第6讲 一元一次不等式(组)及其应用

合集下载

一元一次不等式组

一元一次不等式组

第6讲 一元一次不等式组知识点1.一元一次不等式组:含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组;注意:ab >0 ⇔0b a>⇔⎩⎨⎧>>0b 0a 或⎩⎨⎧<<0b 0a ;ab <0 ⇔0b a <⇔⎩⎨⎧<>0b 0a 或⎩⎨⎧><0b 0a ;ab=0 ⇔ a=0或b=0; ⎩⎨⎧≤≥ma ma ⇔ a=m . 2.一元一次不等式组的解集与解法:所有这些一元一次不等式解集的公共部分,叫做这个一元一次不等式组的解集;解一元一次不等式时,应分别求出这个不等式组中各个不等式的解集,再利用数轴确定这个不等式组的解集. 3.一元一次不等式组的解集的四种类型:xx a空集4.几个重要的判断:是正数、y x 0xy 0y x ⇔⎭⎬⎫>>+, 是负数、y x 0xy 0y x ⇔⎭⎬⎫><+, 异号且正数绝对值大,、y x 0xy 0y x ⇔⎭⎬⎫<>+.y x 0xy 0y x 异号且负数绝对值大、⇔⎭⎬⎫<<+专题讲解典型例题1:A 、关于X的不等式2x-a≤-1的解集如图,求a的取值范围。

B 、若不等式组 x −a >2,b −2x >0的解集是-1<x <1,则(a +b )2009=典型例题2:若方程组 4x −3y =k 2x +3y =5的解中x >y ,求k 的取值范围。

典型例题3:已知关于x 的方程x-2x−m 3=2x 3的解是非负数,m 是正整数,求m 的值。

典型例题4:解不等式组并在数轴上表示出来典型例题5:王凯家到学校2.1千米,现在需要在18分钟内走完这段路。

已知王凯步行速度为90米/ 分,跑步速度为210米/分,问王凯至少需要跑几分钟?典型例题6:青海新闻网讯:西宁市为加大向国家环境保护模范城市大步迈进的步伐,积极推进城市绿地,主题公园、休闲场地建设,园林局利用甲种花卉和乙种花卉搭配成A、B两种园艺造型摆放在夏都大道两侧,搭配数量如下表所示,(1)已知搭配一个A种园艺造型和一个B种园艺造型共需500元,若园林局搭配A种园艺造型32个,B种园艺造型18个共投入11800元,则A,B两种园艺造型的单价分别是多少元?(2)如果搭配A,B两种园艺造型共50个,某校学生课外小组承接了搭配方案的设计,其中甲种花卉不超过3490盆,乙种花卉不超过2950盆,问符合题意的搭配方案有几种?请你设计出来。

