七年级数学解一元一次方程同步练习4
七年级数学一元一次方程练习题(含答案)
七年级解一元一次方程专题训练一、解下列一元一次方程:1、2+(x+1)=42、2(2-x )+(x+1)=03、(3-x )+2(x+1)=04、0.2x-3(x+1)=255、3+x+4-6=2x+106、4x+3(x-3)=57、0.9(x-3)+0.8(2+x )=10 8、x 23x2=+-9、5(0.3x+0.6)-2(0.8-x )=0.6 10、3(2x+7)=5+2(x-4) 11、x 23x6726x +=-++ 12、2(3x+1)-2=4x13、2[2(7-21)+4x]=5 14、4x 6.04x32=++15、7{2-5[3-4(x-2)+2]-6}=116、61}1]2)62(3)5[(21{31=-+--+x x17、1x 232-x 15+=+-)( 18、1524213-+=-x x19、2233554--+=+-+x x x x20、6.12.045.03=+--x x二、一元一次方程与实际问题21、甲一班有学生84人,乙班有学生66人,如果要求甲班人数是乙班的32,应从甲班调多少人到乙班去?22、某服装商城进了一款衣服,进价为400元/件,又以某一销售价卖出,结果商城盈利25%,问这款衣服的销售价是多少元?23、一轮船往返甲、乙两城之间,从下游往上游逆水航行需14时,从上游往下游顺水航行需7时,水流速度是3.5千米/时,求轮船在静水中的速度。
24、甲、乙两人完成一件工作,甲单独做需要8小时才能完成,乙单独做只需2小时就能完成。
如果甲加先做3小时,剩下的工作两个人共同完成,问还需几小时完成?参考答案一、解下列一元一次方程:1、【答案】x=1解:2+(x+1)=42+x+1=4x+3=4x=4-3x=12、【答案】x=5解;2(2-x)+(x+1)=04-2x+x+1=0(-2+1)x+(4+1)=0-x+5=03、【答案】 x=-5解:(3-x)+2(x+1)=03-x+2x+2=0x+5=0x=-54、【答案】x =-10解:0.2x-3(x+1)=250.2x-3x-3=25-2.8x=28x =-105、【答案】x=-9解:3+x+4-6=2x+10 1+x=2x+10 x-2x=10-1 - x=9 x=-96、【答案】x=2 解:4x+3(x-3)=5 4x+3x-9=5 7x-9=57x=14 x=27、【答案】x=17109解:0.9(x-3)+0.8(2+x )=10 0.9x-2.7+1.6+0.8x=10(0.9x+0.8x )+(-2.7+1.6)=10 1.7x-1.1=10 1.7x=111 x=171118、【答案】x=2解:x 23x 2=+-x 36x 2=+-2x 8x 48x 3x x 3x -8x 36x 2=-=--=--==+-9、【答案】358x -=解:5(0.3x+0.6)-2(0.8-x )=0.61.5x+3-1.6+2x=0.6(1.5+2)x+(3-1.6)=0.6 3.5x+1.4=0.6 3.5x=0.6-1.4 3.5x=-0.8358x -=10、【答案】x= -6解:3(2x+7)=5+2(x-4)6x+21=5+2x-8 6x-2x=5-8-21 4x=-24 x= -611、【答案】34x =解:34x -2015x -14-18-126x -12x -3x 6x 1212x -14183x x 266x -726)x 3x 23x6726x ===+=+++=+++=-++)()((12、【答案】解:2(3x+1)-2=4x 6x+2-2=4x 6x-4x=0 x=013、【答案】x=821-解:2[2(7-21)+4x]=52[14-1+4x]=5 2(13+4x )=5 26+8x=5 8x=-21x=821-14、【答案】2770解;2770x 14x 4.5216x 4.516x 4.2x 324x 6.04x32==-==++=++15、【答案】35121x =解; 7{2-5[3-4(x-2)+2]-6}=17[2-5(3-4x+8+2)-6]=1 7(2-15+20x-50-6)=1 7(20x-69)=1 140x-483=1140x=48435121x =16、【答案】解:61}1]2)62(3)5[(21{31=-+--+x x 两边同时乘以3得; 211]2)62(3)5[(21=-+--+x x 两边同时乘以2得;12]2)62(3)5[(=-+--+x x去掉中括号,(x+5)-3(2-6x )+2-2=1 去小括号, x+5-6+18x=1 19x=2192x =17、【答案】27x =解:27x 288x -10183x -x 518x 3105x -6x 310-x 51x 2310x 551x 232-x 15=-=--=--=+-=-+=+--+=+-)(18、 【答案】71x -= 解:71x 17x 5104x 815104x 85x 15102x 421x 351524213-=-=+-=--+=--+=--+=-)()()(x x19、【答案】x=6解:2233554--+=+-+x x x x6(x+4)-30x+150=10(x+3)-15(x-2)6x+24-30x+150=10x+30-15x+30(6-30-10+15)x=30+30-24-150 -19x=-114x=620、【答案】x=-9.2 解:2.9276302006016)5020(1620050602016)4(50)3-x 20106.124)x 1053)-x 10106.12.045.03-==-++=-=---=+-=+-=+--x x x x x x x x (两边同时乘以((,母同时乘以左边,每个分式分子分二、一元一次方程与实际问题21、【答案】应从甲班24人到乙班去解:设应从甲班调x 人到乙班去 此时:甲班人数=84-x 乙班人数=66+x因为甲班人数是乙班的32,则有(84-x )=32(66+x )3(84-x )=2(66+x )252-3x=132+2x (-3x+2x )=132-252-5x=-120 x=24检验:甲班人数=84-24=60 乙班人数=66+24=90329060= 符合题意。
七年级数学解一元一次方程同步测试题[修改版]
第一篇:七年级数学解一元一次方程同步测试题【基础过关】一、选择题1、方程=x-2的解是()A.5B.-5C.2D.-22、解方程x=,正确的是( )A.x==x=;B.x=,x=C.x=,x=;D.x=,x=3、下列变形是根据等式的性质的是()A.由2x﹣1=3得2x=4B.由x2=x得x=1C.由x2=9得x=3D.由2x﹣1=3x得5x=﹣14、下列变形错误的是()A.由x+7=5得x+7-7=5-7;B.由3x-2=2x+1得x=3C.由4-3x=4x-3得4+3=4x+3xD.由-2x=3得x=-5、已知方程①3x-1=2x+1②③④中,解为x=2的是方程()A.①、②和③;B.①、③和④C.②、③和④;D.①、②和④二、填空题1、判断:方程6x=4x+5,变形得6x+4x=5()改正:________________________________________________.2、方程3y=,两边都除以3,得y=1()改正:________________________________________________.3、某数的4倍减去3比这个数的一半大4,则这个数为__________.4、当m=__________时,方程2x+m=x+1的解为x=-4.当a=____________时,方程3x2a-2=4是一元一次方程.6、求作一个方程,使它的解为-5,这个方程为__________.三、解下列方程(1)6x=3x-12 (2)2y―=y―3(3)-2x=-3x+8(4)56=3x+32-2x(5)3x―7+6x=4x―8(6)7.9x+1.58+x=7.9x-8.42【知能升级】1、2a—3x=12是关于x的方程.在解这个方程时,粗心的小虎误将-3x看做3x,得方程的解为x=3.请你帮助小虎求出原方程的解.2、在代数式|()+6|+|0.2+2()|的括号中分别填入一个数,使代数式的值等于0.答案【基础过关】一、选择题1、A2、C3、A4、D5、D二、填空题1、错,6x-4x=52、错,y=3、24、5,6、x+5=0三、解下列方程1、x=-42、y=3、x=84、x=245、x=6、x=-10【知能升级】1、x=-32、-4,-0.1第二篇:七年级数学《解一元一次方程》教学设计第六章一元一次方程6.2 解一元一次方程(三)——去分母天水市秦州区藉口中学杨文蕴【教学目标】掌握去分母解方程的方法,体会到转化的思想。
苏科版初中数学七年级上册《4.3 用一元一次方程解决问题》同步练习卷
苏科新版七年级上学期《4.3 用一元一次方程解决问题》同步练习卷一.解答题(共30小题)1.在暑假期间,小红、小兰等同学随家人一同游玩,看见景区门口有如下票价提示:“成人:35元/张;学生:按成人票5折优惠;团体票(15人以上含15人):按成人票价六折优惠”.在购买门票时,小红与她爸爸有如下对话,爸爸:“大人门票每张35元,学生门票对折优惠,我们共有12人,共需350元”.小红:“爸爸,等一下,让我算一算,换一种方式买票是不是可以更省钱”.问题:(1)小红他们一共去了几个成人,几个学生?(2)请你帮小红算一算,用哪种方式买票更省钱?说明理由.2.小美为书房买灯,现有两种灯可供选购,其中一种是9瓦(即0.009千瓦)的节能灯,售价为49元/盏;另一种是40瓦(即0.04千瓦)的白炽灯,售价为18元/盏.假设两种灯的照明亮度一样,使用寿命都可以达到2800小时,已知小美家所在地的电价是每千瓦时0.5元.(1)设照明时间是x小时,请用含x的代数式分别表示用一盏节能灯的费用和用一盏白炽灯的费用;(注:费用=灯的售价+电费)(2)当照明时间是多少时,使用两种灯的费用一样多;并请直接写出:照明时间在什么范围内,选用白炽灯费用低;照明时间在什么范围内,选用节能灯费用低.(3)小美想在这两种灯中选购两盏:假定照明时间是3000小时,使用寿命都是2800小时,请你帮他设计费用最低的选灯方案,并说明理由.3.为了鼓励居民节约用水,某市自来水公司对每户月用水量进行计费,每户每月用水量在规定a吨以下的收费标准相同;规定a吨以上的超过部分收费标准相同,以下是小明家1﹣4月份用水量和交费情况:根据表格中提供的信息,回答以下问题:(1)求出规定吨数a;(2)若小明家6月份缴水费29元,则6月份用水多少吨?4.“十一”长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,已知两家相距10千米,小张出发必过小李家.(1)若两人同时出发,小张车速为20千米,小李车速为15千米,经过多少小时能相遇?(2)若小李的车速为10千米,小张提前20分钟出发,两人商定小李出发后半小时二人相遇,则小张的车速应为多少?5.华联超市用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)(1)该商场购进甲、乙两种商品各多少件?(2)该超市将购进的甲、乙两种商品全部卖完后一共可获得多少利润?6.桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15cm,各装10cm高的水,下表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没有溢出,使得甲、乙、丙三杯内水的高度比变为3:4:5.若不计杯子厚度,则甲杯内水的高度变为多少cm?7.为发展校园足球运动,某城区四校决定联合购买一批足球运动装备.市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少元;(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花发费用;(3)在(2)的条件下,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?8.2014年元旦将至,“春风电器”商场一款“格力”电暖器的原价为每件900元,为了参与市场竞争,商场按原价打9折后再让利40元销售,此时仍可获利10%,此商品的进价是多少元?9.某商场将甲种商品降价40%,乙种商品降价20%开展优惠促销活动.已知甲、乙两种商品的原销售单价之和为140元,某顾客参加活动购买甲、乙各一件,共付100元.(1)甲、乙两种商品原销售单价各是多少元?(2)若商场在这次促销活动中甲种商品亏损25%,乙种商品盈利25%,那么商场在这次促销活动中销售甲、乙两种商品各一件是盈利还是亏损了?如果是盈利,盈利了多少元;如果是亏损,亏损了多少元.10.为表彰县“著名苏区三好学生”,县中小学统一组织文艺汇演.甲、乙两校共92名学生,(其中甲校人数多于乙校人数,且甲校人数不够90名)准备统一购买服装参加演出,下面是某服装厂给出的演出服装的价格表:如果两所学校分别单独购买服装,一共应付5000元.(1)若甲、乙两校联合起来购买服装,则比各自购买服装共可以节省多少元?(2)甲、乙两所学校各有多少名学生准备参加演出?(3)如果甲校有10名同学被调去参加“著名苏区三好学生”书法绘画比赛,不能参加演出,请你为这两所学校设计一种最省钱的购买服装方案.11.某租赁公司拥有100辆轿车,当每辆轿车的月租金为3000元时,可全部租出,当每辆轿车的月租金每增加50元时,未租出的轿车将会增加一辆,租出的轿车每辆每月公司需要保养费150元,未租出的轿车每辆每月公司需要保养费50元.(1)已知10月份每辆轿车的月租金为3600元,该月租出多少辆轿车?(2)已知11月份的保养费总开支为12900元,问该月租出了多少辆轿车?12.A、B两个动点在数轴上做匀速运动,它们的运动时间以及位置记录如下.(1)根据题意,填写下列表格;(2)A、B两点如果相遇,则相遇时的时间t=;相遇时在数轴上表示的数为;(3)A、B两点能否相距18个单位长度,如果能,求相距18个单位长度的时间t;如不能,请说明理由.13.“十一”期间人民商场回报顾客,实行“迎国庆,大酬宾”活动,具体要求如下:购物200以下不优惠,购物200~500元按9折优惠;购物500~1000元按8折优惠;1000元以上按7.5折优惠,活动期间某人两次购物分别用去168元和432元,如果改为一次性购物,那么可以比两次购物节省多少钱?14.为了节约用水,某市规定:每户居民每月用水不超过10立方米,按每立方米4元收费;超过10立方米,则超过部分按每立方米8元收费(1)小明家10月用水9立方米应交水费多少元?小强家10月用水11立方米应交水费多少元?(2)如果某户居民十月份缴纳水费72元,则该户居民十月份实际用水为立方米.15.已知5台A型机器一天的产品装满8箱后还剩4个,7台B型机器一天的产品装满11箱后还剩1个,每台A型机器比B型机器一天多生产1个产品.(1)求每箱装多少个产品.(2)3台A型机器和2台B型机器一天能生产多少个产品?16.随着移动互联网的快速发展,共享单车在余姚的大街小巷随处看见,解决了很多人的交通出行问题,李老师早上骑单车上班,中途因道路施工推车步行了一段路,到学校共用时15分钟,如果他骑单车的平均速度是每分钟250米,推车步行的平均速度是每分钟80米,他家离学校的路程是2900米,求他推车步行了多少分钟?17.某学校组织安全知识竞赛,共设20道分值相同的选择题,每题必答,下表中记录了5位参赛选手的竞赛得分情况.(1)若一选手答对17题,得分.(2)从表中你发现:得分规则是什么?(3)用方程知识解答:若某位选手F得64分,则他答对了几道题?(4)参赛选手G说他得78分,你认为可能吗?为什么?18.政府准备修建一条公路,若由甲工程队单独修需3个月完成,每月耗资12万元;若由乙工程队单独修建需6个月完成,每月耗资5万元.若由甲工程队先做一段时间,剩下的由乙工程队单独完成,一共用了4个月完成修建任务,这样安排共耗资多少万元?(时间按整月计算)19.A、B两地相距70千米,甲从A地出发,每小时行15千米,乙从B地出发,每小时行20千米.(1)若两人同时出发,相向而行,则经过几小时两人相遇?(2)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10千米?(3)若两人同时出发,相向而行,则几小时后两人相距10千米?20.某工程交由甲、乙两个工程队来完成,已知甲工程队单独完成需要60天,乙工程队单独完成需要40天(1)若甲工程队先做30天后,剩余由乙工程队来完成,还需要用时天(2)若甲工程队先做20天,乙工程队再参加,两个工程队一起来完成剩余的工程,求共需多少天完成该工程任务?21.某校组织学生走上街头宜传雾霾的危害,他们要复印一部分宣传资料(不少于20页),校门口有两家复印店甲店收费标准:复印页数不超过20时,每页收费0.2元,超过20时,超过部分每页收费将为0.09元乙店收费标准:不论复印多少页,每页收费01元(1)复印页数为多少时,两家店收费一样;(2)请你帮他们分析去哪家店比较合算.22.列一元一次方程解应用题某商场以每件120元的价格购进某品牌的衬衫500件,以标价每件为180元的价格销售了400件,为了尽快售完,衬衫,商场进行降价销售,若商场销售完这批衬衫要达到盈利42%的目标,则每件衬衫降价多少元?23.轮船和汽车都往甲地开往乙地,海路比公路近40千米.轮船上午7点开出,速度是每小时24千米.汽车上午10点开出,速度为每小时40千米,结果同时到达乙地.求甲、乙两地的海路和公路长.24.甲、乙两车同时从A城去B城,甲车每小时行35千米,乙车每小时行40千米,结果乙比甲提前半小时到达B城.问A、B两城间的路程有多少千米?25.在某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天,乙队单独完成这项工程需要90天;若由甲队先做20天,剩下的工程由甲、乙两队合做完成.(1)甲、乙两队合作多少天?(2)甲队施工一天需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?26.蒙城某中学组织学生去参加体检,队伍以8千米/小时的速度前进,在队尾的校长让一名学生跑步到队伍的最前面找带队老师传达一个通知(通知时间忽略不计),然后立即返回队尾,这位学生的速度是12千米/小时,从队尾赶到排头又回到队尾共用了9分钟,求队伍的长为多少千米?27.周末,小明和父母以每分钟40米的速度步行从家出发去景蓝小区看望外婆,走了5分钟后,忽然发现自己给外婆带的礼物落在家里,父母继续保持原速度行进,小明则立刻以每分钟60米的速度折返,取到礼物后立刻出发追赶父母,恰好在景蓝小区门口追上父母.求小明家到景蓝小区门口的距离.28.如图,A,B两地相距450千米,两地之间有一个加油站O,且AO=270千米,一辆轿车从A地出发,以每小时90千米的速度开往B地,一辆客车从B 地出发,以每小时60千米的速度开往A地,两车同时出发,设出发时间为t 小时.(1)经过几小时两车相遇?(2)当出发2小时时,轿车和客车分别距离加油站O多远?(3)经过几小时,两车相距50千米?29.甲、乙两人相距5千米,分别以2千米/时,4千米/时的速度相向而行,同时一只小狗以12千米/时的速度从甲处奔向乙处,遇到乙后立即掉头奔向甲,遇甲后又奔向乙…直到甲、乙相遇,求小狗所走的路程.(用方程解)30.节约用水保护水资源人人有责,为了节约用水自来水公司对自来水的收费标准作如下规定:每月每户用水不超过8吨的部分,按2.5元/吨收费;超过8吨的部分每吨加收1.5元.(1)若某用户5月份用水12吨,问应交水费多少元?(2)若某用户6月份交水费48元,问该用户6月份用水多少吨?(3)若某用户7月用水a吨,问应交水费多少元(用含a的代数式表示)?苏科新版七年级上学期《4.3 用一元一次方程解决问题》同步练习卷参考答案与试题解析一.解答题(共30小题)1.在暑假期间,小红、小兰等同学随家人一同游玩,看见景区门口有如下票价提示:“成人:35元/张;学生:按成人票5折优惠;团体票(15人以上含15人):按成人票价六折优惠”.在购买门票时,小红与她爸爸有如下对话,爸爸:“大人门票每张35元,学生门票对折优惠,我们共有12人,共需350元”.小红:“爸爸,等一下,让我算一算,换一种方式买票是不是可以更省钱”.问题:(1)小红他们一共去了几个成人,几个学生?(2)请你帮小红算一算,用哪种方式买票更省钱?说明理由.【分析】(1)根据题意分别表示出成人与学生所付金额,进而得出方程求出答案;(2)直接求出购买15张门票所付钱数,进而比较得出答案.【解答】解:(1)设成年人去了x人,则学生去了(12﹣x)人,由题意得:35x+35×50%(12﹣x)=350,解得x=8,因此:成人去了8人,学生去了4人.(2)购买团票更省钱,∵35×60%×15=315<350,∴应采用购买团体票的方式才更省钱.【点评】此题主要考查了一元一次方程的应用,根据题意表示成人与学生购票所要付的钱数是解题关键.2.小美为书房买灯,现有两种灯可供选购,其中一种是9瓦(即0.009千瓦)的节能灯,售价为49元/盏;另一种是40瓦(即0.04千瓦)的白炽灯,售价为18元/盏.假设两种灯的照明亮度一样,使用寿命都可以达到2800小时,已知小美家所在地的电价是每千瓦时0.5元.(1)设照明时间是x小时,请用含x的代数式分别表示用一盏节能灯的费用和用一盏白炽灯的费用;(注:费用=灯的售价+电费)(2)当照明时间是多少时,使用两种灯的费用一样多;并请直接写出:照明时间在什么范围内,选用白炽灯费用低;照明时间在什么范围内,选用节能灯费用低.(3)小美想在这两种灯中选购两盏:假定照明时间是3000小时,使用寿命都是2800小时,请你帮他设计费用最低的选灯方案,并说明理由.