学院
2013-7-25
1.2 工程力学的力学模型与研究方法
2)工程力学的研究方法
理论分析 试验分析 计算机分析
10
机电工程学院
2013-7-25
本章小结
1.1 工程力学的研究对象与基本任务
相对于地球静止或以速度远小于光速而运动的宏观物体 3个基本任务
1.2 工程力学的力学模型与研究方法
F1 F1 C F3 O A FR B F2 F2
29
机电工程学院
2013-7-25
2.1 力与力偶
2.1.1 力的概念和性质 2.1.2 力对点之矩
2.1.3 力偶的概念和性质
30
机电工程学院
2013-7-25
2.1.2 力对点之矩
1) 力矩的概念 人们从生产实践活动中得知,力不仅能够使物体沿某方向 移动,还能够使物体绕某点产生转动。 转动效应的大小不仅与F的大小和方向有关,而且与O点 到F作用线的垂直距离d有关。
7
机电工程学院
2013-7-25
第1章 绪论
1.1 工程力学的研究对象与基本任务 1.2 工程力学的力学模型与研究方法
8
机电工程学院
2013-7-25
1.2 工程力学的力学模型与研究方法
1)工程力学的力学模型 研究对象复杂,必须根据研究问题的性质,抓住其主要特征, 忽略一些次要因素,抽象出力学模型。
理论力学-第2章
力偶与力偶系
♣ 力偶的性质
性质二:只要保持力偶矩矢量不变,力偶可在作用 性质二:只要保持力偶矩矢量不变, 面内任意移动和转动,其对刚体的作用效果不变。 面内任意移动和转动,其对刚体的作用效果不变。
F F F′ F F′ F′
力偶与力偶系
♣ 力偶的性质
性质三:保持力偶矩矢量不变, 性质三:保持力偶矩矢量不变,分别改变力 和力偶臂大小,其作用效果不变。 和力偶臂大小,其作用效果不变。
力对点之矩与力对轴之矩
♣ 力对轴之矩
力对轴之矩的计算
方法二: 方法二: 将力向三个坐标轴方 向分解,分别求三个分力对轴之 向分解 分别求三个分力对轴之 矩。
力对点之矩与力对轴之 矩♣ 力Βιβλιοθήκη 轴之矩力对轴之矩代数量的正负号
力对点之矩与力对轴之 矩
♣ 力对轴之矩
力对轴之矩与力对点之矩的关系
MO ( F ) = Fd
M = ∑Mi
i=1
n
力偶与力偶系
已知: 结构受力如图所示, 已知: 结构受力如图所示 图中
例题 1
M, r均为已知 且l=2r. 均为已知,且 均为已知 试: 画出 和BDC杆的受力图; 画出AB和 杆的受力图; 杆的受力图 求: A、C二处的约束力。 二处的约束力。 二处的约束力
力偶与力偶系
力系的简化
力系简化的基础是力向一点平移定理
♣ 力向一点平移定理
力系的简化
♣ 力向一点平移定理
力向一点平移
F :力; :力 e O :简化中心 简化中心; 简化中心
α :F与O所在平面 所在平面; 与 所在平面
n :α 平面的法线 平面的法线; en :n 方向的单位矢。 方向的单位矢。
力系的简化
工程力学(静力学与材料力学)(第2版)教学课件第1章 静力学基础
工程力学(静力学与材料力学)
18
杆DE为二力杆,约束力FD的作用线沿连线DE。 约束力FE的作用线也沿连线DE。 FCx F'Cx , FCy F'Cy 或 FCx F'Cx , FCy F'Cy
工程力学(静力学与材料力学)
19
本章结束
工程力学(静力学与材料力学)
20
3.活动铰支 可沿固定支承平面滚动的铰链支座,称为活动铰 链支座,简称活动铰支。 约 束:仅限制物体受约束处垂直于支承平面的 线位移 约束力:作用线垂直于支承平面并指向被连接物
工程力学(静力学与材料力学)
12
光滑圆柱类铰链 4.力学与材料力学)
13
光滑球铰链
由光滑球与球窝构成的约束,称为球铰。 约 束:限制球心在三维空间任意方向的线位移 约束力:约束力通过球心,并可指向空间任一方向,通 常用过球心的三个互垂分力Fx,Fy与Fz表示
工程力学(静力学与材料力学)
8
光滑面约束
摩擦力可忽略不计的面约束,称为光滑面约束。
约 束:限制物体接触点沿公 法线且指向约束方向的位移 约束力:沿公法线方向指向被 约束的物体
工程力学(静力学与材料力学)