一元一次不等式(组)在生活中的应用

一元一次不等式(组)在生活中的应用

一元一次不等式(组)在生活中的应用
一元一次不等式(组)是小学数学中的一个重要内容,它在我们的日常生活中有很多应用。

以下是一些关于一元一次不等式(组)在生活中的应用:
购物打折:很多商场会举办打折活动,例如:打五折、打八折等。

我们可以用一元一次不等式来计算打折后商品的价格,帮助我们做出更明智的购物决策。

制定家庭预算:家庭预算可以帮助我们合理规划家庭收支,避免浪费。

在制定家庭预算时,我们可以使用一元一次不等式来计算各种开支和收入之间的关系,以及如何分配家庭预算。

健身计划:健身计划可以帮助我们制定科学合理的健身计划,达到健身的目的。

在健身计划中,我们可以用一元一次不等式来计算身体指标和目标之间的关系,例如:BMI指数和体重、身高之间的关系。

公交出行:公交车站的到达时间通常是不确定的,我们可以使用一元一次不等式来计算公交车的到达时间和出发时间之间的关系,以便更好地安排出行时间。

总之,一元一次不等式(组)在我们的日常生活中有很多应用。

它可以帮助我们计算各种事物之间的关系,从而更好地规划生活和工作。

一元一次方程与分式方程及其应用

一元一次方程与分式方程及其应用

C.x=2
4.(2014·扬州)某漆器厂接到制作480件漆器的订 单,为了尽快完成任务,该厂实际每天制作的件 数比原来每天多50%,结果提前10天完成任务,则 16 原来每天制作 件.
第一篇 数与代数
第二章 方程与不等式 第6讲 一元一次方程与分式方程及其应用
(学P15) 1.方程的有关概念: (1)含有未知数的 等式 叫做方程; (2)能够使方程左右两边的值 相等的 未知数的值, a 叫做方程的解.求方程解的过程叫做解方程.(只 含有一个未知数的方程的解也叫做根) (3)方程的两边都是关于未知数的整式,这样的方 程叫做整式方程.
2.一元一次方程和分式方程 (1)只含有 一个 未知数,且未知数的次数是 一次 , 这样的整式方程叫做一元一次方程;一元一次方程的 一般式形式是ax+b=0(a≠0). (2)分母里含有未知数的方程叫做分式方程. 3.一元一次方程和分式方程的解法 (1)解一元一次方程主要有以下步骤: 去分母 ; 去括号 ; 移项 ;合并同类项 ;未知数的系数 化为1; (2)解分式方程的步骤:①去分母,转化为 整式方程 ; ②解整式方程,得根;③验根.
【答案】解:设九(1)班人均捐款x元,则九(2)班人 均捐款(1+20%)x=1.2x元,根据题意列方程得:
1200 1200 =8,解之得x=25. x 1.2 x
检验:当x=25,分母不为0, ∴x=25是原方程的根. 当x=25时,1.2x=30. 答:这两个班级每班的人均捐款数分别为25元和30元.
【解后感悟】本题是分式方程的解和解一元一次不 等式,关键是得出n-2<0和n-2≠- ,注意题 目中的隐含条件2x+1≠0,不要忽略.
1.如果方程x+2=0与方程2x-a=0的解相同, 那么a= -4 . a x 2.已知关于x的方程2+ x 1 x 1 有增根, 则a的值是( A )

第6讲 一元一次不等式的应用八年级数学下册同步讲义(北师大版)

第6讲  一元一次不等式的应用八年级数学下册同步讲义(北师大版)