【分析】(1)根据“费用=灯的售价+电费”直接列出函数关系式即可;(2)根据“使用两种灯的费用一样多”可列方程49+0.0045x=18+0.02x,求出即可;根据“白炽灯费用低”,“节能灯费用低”列不等式求解即可;(3)分下列三种情况讨论:①如果选用两盏节能灯,则费用是98+0.0045×3000=111.5元;②如果选用两盏白炽灯,则费用是36+0.02×3000=96元;③如果选用一盏节能灯和一盏白炽灯费用是67+0.0045×2800+0.02×200=83.6元.通过比较可得费用最低的方案.【解答】解:(1)∵0.009千瓦×0.5元/千瓦=0.0045元,0.04千瓦×0.5元/千瓦=0.02元,∴用一盏节能灯的费用是(49+0.0045x)元,用一盏白炽灯的费用是(18+0.02x)元;(2)①设照明时间是x小时,由题意,得49+0.0045x=18+0.02x,解得x=2000,所以当照明时间是2000小时时,两种灯的费用一样多.②当节能灯费用>白炽灯费用时,49+0.0045x>18+0.02x,解得:x<2000.所以当照明时间<2000小时时,选用白炽灯费用低.当节能灯费用<白炽灯费用时,49+0.0045x<18+0.02x,解得:x>2000.所以当照明时间>2000小时时,用节能灯比白炽灯费用低,所以节能灯用足2800小时时,费用最低.即照明时间大于2000小时且小于或等于2800小时,选用节能灯费用低.(3)分下列三种情况讨论:①如果选用两盏节能灯,则费用是98+0.0045×3000=111.5元;②如果选用两盏白炽灯,则费用是36+0.02×3000=96元;③如果选用一盏节能灯和一盏白炽灯,由(2)可知,当照明时间>2000小时时,用节能灯比白炽灯费用低,所以节能灯用足2800小时时,费用最低.费用是67+0.0045×2800+0.02×200=83.6元.综上所述,应各选用一盏灯,且节能灯使用2800小时,白炽灯使用200小时时,费用最低.【点评】此题主要考查了一元一次方程的应用以及列代数式,以及考查学生对方案的设计与选择,通过数学计算来研究现实生活中遇到的数学问题,体会数学分类讨论思想在解题中的应用.3.为了鼓励居民节约用水,某市自来水公司对每户月用水量进行计费,每户每月用水量在规定a吨以下的收费标准相同;规定a吨以上的超过部分收费标准相同,以下是小明家1﹣4月份用水量和交费情况:根据表格中提供的信息,回答以下问题:(1)求出规定吨数a;(2)若小明家6月份缴水费29元,则6月份用水多少吨?【分析】(1)根据1、2、3月份的条件,当用水量不超过10吨时,每吨的收费2元.根据3月份的条件,用水12吨,其中10吨应交20元,则超过的2吨收费6元,则超出10吨的部分每吨收费3元.(2)题中存在的相等关系是:10吨的费用20元+超过部分的费用=29元【解答】解:(1)从表中可以看出规定用水量不超过10吨,10吨以内,每吨2元,超过10吨的部分每吨3元.(2)设小明家6月份用水x吨,29>10×2,所以x>10.所以,10×2+(x﹣10)×3=29,解得:x=13.小明家7月份用水13吨.【点评】本题主要考查一元一次方程的应用,正确理解收费标准,列出符合题意的一元一次方程是解决本题的关键.4.“十一”长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,已知两家相距10千米,小张出发必过小李家.(1)若两人同时出发,小张车速为20千米,小李车速为15千米,经过多少小时能相遇?(2)若小李的车速为10千米,小张提前20分钟出发,两人商定小李出发后半小时二人相遇,则小张的车速应为多少?【分析】(1)小张比小李多走10千米,设经过t小时相遇,则根据他们走的路程相等列出等式,即可求出t;(2)设小张的车速为x,则根据两人相遇时所走的路程相等,可列出等式,即可求得小张的车速.【解答】解:(1)设经过t小时相遇,20t=15t+10,解方程得:t=2,所以两人经过两个小时后相遇;(2)设小张的车速为x,则相遇时小张所走的路程为+,小李走的路程为:10×=5千米,所以有:+=5+10,解得x=18千米.故小张的车速为18千米每小时.【点评】本题考查了一元一次方程的应用,难度一般,关键要根据题意找出等量关系,根据等量关系列出等式.5.华联超市用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)(1)该商场购进甲、乙两种商品各多少件?(2)该超市将购进的甲、乙两种商品全部卖完后一共可获得多少利润?【分析】(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,根据单价×数量=总价,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=单件利润×销售数量,列式计算即可求出结论.【解答】解:(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,根据题意得:22x+30(x+15)=6000,解得:x=150,∴x+15=90.答:该超市第一次购进甲种商品150件、乙种商品90件.(2)(29﹣22)×150+(40﹣30)×90=1950(元).答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润1950元.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据总利润=单件利润×销售数量列式计算;(3)找准等量关系,正确列出一元一次方程.6.桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15cm,各装10cm高的水,下表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没有溢出,使得甲、乙、丙三杯内水的高度比变为3:4:5.若不计杯子厚度,则甲杯内水的高度变为多少cm?【分析】设后来甲、乙、丙三杯内水的高度为3x、4x、5x,利用水的体积不变进而表示出三杯水的体积,进而得出方程求出即可【解答】解:设后来甲、乙、丙三杯内水的高度为3x、4x、5x,根据题意得:60×10+80×10+100×10=60×3x+80×4x+100×5x,解得:x=2.4(cm).答:甲杯内水的高度变为3×2.4=7.2(cm).【点评】此题主要考查了一元一次方程的应用,根据题意表示出水的体积是解题关键.7.为发展校园足球运动,某城区四校决定联合购买一批足球运动装备.市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少元;(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花发费用;(3)在(2)的条件下,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?【分析】(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)根据甲、乙两商场的优惠方案即可求解;(3)先求出到两家商场购买一样合算时足球的个数,再根据题意即可求解.【解答】解:(1)设每个足球的定价是x元,则每套队服是(x+50)元.根据题意得2(x+50)=3x.解得x=100.x+50=150.答:每套队服150元,每个足球100元.(2)到甲商场购买所花的费用为:100a+14000(元);到乙商场购买所花的费用为:80a+15000(元);(3)由100a+14000=80a+15000,得:a=50,所以:①当a=50时,两家花费一样;②当a<50时,到甲处购买更合算;③当a>50时,到乙处购买更合算.【点评】本题考查了一元一次方程的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.8.2014年元旦将至,“春风电器”商场一款“格力”电暖器的原价为每件900元,为了参与市场竞争,商场按原价打9折后再让利40元销售,此时仍可获利10%,此商品的进价是多少元?【分析】设商品的进价为x元,依商店按售价的9折再让利40元销售,此时仍可获利10%,可得方程式,求解即可得答案.【解答】解:设商品的进价为x元,依题意得:900×90%﹣40﹣x=10%x,整理,得770﹣x=0.1x解之得:x=700答:此商品的进价是700元.【点评】考查了一元一次方程的应用.应识记有关利润的公式:利润=销售价﹣成本价.9.某商场将甲种商品降价40%,乙种商品降价20%开展优惠促销活动.已知甲、乙两种商品的原销售单价之和为140元,某顾客参加活动购买甲、乙各一件,共付100元.(1)甲、乙两种商品原销售单价各是多少元?(2)若商场在这次促销活动中甲种商品亏损25%,乙种商品盈利25%,那么商场在这次促销活动中销售甲、乙两种商品各一件是盈利还是亏损了?如果是盈利,盈利了多少元;如果是亏损,亏损了多少元.【分析】(1)设甲商品原销售单价为x元,则乙商品的原销售单价为(140﹣x)元,根据优惠后购买甲、乙各一件共需100元,即可得出关于x的一元一次方程,解之即可得出结论;(2)设甲商品的进价为a元/件,乙商品的进价为b元/件,根据甲、乙商品的盈亏情况,即可分别得出关于a、b的一元一次方程,解之即可求出a、b的值,再代入100﹣a﹣b中即可找出结论.【解答】解:(1)设甲商品原销售单价为x元,则乙商品的原销售单价为(140﹣x)元,根据题意得:(1﹣40%)x+(1﹣20%)(140﹣x)=100,解得:x=60,∴140﹣x=80.答:甲商品原销售单价为60元,乙商品的原销售单价为80元.(2)设甲商品的进价为a元/件,乙商品的进价为b元/件,根据题意得:(1﹣25%)a=(1﹣40%)×60,(1+25%)b=(1﹣20%)×80,解得:a=48,b=51.2,∴100﹣a﹣b=100﹣48﹣51.2=0.8.答:商场在这次促销活动中盈利,盈利了0.8元【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.10.为表彰县“著名苏区三好学生”,县中小学统一组织文艺汇演.甲、乙两校共92名学生,(其中甲校人数多于乙校人数,且甲校人数不够90名)准备统一购买服装参加演出,下面是某服装厂给出的演出服装的价格表:如果两所学校分别单独购买服装,一共应付5000元.。
人教版七年级上册数学 第三章 一元一次方程 单元训练题 (4)(有解析)
第三章 一元一次方程 单元训练题 (4)一、单选题1.某车间有27名工人,每个工人每天生产64个螺母或者22个螺栓,每个螺栓配套两个螺母,若分配x 个工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下列所列方程中正确的是( )A .22x =64(27﹣x )B .2×22x =64(27﹣x )C .64x =22(27﹣x )D .2×64x =22(27﹣x ) 2.若关于x 的方程(m-3)x |m|-2 -m+3=0是一元一次方程,则m 的值为( )A .m=3B .m=-3C .m=3或-3D .m=2或-2 3.对于实数a ,b ,c ,d ,定义一种运算a b ad bc c d =-,那么当24103x =-时,x =( ).A .1B .2C .1-D .2-4.某书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分按八折付款。
设一次购书数量为x 本(x >10),则付款金额为( )A .6.4x 元B .(6.4x +80)元C .(144−6.4x )元D .(6.4x +16)元 5.3的倒数是( )A .3B .3-C .13D .13- 6.若方程(m -1)x + 2 = 0表示关于x 的一元一次方程,则m 的取值范围是( ) A .m 0 B .m 1 C .m=-1D .m=0 7.某商品标价120元,打八折售出后仍盈利10元,则该商品进价是( ) A .86元 B .106元C .110元D .140元 8.两地相距600千米,甲乙两车分别从两地同时出发相向而行,甲车比乙车每小时多走10千米,4小时后两车相遇,则乙车的速度是( )A .70千米/小时B .75千米/小时C .80千米/小时D .85千米/小时9.2018年宁波市中考新增英语口语听力自动化考试,考试需要耳麦,已知甲耳麦比乙耳麦贵20元,某校购买了甲耳麦40个、乙耳麦60个,共花费了6000元,假设甲耳麦每个x 元,由题意得( )A .40x +60(x –20)=6000B .40x +60(x +20)=6000C .60x +40(x –20)=6000D .60x +40(x +20)=600010.如果2x =是方程112x a +=-的解,那么a 的值是( ) A .-2 B .2 C .0 D .-111.下列等式是由3x 4x 1=-根据等式性质变形得到的,其中正确的个数有( ) ①431x x -=;②3x 4x 1-=;③32212x x =-;④134-=+x x A .0个 B .1个 C .2个 D .3个12.某商人一次卖出两件商品。
新人教版七年级数学上册第3章第4节 实际问题与一元一次方程同步练习题
七年级数学(人教版上)同步练习第三章第四节实际问题与一元一次方程一. 教学内容:实际问题与一元一次方程1. 体会数学建模思想.2. 进一步探究如何用一元一次方程解决实际问题.二. 知识要点:1. 数学建模这里所讲的数学建模是利用数学方法(一元一次方程)解决实际问题的一种实践. 即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式(一元一次方程)表达,建立起数学模型,然后运用数学方法进行求解. 建立数学模型的这个过程就称为数学建模.2. 用一元一次方程解决实际问题的几个注意事项(1)先弄清题意,找出相等关系,再按照相等关系来选择未知数和列代数式,比先设未知数,再找出含有未知数的代数式,再找相等关系更为合理.(2)所列方程两边的代数式的意义必须一致,单位要统一,数量关系一定要相等.(3)要养成“验”的好习惯,即所求结果要使实际问题有意义.(4)不要漏写“答”、“设”和“答”都不要丢掉单位名称.(5)分析过程可以只写在草稿纸上,但一定要认真.三. 重点难点:1. 重点:进一步体现一元一次方程与实际的密切联系,渗透数学建模思想,培养运用一元一次方程分析和解决实际问题的能力.2. 难点:本讲问题的背景和表达都比较贴近实际,其中有些数量关系比较隐蔽,所以在探究过程中正确地列方程是主要难点. 突破难点的关键是弄清问题背景,分析清楚有关数量关系,特别是找出可以作为列方程依据的主要相等关系.【典型例题】例1. 墙上钉着一根彩绳围成的梯形形状的饰物,如图中实线所示. 小明将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图中虚线所示. 小明所钉长方形的长、宽各为多少厘米?分析:饰物形状变化前后有两个不变的量,一个是周长,另一个是变化前梯形的上底和变化后长方形的宽. 根据题意可设长方形的长为x,则长方形的周长为2x+2×10,梯形的周长为10+10+10+6+10+6=52. 则2x+20=52,从而解得x=16.解:设小明所钉长方形的长为x,根据题意得:2x+2×10=10+10+6+10+6+10整理得,2x+20=52解得,x=16由于饰物变化前后长度为10的边没有变化,所以长方形的一边长为10厘米.答:长方形的长为16厘米,宽为10厘米.评析:图形变化问题的等量关系往往是变化前后的周长相等、面积相等、体积相等.例2. 一批货物,甲把原价降低10元卖出,用售价的10%做积累,乙把原价降低20元,用售价的20%做积累,若两种积累一样多,则这批货物的原售价是多少?分析:设这批货物的原售价为x元,则甲的积累是(x-10)×10%元,乙的积累是(x-20)×20%,相等关系是:甲的积累=乙的积累.解:设这批货物的原售价为x元,根据题意得:(x-10)×10%=(x-20)×20%化简得:x-10=2(x-20)即x-10=2x-40解得x=30答:这批货物的原售价为30元.评析:这个问题的相等关系比较简单,难点是对两个百分数的处理.例3.某足球比赛的计分规则为胜一场得3分,平一场得1分,负一场得0分. 一个队踢14场球负5场共得19分,问这个队胜了几场?分析:根据题意,所得的19分是踢胜的场数和踢平的场数所得的积分,而踢胜的场数和踢平的场数共14-5=9场,如果设胜了x场,那么踢平的场数就是9-x场. 分别乘它们的分值,和为19.解:设胜了x场,根据题意得:3x+1×(14-x-5)=19即3x+9-x=19解得x=5答:这个队胜了5场.评析:积分多少与胜、平、负的场数相关,同时也与比赛积分规定有关,如果对体育比赛有一定了解,会有助于理解题意.例4.某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%. 求这个月的石油价格相对上个月的增长率.分析:数量关系如下表:解:设这个月的石油价格相对上个月的增长率为x. 根据题意得:(1+x)(1-5%)=1+14%解得x=1/2=20%答:这个月的石油价格相对上个月的增长率为20%.评析:借助表格来分析较复杂的数量关系. 这道题所用的相等关系是:数量×价格=费用.例5.2001年以来,我市药店积极实施药品降价,累计降价的总金额为269亿元. 五次药品降价的年份与相应降价金额如下表所示,表中缺失了2003年,2007年的相关数据. 已知2007年药品降价金额是2003年药品降价金额的6倍,结合表中信息,求2003年和2007年的药品降价金额.分析:相等关系较为明显,可以根据累计降价的总金额为269亿元列方程,结合表格如果设2003年降价金额为x亿元,则2007年降价金额为6x亿元,有54+x+35+40+6x=269.解:设2003年降价金额为x亿元,根据题意得:54+x+35+40+6x=269整理得,7x=140解得,x=206x=6×20=120答:2003年和2007年药品降价金额分别是20亿元和120亿元评析:这个问题是以表格形式传递信息的,这种形式在现实中很普遍,重点培养从不同形式获取有关数据信息,是值得注意的问题.例6.初一(1)班有学生60人,其中参加数学小组的有36人,参加英语小组的人数比参加数学小组的人数少5人,并且这两个小组都不参加的人数比两个小组都参加的人数的1/4多2人,则同时参加这两个小组的人数是()A. 16B.12 C.10 D. 8解:B评析:这道题的数量关系非常复杂,但是结合图形可以使其变得很明朗.【方法总结】应用数学知识去研究和和解决实际问题,遇到的第一项工作就是建立恰当的数学模型. 从这一意义上讲,可以说数学建模是一切科学研究的基础. 没有一个较好的数学模型就不可能得到较好的研究结果,所以,建立一个较好的数学模型乃是解决实际问题的关键之一. 数学建模将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题、解决问题的能力的必备手段之一.【模拟试题】(答题时间:60分钟)一. 选择题1. 实验中学七年级(2)班有学生56人,已知男生人数比女生人数的2倍少11人,求男生和女生各多少人?下面设未知数的方法,合适的是()A. 设总人数为x人B. 设男生比女生多x人C. 设男生人数是女生人数的x倍D. 设女生人数为x人2. 甲厂的年产值为7450万元,比乙厂的年产值的5倍还多420万元,若设乙厂的年产值为x万元,下列所列方程中错误的是()A. 5x+420=7450B. 7450-5x=420C. 7450-(5x+420)=0D. 5x-420=74503. 某种品牌的彩电降价30%后,每台售价为a元,则该品牌彩电每台原价应为()A. 0.7a元B. 0.3a元C. 元D. 元4. A、B两城相距720km,普快列车从A城出发120km后,特快列车从B城开往A城,6h后两车相遇. 若普快列车是特快列车速度的,且设普快列车速度为xkm/h,则下列所列方程错误的是()5. 用两根长12cm的铁丝分别围成正方形和长与宽之比为2∶1的长方形,则长方形和正方形的面积依次为()A. 9cm2和8cm2B. 8cm2和9cm2C. 32cm2和36cm2D. 36cm2和32cm2*6. 有一位旅客携带了30kg重的行李从上海乘飞机去北京,按民航总局规定:旅客最多可免费携带20kg重的行李,超重部分每千克按飞机票价格1.5%购买行李票,现该旅客购买了180元的行李票,则他的飞机票价格应是()A. 800元B. 1000元C. 1200元D. 1500元二. 填空题1.一件运动衣按原价的八折出售时,售价是40元,则原价为_____元.2. 买4本练习本与3枝铅笔一共用了4.7元. 已知铅笔每枝0.5元,则练习本每本_____元.*3. 一个长方形鸡场的一边靠墙,墙的对面有一个2m宽的门,另三边(门除外)用篱笆围成,篱笆总长33m,若鸡场的长∶宽=3∶2(尽量用墙),则鸡场的长为__________m,宽为__________m.4. 某市居民2007年末的储蓄存款达到9079万元,比2006年末的储蓄存款的15倍还多4万元,则2006年末的存款为__________.5.某商店销售一批服装,每件售价150元,打8折出售后,仍可获利20元,设这种服装的成本价为每件x元,则x满足的方程是__________.**6.依法纳税是每个公民应尽的义务,新的《中华人民共和国个人所得税法》规定,从2008年3月1日起,公民全月工薪不超过2000元的部分不必纳税,超过2000元的部分应缴纳个人所得税,此项税款按下表分段累进计算. 黄先生4月份缴纳个人所得税税金55元,那么黄先生该月的工薪是__________元.三. 