9
光滑圆柱类铰链
1. 铰 链
物体间圆柱形孔销连接,简称铰链,摩擦力一般忽略不计. 约 束:限制物体受约束处垂直销钉轴 线方位的线位移 约束力:作用线通过且垂直销钉轴线的 力F, 也可用互垂分力Fx与Fy表示
力是矢量,一般用黑体字表示,其模用白体字表示
工程力学(静力学与材料力学)
2
刚体
力作用下形状与尺寸均不改变的物体,称为刚体。 如果物体的变形不大,或变形对于所研究的问题影响 不大,即可将物体抽象为刚体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《建筑力学》第一分册
1
课程简介
工 程 力 学
理论力学
运动、平衡(外效应) 刚体 变形、内力(内效应)
材料力学 结构力学
变形固体 结构的组成规律、合理 形式,计算原理、方法
技术基础课。研究物体受力后的效应
2
理 论 力 学
静
力
分
析
物体在外力作用下的平衡规律
运动与动力分析
物体在外力作用下的运 动规律,并建立运动与受力 之间的定量关系。
NB B NB B H F A D
B E
C
C
NC
表示法二:
NAx
NA
30
§1–4
E D
受力分析和受力图
例题1-3 如图所示压榨机中,杆 AB
和BC 的长度相等,自重忽略不计。
A ,B,C ,E 处为铰链连接。已知
B A l
活塞 D 上受到油缸内的总压力为 F =
l C
3kN,h = 200 mm,l =1500 mm。试 画出杆 AB ,活塞和连杆以及压块 C
27
§1–4
受力分析和受力图
注意: 1、凡属二力构件必须按二力平衡条件画反 力 2、充分利用三力平衡汇交定理 3、注意作用力和反作用力的关系 4、力是矢量,应有矢量符号
28
§1–4
例题1-1
受力分析和受力图
在图示的平面系统中,匀质球A重为P,借本身重量和
摩擦不计的理想滑轮C 和柔绳维持在仰角是 的光滑斜面上,
§1–2
静力学公理
推论 (力在刚体上的可传性) 作用于刚体的力,其作用点可以沿作用线 在该刚体内前后任意移动,而不改变它对该刚 体的作用
F A
=
B F A F2
F1
=
A
B
F1
11
§1–2
静力学公理
推论 (三力汇交定理) 当刚体在三个力作用下平衡时,设其中两力的 作用线相交于某点,则第三力的作用线必定也通过 这个点。
A B N A
B
19
§1–3 约束和约束反力
常见的几种类型的约束
(1) 固定铰链支座:
N
Ny
Nx
20
§1–3 约束和约束反力
常见的几种类型的约束
(2)
N
活动铰链支座:
N
21
§1–3 约束和约束反力
常见的几种类型的约束
光滑圆柱铰链约束实例
22
§1–3 约束和约束反力
常见的几种类型的约束
23
§1–3 约束和约束反力
常见的几种类型的约束 4、光滑球铰链约束:
N A
B
24
§1–3 约束和约束反力
常见的几种类型的约束 5、双铰链刚杆约束:
NA C A
A
B NB
B
25
§1–3 约束和约束反力
常见的几种类型的约束 6、插入端约束:
26
§1–4
受力分析和受力图
画受力图的方法与步骤: 1、取分离体(研究对象) 2、画出研究对象所受的全部主动力(使物体产生 运动或运动趋势的力) 3、在存在约束的地方,按约束类型逐一画出约束 反力(研究对象与周围物体的连接关系)
静力学研究的两个基本问题 1、物体的受力分析和力系的等效简化 2、力系的平衡条件及其应用
8
§1–2
静力学公理
公理一 (力平行四边形公理) 作用于物体上任一点的两个力可合成为作用 于同一点的一个力,即合力。合力的矢由原两 力的矢为邻边而作出的力平行四边形的对角矢 来表示。
F2 R
即,合力为原两力的矢量和。
刚体是一种理想化的力学模型。 一个物体能否视为刚体,不仅取决于变 形的大小,而且和问题本身的要求有关。 3、力——力是物体相互间的机械作用,其作用 结果使物体的形状和运动状态发生改变。
6
§1–1
力的效应
力的三要素
静力学的基本概念
外效应—改变物体运动状态的效应 内效应—引起物体变形的效应 大小 方向 作用点 确定力的必要因素
B A C