第6讲一元一次不等式的应用目标导航2.能够利用观察一次函数图象直接求出不等式的解.3.有关一元一次不等式与一次函数的实际应用方案问题,必须熟练掌握.知识精讲知识点01 由实际问题抽象出一元一次不等式用不等式表示不等关系时,要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号.因此建立不等式要善于从“关键词”中挖掘其内涵,不同的词里蕴含这不同的不等关系.【知识拓展1】(2020秋•海曙区期末)海曙区禁毒知识竞赛共有20道题,每一题答对得5分,答错或不答都扣2分,小明得分要超过80分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20﹣x,根据题意得()A.5x﹣2(20﹣x)≥80B.5x﹣2(20﹣x)≤80C.5x﹣2(20﹣x)>80D.5x﹣2(20﹣x)<80【即学即练1】(2021春•高新区期末)一次环保知识竞赛共有20道选择题,答对一题得5分;答错或不答,每题扣1分.要使总得分不少于88分,则至少要答对几道题?若设答对x道题,可列出的不等式为()A.5x﹣(20﹣x)>88B.5x﹣(20﹣x)<88C.5x﹣x≥88D.5x﹣(20﹣x)≥88【即学即练2】(2021春•宜州区期末)在“建党百年”知识抢答赛中,共有20道题,对于每一题,答对得10分,答错或不答扣5分,则至少答对多少题,得分才不低于95分?设答对x题,则可列不等式为()A.10x﹣5(20﹣x)≥95B.10x+5(20﹣x)≥95C.10x﹣5(20﹣x)>95D.10x+5(20﹣x)>95【即学即练3】(2021•桂林模拟)某次数学竞赛共有16道题,评分办法是:每答对一道题得6分,每答错一道题扣2分,不答的题不扣分也不得分.已知某同学参加了这次竞赛,成绩超过了60分,且只有一道题未作答.设该同学答对了x道题,根据题意,下面列出的不等式正确的是()A.6x﹣2(16﹣1﹣x)≥60B.6x﹣2(16﹣1﹣x)>60C.6x﹣2(16﹣x)≥60D.6x﹣2(16﹣x)>60知识点02 一元一次不等式的应用(1)由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.(2)列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.(3)列一元一次不等式解决实际问题的方法和步骤:①弄清题中数量关系,用字母表示未知数.②根据题中的不等关系列出不等式.③解不等式,求出解集.④写出符合题意的解.【知识拓展1】(2021秋•西湖区校级期中)为鼓励居民使用天然气,某市天然气公司采用一种收费办法.若整个小区每户都安装,收整体初装费10000元,再对每户收费500元,某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数()A.至少20户B.至多20户C.至少21户D.至多21户【即学即练1】(2021•梁园区校级一模)某学校为响应政府号召,需要购买一批分类垃圾桶,分为蓝色(可回收),绿色(易腐),红色(有害垃圾)和黑色(其他)四类,学校打算买其中蓝色和黑色共100个(两种都得有),黑色的50元/个,蓝色的60元/个,总费用不超过5060元,则不同的购买方式有()A.6种B.7种C.8种D.9种【即学即练2】(2021秋•虎林市期末)某次知识竞赛共有20道题,答对一题得10分,答错或不答均扣5分,小玉得分超过95分,他至少要答对()道题.A.12B.13C.14D.15【即学即练3】(2021秋•永定区期末)某商店为了促销一种定价为3元的商品,采取下列方式优惠销售:若一次性购买不超过5件,按原价付款;若一次性购买5件以上,超过部分按原价八折付款.如果小明有30元钱,那么他最多可以购买该商品()A.9件B.10件C.11件D.12件【知识拓展2】(2021秋•盐田区校级期末)超市要到厂家采购甲、乙两种工艺品共100个,付款总额不超(1)最多可采购甲种工艺品多少个?(2)若把100个工艺品全部以零售价售出,为使利润不低于2580元,则最少采购甲种工艺品多少个?【即学即练1】(2021秋•道里区期末)某班班主任对在某次考试中取得优异成绩的同学进行表彰.到商场购买了甲、乙两种文具作为奖品,若购买甲种文具12个,乙种文具18个,共花费420元;若购买甲种文具16个,乙种文具14个,共花费460元;(1)求购买一个甲种、一个乙种文具各需多少元?(2)班主任决定购买甲、乙两种文具共30个,如果班主任此次购买甲、乙两种文具的总费用不超过500元,求至多需要购买多少个甲种文具?