列方程解应用题1.据某统计数据显示,在我国的664座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市. 其中,暂不缺水城市数比严重缺水城市数的4倍少50座,一般缺水城市数是严重缺水城市数的2倍. 求严重缺水城市有多少座?*2. 甲、乙两个工人接受了加工一批服装的任务,规定两人各加工这批服装的一半,已知乙的工作效率相当于甲的,工作了8小时,甲完成了自己的任务,这时乙还差24件服装没有完成. 这批服装共有多少件?3. 如图所示,小红将一个正方形剪去一个宽为4cm的长条后,再从剩下的长方形纸片上沿平行短边的方向剪去一个宽为5cm的长条. 若两次剪下的长条面积正好相等,那么每一长条的面积为多少?原正方形的面积为多少?**4. 为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段以达到节约用水的目的. 该市规定了如下的用水标准:每户每月的用水不超过6m3时,水费按每立方米a元收费;超过6m3时,不超过部分每立方米仍按a元收费,超过部分每立方米按b元收费.该市居民张大爷一家今年3、4月份的用水量和水费如下表:月份用水量/m3水费/元3 5 7.54 9 27设该户每月用水量为x(m3),应缴水费y(元).(1)求a、b的值,写出用水不超过6m3和超过6m3时,y与x之间的代数表达式;(2)若张大爷一家今年5月份的用水量为8m3,该户5月份应缴的水费是多少?**5. 振华中学为进一步推进素质教育,把素质教育落到实处,利用课外兴趣小组活动开展棋类教学活动,以提高学生的思维能力,开发智力,七年级一班有50名同学,通过活动发现只有1人象棋、围棋都不会下,有30人象棋、围棋都会下,且会下象棋的学生比会下围棋的学生多7人.(1)若设会下围棋的有x个人,你能列出方程并证明x是35、36、37三个数中的哪一个吗?(2)你知道只会下象棋不会下围棋的人数吗?【试题答案】一. 选择题1. D2. D3. D4. B5.B 6. C二. 填空题1. 502. 0.83. 15 10 (提示:可设长为3x,宽为2x,则3x+2x+2x-2=33)4. 605万元5. x+ 20=0.8×1506. 2800 提示:设黄先生4月份的工薪是x元,如果x在2000元~2500元,则5%(x-2000)=55,解得x=3100,不符合题意;如果x在2500元~4000元,则10%(x-2000-500)+5%×500=55,解得x=2800. 所以黄先生4月份的工薪是2800元.三. 列方程解应用题1. 解:设严重缺水城市有x座,根据题意得:4x-50+2x+x=664解得,x=102答:严重缺水城市有102座.3. 解:设原正方形的边长为xcm,列方程为:4x=5(x-4)解得,x=204×20=80(cm2),20×20=400(cm2)答:每一长条的面积为80cm2,原正方形的面积为400cm2.4. 解:(1)3月份用水5m3不超过6m3,所以水费按每立方米a元收取,所以5a=7.5,所以a=1.5;4月份用水9m3,所以7.5+(9-6)·b=27,解得:b=6.5.不超过6m3时,y=1.5x;超过6m3时,y=7.5+6.5(x-6)(2)由(1)可得当x=8时,y=7.5+6.5(x-6)即y=7.5+6.5×2=20.5(元)答:略5. (1)设会下围棋的学生有x人,则会下象棋的学生为(x+7)人,那么只会下围棋的学生有(x-30)人,只会下象棋的学生为(x+7-30)人,根据题意得:x+x+7-30=50-1,把x=35,x=36,x=37分别代入方程,有x=36成立,所以会下围棋的有36人.(2)会下象棋不会下围棋的有x+7-30=36+7-30=13(人).。
人教版七年级数学上册 3-4 实际问题与一元一次方程 同步练习(数字、和差倍分问题)【含答案】
人教版七年级数学上册 3.4 实际问题与一元一次方程 同步练习(数字、和差倍分问题)一、选择题1.把夏禹时代的“洛书”用数学符号翻译出来就是一个三阶幻方,如图所示,它的每行、每列、每条对角线上三个数之和均相等,则幻方中的a ,b 之和为( )A .9B .10C .11D .122.我国的《洛书》中记载着世界上最古老的一个幻方:将1-9这九个数字填入33⨯的方格内,使得处于同一横行、同一竖列、同一斜对角线上的三个数之和都相等.在如图所示的幻方中,字母m 所表示的数是( )A .2B .7C .8D .93.一个五位数,个位数为5,这个五位数加上6120后所得的新的五位数的万位、千位、百位、十位、个位的数恰巧分别为原来五位数的个位、万位、千位、百位、十位上的数,则原来的五位数为( )A .48755B .47585C .37645D .364754.如果某一年的5月份中,有5个星期五,它们的日期之和为80,那么这个月的4日是( )A .星期一B .星期二C .星期五D .星期日5.如图,在1000个“○”中依次填入一列数字1231000,,,m m m m 使得其中任意四个相邻“○”中所填数字之和都等于10-,已知251m x =-,9992m x =-,则x 的值为( )A .1B .1-C .2D .2-6.甲队有工人96人,乙队有工人72人,如果要求乙队的人数是甲队人数的13,应从乙队调多少人去甲队,如果设应从乙队调x 人到甲队,列出的方程正确的是( )A .96+x =13(72﹣x ) B .13(96﹣x )=72﹣x C .13(96+x )=72﹣x D .13×96+x =72﹣x 7.课外兴趣小组的女生人数占全组人数的13,再加入6名女生后,女生人数就占原来人数的一半,课外兴趣小组原有多少人?若设原有x 人,则下列方程正确的是( )A .1132x x =B .11+632x x =C .11+632x x =D .11(6)23x += 8.中国古代入民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有四人共车,一车空;二人共车,八人步,问人与车各几何?这道题的意思是:今有若干人乘车,每4人乘一车,最终剩余1辆车,若每2人共乘一车,最终剩余8个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程( ) A .()4x 12x 8-=+ B .()4x 12x 8+=- C .x x 8142++= D .x x 8142--= 9.铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是( )A .5(211)6(1)x x +-=-B .5(21)6(1)x x +=-C .5(211)6x x +-=D .5(21)6x x +=10.在《九章算术》中有“盈不足术”的问题,原文如下:今有共买物人出八,盈三;人出七,不足四问人数几何?大意为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元问人数是多少?若设人数为x,则下列关于x 的方程符合题意的是( )A .8x+3=7x -4B .8x -3=7x+4C .8(x -3)=7(x+4)D .17x+4=18x -3 二、填空题11.已知m ,n 都是质数,若关于x 的方程597mx n +=的解是3,则4m n -=__________..12.小明分发一堆水果分给好朋友,第1个朋友取走一半加1个,第2个朋友取走剩下的一半加1个,第3个朋友再取走剩下的一半加1个,……,直到第7个朋友再取走剩下的一半加1个时,恰好给小明留下了1个水果,则这堆水果一共有_______个.13.一个两位数,十位数字是a ,个位数字比十位数字的2倍少2,交换它的十位数字与个位数字,则新的两位数与原两位数的和为77,那么原两位数为__________.14.《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:共有几个人?”设共有x 个人共同出钱买鸡,根据题意,可列一元一次方程为_____________.15.《算法统宗》中记有“李白沽酒”的故事.诗云:今携一壶酒,游春郊外走.逢朋加一倍,入店饮半斗.相逢三处店,饮尽壶中酒.试问能算士:如何知原有?(古代一斗是10升)大意是:李白在郊外春游时,做出这样一条约定:遇见朋友,先到酒店里将壶里的酒增加一倍,再喝掉其中的5升酒.按照这样的约定,在第3个店里遇到朋友正好喝光了壶中的酒.则李白的酒壶中原有______升酒.三、解答题16.把99拆成4个数,使得第一个数加2,第二个数减2,第三个数乘2,第四个数除以2,得到的结果都相等,应该怎样拆?17.一个四位数,它的个位数字是8,若把这个数字调到千位上,其他数字向后顺移,得到新的四位数比原来的四位数大117,求原来的四位数.18.对任意一个三位数m ,将m 的各个数位上的数字分别加2得到一个新的三位数m ′,并且在这一过程中各个数位均不产生进位,则称m 为“真牛数”,m '为m 的“猛牛数”.把“真牛数”m 与“猛牛数”m '的和与37的商记为F (m ).例如:n =315是一个“真牛数”,理由如下:3+2=5<9,1+2=3<9,5+2=7<9.∴315是一个“真牛数”,它F (n )=37n n '+=315537852=3737+; (1)判断678 (填“是”或者“不是”“真牛数”:计算F (370)= ;(2)若s 、t 都是“真牛数”,s 的百位数字为1,t 的百位数字为3,t 的个位数字是s 个位数字的3倍,则F (s )+F (t )=36,求s 的值.19.妈妈擦干我第一滴眼泪,永远慈祥美丽的妈妈,我真的不想让你失望,因为我的梦想在远方.2020年小明同学的年龄比她妈妈小26岁,今年她妈年龄正好是小明同学的年龄的3倍少2岁.(1)小明同学今年多少岁?(2)经过多少年后妈年龄是小明同学的年龄的2倍?20.学校组织植树活动,已知在甲处植树的有220人,在乙处植树的有96人.(1)若要使甲处植树的人数是乙处植树人数的3倍,应从乙处调多少人去甲处?(2)为了尽快完成植树任务,现调m 人去两处支援,其中90100m <<,若要使甲处植树的人数仍然是乙处植树人数的3倍,则应调往甲,乙两处各多少人21.定义:对于整数n ,在计算n +(n +1)+(n +2)时,结果能被15整除,则称n 为15的“亲和数”,如4是15的“亲和数”,因为4+5+6=15,15能被15整除;﹣7不是15的“亲和数”,因为(﹣7)+(﹣6)+(﹣5)=﹣18,﹣18不能被15整除.(1)填空:﹣16 15的“亲和数”(填“是”还是“不是”);(2)求出1到2021这2021个整数中,是15的“亲和数”的个数;(3)当n 在﹣10到10之间时,直接写出使2n +3是15的“亲和数”的所有n 的值.22.新学期,两摞规格相同的数学课本整齐的叠放在讲台上,请根据图中所给出的数据信息,解答下列问题: (1)每本书的厚度为______cm ,课桌的高度为______cm ;(2)当课本数为x (本)时,请写出同样叠放在桌面上的一摞数学课本高出地面的距离为__________cm (用含x 的代数式表示);(3)若桌面上有26本相同的数学课本整齐叠放成一摞,现从中取走a (a≤26)本,求余下的数学课本高出地面的距离; (4)若桌面上有50本相同规格的数学课本整齐的叠成一摞,现从中取走a (a≤50)本放在旁边另叠成一摞,发现两摞课本的高度相差2cm ,则a=______ .23.小明每隔一小时记录某服装专营店8:00~18:00的客流量(每一时段以200人为标准,超出记为正,不足记为负),如表所示:(1)若服装店每天的营业时间为8:00~18;00,请你估算一周(不休假)的客流量;(单位:人)(精确到百位) (2)若服装店在某天内男女装共卖出135套,据统计,每15名女顾客购买一套女装,每20名男顾客购买一套男装,则这一天卖出男、女服装各多少套?(3)若每套女装的售价为80元,每套男装的售价为120元,则此店一周的营业额约为多少元?1.A 2.C 3.A 4.D 5.C 6.C 7.B 8.A 9.A 10.B11.1312.38213.3414.911616x x -=+15.8.7516.20,24,11,4417.875818.(1)不是,26;(2)s 可能为101,111,121,131,141.19.(1)14岁;(2)12年后20.(1)应从乙处调7人去甲处;(2)当m=92时: 则应调往甲处各86人,乙处6人当m=96时: 则应调往甲处各89人,乙处7人21.(1)是;(2)404个;(3)n =2-或-7或3或8.22.(1)0.5;(2)850.5x +;(3)余下的数学课本高出地面的距离为() 980.5a -cm ;(4)23或2723.(1)1.51×104人;(2)这一天卖出男装25套,女装110套.(3) 此店一周的营业额约为82600元。
初一上册数学解一元一次方程练习题
2021-2022学年度 秋季 七年级上学期 人教版数学解一元一次方程练习题1.解方程(1)162=+x (2)7233+=+x x 2.解方程:22141+-=x x 3. 解方程:17)5.0(4=++x x4. 解方程:4)1(2=--x5. 解方程:)20(41)14(71+=+x x6. 解方程:)7(3121)15(51--=+x x 7. 解方程:x x x 65)2132(342=⎥⎦⎤⎢⎣⎡--8. 解方程:3.05.03.02.03.05.0x x -=- 9. 解方程:3)7(2235)3(2--=+x x x10. 解方程:)2(512)1(21+-=-x x 11. 解方程: 1615312=--+x x人教版七年级数学上册必须要记、背的知识点1.有理数:(1)凡能写成)0p q ,p (pq≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数; (2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ; (3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. (4)相反数的商为-1.(5)相反数的绝对值相等 4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ;(3)0a 1aa >⇔= ;0a 1aa <⇔-=;(4) |a|是重要的非负数,即|a|≥0; 5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。
苏科版七年级上册数学第四章一元一次方程专题练习
七(上)数学第四章一元一次方程专题练习(时间60分钟,满分100分)一、填空题(每小题3分,共18分)1.一种药物降价20%后的价格是30元,那么降价前的价格x满足的方程是________.2一队师生共420人,乘车外出旅行,校车可乘60人,如果租用客车,每辆可乘40人,那么还要租用多少辆客车?如果设还要租x辆客车,可列方程为_________.3.当x=_________时,代数式6x一8与代数式x+3互为相反数.4.方程2(x+8)=3(x一1)的解是__________.5.当x=_________时,代数式(5x+2)的绝对值与代数式(一x+7)的绝对值相等.6.甲乙两地相距40千米,小明和小芳两人分别从甲乙两地出发,相向而行,小明每小时比小芳多行l千米,若两人同时出发,经过5小时相遇,如果设小芳的速度为x千米/小时,可列方程为_________.二、选择题(每小题3分,共18分)7.下列各式中是一元一次方程的是( )A.x+2y=3 B.2x一1=0 C.13x一6=x D.3x+2=08.某商场上月的营业额是a万元,本月比上月下降16%,那么本月营业额是( ) A.(a一1)·16%万元B.16%·a万元C.(1—16%)a万元D.116a%万元9.下列是方程3x一2=x的解的是( )A.x=2 B.x=l C.x=一1 D.x=2 310.在方程2x一6=0,23x=2,6x一5=2x一3,13(x—1)=12中与方程5x一9=2x的解相同的方程有( ) A.1个B.2个C.3个D.4个11.买2支铅笔、6支钢笔共用了28.4元,一支钢笔是4.5元,设每支铅笔x元,则可列方程得( ) A.2x+6×4.5=28.4 B.2×4.5+6x=28.4C.28.4+2x=6×4.5 D.2x=28.4+6×4.512.下列方程变形正确的是( )A.若x yb b则x=y B.若2x一x则x=1C.若bx=by则x=y D.若-23x=9则x=一6三、解答题(共64分)13.(每题4分,共16分)解下列方程:(1)15x+1=3一x;(2)4(x+1)=5(2x+1);(3)17x一1=7x+17;(4)3(x+2)一2=5(x+2)+8.14.(本题6分)若x=一3是方程k(x+4)一2k一x=5的解,求k的值.15.(本题7分)当x取何值时,式子x+3与7一13x的值相等.16.(本题7分)在梯形面积公式s=12(a+6b)·h中,已知b=8,h=l0,s=60,求a.17.(本题7分)若3a1m-b3n+与5a3b21n+是同类项,求(m+n)(一n)的值.18.(本题7分)已知关于x的方程2bx=(b+1)x+8,当b为何整数时,方程的解是正整数.19.(本题7分)已知(a+1) 2x一(a一1)x+8=0是关于x的一元一次方程,求代数式60(2x+2a)(x—a)+208的值.20.(本题7分)某商场出售某种文具,每件可盈利2元,为了支援贫困山区,现在按原价的7折出售给一山区学校,结果每件盈利0.2元(盈利=售价一进价),问该文具每件的进价是多少元?请列出方程.参考答案一、填空题1.x(1—20%)=30 2.60+40x=420 3.x=574.x=19 5.x=56或x=94-6.5x+5(x+1)=40二、选择题7.C 8.C 9.B 10.B 11.A 12.A 三、解答题13.(1)x=53(2)x=16-(3)x=16-(4)x=一714.把x=-3代入方程k(x+4)一2k—x=5得k(-3+4)一2k一(-3)=5 解得k=-215.由x+3=7一13x得x=3 16.a=417.由m一1=3 n+3=2n+1 得m=4 n=2 (m+n)(mn)=(4+2)(4—2)=1218.x=81b-当b=2.3.5.9时,方程的解是正整数19.因为(a+1) 2x一(a一1)x+8=0是关于x的一元一次方程所以a+1=0 a=-1,把a=-1代入(a+1) 2x一(a一1)x+8=0 得x=-4 把x=-4 a=-1代入60(2x+2a)(x一a)+208 得60×[2×(一4)+2×(一1)]×[一4一(一1)]+208=200820.设该文具每件的进价是x元.根据题意,得0.7(x+2)一x=0.2一、填空题(每小题3分,共18分)l.若3-x的倒数等于12,则x+1=___________.2.日历中,一个竖列上相邻的两个数的和是27,这两个数中较大的数是__________.3.若代数式10—3(9一y)与代数式42y-的值相等,则y=___________.4.若4x一3与x一7互为相反数,则x+1x=____________.5.一个矩形的周长是20cm,长比宽多3cm,那么矩形的长是________.6.有一根铁丝,第一次用了它的一半少l米,第二次用去了剩余的一半多1米,结果还剩2.5米,问这根铁丝原有_________米.二、选择题(每小题3分,共18分)7.下列方程151211342x x x-++-=+去分母正确的是( )A.4(x一1)一3(5x+1)=6(2x+1)+1B.4(x一1) -15x+1=6(2x+1)+12C.4(x一1) -3(5x+1)=12x+l+12D.4(x一1) -3(5x+1)=6(2x+1)+128.儿子今年10岁,父亲今年37岁,_________父亲的年龄是儿子年龄的4倍.( ) A.1年后B.1年前C.3年后D.不可能9.大箱子装洗衣粉36千克,把大箱子里的洗衣粉分装在4个大小相同的小箱子里,装满后还剩余2千克洗衣粉,则每个小箱子装洗衣粉的千克数为( ) A.6.5 B.7.5 C.8.5 D.8 10.甲乙丙三辆卡车所运货物的吨数的比是4:5:6,已知丙车比甲车多运货物12吨,则三辆卡车共运货物( ) A.90吨B.160吨C.1 50吨D.140吨11.某班同学分组参加活动,原来每组7人.后来重新编组,每组6人,这样比原来增加了1组,这个班共有多少名学生( ) A.45 B.42 C.52 D.4812.在一场篮球比赛中,小军一人独自得17分(不含罚球得分),已知他投人的两分球比三分球少4个,他一共投中了多少个两分球? ( ) A.5 B.3 C.2 D.1三、解答题(共(/4分)13.(本题8分)解方程2x一15335x x-+=-.14.(本题8分)解方程0.20.312 0.50.01x x--=.15.(本题8分)y等于什么数时,代数式()31132yy-++与236y+的值相等.16.(本题8分)老师在黑板上抄了一道解方程题目,值日生不小心擦掉了一个数字,变为2211011346x x x-++-=-(△代表被擦掉的数字),课代表根据老师给出的答案x=-118,求出了这个数字,你能写出课代表的计算过程吗?试试看.17.(本题8分)已知当x=3时,代数式22x+(3一C)x+C的值是9,求当x=一3时,这个代数式的值.18.(本题8分)一个三角形的三条边长的比是3:4:5,最大边与最小边的差为8cm,求这个三角形的周长.19.(本题8分)某玩具厂计划做一批玩具,如果每人做20个,那么比计划多做了400个;如果每人做10个,那么比原计划少了200个,玩具厂共有多少名工人?计划做多少个玩具?20.