P
NA
P
NB
NC
33
小结
1、理解力、刚体、平衡和约束等重要概念 2、理解静力学公理及力的基本性质 3、明确各类约束对应的约束力的特征 4、能正确对物体进行受力分析
34
作业:P19-20 1—1 c,d,g
1– 2
b,c,e
1-3
35
力的表示法 ——力是一矢量,用数学上的矢量 记号来表示,如图。
F
力的单位 —— 在国际单位制中,力的单位是牛顿
(N) 1N= 1公斤•米/秒2 (kg •m/s2 )。
7
§1–1
力 基本概念
静力学的基本概念
系——作用于同一物体或物体系上的一群力。
等效力系——对物体的作用效果相同的两个力系。
平衡力系——能使物体维持平衡的力系。 合 力——在特殊情况下,能和一个力系等效 的一个力。
常见的几种类型的约束 1、柔绳、链条、胶带构成的约束:
15
§1–3 约束和约束反力
常见的几种类型的约束
A
16
§1–3 约束和约束反力
常见的几种类型的约束 2、理想光滑接触面约束
17
§1–3 约束和约束反力
常见的几种类型的约束
光滑接触面约束实例
18
§1–3 约束和约束反力
常见的几种类型的约束 3、光滑圆柱铰链约束
3
第一章
静力学基本公理与 物体的受力分析
理论力学
4
第 一 章 §1–1 工 程 静 力 学 基 础
目录
静力学的基本概念
§1–2 §1–3
§1–4
静力学公理 约束和约束反力
受力分析和受力图
5
§1–1
静力学的基本概念
1、平衡——平衡是物体机械运动的特殊形式,是 指物体相对地球处于静止或匀速直线运动 状态。 2、刚体——在外界的任何作用下形状和大小都始 终保持不变的物体。或者在力的作用下, 任意两点间的距离保持不变的物体。
的受力图。
31
§1–4
受力分析和受力图
解: 1.杆AB 的受力图。 2. 活塞和连杆的受力图。
B E D A
FBA
y
F
FA
3. 压块 C 的受力图。
B A l
l
C
y
FCB
B
x
C F Cx
x
FAB
FBC
FCy
32
§1–4
受力分析和受力图
思考题
Q
P
A
Q B NAx NAy NB
P
NBy
F1
证明:
R1 F1 F2 A2 F2
A1 A A3
=
F3
A A3
F3
12
§1–2
静力学公理
公理四 (作用和反作用公理) 任何两个物体间的相互作用的力,总是大小相 等,作用线相同,但指向相反,并同时分别作用于 这两个物体上。
公理五 (刚化公理) 设变形体在已知力系作用下维持平衡状态,则 如将这个已变形但平衡的物体变成刚体(刚化), 其平衡不受影响。
矢量表达式:R= F1+F2
A F1
9
§1–2
静力学公理
公理二 (二力平衡公理) 要使刚体在两个力作用下维持平衡状态, 必须也只须这两个力大小相等、方向相反、沿
同一直线作用。
公理三 (加减平衡力系公理) 可以在作用于刚体的任何一个力系上加上
或去掉几个互成平衡的力,而不改变原力系对
刚体的作用。
10
13
§1–3 约束和约束反力
基本概念:
1、自由体: 可以任意运动ቤተ መጻሕፍቲ ባይዱ获得任意位移)的物体。
2、非自由体:不可能产生某方向的位移的物体。 3、约束: 由周围物体所构成的、限制非自由体 位移的条件。 4、约束反力: 约束对被约束体的反作用力。 5、主动力: 约束力以外的力。
14
§1–3 约束和约束反力
绳的一端挂着重为Q 的物体B。试分析物体B、球A 和滑轮C 的受 力情况,并分别画出平衡时各物体的受力图。
TD
G D F B
解:
(1) (2) (3) 物体B 受两个力作用:
E B A
C
Q
球A 受三个力作用: 作用于滑轮C 的力:
A P
P TE
TG C TG
29
NF
NG
§1–4
受力分析和受力图
例题1-2 等腰三角形构架ABC 的顶点A、B、C 都用铰链连 接,底边AC 固定,而AB 边的中点D 作用有平行于固定边AC 的力F,如图1–13(a)所示。不计各杆自重,试画出AB 和BC 的受力图。 解: 1、杆BC 所受的力:
2、杆AB 所受的力:
NB B D D F NAy 表示法一: A F A