【即学即练2】(2021秋•澧县期末)2021年冬季即将来临,德强学校准备组织七年级学生参观冰雪大世界.参观门票学生票价为160元,冰雪大世界经营方为学校推出两种优惠方案,方案一:“所有学生门票一律九折”;方案二:“如果学生人数超过100人,则超出的部分打八折”.(1)求参观学生为多少人时,两种方案费用一样.(2)学校准备租车送学生去冰雪大世界,如果单独租用45座的客车若干辆,则有15人没有座位;若租用同样数量的60座客车,则多出一辆,且其余客车恰好坐满,求我校七年级共有多少学生参观冰雪大世界?(司机不占用客车座位数)(3)在(2)的条件下,学校采用哪种优惠方案购买门票更省钱?【知识拓展3】(2021秋•上城区校级期中)我市某初中举行“八荣八耻”知识抢答赛,总共50道抢答题,抢答规定,抢答对1题得3分,抢答错1题扣1分,不抢答得0分,小军参加了抢答比赛,只抢答了其中的20道题,要使最后得分不少于50分,那么小军至少要答对()道题?A.17B.18C.19D.20【即学即练1】(2021秋•滨江区校级期中)某种商品进价为700元,标价1100元,由于该商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可以打()折.A.9B.8C.7D.6【即学即练2】(2021•嵊州市模拟)随看科技的进步,我们可以通过手机APP实时查看公交车到站情况.小明想乘公交车,可又不想静静地等在A站.他从A站往B站走了一段路,拿出手机查看了公交车到站情况,发现他与公交车的距离为720m(如图),此时有两种选择:(1)与公交车相向而行,到A公交站去乘车;(2)与公交车同向而行,到B公交站去乘车.假设小明的速度是公交车速度的,若要保证小明不会错过这辆公交车,则A,B两公交站之间的距离最大为()A.240m B.300m C.320m D.360m知识点03 一次函数与一元一次不等式(1)一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.(2)用画函数图象的方法解不等式kx+b>0(或<0)对应一次函数y=kx+b,它与x轴交点为(﹣,0).当k>0时,不等式kx+b>0的解为:x>,不等式kx+b<0的解为:x<;当k<0,不等式kx+b>0的解为:x<,不等式kx+b<0的解为:x>.【知识拓展1】(2021秋•瑶海区期末)如图,直线y=kx+b(k≠0)经过点A(﹣3,2),则关于x的不等式kx+b<2解集为()A.x>﹣3B.x<﹣3C.x>2D.x<2【即学即练1】(2021秋•蜀山区期末)一次函数y=kx+b(k,b为常数且k≠0)的图象如图所示,且经过点(﹣2,0),则关于x的不等式kx+b>0的解集为.【即学即练2】(2021秋•槐荫区期末)如图,一次函数y=2x+8的图象经过点A(﹣2,4),则不等式2x+8>4的解集是()A.x<﹣2B.x>﹣2C.x<0D.x>0【即学即练3】(2021秋•龙凤区期末)一次函数y=mx﹣n(m,n为常数)的图象如图所示,则不等式mx ﹣n≥0的解集是()A.x≥2B.x≤2C.x≥3D.x≤3【即学即练4】直线y=kx+b交坐标轴于A(﹣2,0),B(0,3)两点,则关于x的不等式kx+b<0的解集是.【知识拓展2】(2021•滨江区校级三模)一次函数y1=ax﹣a+1(a为常数,且a≠0).(1)若点(﹣1,3)在一次函数y1=ax﹣a+1的图象上,求a的值;(2)若a>0,当﹣1≤x≤2时,函数有最大值5,求出此时一次函数y1的表达式;(3)对于一次函数y2=kx+2k﹣4(k≠0),若对任意实数x,y1>y2都成立,求k的取值范围.【即学即练1】(2021•龙岩模拟)对于平面直角坐标系xOy中第一象限内的点P(x,y)和图形W,给出如下定义:过点P作x轴和y轴的垂线,垂足分别为M,N,若图形W中的任意一点Q(a,b)满足a≤x 且b≤y,则称四边形PMON是图形W的一个覆盖,点P为这个覆盖的一个特征点.例:若M(1,3),N(4,3),则点P(5,4)为线段MN的一个覆盖的特征点.已知A(1,4),B(4,1),C(2,4),求解下列问题:(1)在P1(2,4),P2(4,4),P3(5,5)中,是△ABC的覆盖特征点的有P2,P3;(2)若在一次函数y=mx+6(m≠0)的图象上存在△ABC的覆盖的特征点,求m的取值范围.【即学即练2】(2020秋•丰都县期末)问题:探究函数y=|x+1|﹣2的图象和性质.