(本题8分)为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的,该市自来水收费价格见价目表,某用户1月份交水费20元,则该用户1月份用水多少m3?价目表每月用水量单价不超过6m3的部分2元/m3超过6m34元/m3参考答案一、填空题l.2 2.17 3.6 4.2125.6.5cm 6.12二、选择题7.D 8.B 9.C 10.A 11.B 12.D 三、解答题13.2528x=14.x=1 15.y=10916.2211011346x x x-++-=-方程两边同乘12得4(2x一△)一3(2x+1)=2(20x+1)一12 整理得18x=7—4△又118x=-所以7411818--=△=217.把x=3代人22x+(3一c)x+c=9得2×9+3(3一c)+c=9 解得c=9把c=9代入22x+(3一c)x+c得22x一6x+9 当x=一3时22x一6x+9=4518.设三角形三边长分别为3xcm、4xcm、5xcm.根据题意,得5x一3x=8 x=4 三角形三边长为12、16、20 三角形的周长为12+16+20=48 答:三角形的周长为48cm.19.设玩具厂共有x名工人.根据题意,得20x—400=10x+200 10x=600 x=60 20x—400=20×60—400=800 答:玩具厂有60名工人,计划做800个玩具.20.若用水6m3,则需交水费6×2=12(元) 因为20>6×2 所以该用户1月份用水超过6m3设该用户1月份用水x m3.根据题意,得2×6+4(x-6)=20 解得x=8 答:该用户1月份用水8m3.一、填空题(每小题3分,共18分)1.某产品现在的成本是36元,比原来降低了10%,则原来的成本是__________元.2.三个连续奇数,中间的一个数是2n+1,用代数式表示这三个奇数的和是__________.3.某工程甲工程队单独完成需m天,则甲每天完成_________,乙工程队单独完成需,n天,则乙每天完成_________,设甲、乙合作a天完成任务,可得方程为__________.4.某商品先提价20%后又降价20%出售,已知现在售价为a元,则原价为_________.5.有一堆土要运走,工具扁担与箩筐都用上,设扁担有x根,箩筐有18只,两人抬土,则列方程为____________,若一人挑土,则列方程为____________.6.甲、乙两站相距540km,一列快车从甲站开出,每小时行驶72km,一列慢车从乙站开出,每小时行驶48km,两车同时出发经过__________小时相遇.二、选择题(每小题3分,共18分)7.下列方程中(1)2x+4=0变形为x+2=0,(2)x一7=5—3x变形为4x=12,(3)45x=3变形为4x=15,(4)6x=一3变形为x=一2,其中变形正确的是( ) A.(1)(3) B.(1)(2)(3) C.(3)(4) D.(1)(2)(4) 8.某商人在一次买卖中均以150元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人( ) A.赚20元B.赔20元C.不赚不赔D.无法确定9.某工程甲单独做10天完成,乙单独做6天完成,现在甲先做了2天,乙再参加合做,求完成这项工程总共用去的时间.设完成这项工程总共用去x天,则下列方程中正确的是 ( )A .21106x x ++= B .221106x x +-+= C .1106x x+= D .222110106x x --++= 10.某物品标价为120元,若以9折出售,仍可获利20%.则该物品进价是 ( ) A .108元 B .90元 C .80元 D .105元 11.一张试卷只有25道选择题,做对一题得4分,做错一题倒扣1分.某学生做了全部试题,共得70分,他做对了多少道题. ( ) A .17 B .18 C .19 D .20 12.某人按定期1年向银行储蓄10000元,利率为4.14%,到期支取时扣除个人所得税(税率为5%)实得利息为 ( )A .414元B .394.7元C .4140元D .393.3元三、解答题(共64分)13.(本题8分)一旅客乘坐的火车以60千米/小时的速度前进,他看见迎面而来的火车用了3秒时间从他身边驶过,已知迎面而来的火车长100米,求迎面而来的火车速度.14.(本题8分)某车问有48名工人,生产某种由一个螺栓及两个螺母为一套的配套产 品,每人每天平均生产螺栓14个或螺母20个,问应分配多少人生产螺栓,才能使每天产出的螺栓与螺母恰好配套?15.(本题8分)一块正方形铁皮,四角截去4个一样的小正方形,折成底面边长是50cm 的无盖长方体盒子,容积是50000cm3,求原来正方形铁皮的边长.16.(本题8分)某企业向银行借了一笔款,年利率为6.3%(不记复利),该企业立即用这笔款购买一批货物,以高于买入价的40%出售,经两年售完,用所得收入还清贷款本利,还剩余5.48万元,问这笔贷款的金额是多少?17.(本题8分)某商场文具部的某种毛笔每支售价25元,书法练习本每本售价5元,该商场为促销制定了两种优惠办法:甲:买一支毛笔就赠送一本书法练习本;乙:按购买金额打九折付款.某校欲为校书法兴趣小组买这种毛笔20支,书法练习本若干本(本数超过20本),当购买多少书法练习本时,采用甲,乙两种优惠办法付款一样多?18.(本题8分)一个蓄水池装有甲乙两个进水管,单独开放甲管,40分钟可注满全池;单独开放乙管,60分钟可注满全池;如果甲乙两管先同时注水12分钟,然后由甲单独注水,问:还需要多少时间才能把水池注满?19.(本题8分)两根同样长但粗细不同的蜡烛,粗烛可燃3小时,细烛可燃2小时.一次停电同时点燃两支蜡烛,来电后同时熄灭,发现粗烛的长度是细烛的2倍,求停电的时间.20.(本题8分)某种商品因换季准备打折出售,如果按定价的六折出售,将赔20元;如果按定价的八折出售,将赚20元.这种商品的定价是多少元?参考答案一、填空题1.40 2.6n+3 3.1m 1n 1a a m n += 4.2524a5.X=18 2x=18 6.4.5二、选择题7.B 8.B 9.D 10.B 11.C 12.D 三、解答题13.设迎面而来的火车速度为x 千米/小时.根据题意,得3秒=11200小时 100米=110千米 60×11200+1200x =110x=60 答:迎面而来的火车速度为60千米/小时 14.设分配x 人生产螺栓才能使每天产出的螺栓与螺母恰好配套.根据题意,得 2×14x=20(48一x) 28x=960—20x 48x=960 x=20 答:分配20人生产螺栓才能使每天产出的螺栓与螺母恰好配套15.设四角截取的小正方形铁皮的边长为x 厘米,则原来正方形铁皮的边长为(50+2x)厘米.根据题意,得50×50x=50000 x=20 50+2x=50+20×2=90答:原来正方形铁皮的边长为90厘米16.设这笔贷款的金额为x 万元.根据题意,得x(1+40%)一x 一2x ×6.3%=5.48 x=20 答:这笔货款的金额为20万元17.设当购买x 本书法练习本时,采用甲、乙两种优惠方法付款一样多,根据题意,得20×25+5(x -20)=0.9(20×25+5x) 解得x=100答:当购买100本书法练习本时,采用甲、乙两种优惠方法付款一样多 18.设还需要x 分钟才能把水池注满.根据题意,得121214060x ++= 解得x=20 答:需要20分钟才能把水池注满19.设停电的时间为x 小时.根据题意,得12132x x ⎛⎫-=- ⎪⎝⎭x=32答:停电的时间为32小时 20.设这种商品的定价为x 元.根据题意,得0.6x+20=0.8x 一20 x=200答:这种商品的定价为200元一、选择题(每小题2分,计20分) 1.下列方程为一元一次方程的是 ( ) A .x+y=5 B .x 2=5 C .x=0 D .15x x+= 2.如果身程2511152n x +-=是关于x 的一元一次方程,则n 的值为 ( ) A .52 B .52- C .2 D .-23.下列方程中,解为x=-2的方程是 ( )A .3x -2=2xB .4x -1=2x+3C .3x+1=2x -1D .2x -3=3x+24.方程2x+1=0的解是 ( ) A .12 B .12- C .2 D .-2 5.根据题意列方程,其中方程列错的是 ( )A .某数的3倍与5的差等于1,列方程为3x -5=1B .某数x 与-5的和等于x 的2倍,列方程为x+5=2xC .比x 的一半少3的数是2.列方程为12x -3=2 D .5与x 的12的差等于x 的13,列方程为11523x x -=6.下列变形中,属于移项的是 ( ) A .5x -4=0得-4+5x=0 B .2x=-1得x=-12C .4x+3=0得4x=-3D .()13245x x --=得13245x x -+= 7.如果3ab 2n -1与ab n+1是同类项,则n 是 ( ) A .2 B .1 C .-1 D .0 8.解方程21101136x x ++-=时。
人教版七年级数学上册第三章实际问题与一元一次方程解答题复习题四(含答案) (57)
人教版七年级数学上册第三章实际问题与一元一次方程解答题复习题四(含答案)某礼品制造工厂接受一批玩具的订货任务,按计划天数生产,如果每天生产20个玩具,则比订货任务少100个;如果每天生产23个玩具,则可以超过订货任务20个.请求出这批玩具的订货任务是多少个?原计划几天完成任务?【答案】这批订货任务是900个,原计划用40天完成.【解析】【分析】设原计划用x天完成任务,根据题意可得等量关系为订货任务是一定的,据此列方程求解,然后求出订货任务.【详解】设原计划用x天完成任务,x=201002320+=-,3120,x x解得40,x=⨯+=个.则订货任务是2040100900答:这批订货任务是900个,原计划用40天完成.62.如图所示是甲乙两个工程队完成某项工程的进度图,首先是甲独做了10天,然后两队合做,完成剩下的工程.(1)甲队单独完成这项工程,需要多少天?(2)求乙队单独完成这项工程需要的天数;(3)实际完成的时间比甲独做所需的时间提前多少天?【答案】(1)40天;(2)60天;(3)12天.【解析】【分析】(1)由第一段图像可知,甲队独做10天完成总工作量的0.25,则可求出甲的工作效率,再用总量1除以这个效率即可得出甲队单独完成这项工程需要的天数;(2)由第二段图像可知,甲乙6天完成总量的(0.5-0.25)即0.25,甲6天做的工作量可求,于是求出乙6天的工作量,进而求出乙的工作效率,再用总量除以这个效率即可得出乙队单独完成这项工程需要的天数;(3)因为甲队独做用40天,再求出实际完成的时间,两个数相减即可,甲乙合作完成了总量的0.75,除以他们的效率和再加上10,即是实际完成的时间,用40减这个数值即可得出结论.【详解】(1)因为甲队独做10天完成总工作量的0.25,所以甲一天做了0.25÷10=140,于是甲队单独完成这项工程需要的天数为:1÷140=40天;(2)甲乙6天完成总量的(0.5-0.25)即0.25,则乙6天的工作量是0.25-140×6=110,所以乙的效率是110÷6=160,所以乙队单独完成这项工程需要的天数为1÷160=60天;(3)甲乙合作完成了总量的0.75,除以他们的效率和再加上10,即是实际完成的时间,即0.75÷(140+160)+10=18+10=28(天),因为甲队独做需用40天,所以40-28=12天,故实际完成的时间比甲独做所需的时间提前12天.考点:实际问题与一次函数.63.已知数轴上有A、B、C三点,分别表示有理数-26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P点对应的数:__________;用含t的代数式表示点P和点C的距离:PC=_____________.(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,①点P、Q同时运动运动的过程中有__________处相遇,相遇时t=_______________秒.②在点Q开始运动后,请用t的代数式表示P、Q两点间的距离.(友情提醒:注意考虑P、Q的位置)【答案】(1)-26+t;36-t;(2)2处,24秒和30秒;(3)当16≤t≤24时PQ=﹣2t+48;当24<t≤28时PQ=2t-48;当28<t≤30时PQ= 120﹣4t;当30<t≤36时PQ= 4t﹣120【解析】【分析】(1)根据两点间的距离,可得P到点A和点C的距离;(2)根据两点间的距离,要对t分类讨论,t不同范围,可得不同PQ.【详解】解:(1)P点对应的数为﹣26+t;PC=36﹣t;故答案为﹣26+t;36﹣t;(2)①有2处相遇,分两种情况:Q返回前相遇:3(t﹣16)=t,解得:t=24,Q返回后相遇:3(t﹣16)+t=36×2,解得:t=30.综上所述,相遇时t=24秒或30秒.故答案为24或30;②当16≤t≤24时,PQ=t﹣3(t﹣16)=﹣2t+48;当24<t≤28时,PQ=3(t﹣16)﹣t=2t﹣48;当28<t≤30时,PQ=72﹣3(t﹣16)﹣t=120﹣4t;当30<t≤36时,PQ=t﹣[72﹣3(t﹣16)]=4t﹣120;当36<t≤40时,PQ=3(t﹣16)﹣36=3t-84.“点睛”本题考查了数轴,一元一次方程的应用,解答(2)②题要对t分类讨论是解题的关键.64.阅读理解:如图,A.B.C为数轴上三点,若点C到A的距离是点C 到B的距离的2倍,我们就称点C是(A,B)的好点.例如,如图1,点A表示的数为-1,点B表示的数为2.表示数1的点C到点A的距离是2,到点B 的距离是1,那么点C是(A,B)的好点;又如,表示数0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的好点,但点D是(B,A)的好点.知识运用:如图2,M、N为数轴上两点,点M所表示的数为-2,点N 所表示的数为4.(1)数所表示的点是(M,N)的好点;(2)现有一只电子蚂蚁P从点N出发,以每秒2个单位的速度沿数轴向左运动,运动时间为t.当t为何值时,P、M、N中恰有一个点为其余两点的好点?【答案】(1)2;(2)当t=1,2,4.5,9时,P、M、N中恰有一个点为其余两点的好点.【解析】试题分析:(1)设所求数为x,由好点的定义列出方程x﹣(﹣2)=2(4﹣x),解方程即可;(2)由好点的定义可知分四种情况:①P为【M,N】的好点;②P为【N,M】的好点;③M为【N,P】的好点;④M为【P,N】的好点.设点P表示的数为y,由好点的定义列出方程,进而得出t的值.试题解析:解:(1)设所求数为x,由题意得x﹣(﹣2)=2(4﹣x),解得x=2,故答案为2;(2)设点P表示的数为4﹣2t,分四种情况讨论:①当P为【M,N】的好点时.PM=2PN,即6﹣2t=2×2t,t=1;②当P为【N,M】的好点时.PN=2PM,即2t=2(6﹣2t),t=2;③当M为【N,P】的好点时.MN=2PM,即6=2(2t﹣6),t=4.5;④当M为【P,N】的好点时.MP=2MN,即2t﹣6=12,t=9;综上可知,当t=1,2,4.5,9时,P、M、N中恰有一个点为其余两点的好点.考点:1.一元一次方程的应用;2.数轴;3.几何动点问题;4.分类讨论.65.我市城市居民用电收费方式有以下两种:普通电价:全天0.53元/度;峰谷电价:峰时(早8:00~晚21:00)0.56元/度;谷时(晚21:00~早8:00)0.36元/度.小明家所在小区经过电表升级改造之后下月起实施峰谷电价,已知小明家为400度.下月计划总用电量....(1)若其中峰时电量控制为100度,则小明家下月所付电费能比普通电价收费时省多少元?(2)当峰时电量为多少时,小明家下月所付电费跟以往普通电价收费相同?【答案】(1)48;(2)340.【解析】试题分析:(1)由两种收费标准,分别计算出每种需要的钱数,然后判断即可.(2)设峰时电量为x度时,收费一样,然后分别用含x的式子表示出两种收费情况,建立方程后求解即可.试题解析:解:(1)若按(甲)收费:则需要电费为:0.53×400=212元;若按(乙)收费:则需要电费为:0.56×100+0.36×300=164元,212﹣164=48元.故小明家按照(乙)付电费比较合适,能省48元.(2)设峰时电量为x度时,收费一样,由题意得,0.53×400=0.56x+(400﹣x)×0.36,解得:x=340.答:峰时电量为340度时,两种方式所付电费相同.考点:一元一次方程的应用.66.下图的数阵是由一些奇数排成的.(1)图框中的四个数有什么关系?(设框中第一行第一个数为x )(2)若这样框出的四个数的和是200,求这四个数;(3)是否存在这样的四个数,它们的和为420,为什么?【答案】(1)2x +,8x +,10x +;(2)45,47,53,55;(3)不存在.【解析】试题分析:(1)在第一问中,由奇数的特点,每相邻的两个数相差为2,同时注意一行有5个数,即可发现它们之间的关系;(2)由第一问得到的四个数的关系即可列方程解第二问;(3)同样由方程是否有奇数解来判断即可.试题解析:解:(1)设第一行第一个数为x ,则其余3个数依次为x+2,x+8,x+10.(2)由题意得:x+x+2+x+8+x+10=200,解得:x=45,∴这四个数依次为45,47,53,55.答:这四个数依次为45,47,53,55.(3)不存在.∵4x+20=420,解得:x=100,为偶数,不合题意,故不存在.考点:1.一元一次方程的应用;2.图表型.67.如图,数轴的单位长度为1.(1)如果点B,D表示的数互为相反数,那么图中点A、点D表示的数分别是、;(2)当点B为原点时,在数轴上是否存在点M,使得点M到点A的距离是点M到点D的距离的2倍,若存在,请求出此时点M所表示的数;若不存在,说明理由;(3)在(2)的条件下,点A、点C分别以2个单位长度/秒和0.5个单位长度同时向右运动,同时点P从原点出发以3个单位长度/秒的速度向左运动,当点A与点C之间的距离为3个单位长度时,求点P所对应的数是多少?【答案】(1)﹣4,2 ;(2)2或10 ;(3)﹣18或﹣4.【解析】【分析】(1)由点B,D表示的数互为相反数,所以点B为﹣2,D为2,则点A 为﹣4;(2)存在,分两种情况讨论解答;(3)设当点A与点C之间的距离为3个单位长度时,运动时间为t,A点运动到:﹣2+2t,C点运动到:3+0.5t,由AC=3,分类讨论,即可解答.【详解】解:(1)∵点B,D表示的数互为相反数,∵点B为﹣2,D为2,∵点A为﹣4,故答案为﹣4,2;(2)存在,如图:当点M在A,D之间时,设M表示的数为x,则x﹣(﹣2)=2(4﹣x)解得:x=2,当点M在A,D右侧时,则x﹣(﹣2)=2(x﹣4),解得:x=10,所以点M所表示的数为2或10;(3)设当点A与点C之间的距离为3个单位长度时,运动时间为t,A点运动到:﹣2+2t,C点运动到:3+0.5t,∵﹣2+2t﹣(3+0.5t)=3,解得:t=6,所以P点对应运动的单位长度为:3×6=18,所以点P表示的数为﹣18.,所以P点对应运动的单位长度为:∵3+0.5t﹣(﹣2+2t)=3,解得:t=43=4,所以点P表示的数为﹣4.3×43答:点P表示的数为﹣18或﹣4.考点:1.数轴;2.相反数.68.某商店在一次买卖中,同时卖出两件上衣,每件都以135元出售,按成本计算,其中一件盈利25%,另一件亏本25%.(1)在这次买卖中,是赔是赚,还是不赔不赚?(2)若将题中的135改成任意正数a,赔或赚的情况如何?【答案】(1)赔钱(2)赔钱【解析】试题分析:(1)要知道赔赚,就要先算出两件衣服的成本价,把这两件上衣的成本价都看作单位“1”,则第一件上衣成本价的(1+25)是135元,根据已知一个数的几分之几是多少,求这个数,用除法求出第一件上衣的成本价,进而求出第一件上衣赚了多少元;第二件上衣成本价的(1-25%)是135元,根据已知一个数的几分之几是多少,求这个数,用除法求出第二件上衣的成本价,进而求出第二件上衣亏了多少元,然后进行比较即可得解.(2)直接代入a的值即可得出结果.试题解析:(1)135÷(1+25%)=108(元),135÷(1-25%)=180(元),∵108+180-135×2=18(元),∴在这次买卖中商店赔钱;(2)a÷(1+25%)=a(元),a÷(1-25%)=a(元),∵( a +a)-2a=a>0,∴无论a为何正数,在这次买卖中,商店都是赔钱.考点:有理数混合运算,列代数式,整式加减69.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20立方米时,按2元/立方米计费;月用水量超过20立方米时,其中的20立方米仍按2元/立方米收费,超过部分按2.6元/立方米计费.(1)如果小红家每月用水15吨,水费是元,如果每月用水23吨,水费是元(2)如果字母x表示小红家每月用水的吨数,那么小红家每月的水费如何用x代数式表示.(3)如果小明家第二季度交纳水费的情况如下:月份四月份五月份六月份交费金额30元34元47.8元小明家这个季度共用水多少立方米?【答案】(1)30,47.8;(2)(2.6x-12)元;(3)55.【解析】试题分析:(1)用水15吨,按2元/立方米易得水费;用水23吨,分两部分交纳水费,前20吨按2元/立方米计费,后3吨2.6元/立方米计费;(2)分类讨论:当x≤20时,水费为2x元;当x>20时,水费为[20×2+2.6(x-20)]元;(3)由(1)得到四月份和六月份的用水量,五月份的用水量按2元/立方米计费即可得到五月份用水为17吨,然后把三个月的用水量相加即可.试题解析:(1)小红家每月用水15吨,水费是15×2=30(元),如果每月用水23吨,水费是20×2+3×2.6=47.8(元);(2)当x≤20时,小红家每月的水费为2x元;当x>20时,小红家每月的水费为20×2+2.6(x-20)=(2.6x-12)元;(3)设五月份用水为34=17(吨),215+17+23=55所以小明家这个季度共用水55立方米.考点:1.列代数式;2.代数式求值.70.某织布厂有工人200名,为改善经营,增设制衣项目,已知每人每天能织布30米,或利用所织布制衣4件,制衣一件用布1.5米,将布直接出售,每米布可获利2元;将布制成衣后出售,每件可获利25元,若每名工人一天只能做一项工作,且不计其他因素,设安排x名工人制衣,那么:(1)一天中制衣所获得的利润为P=___________________(试用含x的代数式表示并化简);(2)一天中剩余布出售所获利润为Q=________________(试用含x的代数式表示并化简);(3)当安排166名工人制衣时,所获总利润是多少元?能否安排167名工人制衣以提高利润? 试说明理由.【答案】(1)100x;(2)12000-72x;(3)16648元,不能安排167名工人制衣.【解析】试题分析:(1)x名工人制衣,每人每天制衣4件,每件可获利25元.所以一天中制衣所获得的利润为P=制衣总数×利润=100x;(2)有200﹣x人织布,每人一天织布30米,共有布30×(200﹣x)米,衣服用布为4x×1.5=6x,剩下布为30×(200﹣x)﹣6x,每米布卖利润2元,乘2即可.(3)总利润=制衣利润+布的利润,关系式为:衣服用布应不大于共有布.试题解析:(1)100x;(2)[30×(200﹣x)﹣4x×1.5]×2=12000﹣72x;(3)当x=166时,W=P+Q=100x+12000﹣72x=16648(元);不能,因为若安排167名工人制衣,33名工人所织的布不够制衣所用,造成窝工.考点:1.列代数式;2.代数式求值.。