小华根据学习函数的方法和经验,进行了如下探究,下面是小华的探究过程,请补充完整:(1)下表是y与x的几组对应值,请将表格补充完整:x…﹣5﹣4﹣3﹣2﹣10123…y…21m n﹣2﹣1012…表格中m的值为,n的值为.(2)如图,在平面直角坐标系中描点并画出此函数的图象;(提示:先用铅笔画图,确定后用签字笔画图)(3)进一步探究:观察函数的图象,可以得出此函数的如下结论:①当自变量时,函数y随x的增大而增大;②当自变量x的值为时,y=3;③解不等式|x+1|﹣2<0的结果为.能力拓展例1.(2020·黑龙江哈尔滨市·九年级一模)2020年初武汉爆发新冠肺炎疫情,使得口罩成为人们生活的必需品.爱民药店库存一批N95和普通医用两种类型口罩,N95口罩进价是普通医用口罩进价的5倍,药店把N95口罩和普通医用口罩在进价基础上分别加价40%、50%做为零售价.某人在爱民药店用84元购买一种口罩,发现买普通医用口罩的数量恰好比买N95口罩的数量4倍还多4个.(1)求两种口罩的进价分别是多少元?(2)随着疫情的进一步恶化,爱民药店的口罩很快被抢购一空.该药店再去厂家进货时发现,由于原材料上涨,N95口罩进价上涨20%,普通医用口罩进价上涨了30%.爱民药店购进这两种口罩共1500个,在零售时,N95口罩保持原售价不变,而普通医用口罩在原售价基础上上调20%,该药店要想在这批口罩全部售出后的利润不少于2000元(不考虑其它因素),则这次至少购进N95口罩多少个?例2.(2020·黑龙江哈尔滨市·九年级三模)某加工厂甲、乙二人制造同一种机械零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙作60个所用的时间相等.(1)求甲、乙每小时各做多少个机械零件.(2)该加工厂急需甲、乙二人制造该种机械零件228个,由于乙另有其它任务,所以先由甲工作若干小时后再由甲、乙共同完成剩余的任务,工厂要求必须不超过10小时完成任务,请你求出乙至少工作多少小时?【变式1】(2020·长沙市雅礼实验中学八年级月考)“四书五经”是中国的“圣经”,“四书五经”是《大学》、《中庸》、《论语》和《孟子》(四书)及《诗经》、《尚书》、《易经》、《礼记》、《春秋》(五经)的总称,这是一部被中国人读了几千年的教科书,包含了中国古代的政治理想和治国之道,是我们了解中国古代社会的一把钥匙.某学校计划分阶段引导学生读这些书,先购买《论语》和《孟子》供学生阅读.已知购进《孟子》和《论语》,已知一本《孟子》的进价与一本《论语》的进价的和为40元,用90元购进《孟子》的本数与用150元购进《论语》的本数相同.(1)求每本《孟子》、每本《论语》的进价分别是多少元?(2)今年《孟子》和《论语》的单价和去年相比保持不变,该学校计划购进《孟子》和《论语》共100本,但花费总额不超过1800元,求最少购进《孟子》多少本?【变式2】(2020·沙坪坝区·重庆八中八年级月考)受疫情影响,口罩价格不断走高.3月20日当天口罩的价格是年初的1.5倍;3月20日当天,王老师购买4盒口罩比年初多花了48元.(1)那么3月20日当天口罩的价格为每盒多少元?(2)3月20日,按照(1)中的口罩价格,某售卖点共卖出1000盒口罩.3月21日,政府决定投入储备口罩并规定其销售价在3月20日的基础上下调0.7%a出售.该售卖点按规定价出售一批储备口罩和非储备口罩,该售卖点的非储备口罩仍按3月20日的价格出售,3月21日当天的两种口罩总销量比3月20日增加了20%,且储备口罩的销量占总销量的56,两种口罩销售的总金额比3月20日至少提高了1%10a,求a的最大值.【变式3】(2020·和平县实验初级中学七年级月考)某班为了开展乒乓球比赛活动,准备购买一些乒乓球和乒乓球拍,通过去商店了解情况,甲乙两家商店出售同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价48元,乒乓球每盒定价12元,经商谈,甲乙两家商店给出了如下优惠措施:甲店每买一副乒乓球拍赠送一盒乒乓球,乙店全部按定价的9折优惠.现该班急需乒乓球拍5副,乒乓球x盒(不少于5盒).(1)请用含x的代数式表示:去甲店购买所需的费用;去乙店购买所需的费用.(结果要求化简)(2)当需要购买40盒乒乓球时,通过计算,说明此时去哪家商店购买较为合算;(3)试探究,当购买乒乓球的盒数x取什么值时,去哪家商店购买更划算?【变式4】(2020·浙江省杭州市萧山区高桥初级中学八年级期中)某商场计划经销A、B两种新型节能台灯共50盏,这两种台灯的进价、售价如表所示:(2)在每种台灯销售利润不变的情况下,若该商场销售这批台灯的总利润不少于1400元,问至少购进B 种台灯多少盏?