华东师大版数学七年级下册 解一元一次方程(定义及去括号类)同步练习(Word版含答案)
6.2.2.1解一元一次方程(定义及去括号类)★只含有未知数(元),并且含有未知数的式子都是式,未知数的次数都是,这样的方程叫做一元一次方程★解含括号的一元一次方程(1)当方程中含有带括号的式子时,需把括号去掉,方法与有理数运算中的去括号类似;(2)去括号的依据是去括号法则(3)一般步骤:去括号、合并同类项、移项、系数化为1。
一.选择题(共5小题)1.下列方程:①2x2﹣x=6;②y=x﹣7;③;④;⑤;⑥x=3,其中是一元一次方程的有()A.2个B.3个C.4个D.以上答案都不对2.方程3(x+1)=x+1的解是()A.x=﹣1B.x=0C.x=1D.x=23.下列方程的解是x=2的方程是()A.3x+6=0B.C.D.1﹣2x=54.如果方程﹣4x=﹣2与关于x的方程6x﹣2m=9的解互为相反数,则m的值是()A.﹣6B.6C.D.5.已知(a﹣3)x|a﹣2|﹣5=8是关于x的一元一次方程,则a=()A.3或1B.1C.3D.0二.填空题(共5小题)6.若4x2k+3=9是一元一次方程,则k=.7.若x=﹣1是关于x的方程2x﹣m=6的解,则m的值是.8.若方程(k﹣2)x|k|﹣1+7=0是关于x的一元一次方程,则k的值等于.9.方程(2a﹣1)x2+3x+1=4是一元一次方程,则a=.10.若关于x的方程(3a+2)x2+4x b﹣2﹣5=0是一元一次方程,则关于x的方程ax+b=0的解是.三.解答题(共30小题)11.解方程:2x﹣9=5x+3.12.解方程:(1)8﹣x=3x+2;(2).13.解方程:(1)2x+3=11﹣6x;(2)(3x﹣6)=x﹣3.14.解方程:8x=﹣2(x+4).15.解方程:3x﹣2(x+3)=6﹣2x.16.解方程:3(2x﹣1)=4x+3.17.2(x﹣3)=5﹣3(x+1).18.解方程:7x+2(3x﹣3)=20.19.解方程:6(x+)+2=29﹣3(x﹣1)20.解方程:3x﹣7(x﹣1)=3﹣2(x+3).21.解方程:4x﹣6=2(3x﹣1)22.(3x﹣6)=x﹣3.23.解方程:5x﹣2(3﹣2x)=﹣3.24.解方程:4x﹣3=2(x﹣1)25.2(x+8)=3(x﹣1)26.(x+1)﹣2(x﹣1)=1﹣3x.27.解方程:2(x﹣2)﹣3(4x﹣1)=9(1﹣x)28.解方程:7+2x=12﹣2x.29.解方程:(x﹣1)=2﹣(x+2).30.解方程:x﹣1=2(x+1)31.解方程:2﹣2(x﹣1)=3x+4.32.解方程:5x+2=3(x+2)33.34.35.解下列方程:(1)2{3[4(5x﹣1)﹣8]﹣20}﹣7=1;(2)=1;(3)x﹣2[x﹣3(x+4)﹣5]=3{2x﹣[x﹣8(x﹣4)]}﹣2;36.有一位同学在解方程3(x+5)+5[(x+5)﹣1]=7(x+5)﹣1,首先去括号,得3x+15+5x+25﹣5=7x+35﹣1,然后移项,合并同类项,最后求解,你有没有比他更简单的解法?试求解.37.已知y=1是方程2﹣(m﹣y)=2y的解,求关于x的方程m(x﹣3)﹣2=m(2x+5)的解.38.若方程3(2x﹣1)=2﹣3x的解与关于x的方程6﹣2k=2(x+3)的解相同,求k的值.39.已知方程(1﹣m2)x2﹣(m+1)x+8=0是关于x的一元一次方程.(1)求m的值及方程的解.(2)求代数式5x2﹣2(xm+2x2)﹣3(xm+2)的值.40.已知(m﹣3)x|m|﹣2+6=0是关于x的一元一次方程.(1)求m的值;(2)若|y﹣m|=3,求y的值.6.2.2.1解一元一次方程(定义及去括号类)参考答案与试题解析★只含有一个未知数(元),并且含有未知数的式子都是整式,未知数的次数都是1,这样的方程叫做一元一次方程★解含括号的一元一次方程(4)当方程中含有带括号的式子时,需把括号去掉,方法与有理数运算中的去括号类似;(5)去括号的依据是去括号法则(6)一般步骤:去括号、合并同类项、移项、系数化为1。
第4章 一元一次方程(压轴必刷30题3种题型专项训练)(原卷版)-2024-2025学年七年级数学上
第4章一元一次方程(压轴必刷30题3种题型专项训练)一.一元一次方程的解(共2小题)1.(2022秋•启东市校级月考)我们规定,若关于x的一元一次方程ax=b的解为x=b﹣a,则称该方程为“差解方程”,例如:2x=4的解为2,且2=4﹣2,则方程2x=4是差解方程.请根据上述规定解答下列问题:(1)判断3x=4.5是否是差解方程;(2)若关于x的一元一次方程5x=m+1是差解方程,求m的值.2.(2022秋•宿城区期中)我们规定,若关于x的一元一次方程ax=b的解为b﹣a,则称该方程为“差解方程”,例如:2x=4的解为2,且2=4﹣2,则方程2x=4是差解方程.请根据上边规定解答下列问题:(1)判断3x=4.5是否是差解方程;(2)若关于x的一元一次方程6x=m+2是差解方程,求m的值.二.解一元一次方程(共3小题)3.(2021秋•高新区期末)用“*”定义一种新运算:对于任意有理数a和b,规定a*b=ab2+2ab+a.如:1*3=1×32+2×1×3+1=16(1)求2*(﹣2)的值;(2)若(其中x为有理数),试比较m,n的大小;(3)若=a+4,求a的值.4.(2022秋•工业园区校级月考)如图,小明在一张纸面上画了一条数轴,折叠纸面,使表示数﹣1的点与表示数5的点重合,请你回答以下问题:(1)表示数﹣2的点与表示数的点重合;表示数7的点与表示数的点重合.(2)若数轴上点A在点B的左侧,A,B两点之间的距离为12,且A,B两点按小明的方法折叠后重合,则点A表示的数是;点B表示的数是;(3)已知数轴上的点M分别到(2)中A,B两点的距离之和为2022,求点M表示的数是多少?5.(2021秋•溧阳市期末)阅读理解学:我们都应该知道,任何无限循环小数都应该属于有理数,那是因为所有无限循环小数都可以化成分数形式,而分数属于有理数.那么无限循环小数怎么化成分数呢?下面的学习材料会告诉我们原因和方法:问题:利用一元一次方程将0.化成分数.设0.=x.由0.=0.7777…,可知10×0.=7777…=7+0.7777…=7+0.,即10x=7+x.可解得,即0.=.(1)将0.直接写成分数形式为.(2)请仿照上述方法把下列小数化成分数,要求写出利用一元一次方程进行解答的过程.①0.;②0.1.三.一元一次方程的应用(共25小题)6.(2022秋•高新区期末)甲、乙两个旅行团同时去苏州旅游,已知乙团人数比甲团人数多4人,两团人数之和恰等于两团人数之差的18倍.(1)问甲、乙两个旅行团的人数各是多少?(2)若乙团中儿童人数恰为甲团中儿童人数的3倍少2人,某景点成人票价为每张100元,儿童票价是成人票价的六折,两旅行团在此景点所花费的门票费用相同,求甲、乙两团儿童人数各是多少?7.(2022秋•兴化市校级期末)甲、乙两班学生到集市上购买苹果,苹果的价格如表:50千克以上购买苹果数不超过30千克30千克以上但不超过50千克每千克价格3元 2.5元2元甲班分两次共购买苹果80千克(第二次多于第一次),共付出185元,乙班则一次购买苹果80千克.(1)乙班比甲班少付出多少元?(2)甲班第一次、第二次分别购买苹果多少千克?8.(2023秋•海门市校级月考)已知A、B、C三点在同一条数轴上,点A、B表示的数分别为﹣2,18,点C在原点右侧,且AC=AB.(1)A、B两点相距个单位;(2)求点C表示的数;(3)点P、Q是该数轴上的两个动点,点P从点A出发,沿数轴以每秒1个单位的速度向右运动,点Q 从点B出发,沿数轴以每秒2个单位的速度向左运动,它们同时出发,运动时间为t秒,求当t为何值时,P、Q两点到C点的距离相等?9.(2022秋•建邺区校级期末)扬子江药业集团生产的某种药品的长方体包装盒的侧面展开图如图所示.根据图中数据,如果长方体盒子的长比宽多4cm,求这种药品包装盒的体积.10.(2023秋•滨海县月考)生活与数学日一二三四五六12345678910111213141516171819202122232425262728293031(1)山姆同学在某月的日历上圈出2×2个数,如图1,正方形的方框内的四个数的和是48,那么这四个数是.(2)小丽也在上面的日历上圈出2×2个数,如图2,斜框内的四个数的和是46,则它们分别是.(3)刘莉也在日历上圈出5个数,呈十字框形,如图3,它们的和是55,则中间的数是.(4)某月有5个星期日的和是75,则这个月中最后一个星期日是号?11.(2022秋•兴化市校级月考)结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是.②数轴上表示﹣1和﹣5的两点之间的距离是.③数轴上表示﹣3和4的两点之间的距离是.(2)归纳:一般的,数轴上表示数a和数b的两点之间的距离等于.(3)应用:①若数轴上表示数a的点位于﹣4与3之间,则|a+4|+|a﹣3|的值=.②若a表示数轴上的一个有理数,且|a﹣1|=|a+3|,则a=.③若a表示数轴上的一个有理数,|a﹣1|+|a+2|的最小值是.④若a表示数轴上的一个有理数,且|a+3|+|a﹣5|>8,则有理数a的取值范围是.(4)拓展:已知,如图2,A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为100.若当电子蚂蚁P 从A点出发,以4个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以3单位/秒的速度向左运动,求经过多长时间两只电子蚂蚁在数轴上相距20个单位长度,并写出此时点P所表示的数.12.(2022秋•海安市月考)已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度),慢车长CD=4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶,且|a+8|+(b﹣16)2=0.(1)求此时刻快车头A与慢车头C之间相距单位长度;(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头AC相距8个单位长度?(3)此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他发现行驶中有一段时间t秒钟,他的位置P到两列火车头A、C的距离和加上到两列火车尾B、D的距离和是一个不变的值(即P A+PC+PB+PD 为定值).你认为学生P发现的这一结论是否正确?若正确,求出这个时间及定值;若不正确,请说明理由.13.(2022秋•淮阴区期中)据电力部门统计,每天8:00至21:00是用电高峰期,简称“峰时”,21:00至次日8:00是用电低谷期,简称“谷时”.为了缓解供电需求紧张的矛盾,我市电力部门拟逐步统一换装“峰谷分时”电表,对用电实行“峰谷分时电价”新政策,具体见下表: 时间换表前换表后峰时(8:00﹣21:00)谷时(21:00﹣8:00)电价每度0.52元每度0.55元每度0.30元小明家对换表后最初使用的95度电进行测算,经测算比换表前使用95度电节约了5.9元,问小明家使用“峰时”电和“谷时”电分别是多少度?14.(2022秋•姜堰区期中)阅读理解:M 、N 、P 为数轴上三点,若点P 到M 的距离是点P 到N 的距离的k (k >0)倍,即满足PM =k .PN 时,则称点P 关于M 、N 的“相对关系值”为k .例如,当点M 、N 、P 表示的数分别为0、2、3时,PM =3PN ,则称点P 关于M 、N 的“相对关系值”为3;PN =MN ,则称点N 关于P 、M 的“相对关系值”为.如图,点A 、B 、C 、D 在数轴上,它们所表示的数分别为﹣1、2、6、﹣6.(1)原点O 关于A 、B 的“相对关系值“为a ,原点O 关于B 、A 的“相对关系值”为b ,则a = ,b = .(2)点E 为数轴上一动点,点E 所表示的数为x ,若x 满足|x +3|+|x ﹣2|=5,且点E 关于C 、D 的“相对关系值”为k ,则k 的取值范围是 .(3)点F 从点B 出发,以每秒1个单位的速度向左运动,设运动时间为t (t >0)秒,当经过t 秒时,C 、D 、F 三点中恰有一个点关于另外两点的“相对关系值”为2,求t 的值.15.(2022秋•苏州期中)【问题背景】落实“双减”政策后,某校开展了丰富多彩的科技活动.如图1,电子蚂蚁P 、Q 在长18分米的赛道AB 上同时相向匀速运动,电子蚂蚁P 从A 出发,速度为4分米/分钟,电子蚂蚁Q从B出发,速度为2分米/分钟,当电子蚂蚁P到达B时,电子蚂蚁P,Q停止运动.经过几分钟P,Q之间相距6分米?【问题解决】小辰同学在学习《有理数》之后,发现运用数形结合的方法建立数轴可以较快地解决上述问题:如图2,将点A与数轴的原点O重合,点B落在正半轴上.设运动的时间为t(0≤t≤4.5).(1)t分钟后点P在数轴上对应的数是;点Q对应的数是;(用含t的代数式表示)(2)我们知道,如果数轴上M,N两点分别对应数m,n,则MN=|m﹣n|.试运用该方法求经过几分钟P,Q之间相距6分米?(3)在赛道AB上有一个标记位置C,AC=6.若电子蚂蚁P与标记位置C之间的距离为a,电子蚂蚁Q与B之间的距离为b.在运动过程中,是否存在某一时刻t,使得a+b=4?若存在,请求出运动的时间;若不存在,请说明理由.16.(2022秋•海陵区校级月考)阅读理解,完成下列各题:定义:已知A、B、C为数轴上任意三点,若点C到点A的距离是它到点B的距离的3倍,则称点C是[A,B]的3倍点,例如:如图1,点C是[A,B]的3倍点,点D不是[A,B]的3倍点,但点D是[B,A]的3倍点,根据这个定义解决下面问题:(1)在图1中,点A[C,D]的3倍点(填写“是”或“不是”);[D,C]的3倍点是点(填写A或B或C或D);(2)如图2,M、N为数轴上两点,点M表示的数是﹣3,点N表示的数是5,若点E是[M,N]的3倍点,则点E表示的数是;(3)若P、Q为数轴上两点,点P在点Q的左侧,PQ=a,一动点H从点P出发,以每秒3个单位长度的速度沿数轴向右运动,设运动时间为t秒,求当t为何值时,点H恰好是P和Q两点的3倍点?(用含a的代数式表示)17.(2022秋•昆山市校级月考)如图所示,将连续的奇数1,3,5,7…排列成如下的数表,用十字形框框出5个数.探究规律一:设十字框中间的奇数为x,则框中五个奇数的和用含x的整式表示为,这说明被十字框框中的五个奇数的和一定是正整数p(p>1)的倍数,这个正整数p是.探究规律二:落在十字框中间且位于第二列的一组奇数是15,27,39…,则这一组数可以用整式表示为12m+3 (m为正整数),同样,落在十字框中间且位于第三列的一组奇数可以表示为;(用含m的式子表示)运用规律(1)被十字框框中的五个奇数的和可能是625吗?若能,请求出这五个数,若不能,请说明理由.(2)请问(1)中的十字框中间的奇数落在第几行第几列?18.(2022秋•广陵区校级月考)从泰州乘“K”字头列车A、“T”字头列车B都可直达南京,已知A车的平均速度为80km/h,B车的平均速度为A车的1.5倍,且行完全程B车所需时间比A车少40分钟.(1)求泰州至南京的铁路里程;(2)若两车以各自的平均速度分别从泰州、南京同时相向而行,问经过多少时间两车相距40km?19.(2022秋•江都区月考)某地的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元,经粗加工后销售,每吨利润4000元,经精加工后销售,每吨利润7000元.当地一家公司现有这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果对蔬菜进行精加工,每天可加工6吨,但每天两种方式不能同时进行.受季节等条件的限制,必须用15天时间将这批蔬菜全部销售或加工完毕.为此,公司研制了三种方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能地对蔬菜进行精加工,没来得及加工的蔬菜,在市场上直接出售;方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并刚好15天完成.如果你是公司经理,你会选择哪一种方案,说说理由.20.(2023秋•锡山区期中)如图,数轴上有A、B、C、D四点,点D对应的数为x,已知OA=5,OB=3,CD=2,P、Q两点同时从原点O出发,沿着数轴正方向分别以每秒钟a和b个单位长度的速度运动,且a<b.点Q到点D后立即朝数轴的负方向运动,速度不变,在点C处与点P相遇,相遇后点P也立即朝着数轴的负方向运动,且P点的速度变为2a,Q点的速度不变.(1)P、Q两点相遇时,点P前进的路程为;Q、P两点相遇前的速度比=;(用含有x的式子表示)(2)若点B为线段AD的中点,①此时,点D表示的数x=;②相遇后,当点P到达点A处时,点Q在原点O的(填“左”或“右”)侧,并求出此时点Q在数轴上所表示的数字;(3)在(2)的条件下,当点P到达点A处时,立即掉头朝数轴的正方向运动,速度变为3a,点Q的速度始终不变,这两点在点M处第二次相遇,则点M在数轴上所表示的数字为.21.(2023秋•沭阳县校级月考)探索规律:将连续的偶2,4,6,8,…,排成如图:(1)十字框中的五个数的和与中间的数16有什么关系?(2)设中间的数为x,用代数式表示十字框中的五个数的和;(3)若将十字框上下左右移动,可框住另外的五位数,其它五位数的和能等于2010吗?如能,写出这五位数,如不能,说明理由.22.(2021秋•姑苏区校级期末)为增强公民节水意识,合理利用水资源,某市采用“阶梯收费”,标准如下表:用水量单价不超过6m3的部分2元/m3超过6m3不超过10m3的部分4元/m3超出10m3的部分8元/m3譬如:某用户2月份用水9m3,则应缴水费:2×6+4×(9﹣6)=24(元)(1)某用户3月用水15m3应缴水费多少元?(2)已知某用户4月份缴水费20元,求该用户4月份的用水量;(3)如果该用户5、6月份共用水20m3(6月份用水量超过5月份用水量),共交水费64元,则该户居民5、6月份各用水多少立方米?23.(2021秋•惠山区期末)【探索新知】如图1,点C将线段AB分成AC和BC两部分,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC称作互为圆周率伴侣线段.(1)若AC=3,则AB=;(2)若点D也是图1中线段AB的圆周率点(不同于C点),则AC DB;(填“=”或“≠”)【深入研究】如图2,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.(3)若点M、N均为线段OC的圆周率点,求线段MN的长度.(4)在图2中,若点D在射线OC上,且线段CD与图中以O、C、D中某两点为端点的线段互为圆周率伴侣线段,直接写出D点所表示的数.24.(2022秋•江都区校级月考)元旦期间,某商场打出促销广告(如下表)优惠条件一次性购物不超过200元一次性购物超过200元但不超过一次性购物超过500元500元优惠办法无优惠全部按9折优惠其中500元仍按9折优惠,超过500元部分按8折优惠小明妈妈第一次购物用了134元,第二次购物用了490元.(1)小明妈妈第一次所购物品的原价是元;(2)小明妈妈第二次所购物品的原价是多少元?(写出解答过程)(3)若小明妈妈将两次购买的物品一次性买清,可比两次购买节省多少元?25.(2022秋•梁溪区校级月考)在数轴上A点表示数a,B点表示数b,且a、b满足|a+2|+|b﹣4|=0;(1)点A表示的数为;点B表示的数为;(2)如果M、N为数轴上两个动点,点M从点A出发,速度为每秒1个单位长度;点N从点B出发,速度为点A的3倍,它们同时向左运动,点O为原点.当运动2秒时,点M、N对应的数分别是、.当运动t秒时,点M、N对应的数分别是、.(用含t的式子表示)运动多少秒时,点M、N、O中恰有一个点为另外两个点所连线段的中点?(可以直接写出答案)26.(2022秋•兴化市校级月考)如图,已知A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为80.(1)请直接写出AB的中点M对应的数;(2)现在有一只电子蚂蚁P从A点出发,以2个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以3个单位/秒的速度向左运动,设两只电子蚂蚁在数轴上的C点相遇,请求出C点对应的数是多少;(3)若当电子蚂蚁P从A点出发时,以2个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B 点出发,以3个单位/秒的速度向左运动,经过多长时间两只电子蚂蚁在数轴上相距25个单位长度?27.(2022秋•昆山市校级月考)在购买足球赛门票时,设购买门票张数为x(张),现有两种购买方案:方案一:若单位赞助广告费10000元,则该单位购买门票的价格为60元(总费用=广告赞助费+门票费).方案二:若购买的门票数不超过100张,每张100元,若所购门票超过100张,则超出部分按八折计算.解答下列问题:(1)方案一中,用含x的代数式来表示总费用为.方案二中,当购买的门票数x不超过100张时,用含x的代数式来表示总费用为.当所购门票数x超过100张时,用含x 的代数式来表示总费用为.(2)甲、乙两单位分别采用方案一、方案二购买本次足球赛门票,合计700张,花去的总费用计58000元,求甲、乙两单位各购买门票多少张?28.(2021秋•江都区期中)把2100个连续的正整数1、2、3、…、2100,按如图方式排成一个数表,如图用一个正方形框在表中任意框住4个数,设左上角的数为x.(1)另外三个数用含x的式子表示出来,从小到大排列是;(2)被框住4个数的和为416时,x值为多少?(3)能否框住四个数和为324?若能,求出x值,若不能,说明理由;(4)从左到右,第1至第7列各数之和分别为a1、a2、a3、a4、a5、a6、a7,求7个数中最大的数与最小的数之差.29.(2021秋•秦淮区期中)生活与数学:(1)吉姆同学在某月的日历上圈出2×2个数,正方形的方框内的四个数的和是32,那么第一个数是;(2)玛丽也在日历上圈出2×2个数,斜框内的四个数的和是42,则它们分别是;(3)莉莉也在日历上圈出5个数,呈十字框形,它们的和是50,则中间的数是;(4)某月有5个星期日的和是75,则这个月中最后一个星期日是号;(5)若干个偶数按每行8个数排成图4:①图中方框内的9个数的和与中间的数有什么关系:;②汤姆所画的斜框内9个数的和为360,则斜框的中间一个数是;③托马斯也画了一个斜框,斜框内9个数的和为252,则斜框的中间一个数是.30.(2021秋•洪泽区校级月考)请根据图中提供的信息,回答下列问题:(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯.为了迎接新年,两家商场都在搞促销活动.甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.。