【变式5】(2020·舟山市第一初级中学八年级期中)在抗击新冠肺炎疫情期间,我校购买酒精和消毒液两种消毒物资,供师生使用.第一次购买酒精和消毒液若干,酒精每瓶10元,消毒液每瓶5元,共花费了350元;第二次又购买了与第一次相同数量的酒精和消毒液,由于恰逢商城打折,酒精和消毒液每瓶价格分别打7折和8折,此次只花费了260元.(1)求每次购买的酒精和消毒液分别是多少瓶?(2)若按照第二次购买的价格再一次购买,根据需要,购买的酒精数量是消毒液数量的2倍,现有购买资金200元,则最多能购买消毒液多少瓶?【变式6】(2019·山西八年级期末)山西民间的雕刻艺术源远流长,主要以古代传统吉祥纹样为素材,以石雕、木雕砖雕等形式,来体现主人的高尚情操和文化修养以及人们的美好愿望.某木雕经销商购进“木象”和“木马”两种雕刻艺术品,购“木象”艺术品共用了2000元,“木马”艺术品共用了2400元已知“木马”每件的进价比“木象”每件的进价贵8元,且购进“木象”“木马”的数量相同.()1求每件“木象”、“木马”艺术品的进价;()2该经销商将购进的两种艺术品进行销售,“木象”的销售单价为60元,“木马”的销售单价为88元,销售过程中发现“木象”的销量不好,经销商决定:“木象”销售一定数量后,将剩余的“木象”按原销售单价的七折销售;“木马”的销售单价保持不变要使两种艺术品全部售完后共获利不少于2460元,问“木象”按原销售单价应至少销售多少件?题组A 基础过关练1.如图,一次函数y =kx+b (k ,b 为常数,且k ≠0)的图象过点A (0,﹣1),B (1,1),则不等式kx+b >1的解集为( )A .x >0B .x <0C .x >1D .x <12.如图,直线y =kx+b 与直线y =3x ﹣2相交于点(12,﹣12),则不等式3x ﹣2<kx+b 的解为( )A .x >12B .x <12C .x >﹣12D .x <﹣123.如图,一次函数y kx b =+(,k b 为常数,且0k ≠)的图像经过点(3,2)-,则关于x 的不等式2kx b +<的解集为( )A .3x >-B .3x <-C .2x >D .2x <分层提分4.如图,射线1l反映了某棉业有限公司的加工销售收入与销售量的之间的函数关系,射线2l反映了该公司的加工成本与销售量之间的关系,当该公司盈利时,销售量应为()A.大于3t B.等于4t C.小于6t D.大于6t5.(2021秋•澧县期末)目前新冠变异毒株“奥密克戎”肆虐全球,疫情防控形势严峻.体温T超过37.3℃的必须如实报告,并主动到发热门诊就诊.体温“超过37.3℃”用不等式表示为()A.T>37.3℃B.T<37.3℃C.T≤37.3℃D.T≤﹣37.3℃6.(2020秋•海曙区期末)海曙区禁毒知识竞赛共有20道题,每一题答对得5分,答错或不答都扣2分,小明得分要超过80分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20﹣x,根据题意得()A.5x﹣2(20﹣x)≥80B.5x﹣2(20﹣x)≤80C.5x﹣2(20﹣x)>80D.5x﹣2(20﹣x)<807.(2021春•龙华区期末)某校拟用不超过2600元的资金在新华书店购买党史和改革开放史书籍共40套来供学生借阅,其中党史每套72元,改革开放史每套60元,那么学校最多可以购买党史书籍多少套?设学校可以购买党史书籍x套,根据题意得()A.72x+60(40﹣x)≤2600B.72x+60(40﹣x)<2600C.72x+60(40﹣x)≥2600D.72x+60(40﹣x)=26008.(2021秋•西湖区校级期中)为鼓励居民使用天然气,某市天然气公司采用一种收费办法.若整个小区每户都安装,收整体初装费10000元,再对每户收费500元,某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数()A.至少20户B.至多20户C.至少21户D.至多21户9.(2021•梁园区校级一模)某学校为响应政府号召,需要购买一批分类垃圾桶,分为蓝色(可回收),绿色(易腐),红色(有害垃圾)和黑色(其他)四类,学校打算买其中蓝色和黑色共100个(两种都得有),黑色的50元/个,蓝色的60元/个,总费用不超过5060元,则不同的购买方式有( )A .6种B .7种C .8种D .9种.10.(2021•集美区模拟)小军到水果店买水果,他身上带的钱恰好可以购买15个苹果或21个橙子,若小军先买了9个苹果,则他身上剩下的钱最多可买橙子( )A .7个B .8个C .9个D .10个11.(2021春•无棣县期末)某种商品的进价为40元,出售时标价为60元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )折.A .7B .6C .8D .512.已知一次函数y kx b =+的图像如图所示,则关于x 的不等式320kx b ->的解集为_____.13.(2021秋•温州期中)全国文明城市创建期间,某校组织开展“垃圾分类”知识竞赛,共有25道题.答对一题记4分,答错(或不答)一题记﹣2分.小明参加本次竞赛得分要超过60分,他至少要答对 道题.14.(2021春•老河口市期末)某种商品的进价为1000元,出售时标价为1500元,由于该商品积压,商店决定打折出售,但要保证利润率不低于20%,则至多可打 折.15.(2021春•平罗县期末)在某次篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场扣1分,某队预计在2019﹣2020赛季全部32场比赛中最少得到48分,才有希望进入季后赛,则这个队至少胜 场才有希望进入季后赛.16.(2021春•榆阳区期末)为加快“智慧校园”建设,某市准备为试点学校采购A 、B 两种型号的一体机共1100套,已知去年每套A 型一体机1.2万元每套、B 型一体机1.8万元,经过调查发现,今年每套A 型一体机的价格比去年上涨25%,每套B 型一体机的价格不变,若购买B 型一体机的总费用不低于购买A 型一体机的总费用,则该市最多可以购买 套A 型一体机.17.某工厂计划生产A,B两种产品共10件,其生产成本和利润如表.(1)若工厂计划获利14万元,则A,B两种产品应分别生产多少件?(2)若工厂计划投入资金不多于44万元,且生产A产品x件,请列出不等式.18.(2021•福建模拟)疫情期间为了满足测温的需求,某学校决定购进一批额温枪.经了解市场,购买A 种品牌的额温枪每支300元,B种品牌的额温枪每支350元.经与商家协商,A种品牌的额温枪降价15%,B种品牌的额温枪打八折销售.若购买两种品牌的额温枪共50支且总费用不超过13000元,则至少要购买A种品牌的额温枪多少支?19.(2021春•淮阳区校级期末)某市要创建“全国文明城市”.其小区为了响应号召,计划购进A,B两种树苗共23棵.已知A种树苗每棵100元,B种树苗每棵80元.(1)若购进A,B两种树苗共花费了2100元,问购进A,B两种树苗各多少棵?(2)若购进A种树苗的数量不少于B种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.题组B 能力提升练1.如图,一次函数y =kx +b(k ≠0)的图象经过点A(-2,4),则不等式kx +b >4的解集是( )A .x <-2B .x >-2C .x <0D .x >02.如图,若一次函数y =-2x +b 的图象与两坐标轴分别交于A ,B 两点,点A 的坐标为(0,3),则不等式-2x +b >0的解集为( )A .x >32B .x <32C .x >3D .x <33.若一次函数y =kx +b(k ,b 为常数,且k ≠0)的图象经过点A(0,-1),B(1,1),则不等式kx +b >1的解集为( )A .x <0B .x >0C .x <1D .x >14.如图,直线y =kx +b(k ≠0)经过点(-1,3),则不等式kx +b ≥3的解集为( )A .x >-1B .x <-1C .x ≥3D .x ≥-15.如图,直线y=kx-b与横轴、纵轴的交点分别是(m,0),(0,n),则关于x的不等式kx-b≥0的解集为( )A.x≥m B.x≤mC.x≥n D.x≤n6.如图,直线y=kx+b(k、b是常数k≠0)与直线y=2交于点A(4,2),则关于x的不等式kx+b<2的解集为___.7.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解集为____.8.一次函数y=ax+b与正比例函数y=kx在同一平面直角坐标系的图象如图所示,则关于x的不等式ax +b≥kx的解集为___.9.已知一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a>0;③b<0;④关于x的方程kx+b=x+a的解为x=3;⑤x>3时,y1<y2.其中正确的结论是____.(只填序号)10.在坐标系中作出函数y =2x +6的图象,利用图象解答下列问题:(1)求方程2x +6=0的解;(2)求不等式2x +6>-2的解集;(3)若2≤y ≤6,求x 的取值范围.11.