人教版初中数学七年级下册《9.2 一元一次不等式》同步练习卷(4)
人教新版七年级下学期《9.2 一元一次不等式》同步练习卷一.解答题(共17小题)1.对于任意实数a,b,定义关于@的一种运算如下:a@b=2a﹣b,例如:5@3=10﹣3=7,(﹣3)@5=﹣6﹣5=﹣11.(1)若x@3<5,求x的取值范围;(2)已知关于x的方程2(2x﹣1)=x+1的解满足x@a<5,求a的取值范围.2.为创建“美丽乡村”,某村计划购买甲、乙两种树苗共400棵,对本村道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,则至少应购买甲种树苗多少棵?3.在关于x,y的方程组中,若未知数x,y满足x+y>0,求m的取值范围,并在数轴上表示出来.4.某商店购进甲、乙两种商品,购进4件甲种商品比购进5件乙种商品少用10元,购进20件甲种商品和10件乙种商品共用去160元.(1)求甲、乙两种商品每件进价分别是多少元?(2)若该商店购进甲、乙两种商品共140件,都标价10元出售,售出一部分降价促销,以标价的八折售完所有剩余商品,以10元售出的商品件数比购进甲种商品件数少20件,该商店此次购进甲、乙两种商品降价前后共获利不少于420元,求至少购进甲种商品多少件?5.已知关于x、y的二元一次方程组的解满足x+y>2.求k的取值范围.6.学校准备购买A、B两种奖品,奖励成绩优异的同学.已知购买1件A奖品和1件B奖品共需18元;购买30件A奖品和20件B奖品共需480元.(1)A、B两种奖品的单价分别是多少元?(2)如果学校购买两种奖品共100件,总费用不超过850元,那么最多可以购买A奖品多少件.7.若不等式3(x+1)﹣1<4(x﹣1)+3的最小整数解是方程x﹣mx=6的解,求m2﹣2m﹣11的值.8.若不等式5(x﹣2)+8<6(x﹣1)﹣7的最小整数解是方程2x﹣ax=3的解,求4a ﹣的值.9.列式计算:求使的值不小于的值的非负整数x.10.在等式y=kx+b(k,b为常数)中,当x=2时,y=﹣5;当x=﹣1时,y=4.(1)求k、b的值;(2)若不等式5﹣2x>m+4x的最大整数解是k,求m的取值范围.11.已知不等式7﹣2x>3的正整数解是方程3x﹣a=2ax﹣6的解,求(3﹣4a)(3+4a)+(3+4a)2的值.12.若关于x,y 的二元一次方程组的解满足x+y<2,求整数a的最大值.13.用甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C的含量及购买这两种原料的价格如下表:(1)现配制这种饮料9千克,要求至少含有4000单位的维生素C,试写出所需甲种原料的质量x(kg)应满足的不等式;(2)如果还要求甲、乙两种原料的费用不超过70元,试写出x(kg)应满足的另一个不等式.14.(1)列式:x与20的差不小于0;(2)若(1)中的x(单位:cm)是一个正方形的边长,现将正方形的边长增加2cm,则正方形的面积至少增加多少?15.在某次数学测试中,共有20道选择题,答对一题得5分,不答或答错一题扣2分,要想得60分以上,至少要答对多少道题?(只列式子)16.一次普法知识竞赛共有30道题,规定答对一题得4分,答错或不答倒扣1分,在这次竞赛中,小明获得80分以上,则小明至少答对多少道题?设小明答对x道题,用不等式表示题目中的不等关系.17.若一件商品的进价为500元,标价为750元,商店要求以利润率不低于5%的售价打折出售,问售货员最低打几折出售此商品设打x折,用不等式表示题目中的不等关系.人教新版七年级下学期《9.2 一元一次不等式》2019年同步练习卷参考答案与试题解析一.解答题(共17小题)1.对于任意实数a,b,定义关于@的一种运算如下:a@b=2a﹣b,例如:5@3=10﹣3=7,(﹣3)@5=﹣6﹣5=﹣11.(1)若x@3<5,求x的取值范围;(2)已知关于x的方程2(2x﹣1)=x+1的解满足x@a<5,求a的取值范围.【分析】(1)根据新定义列出关于x的不等式,解之可得;(2)先解关于x的方程得出x=1,再将x=1代入x@a<5列出关于a的不等式,解之可得.【解答】解:(1)∵x@3<5,∴2x﹣3<5,解得:x<4;(2)解方程2(2x﹣1)=x+1,得:x=1,∴x@a=1@a=2﹣a<5,解得:a>﹣3.【点评】本题主要考查解一元一次不等式及一元一次方程,解题的关键是根据新定义列出关于x的不等式及解一元一次不等式、一元一次方程的能力.2.为创建“美丽乡村”,某村计划购买甲、乙两种树苗共400棵,对本村道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,则至少应购买甲种树苗多少棵?【分析】(1)根据题意可以列出相应的方程组,从而可以求得需购买甲、乙两种树苗各多少棵;(2)根据题意可以列出相应的不等式,从而可以求得至少应购买甲种树苗多少棵.【解答】解:(1)设购买甲种树苗x棵,乙种树苗y棵,,解得,,即购买甲种树苗300棵,乙种树苗100棵;(2)设购买甲种树苗a棵,200a≥300(400﹣a)解得,a≥240,即至少应购买甲种树苗240棵.【点评】本题考查一元一次不等式的应用、二元一次方程组的应用,解题的关键是明确题意,列出相应的方程组与不等式.3.在关于x,y的方程组中,若未知数x,y满足x+y>0,求m的取值范围,并在数轴上表示出来.【分析】由①+②求出x+y=1﹣,得出不等式,求出不等式的解集即可.【解答】解:∵由①+②,得3x+3y=3﹣m,∴x+y=1﹣,∵x+y>0,∴1﹣>0,∴m<3,在数轴上表示如下:.【点评】本题考查了解二元一次方程组、二元一次方程组的解、解一元一次不等式和在数轴上表示不等式的解集,能得出关于m的不等式是解此题的关键.4.某商店购进甲、乙两种商品,购进4件甲种商品比购进5件乙种商品少用10元,购进20件甲种商品和10件乙种商品共用去160元.(1)求甲、乙两种商品每件进价分别是多少元?(2)若该商店购进甲、乙两种商品共140件,都标价10元出售,售出一部分降价促销,以标价的八折售完所有剩余商品,以10元售出的商品件数比购进甲种商品件数少20件,该商店此次购进甲、乙两种商品降价前后共获利不少于420元,求至少购进甲种商品多少件?【分析】(1)设甲种商品每件进价是x元,乙种商品每件进价是y元,根据“购进4件甲种商品比购进5件乙种商品少用10元,购进20件甲种商品和10件乙种商品共用去160元”列出方程组解答即可;(2)设购进甲种商品a件,则乙种商品(140﹣a)件,利润不少于420元”列出不等式解答即可.【解答】解:(1)设甲种商品每件进价x元,乙种商品每件进价y元,根据题意,得,解得,答:甲种商品每件进价5元,乙种商品每件进价6元.(2)设甲种商品购进a件,根据题意,得10(a﹣20)+0.8×10[140﹣(a﹣20)]﹣5a﹣6(140﹣a)≥420解得a≥60答:甲种商品至少购进25件.【点评】此题主要考查了二元一次方程组的应用以及一元一次不等式的应用,解决本题的关键是读懂题意,找到所求量的等量关系及符合题意的不等关系式.5.已知关于x、y的二元一次方程组的解满足x+y>2.求k的取值范围.【分析】①+②求出3x+3y=3k﹣3,根据已知得出不等式k﹣1>2,求出即可.【解答】解:,∵①+②得:3x+3y=3k﹣3,∴x+y=k﹣1,∵关于x、y的二元一次方程组的解满足x+y>2,∴k﹣1>2,∴k的取值范围是k>3.【点评】本题考查了二元一次方程组的解和解一元一次不等式的应用,关键是能得出关于k的不等式.6.学校准备购买A、B两种奖品,奖励成绩优异的同学.已知购买1件A奖品和1件B奖品共需18元;购买30件A奖品和20件B奖品共需480元.(1)A、B两种奖品的单价分别是多少元?(2)如果学校购买两种奖品共100件,总费用不超过850元,那么最多可以购买A奖品多少件.【分析】(1)直接利用购买1件A奖品和1件B奖品共需18元;购买30件A奖品和20件B奖品共需480元,进而得出方程组进而得出答案;(2)利用总费用不超过850元,得出不等关系进而得出答案.【解答】解(1)设A奖品的单价为x元,B奖品的单价为y元,由题意得:,解得:,答:A奖品的单价为12 元,B奖品的单价为6元.(2)设购买A奖品m件,则购买B奖品(100﹣m)件,由题意得:12m+6(100﹣m)≤850,解得:m≤,∵m为最大正整数,∴m得取值为41,答:至少购买A奖品41件.【点评】此题主要考查了一元一次不等式的应用,正确表示出两种奖品的总价是解题关键.7.若不等式3(x+1)﹣1<4(x﹣1)+3的最小整数解是方程x﹣mx=6的解,求m2﹣2m ﹣11的值.【分析】先求出不等式的解集,再求出最小整数解,代入求出m,最后求出答案即可.【解答】解:解不等式3(x+1)﹣1<4(x﹣1)+3得:x>3,所以不等式的最小整数解是x=4,把x=4代入x﹣mx=6得:2﹣4m=6,解得:m=﹣1,所以m2﹣2m﹣11=1+2﹣11=﹣8.【点评】本题考查了一元一次不等式的整数解和一元一次方程的解,能求出m的值是解此题的关键.8.若不等式5(x﹣2)+8<6(x﹣1)﹣7的最小整数解是方程2x﹣ax=3的解,求4a﹣的值.【分析】先求出不等式5(x﹣2)+8<6(x﹣1)﹣7的最小整数解,代入方程2x﹣ax=3,求出a的值,然后代入4a﹣,计算即可.【解答】解:∵5(x﹣2)+8<6(x﹣1)﹣7,∴x>11,∴不等式5(x﹣2)+8<6(x﹣1)﹣7的最小整数解是12,把x=12代入方程2x﹣ax=3,得24﹣12a=3,解得a=.∴4a﹣=4×﹣=7﹣8=﹣1.【点评】本题考查的是一元一次不等式的整数解,一元一次方程的解以及代数式求值.解决此类问题的关键在于正确求得不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,从而根据得到的条件进而求得不等式组的整数解.9.列式计算:求使的值不小于的值的非负整数x.【分析】根据题意列出不等式后,依据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1求得其解集,继而可得答案.【解答】解:≥,3(x+1)+4≥2(3x﹣1),3x+3+4≥6x﹣2,3x﹣6x≥﹣2﹣3﹣4,﹣3x≥﹣9,x≤3,则符合条件的非负整数有0、1、2、3.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变10.在等式y=kx+b(k,b为常数)中,当x=2时,y=﹣5;当x=﹣1时,y=4.(1)求k、b的值;(2)若不等式5﹣2x>m+4x的最大整数解是k,求m的取值范围.【分析】(1)根据二元一次方程组的求解方法,求出k、b的值各是多少即可.(2)首先根据一元一次不等式的解法,可得x<,然后根据不等5﹣2x>m+4x的最大整数解是k,可得关于m的不等式组,据此求出m的取值范围即可.【解答】解:(1)根据题意可得:,解得:;(2)解不等式5﹣2x>m+4x,得:x<,因为该不等式的最大整数解是k,即﹣3,所以﹣3<≤﹣2,解得:7≤m<13.【点评】本题主要考查解二元一次方程组和一元一次不等式组,解题的关键是掌握解二元一次方程组的能力,并根据不等式组的整数解情况列出关于m的不等式组.11.已知不等式7﹣2x>3的正整数解是方程3x﹣a=2ax﹣6的解,求(3﹣4a)(3+4a)+(3+4a)2的值.【分析】本题是关于x的不等式,应先只把x看成未知数,求得x的解集,然后根据不等式正整数解是方程的解,进而求得a.【解答】解:∵7﹣2x>3,∴x<2,∴不等式7﹣2x>3的正整数解为x=1,∵x=1是方程3x﹣a=2ax﹣6的解,∴3﹣a=2a﹣6,解得a=3,∴(3﹣4a)(3+4a)+(3+4a)2=(3﹣12)×(3+12)+(3+12)2=﹣9×15+152=﹣135+225=90.【点评】考查了一元一次不等式的整数解,解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.12.若关于x,y 的二元一次方程组的解满足x+y<2,求整数a的最大值.【分析】先把两式相加求出x+y的值,再代入x+y<2中得到关于a的不等式,求出a的取值范围,进而求解即可.【解答】解:,①+②得,x+y=1+,∵x+y<2,∴1+<2,解得a<4.故整数a的最大值为3.【点评】本题考查的是解二元一次方程组及解一元一次不等式,解答此题的关键是把a 当作已知条件表示出x+y的值,再得到关于a的不等式.13.用甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C的含量及购买这两种原料的价格如下表:(1)现配制这种饮料9千克,要求至少含有4000单位的维生素C,试写出所需甲种原料的质量x(kg)应满足的不等式;(2)如果还要求甲、乙两种原料的费用不超过70元,试写出x(kg)应满足的另一个不等式.【分析】(1)所需甲种原料的质量xkg,则所需乙种原料的质量(9﹣x)kg,根据“至少含有4000单位的维生素C”可得不等式;(2)所需甲种原料的质量xkg,则所需乙种原料的质量(9﹣x)kg,根据“甲、乙两种原料的费用不超过70元”列出不等式.【解答】解:(1)设所需甲种原料的质量xkg,由题意得:500x+80(9﹣x)≥4000;(2)由题意得:16x+4(9﹣x)≤70.【点评】此题主要考查了由实际问题抽象出一元一次不等式,关键是正确理解题意,找出题目中的等量关系,列出不等式.14.(1)列式:x与20的差不小于0;(2)若(1)中的x(单位:cm)是一个正方形的边长,现将正方形的边长增加2cm,则正方形的面积至少增加多少?【分析】(1)不小于意思为“≥”;(2)正方形增加的面积=新正方形的面积﹣原正方形的面积.能够结合(1)中x的取值范围,求得正方形的面积增加的范围,从而得到正方形的面积至少增加多少.【解答】解:根据题意,得(1)x﹣20≥0;(2)由(1),得x≥20.则正方形的面积增加(x+2)2﹣x2=4x+4≥4×20+4=84.即正方形的面积至少增加84cm2.【点评】要抓住关键词语,弄清不等关系,把文字语言的不等关系转化为用数学符号表示的不等式.15.在某次数学测试中,共有20道选择题,答对一题得5分,不答或答错一题扣2分,要想得60分以上,至少要答对多少道题?(只列式子)【分析】首先设出未知数,找到关键描述语,进而找到所求的量的关系:得分﹣扣分>60,从而可得不等式.【解答】解:设这个学生至少要答对x道题,则答错的题目为(20﹣x)道题.依题意得:5x﹣2(20﹣x)>60.【点评】此题主要考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等关系式,难度一般.16.一次普法知识竞赛共有30道题,规定答对一题得4分,答错或不答倒扣1分,在这次竞赛中,小明获得80分以上,则小明至少答对多少道题?设小明答对x道题,用不等式表示题目中的不等关系.【分析】理解:80分以上,意思是大于80分.本题的不等关系为:4×答对的题数﹣1×答错或不答的题数>80.【解答】解:设小明答对x道题,根据题意,得4x﹣(30﹣x)>80.【点评】读懂题意,抓住关键词语,弄清不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.17.若一件商品的进价为500元,标价为750元,商店要求以利润率不低于5%的售价打折出售,问售货员最低打几折出售此商品设打x折,用不等式表示题目中的不等关系.【分析】利润率不低于5%,即是利润应大于或等于利润率的5%.利润有两种表示方法:利润=售价﹣成本=成本×利润率.本题满足的关系为:售价﹣进价≥500×5%.【解答】解:设应打x折,根据题意,得750×﹣500≥500×5%.【点评】应抓住关键词语不低于,得到不等式.本题还需注意:(1)利润的两种表示方法;(2)打几折,即原价的十分之几.。
七数上册第三章一元一次方程3.4实际问题与一元一次方程(球赛积分表)同步练习(含解析新)
七数上册第三章一元一次方程3.4实际问题与一元一次方程(球赛积分表)同步练习(含解析新)七年级数学上册第三章一元一次方程3.4实际问题与一元一次方程(球赛积分表)同步练习(含解析新)下载文档七年级数学上册第三章一元一次方程3.4实际问题与一元一次方程(球赛积分表)同步练习(含解析新)第三章一元一次方程3.4.1 实际问题与一元一次方程(球赛积分表)一、选择题(共10小题)1.(·中山市期末)在﹣赛季英超足球联赛中,截止到3月12号止,蓝月亮曼城队在联赛前30场比赛中只输4场,其它场次全部保持不败.共取得了74个积分暂列积分榜第一位.已知胜一场得3分,平一场得1分,负一场得0分,设曼城队一共胜了x场,则可列方程为()A.3x+(30﹣x)=74 B.x+3 (30﹣x)=74C.3x+(26﹣x)=74 D.x+3 (26﹣x)=74[答案]C[详解]设曼城队一共胜了x场,则平了(30﹣x﹣4)场,依题意,得:3x+(30﹣x﹣4)=74,即3x+(26﹣x)=74.故选:C.[名师点睛]本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.2.(·广州市期末)足球比赛的记分办法为:胜一场得3分,平一场得1分,负一场得0分.一个队打了14场比赛,负5场,共得19分,那么这个队胜了()A.3场 B.4场 C.5场 D.6场[答案]C由题意得:3x+(14-5-x)=19,解得:x=5,即这个队胜了5场.故选C.[名师点睛]此题考查了一元一次方程的应用,属于基础题,解答本题的关键是要掌握胜的场数×3+平的场数×1+负的场数×0=总得分,难度一般.3.(·大庆市期末)小彬是学校的篮球队长,在一场篮球比赛中,他一人得了25分,其中罚球得了5分,他投进的2分球比3分球多5个,则他本场比赛3分球进了()A.1个C.3个D.4个[答案]B[详解]解: 设他本场比赛3分球进了x个,根据题意得5+2(x+5)+3x=25,解得x=2.故他本场比赛3分球进了2个.[名师点睛]本题考查一元一次方程的应用:利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.解题关键是找出之间的相等关系列方程.4.(·重庆市期末)在12月4日全国普法日中,我去某校进行了法律知识竞赛,竞赛内容是10道有关中学生应该了解的法律常识,竞赛规则规定:答对一题得5分,不答或答错一题倒扣3分,若七年级1班某同学得了34分,则该同学答对题的个数是()A.9 B.8 C.7 D.6[答案]B[详解]解:设答对的题数为x道,则不答或答错的有(10﹣x)道,解得:x=8.∴该同学答对题的个数是8个.故选B.[名师点睛]本题考查了一元一次方程的应用,正确找出题目中的等量关系,根据等量关系列出方程是解决问题的关键.5.(·仙桃市期末)一次知识竞赛共有20道选择题,规定答对一道得5分,不做或错一题扣1分,结果某学生得分为88分,则他做对题数为()A.16 B.17 C.18 D.19[答案]C[详解]解:设他做对题数为x道,则不做或做错了(20-x)道,根据题意得:5x-(20-x)=88,解得:x=18.即他做对题数为18道.故选:C.[名师点睛]本题考查的知识点是一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.6.(·咸阳市期末)篮球比赛规定:胜一场得3分,负一场得1分,某篮球队共进行了6场比赛,得了12分,该队获胜的场数是()A.2 B.3 C.4 D.5[答案]B[详解]设该队获胜x场,则负了(6-x)场.根据题意得3x+(6-x)=12,解得x=3.经检验x=3符合题意.故该队获胜3场.故选B.[名师点睛]本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键7.(·武汉市期末)一张试卷有25道选择题,做对一题得4分,做错一题得-1分,某同学做完了25道题,共得70分,那么他做对的题数是()A.17道 B.18道 C.19道 D.20道[答案]C[详解]设作对了x道,则错了(25-x)道,依题意得4x-(25-x)=70,解得x=19故选C.系.8.(·佛山市期末)在“足球进校园”活动中规定:胜一场得3分,平一场得1分,负一场得0分某班足球队踢了10场球,负了3场,得17分,这个足球队共胜了A.2场 B.4场 C.5场 D.7场[答案]C[详解]解:设这个足球队共胜了x场,则平了场,由题意,得,解得:.故选:C.[名师点睛]本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,解答时根据三种比赛结果的得分之和为17分建立方程是关键.9.(·大连市期末)小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,若小明得了94分,则小明答对的题数是()道.A.17 B.18 C.19 D.20[答案]B[详解]设小明答对了题,根据题意可得:,解得: .故选: .[名师点睛]此题主要考查了一元一次方程的应用,解决问题的关键是读懂题意,找到关键描述语,正确利用代数式表示出小明的得分.10.(·锦州市期末)数学考试出了15道题,做对一题得4分,做错一题倒扣2分,若王刚做了全部15道题,共得36分,则他做对了( )A.10道题 B.11道题C.12道题 D.13道题[答案]B[详解]解:设做对了道,则做错了道,由题意得:,解得:=11.故答案选:B.[名师点睛]本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,解答时根据做对的得分+做错的得分=最后总得分36建立方程是关键.二、填空题(共5小题)11.(·厦门市期末)在某足球比赛的前11场比赛中,A队保持连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,设A队胜了x场,由题意可列方程为________________[答案][详解]设设该队共胜了x场,根据题意得:3x+(11-x)=23.故答案为:3x+(11-x)=23.[名师点睛]此题考查了列一元一次方程.列一元一次方程解足球赛问题的关键是抓住胜的场数与平的场数的关系,根据积分总数列出方程.12.(·河间市期末)在一场NBA篮球比赛中,姚明共投中a个2分球,b个3分球,还通过罚球得到9分.在这场比赛中,他一共得了____________分.[答案]2a+3b+9[详解]解:2×a+3×b+9=2a+3b+9(分).故答案为:2a+3b+9.[名师点睛]本题考查了一元一次方程的应用,解题关键是找出数量关系,再列式解答.13.(·仙桃市期末)下表是2015﹣赛季欧洲足球冠军杯第一阶段G组赛(G组共四个队,每个队分别与其它三个队进行主客场比赛各一场,即每个队要进行6场比赛)积分表的一部分.(备注:总积分=胜场积分+平场积分+负场积分)本次足球小组赛中切尔西队总积分是___分.球队场次胜平负总积分切尔西 6 ?? 1 ?基辅迪纳摩 6 3 2 1 11波尔图 6 3 1 2 10特拉维夫马卡比 6 0 0 6 0[答案]13[详解]解:由特拉维夫马卡比队负6场积0分,可知负一场积0分,根据基辅迪纳摩队和波尔图队的胜场数相同,负场数相差1,积分差1,得平一场得1分,设胜一场积x分,根据题意得3x+1=10解得x=3,即胜一场积3分,平一场积1分,负一场积0分,又因为胜场数=负场数,所以切尔西队胜1+1+2+6-3-3=4场,平6-4-1=1场,总积分是3×4+1=13场,故答案为13.[名师点睛]本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.14.(·高平市期末)某次数学测验,共16个选择题,评分标准为:答对一题给6分,答错一题扣2分,不答得0分.某个学生只有1题未答,他想自己的分数不低于70分,他至少要答对________道题.[答案]13[详解]解:设他要对x题,依题意得:6x-2(15-x)≥70,解之得x≥12.5;因为题数应该是整数,所以至少要对13题.故答案为:13.[名师点睛]解决本题的关键是读懂题意,找到符合题意的不等关系式组.准确的解不等式是需要掌握的基本计算能力.注意:根据题意,未知数应该是最小整数.个得3分,爸爸投中1个得1分,结果两人一共投中了20个,得分刚好相等.小丽投中了_____个.[答案]5[详解]设小丽投中x个,根据题意得出:3x=20﹣x解得:x=5.故答案为:5.[名师点睛]本题考查了一元一次方程的应用,根据已知得出等量关系是解题的关键.16.(·石家庄市期末)数学课上,教师出示某区篮球赛积分表如下:(1)从表中可以看出,负一场积多少分,胜一场积多少分;(2)请你帮忙算出二队胜了多少场?(3)在这次比赛中,一个队胜场总积分能不能等于它的负场总积分?(4)在计算五队、六队胜出场次的时候,老师还没等同学们计算出来就立刻说出了答案,老师解释说:“我是通过找到积分与胜场之间的数量关系求出来的”,请你说出其中的奥秘.[答案](1)负1场积分2分;胜1场积3分;(2)二队胜了7场;(3)不能;(4)[分析](1)根据三队负11场得22分,可知负1场,积2分;由一队胜10场负1场积分32分可得胜一场的积分;(2)设二队胜x场,负(11-x)场,根据积分29分列方程,求解即可;(3)设这次比赛一个队共胜x场,则负(11﹣x)场,然后根据得分列出方程求解即可;(4)设这次比赛一个队共胜x场,则负(11﹣x)场,积分为y,根据y=胜场积分+负场积分=3x+2(11﹣x)=x+22,即可得到结论.[详解](1)三队负11场得22分,可知负1场积分=22÷11=2(分);由一队胜10场可知,其负1场,故胜1场积分=(32-1×2)÷10=3(分);(2)设二队胜x场,负(11-x)场.根据题意得:3x+2(11-x)=29解得:x=7.答:二队胜了7场.(3)设这次比赛一个队共胜x场,则负(11﹣x)场,根据题意得:3x=2(11-x)解得:x= .∵比赛场次x是正整数,∴一个队胜场总积分不能等于它的负场总积分.(4)设这次比赛一个队共胜x场,则负(11﹣x)场,积分为y,根据题意得:y=3x+2(11﹣x)=x+22,∴积分与获胜的场数之差=22.[名师点睛]本题考查了一元一次方程的应用以及从统计表中获取信息的能力.根据题意找出相等关系是解答本题的关键.17.(·南平市期末)某校七年级组织知识竞赛,共设20道选择题,各题分值相同,每题必答.右表记录了5个参赛学生的得分情况.问:参赛者答对题数答错题数得分A 20 0 100B 19 1 94C 18 2 88E 10 10 40(1)答对一题得分,答错一题得分;(2)有一同学说:同学甲得了70分,同学乙得了90分,你认为谁的成绩是准确的?为什么?[答案](1)5,﹣1;(2)同学甲的成绩是准确的,同学乙的成绩不准确.[详解]解:(1)∵答对20道题,答错0道题,得分100分,∴答对一题得5分,∵答对19道题,答错1道题,得分94分,∴答错一题得﹣1分;(2)同学甲的成绩是准确的,同学乙的成绩不准确.设同学甲答对了x道,则答错了(20﹣x)道,由题意得:5x﹣(20﹣x)=70,解得:x=15,设同学乙答对了y道,则答错了(20﹣y)道,由题意得:5y﹣(20﹣y)=90,解得:y=18 ,因为x,y是做对题目个数,所以x,y是自然数.因此,同学甲的成绩是准确的,同学乙的成绩不准确.[名师点睛]此题主要考查了一元一次方程的应用,正确表示出得分情况是解题关键.18.(·永州市期末)某次知识竞赛共有20道题,每题答对得5分,答错或不答都扣3分.小明共得了68分,那么小明答对了几道题?[答案]小明答对了16道题.[详解]设小明答对了x道题.根据题意,得5x-3(20-x)=68,经检验x=16符合题意.答:小明答对了16道题.[名师点睛]本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.。
人教版七年级上册数学第三章《一元一次方程》:相遇与追击类问题应用题综合练习题4(含答案)
人教版七年级上册数学第三章《一元一次方程》:相遇与追击类问题应用题综合练习题41.小王每天去体育场晨练,都见到一位田径队的叔叔也在锻炼.两人沿四百米跑道跑步,每次总是小王跑2圈的时间,叔叔跑3圈.一天,两人在同地反向而跑,小王看了一下记时表,发现隔了32秒钟两人第一次相遇.求两人的速度.第二天小王打算和叔叔在同地同向而跑,看叔叔隔多少时间再次与他相遇.你能先给小王预测一下吗?2.轮船和汽车都往甲地开往乙地,海路比公路近40千米.轮船上午7点开出,速度是每小时24千米.汽车上午10点开出,速度为每小时40千米,结果同时到达乙地.求甲、乙两地的海路和公路长.3.“五•一”长假日,弟弟和妈妈从家里出发一同去外婆家,他们走了1小时后,哥哥发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果弟弟和妈妈每小时行2千米,他们从家里到外婆家需要1小时45分钟,问哥哥能在弟弟和妈妈到外婆家之前追上他们吗?4.已知甲乙两人在一个200米的环形跑道上练习跑步,现在把跑道分成相等的4段,即两条直道和两条弯道的长度相同.甲平均每秒跑4米,乙平均每秒跑6米,若甲乙两人分别从A、C两处同时相向出发(如图),则:(1)几秒后两人首次相遇?请说出此时他们在跑道上的具体位置;(2)首次相遇后,又经过多少时间他们再次相遇?(3)他们第100次相遇时,在哪一条段跑道上?5.电气机车和磁悬浮列车从相距298千米的两地同时出发相对而行,磁悬浮列车的速度比电气机车速度的5倍还快20千米/时,半小时后两车相遇.两车的速度各是多少?6.一队学生去校外郊游,他们以每小时5千米的速度行进,经过一段时间后,学校要将一紧急的通知传给队长.通讯员骑自行车从学校出发,以每小时14千米的速度按原路追上去,用去10分钟追上学生队伍,求通讯员出发前,学生队伍走了多长的时间.。
2021-2022学年苏科版七年级数学上册《4-3用一元一次方程解决问题》同步练习题(附答案)
2021-2022学年苏科版七年级数学上册《4.3用一元一次方程解决问题》同步练习题(附答案)1.某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为()A.80元B.85元C.90元D.95元2.一件商品按成本价提高30%后标价,又以8折销售,售价为416元,这件商品卖出后获得利润()元.A.16B.18C.24D.323.某商场举办“迎新春送大礼”的促销活动,全场商品一律打八折销售.王老师买了一件商品,比标价少付了50元,那么他购买这件商品花了()A.250元B.200元C.150元D.100元4.一件夹克衫先按成本提高40%标价,再按9折(标价的90%)出售,结果获利38元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是()A.(1+40%)x×90%=x﹣38B.(1+40%)x×90%=x+38C.(1+40%x)×90%=x﹣38D.(1+40%x)×90%=x+385.小天使童装店一件童装标价80元,在促销活动中,该件童装按标价的6折销售,仍可获利20%,则这种童装每件的进价为()元.A.30B.40C.50D.606.某商品的标价为300元,打六折销售后获利50元,则该商品进价为()A.120元B.130元C.140元D.150元7.小明在深圳书城会员日当天购买了一本8折的图书,节约了17.2元,那么这本图书的原价是()A.86元B.68.8元C.18元D.21.5元8.某商品的进价为200元,标价为300元,打x折销售时后仍获利5%,则x为()A.7B.6C.5D.49.一家商店将某种服装按成本价提高20%后标价,又以9折优惠卖出,结果每件服装仍可获利8元,则这种服装每件的成本是()A.100元B.105元C.110元D.115元10.商场将进价为100元的商品提高80%后标价,销售时按标价打折销售,结果仍获利44%,则这件商品销售时打几折()A.7折B.7.5折C.8折D.8.5折11.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%,那么商店在这次交易中()A.赚了10元B.亏了10元C.赚了20元D.亏了20元12.某商品的价格标签已丢失,售货员只知道它的进价为80元,打七折售出后,仍可获利5%,你认为标签上的价格为()元.A.110B.120C.130D.14013.一件上衣按成本价提高50%后,以105元售出,则这件上衣的利润为()A.20元B.25元C.30元D.35元14.某个体商贩在一次买卖中,同时卖出两件上衣,售价都是150元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他()A.不赚不亏B.赚10元C.赔20元D.赚20元15.李明同学欲购买一件运动服,打七折比打九折少花30元钱,那么这件运动服的原价为元.16.某商场把进价为160元的商品按照8折出售,仍可获利10%,则该商品的标价为元.17.某件商品的标价是110元,按标价的八折销售时,仍可获利10%,则这件商品每件的进价为元.18.一商店把彩电按标价的九折出售,仍可获利20%,若该彩电的进价是2400元,则该彩电的标价为元.19.某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打折.20.某书店把一本新书按标价的八折出售,仍获利30%,若该书的进价为40元,则标价为元.21.2020年双“十一”期间,天猫商场某书店制定了促销方案:若一次性购书超过300元,其中300元按九五折优惠,超过300元的部分按八折优惠.(1)设一次性购买的书籍原价是500元,实际付款为元;(2)若小明购书时一次性付款365元,则所购书籍的原价是多少元?(3)小冬在促销期间先后两次下单购买书籍,两次所购书籍的原价之和为600元(第一次所购书籍的原价高于第二次),两次实际共付款555元,则小冬两次购物所购书籍的原价分别是多少元?22.疫情后为了复苏经济,龙岗区举办了“春暖龙城,约惠龙岗”的促消费活动,该活动拿出1.1亿元,针对全区零售,餐饮,购车等领域出台优惠政策.为配合区的经济复苏政策,龙岗天虹超市同时推出了如下促销活动:龙岗天虹超市促销活动方案:①购物不足500元优惠15%(打8.5折);②超过500元,其中500元优惠15%(打8.5折),超过部分优惠20%(打8折).(1)小哲在促销活动时购买了原价为200元商品,他实际应支付多少元?(2)小哲在第一次购物后,在“龙岗发布”微信公众号中参与摇号抢到了一张满300减100的购物券(即微信支付300元以上自动减100元),又到龙岗天虹超市去购物,用微信实际支付了381元,他购买了原价多少元的商品?23.小明用的练习本可以到甲商店购买,也可以到乙商店购买.已知两店的标价都是每本1元,甲商店的优惠条件是:买10本以上,从第11本开始按标价的7折卖;乙商店的优惠条件是:购买10本以上,每本按标价的8折卖.(1)小明要买20本时,到哪个商店较省钱?(2)小明要买10本以上时,买多少本时到两个商店付的钱一样多?(3)小明现有32元钱,最多可买多少本?24.已知甲商品进价40元/件,利润率50%:乙商品进价50元/件,售价80元.(1)甲商品售价为元/件;(2)若同时采购甲、乙商品共50件,总进价2100元,求采购甲商品的件数;(3)元旦期间,针对甲、乙商品进行如下优惠活动:一次性购物总金额优惠措施少于等于450元无超过450元,但不超过600元9折超过600元其中600元部分8.2折,超过600元部分3折佳佳一次性购乙商品若干件,实付504元,求佳佳购乙商品的件数.25.2019年双“十一”期间,天猫商场某书店制定了促销方案:若一次性购书超过300元,其中300元按九五折优惠,超过300元的部分按八折优惠.(1)设一次性购买的书箱原价是a元,当a超过300时,实际付款为元;(用含a的代数式表示,并化简)(2)若小明购书时一次性付款365元,则所购书籍的原价是多少元?(3)小冬在促销期间先后两次下单购买书箱,两次所购书籍的原价之和为600元(第一次所购书籍的原价高于第二次),两次实际共付款555元,则小冬两次购物所购书籍的原价分别是多少元?26.列方程解应用题今年某网上购物商城在“双11购物节“期间搞促销活动,活动规则如下:①购物不超过100元不给优惠;②购物超过100元但不足500元的,全部打9折;③购物超过500元的,其中500元部分打9折,超过500元部分打8折.(1)小丽第1次购得商品的总价(标价和)为200元,按活动规定实际付款元.(2)小丽第2次购物花费490元,与没有促销相比,第2次购物节约了多少钱?(请利用一元一次方程解答)(3)若小丽将这两次购得的商品合为一次购买,是否更省钱?为什么?参考答案1.解:设该商品的进货价为x元,根据题意列方程得x+20%•x=120×90%,解得x=90.故选:C.2.解:设原价为x元,根据题意列方程得:x×(1+30%)×80%=416解得x=400,416﹣400=16(元).答:这件商品卖出后获得利润16元.故选:A.3.解:设这件商品的原价为x元,则他购买这件商品花了0.8x元,根据题意得:x﹣0.8x=50,解得:x=250,∴0.8x=0.8×250=200.故选:B.4.解:设这件夹克衫的成本是x元,根据题意,列方程得:(1+40%)x×90%=x+38.故选:B.5.解:这种童装每件的进价为x元,依题意,得:80×60%﹣x=20%x,解得:x=40.故选:B.6.解:设该商品进价为x元,依题意,得:300×0.6﹣x=50,解得:x=130.故选:B.7.解:设这本图书的原价是x元,依题意得:(1﹣0.8)x=17.2解得x=86.即:这本图书的原价是86元.故选:A.8.解:设商品是按标价的x折销售的,根据题意列方程得:(300×﹣200)÷200=5%,解得:x=7.则此商品是按标价的7折销售的.故选:A.9.解:设这种服装每件的成本价为x元,由题意得:(1+20%)•90%•x﹣x=8,解得:x=100.答:这种服装每件的成本价为100元.10.解:设这件商品销售时打x折,依题意,得100×(1+80%)×﹣100=100×44%,解得:x=8.故选:C.11.解:设第一件衣服的进价为x元,第二件的进价为y元,根据题意得:200﹣x=25%x,200﹣y=﹣20%y,解得:x=160,y=250,∴400﹣x﹣y=400﹣160﹣250=﹣10(元).答:商店在这次交易中亏了10元.故选:B.12.解:设标签上的价格为x元,根据题意得:0.7x=80×(1+5%),解得:x=120.故选:B.13.解:设成本为x元,由题意得:(1+50%)x=105,解得:x=70,105﹣70=35(元),故选:D.14.解:设在这次买卖中原价都是x元,则可列方程:(1+25%)x=150,解得:x=120,比较可知,第一件赚了30元第二件可列方程:(1﹣25%)x=150解得:x=200,比较可知亏了50元,两件相比则一共亏了20元.故选:C.15.解:设这件运动服的原价为x元,由题意得:0.9x﹣0.7x=30,解得x=150.故答案为:150.16.解:设该商品的标价为x元,则80%x=160×(1+10%),所以0.8x=176,解得x=220.答:该商品的标价为220元.故答案为:220.17.解:设这种商品每件的进价为x元,根据题意得:110×80%﹣x=10%x,解得:x=80,则这种商品每件的进价为80元.故答案为:80.18.解:设彩电标价是x元,根据题意得0.9x﹣2400=20%•2400,解得x=3200(元).即:彩电标价是3200元.故答案是:3200.19.解:设商店打x折,依题意,得:180×﹣120=120×20%,解得:x=8.故答案为:八.20.解:设标价是x元,根据题意有:0.8x=40(1+30%),解得:x=65.故标价为65元.故答案为:65.21.解:(1)由题意知,300×0.95+0.8(500﹣300)=445(元).故答案是:445;(2)设所购书籍的原价是x元,则x>300.根据题意得,300×0.95+0.8(x﹣300)=365,解得x=400.答:若小明购书时一次性付款365元,则所购书籍的原价是400元;(3)∵第一次所购书籍的原价高于第二次,∴第一次所购书籍的原价超过300元,第二次所购书籍的原价低于300元.设第一次所购书籍的原价是b元,则第二次所购书籍的原价是(600﹣b)元,由题意知,300×0.95+0.8(b﹣300)+(600﹣b)=555,解得b=450,则600﹣b=150.答:第一次所购书籍的原价是450元,则第二次所购书籍的原价是150元.22.解:(1)200×(1﹣15%)=170(元).故他实际应支付170元;(2)设他购买了原价x元的商品,依题意有500×(1﹣15%)+(1﹣20%)(x﹣500)﹣100=381,解得x=570.故他购买了原价570元的商品.23.解:(1)甲店:10×1+10×1×70%=17(元),乙店:20×1×80%=16(元).∵17>16,∴买20本时,到乙店较省钱.(2)设购买x本时,两个商店付的钱一样多,依题意,得:10×1+70%(x﹣10)=80%x,解得:x=30.答:当购买30本时,到两个商店付的钱一样多.(3)设最多可买y本.在甲商店购买:10+70%(y﹣10)=32,解得:y==41,∵y为整数,∴在甲商店最多可购买41本;在乙商店购买:80%y=32,解得:y=40.∵41>40,∴最多可买41本.24.解:(1)甲商品售价=40(1+50%)=60(元)故答案是:60;(2)设购进甲种商品x件,则购进乙种商品(50﹣x)件,由题意得,40x+50(50﹣x)=2100,解得:x=40.即购进甲商品40件,乙商品10件.(3)设小华打折前应付款为y元,①打折前购物金额超过450元,但不超过600元,由题意得0.9y=504,解得:y=560,560÷80=7(件),②打折前购物金额超过600元,600×0.82+(y﹣600)×0.3=504,解得:y=640,640÷80=8(件),综上可得佳佳在该商场购买乙种商品件7件或8件.25.解:(1)由题意知,300×0.95+0.8(a﹣300)=0.8a+45故答案是:(0.8a+45);(2)设所购书籍的原价是x元,由题意知,x>300.故0.8x+45=365.解得x=400答:若小明购书时一次性付款365元,则所购书籍的原价是400元;(3)∵第一次所购书籍的原价高于第二次,∴第一次所购书籍的原价超过300元,第二次所购书籍的原价低于300元.设第一次所购书籍的原价是b元,则第二次所购书籍的原价是(600﹣b)元,由题意知,0.8b+45+(600﹣b)=555解得b=450,则600﹣b=150.答:第一次所购书籍的原价是450元,则第二次所购书籍的原价是150元.26.解:(1)200×0.9=180(元).答:按活动规定实际付款180元.故答案为:180.(2)∵500×0.9=450(元),490>450,∴第2次购物超过500元,设第2次购物商品的总价是x元,依题意有500×0.9+(x﹣500)×0.8=490,解得x=550,550﹣490=60(元).答:第2次购物节约了60元钱.(3)200+550=750(元),500×0.9+(750﹣500)×0.8=450+200=650(元),∵180+490=670>650,∴小丽将这两次购得的商品合为一次购买更省钱.。
人教版七年级数学上册第三章实际问题与一元一次方程解答题复习题四(含答案) (4)
人教版七年级数学上册第三章实际问题与一元一次方程解答题复习题四(含答案)某商厦将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件仍获利12元,问这种服装每件成本是多少元?【答案】这种服装每件成本是100元【解析】试题分析:设每件成本为x元,则商品的标价为(1+40%)x元,售价为80%×(1+40%)x元,再由利润=售价-进价建立等量关系列方程进行求解即可.试题解析:设这种服装每件成本是x元,依题意得(1+40%)×0.8x - x=12,解得:x=100答:这种服装每件成本是100元.32.甲乙两车分别相距360km的A,B两地出发,甲车的速度为65km/h,乙车的速度为55km/h.两车同时出发,相向而行,求经过多少小时后两车相距60 km.【答案】经过2.5h或3.5h后两车相距60 km.【解析】试题分析:设xh后两车相距60km,然后分相遇前与相遇后两种情况列出方程求解即可.试题解析:解:设x h后两车相距60 km.若相遇前,根据题意得,65x+65x=360-60,解得x=2.5;若相遇后,根据题意得,65x+65x=360+60,解得x=3.5;答:经过2.5h或3.5h后两车相距60 km.点睛:本题考查了一元一次方程的应用,主要利用了相遇问题等量关系,追及问题等量关系,熟练掌握行程问题的等量关系是解题的关键,难点在于分情况讨论.33.甲、乙两个仓库共存有粮食60t.解决下列问题,3个小题都要写出必要的解题过程:(1)甲仓库运进粮食14t,乙仓库运出粮食10t后,两个仓库的粮食数量相等.甲、乙两个仓库原来各有多少粮食?(2)如果甲仓库原有的粮食比乙仓库的2倍少3t,则甲仓库运出多少t粮食给乙仓库,可使甲、乙两仓库粮食数量相等?(3)甲乙两仓库同时运进粮食,甲仓库运进的数量比本仓库原存粮食数量的一半多1t,乙仓库运进的数量是本仓库原有粮食数量加上8t所得的和的一半.求此时甲、乙两仓库共有粮食多少t?【答案】(1)原来甲仓库有18t粮食,乙仓库有42t粮食;(2)甲仓库运出9t粮食给乙仓库,可使甲、乙两仓库粮食数量相等(3)甲乙两仓库共存有粮食95t【解析】试题分析:(1)设甲有xt,则乙有(60-x)t,根据甲仓库运进粮食14t,乙仓库运出粮食10t后,两个仓库的粮食数量相等,可得出方程,解出即可;(2)先求出甲乙粮仓原有多少粮食,再求甲运出的粮食数量即可;(3)根据题意列出代数式求值即可.试题解析:(1)设甲仓库原有粮食xt,则乙仓库原有粮食(60-x)t,由题知x+14=(60-x)-10,解得x=18.当x=18时,60-x=42.∴原来甲仓库有18t粮食,乙仓库有42t粮食;(2)设甲仓库原有粮食xt,则乙仓库原有粮食(60-x)t,由题知x=2(60-x)-3,解得x=39.当x=39时,60-x=21.∴原来甲仓库有39t粮食,乙仓库有21t粮食.设甲仓库运出yt粮食给乙仓库,可使甲、乙两仓库粮食数量相等,由题知39-y=21+y,解得y=9,∴甲仓库运出9t粮食给乙仓库,可使甲、乙两仓库粮食数量相等.(3)设甲仓库原有粮食xt,乙仓库原有粮食yt,则x+y=60.设运进粮食后,两仓库共有粮食wt,则w=60+(12x+1)+12(y+8)=65+12(x+y)=65+30=95,∴此时甲乙两仓库共存有粮食95t.34.列一元一次方程解应用题:某小组计划做一批“中国结”,如果每人做5个,那么可比计划多做9个;如果每人做4个,那么将比计划少15个.问:他们计划做多少个“中国结”?【答案】他们计划做111个中国结【解析】试题分析:设小组成员共x名,由题意表示出计划做的个数为(5x-9)或(4x+15),由此联立方程求得人数,进一步求得做的个数即可.试题解析:设小组成员共x名,由题意得5x-9=4x+15,解得:x=24,则5x-9=111.答:小组成员共24名,他们计划做111个“中国结”.35.甲、乙两人要加工200个零件,甲先单独加工5小时,后与乙一起加工4小时完成了任务.已知甲每小时比乙多加工2个零件,分别求甲、乙两人每小时加工的零件个数.【答案】甲每小时加工零件16个,乙每小时加工零件14个.【解析】试题分析:如果乙每小时加工x个零件,那么甲每小时加工(x+2)个零件,根据要加工200个零件,甲先单独加工5小时,然后又与乙一起加工4小时,完成了任务以及甲每小时比乙多加工2个,可列出方程求解即可.解:设乙每小时加工零件x个,则甲每小时加工零件(x+2)个.根据题意,得5(x+2)+4(x+2+x)=200.解得x =14.x+2=14+2=16.答:甲每小时加工零件16个,乙每小时加工零件14个.点睛:本题考查了列一元一次方程解应用题,一般步骤是:①审题,找出已知量和未知量;②设未知数,并用含未知数的代数式表示其它未知量;③找等量关系,列方程;④解方程;⑤检验方程的解是否符合题意并写出答案.36.列方程解应用题:小明每天早上要在7:50之前赶到离家1000米的学校去上学,一天早上小明以80米/分钟的速度出发去上学,5分钟后他爸爸发现小明忘带语文书,便以180米/分钟的速度去追小明,且在途中追上了小明.(1)小明的爸爸几分钟追上了小明?(2)爸爸追上小明时距离学校多远?【答案】(1)4;(2)280米.【解析】试题分析:(1)设小明爸爸追上小明用了x分钟,由题意知小明比爸爸多走5分钟且找出等量关系,小明和他爸爸走的路程一样,由此等量关系列出方程求解;(2)根据题意,先求出小明此时已经行走的路程,然后求解即可.试题解析:(1)设小明爸爸追上小明用了x分钟,那么小明走了(x+5)分钟,由题意得:80(x+5)=180x,解得:x=4,∵80×9<1000米,所以,小明爸爸追上小明用了4分钟;(2)小明此时已经行走的路程为:180×4=720米,∴追上小明时,距离学校的距离为:1000-720=280米.【点睛】本题考查一元一次方程的应用问题,关键在于弄清题意,找出等量关系即:小明爸爸和小明所行路程相等,列出方程求解.37.37.马刚家附近有甲乙两家超市,春节来临之际两个超市分别给出了不同的促销方案:甲超市购物全场8.8折,乙超市购物①不超过200元,不给予优惠;②超过200元而不超过500元,打9折;③超过500元,其中的500元仍打9折,超过500元的部分打8折.(假设两家超市相同商品的标价都一样)(1)当一次性购物标价总额是300元时,甲乙两个超市实付款分别是多少?(2)当标价总额是多少元时,甲乙超市实付款一样?【答案】(1)甲264元;乙270元;(2)625【解析】试题分析:(1)依促销方案分别计算即可;(2)先计算出标价总额超过500元,再根据甲乙超市实付款一样列方程求解即可.试题解析:(1)当一次购物标价总额是300元时,甲超市实付款=300×0.88=264元;乙超市实付款=300×0.9=270元;(2)设当标价总额是x元时,甲乙超市实付款一样.当一次性购物标价总额恰好是500元时甲超市实付款=500×0.88=440元.乙超市实付款=500×0.9=450元.∵440<450∴x>500根据题意得0.88x=500×0.9+0.8(x-500)解得x=625答:当标价总额是625元时甲乙超市实付款一样.38.甲、乙两位采购员同去一家水果批发公司购买两次相同的水果.两次水果的单价不同,但两人在同一次购买时单价相同;另外两人的购买方式也不同,其中甲每次购买800kg;乙每次用去600元.(1) 若第二次购买水果的单价比第一次多1元/ kg,甲采购员两次购买水果共用10400元,则乙第一次购买多少的水果?(2) 设甲两次购买水果的平均单价是M 元/ kg ,乙两次购买水果的平均单价是N 元/kg ,试比较 M 与N 的大小,并说明理由.【答案】(1) 乙第一次购买100 kg 的水果;(2) M >N,理由见解析.【解析】试题分析:(1)第一次购买水果的单价是x 元/kg ,根据两次购买水果共用10400元,列方程求解即可;(2)分别求出甲乙两人两次购买水果的平均单价作差比较即可.试题解析:(1)设第一次购买水果的单价是x 元/kg ,则800x +800(x +1) =10400.解得,x =6(元/kg).600÷6=100( kg).答:乙第一次购买100 kg 的水果.(2)设第一次购买水果的单价是x 元/kg ,第二次购买水果的单价是y 元/kg ,则甲两次购买水果共用去800x +800y (元).甲两次购买水果的平均单价M =2x y +. 乙两次购买水果共600600x y+(kg). 乙两次购买水果的平均单价N =2xy x y+. M —N =2x y +—2xy x y +=2()42()x y xy x y +-+=2()2()x y x y -+. ∵ x ≠y ,x >0,y >0,∴2()2()x yx y-+>0,即M—N>0,∴M>N.39.小丽在水果店用36元买了苹果和梨共6千克,已知苹果每千克10元,梨每千克4元.(1)小丽买了苹果和梨各多少千克?(2)若苹果进价是每千克8元,梨每千克3元,问这次购买中水果店赚了多少钱?【答案】(1)苹果2千克,梨4千克(2)8元【解析】试题分析:(1)设买了苹果x千克,则买了梨(6-x)千克,购买苹果花了10x元,购买梨花了4(6-x)元,一共花了36元,可列方程10x+4(6-x)=36,解得x=2,6-x=4;(2)由已知条件不难得出苹果每千克赚2元,梨子每千克赚1元,用苹果每千克赚的元数×购买苹果的千克数+梨子每千克赚的元数×购买梨子的千克数可算出水果店一共赚多少元.试题解析:解:(1)设买了苹果x千克,则买了梨(6-x)千克,10x+4(6-x)=36,解得x=2,则6-x=4.答:买了苹果2千克,梨4千克.(2)2×(10-8)+4×(4-3)=8元.答:这次购买中水果店赚了8元.点睛:本题关键在于找准等量关系列出方程.40.从扬州乘“K ”字头列车A 、“T ”字头列车B 都可直达南京,已知A 车的平均速度为60km/h ,B 车的平均速度为A 车的1.5倍,且走完全程B 车所需时间比A 车少45分钟.(1)求扬州至南京的铁路里程;(2)若两车以各自的平均速度分别从扬州、南京同时相向而行,问经过多少时间两车相距15km ?【答案】(1)135km ;(2)0.8或1小时.【解析】试题分析:(1)设扬州至南京的铁路里程是x km ,依题意得到B 车的平均速度为1.5xkm/h ,根据走完全程B 车所需时间比A 车少45分钟,可列出方程求出解.(2)需要分类讨论:①相遇前相距两车相距15km ;②相遇后两车相距15km .试题解析:(1)设扬州至南京的铁路里程是x km ,则456060 1.560x x -=⨯ 解得:x=135.答:扬州至南京的铁路里程是135 km ;(2)设经过t h 两车相距15km .①当相遇前相距两车相距15km 时,60t+1.5×60t+15=135,解得t=0.8;②当相遇后两车相距15km 时,60t+1.5×60t-15=135,解得t=1.综上所述,经过0.8h或1h两车相距15km.答:经过0.8h或1h两车相距15km.。
2021年人教版数学七年级上册同步专题四《解一元一次方程》强化练习卷(含答案)
人教版数学七年级上册同步专题四《解一元一次方程》强化练习卷一、选择题1.若关于x的方程3x+5=m与x-2m=5有相同的解,则x的值是()A. 3;B. -3;C. 4;D. -4;2.为确保信息安全,信息需加密传输,发送方将明文加密为密文传输给接收方,接收方收到密文后解密还原为明文.己知某种加密规则为:明文a、b对应的密文为a-b、2a+b.例如,明文1、2对应的密文是-3、4.当接收方收到密文是1、7时,解密得到的明文是( ) A.-1,1 B.1,3 C. 3,1 D.1,l3.在数学活动课上,同学们利用如图的程序进行计算,发现无论 x 取任何正整数,结果都会进入循环,下面选项一定不是该循环的是()A.4,2,1B.2,1,4C.1,4,2D.2,4,14.按下面的程序计算:若输入x=100,输出结果是501,若输入x=25,输出结果是631,若开始输入的x值为正整数,最后输出的结果为556,则开始输入的x值可能有()A.1种 B.2种 C.3种 D.4种5.关于x的方程ax+3=4x+1的解为正整数, 则整数a的值为( )A. 2B. 3C. 1或2D. 2或36.已知方程的解满足,则的值是()A.B.C.或D.任何数7.某书上有一道解方程的题:,处在印刷时被油墨盖住了,查后面的答案知这个方程的解是x=-2,那么处应该是数字().A.7B.5C.2D.-28.若不论k 取什么实数,关于x 的方程(a 、b 是常数)的解总是x=1,则a+b的值是( ) A.﹣0.5 B.0.5 C.﹣1.5 D.1.5二、填空题9.若方程3x+2a=13和方程2x -4=2的解互为倒数,则a 的值为 . 10.已知关于x 的方程kx=7-x 有正整数解,则整数k 的值为 .11.已知t 满足方程,则的值为 .12.在等式(a+1)x=2+3x 中,若x 是负整数,则整数a 的取值是________.13.若a 、b 互为相反数,c 、d 互为倒数,p 的绝对值等于2,则关于x 的方程(a+b)x 2+3cd •x-p 2=0的解为________.14.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是__________.三、解答题15.解方程:x -1-x 3=x +26+12;16.解方程:0.1x +0.20.02-x -10.5=3.17.解方程:18.解方程:.19.阅读下面的材料,并解答后面的问题.材料:试探讨方程ax=b 的解的情况.解:当a ≠0时,方程有唯一解x=b a. 当a=b=0时,方程有无数个解.当a=0,b ≠0时,方程无解.问题:(1)已知关于x 的方程a(2x -1)=3x -2无解,求a 的值;(2)解关于x 的方程(3-x)m=n(x -3)(m ≠-n).20.已知k 是不大于10的正整数,试找出一个k 的值,使关于x 的方程2(5x -6k)=x -5k -1的解也是正整数,并求出此方程的解.21.老师在黑板上出了一道解方程的题,小明马上举手,要求到黑板上做,他是这样做的:4(2x ﹣1)=1﹣3(x+2)…①8x ﹣4=1﹣3x ﹣6…②8x+3x=1﹣6+4…③11x=﹣1…④x=﹣…⑤ 老师说:小明解一元一次方程的一般步骤都知道却没有掌握好,因此解题时有一步出现了错误,请你指出他错在 (填编号);然后,你自己细心地接下面的方程:(1)3(3x+5)=2(2x ﹣1) (2).22.已知方程2x -35=23x -3与方程3n -14=3(x +n)-2n 的解相同,求(2n -27)2的值.参考答案1.B2.C3.D4.B5.D6.C7.B.8.A9.答案为:a=6;10.答案为:0或6;11.答案为:2;12.答案为:0或1.13.答案为:x=4/3;14.答案为:1515.解:x=116.解:x=-317.解:x=-17.18.解:去分母,得12x ﹣(2x+1)=12﹣3(3x ﹣2).去括号,得12x ﹣2x ﹣1=12﹣9x+6.移项,得12x ﹣2x+9x=12+6+1.合并同类项,得19x=19.系数化为1,得x=1.19.(1)解:a(2x -1)=3x -2,去括号,得2ax -a=3x -2.移项,得2ax -3x=a -2.合并同类项,得(2a -3)x=a -2.根据材料知:当2a -3=0,且a -2≠0,即a=32时,原方程无解. (2)解:(3-x)m=n(x -3),3m -mx=nx -3n ,-(m +n)x=-3(m +n).∵m ≠-n ,∴m +n ≠0,∴x=3.20.解:由题意得9x=7k -1,k ,x 都是正整数,且k 不大于10,所以k=4,则原方程的解为x=3.21.解:小明错在①;故答案为:①;(1)去括号得:9x+15=4x ﹣2,移项合并得:5x=﹣17,解得:x=﹣3.4;(2)去分母得:3(2y ﹣1)﹣2(5y ﹣7)=12,去括号得:6y ﹣3﹣10y+14=12,移项合并得:﹣4y=1,解得:y=﹣0.25.22.解:解方程2x -35=23x -3,得x=9. 把x=9代入3n -14=3(x +n)-2n 中, 得 2n -27=14.所以 (2n -27)2=116.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.2 解一元一次方程(4)
班级 姓名 学号 成绩_______
【基础过关】
一、选择题
1、(m 2﹣1)x 2+(m+1)x+2=0,是关于x 的一元一次方程,则 m=( )
A.0
B.±1
C.1
D.-1
2、若方程mx ﹣3m=x ﹣3有无穷多解,则m= ( )
A. 0
B. 1
C. 2
D. 3
3、如果(a ﹣b )x=︱a ﹣b ︱的解是x=﹣1,那么 ( )
A .a=b B.a>b C.a<b D.a ≠b
4、如果a=0,那么ax=b 的解的情况是 ( )
A .有且只有一个解
B .无解
C .有无数个解
D .无解或无数个解
5、在公式h b a s )(2
1+=,已知16,4,3===s h a ,那么b =( ) A.1 B.3 C.5 D.7
二、填空题
1、 若方程05233=--m x 是一元一次方程,则m=_____________
2、x=-4是方程ax 2-6x-1=-9的一个解,则a=_________
3、6x-8与7-x 互为相反数,则x+
x 1=_________ 4、若3-x 的倒数等于2
1,则x+1=___________ 5、将方程02.013.0-x -5
.084-x = 1分母中的小数转化成整数的方程为 . 三、解答题
1、 解下列方程
(1))20(75)20(34x x x x --=--
(2)
1432312=---x x (3)38316.036.13.02+=--x x x
2、已知当x=2时,代数式c x c x +-+)3(22的值是10,求当3-=x 时,这个代数式的值,
【知能升级】
⒈规定新运算符号*的运算过程为b a b a 4
131*-=
,则 (1) 求5*(-5);
(2) 解方程2*(2*x )=1*x
2、已知关于x 的方程4)12(+-=+x k m kx ,当m k .为何值时:
(1)方程有唯一解;(2)方程有无数个解;(3)方程无解.
答 案
【基础过关】
一、选择题
1、C
2、B
3、C
4、D
5、C
二、填空题
1、34=m
2、-2
3、5
15 4、2 5、158040210030=---x x
三、解答题
1、(1)x=16 (2)x=
2
7 (3)x=4 2、25 【知能升级】
1、(1)1235 (2)158-=x
2、(1)1≠k (2)k=1,m=4 (3)4,1≠=m k。