如图,一次函数1: 22l y x =-的图像与x 轴交于点D ;一次函数2: l y kx b =+的图像与x 轴交于点A ,且经过点()3,1B ,两函数图像交于点(),2C m .(1)求m ,k ,b 的值;(2)根据图象,直接写出122kx b x <+<-的解集.12.某单位要制作一批宣传材料,甲公司提出:每份材料收费25元,另收2 000的设计费;乙公司提出:每份材料收费35,不收设计费.(1)请用含x 代数式分别表示甲乙两家公司制作宣传材料的费用;(2)试比较哪家公司更优惠?说明理由.13.为响应市政府“创建国家森林城市”的号召,某小区计划购进A ,B 两种树苗共17棵,已知A 种树苗每棵80元,B 种树苗每棵60元.(1)若购进A ,B 两种树苗刚好用去1 220元,问购进A ,B 两种树苗各多少棵?(2)若购买B 种树苗的数量少于A 种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.14.如图,一次函数y kx b =+的图象经过点()1,5A -,与x 轴交于点B ,与正比例函数3y x =的图象交于点C ,点C 的横坐标为1(1)求AB 的函数表达式;(2)若点D 在y 轴负半轴,且满足13COD BOC S S =△△,求点D 的坐标; (3)若3kx b x +<,请直接写出x 的取值范围.题组C 培优拔尖练一.填空题(共6小题)1.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成任务,请列出以后几天平均每天至少要完成的土方数x 应满足的不等式为 . 2.(2021秋•江北区校级期中)据了解,受国庆节期间火爆上映的六部影片的影响,而其相关著作也受到广大书迷朋友的追捧.已知某网上书店《长津湖》的销售单价与《我和我的父辈》相同,《铁道英雄》的销售单价是《五个扑水的少年》单价的3倍,《长津湖》与《五个扑水的少年》的单价和大于50元且不超过60元;若自电影上映以来,《长津湖》与《五个扑水的少年》的日销售量相同,《我和我的父辈》的日销售量为《铁道英雄》日销售量的3倍,《长津湖》与《铁道英雄》的日销售量和为450本,且《长津湖》的日销售量不低于《铁道英雄》的日销售量的且小于230本,《长津湖》与《铁道英雄》的日销售额之和比《我和我的父辈》、《五个扑水的少年》的日销售额之和多2205元,则当《长津湖》、《铁道英雄》这两部小说日销售额之和最多时,《长津湖》的单价为 元.3.(2021春•许昌期末)为了提高学校的就餐效率,巫溪中学实践小组对食堂就餐情况进行调研后发现:在单位时间内,每个窗口买走午餐的人数和因不愿长久等待而到小卖部的人数各是一个固定值,并且发现若开一个窗口,45分钟可使等待的人都能买到午餐,若同时开2个窗口,则需30分钟.还发现,若能在15分钟内买到午餐,那么在单位时间内,去小卖部就餐的人就会减少80%.在学校总人数一定且人人都要就餐的情况下,为方便学生就餐,总务处要求食堂在10分钟内卖完午餐,至少要同时开多少 个窗口.4.(2019春•沙坪坝区校级期末)为迎接建国70周年,某商店购进A,B,C三种纪念品共若干件,且A,B,C三种纪念品的数量之比为8:7:9.一段时间后,根据销售情况,补充三种纪念品后,库存总数量比第一次多200件,且A,B,C三种纪念品的比例为9:10:10.又一段时间后,根据销售情况,再次补充三种纪念品,库存总数量比第二次多170件,且A,B,C三种纪念品的比例为7:6:6.已知第一次三种纪念品总数量不超过1000件,则第一次购进A种纪念品件.5.(2019•沙坪坝区校级二模)临近端午,某超市准备购进某品牌的白粽、豆沙粽、蛋黄粽,三种品种的粽子共1000袋(每袋均为同一品种的粽子),其中白粽每袋12个,豆沙粽每袋8个,蛋黄粽每袋6个.为了推广,超市还计划将三个品种的粽子各取出来,拆开后重新组合包装,制成A、B两种套装进行特价销售:A套装为每袋白粽4个,豆沙粽4个;B套装为每袋白粽4个,蛋黄粽2个,取出的袋数和套装的袋数均为正整数.若蛋黄粽的进货袋数不低于总进货袋数的,则豆沙粽最多购进袋.6.(2020秋•东阳市期末)已知直线y=x+2与函数y=图象交于A,B两点(点A在点B 的左边).(1)点A的坐标是;(2)已知O是坐标原点,现把两个函数图象水平向右平移m个单位,点A,B平移后的对应点分别为A′,B′,连接OA′,OB′.当m=时,|OA'﹣OB'|取最大值.二.解答题(共7小题)7.一次普法知识竞赛共有30道题,规定答对一题得4分,答错或不答倒扣1分,在这次竞赛中,小明获得80分以上,则小明至少答对多少道题?设小明答对x道题,用不等式表示题目中的不等关系.8.若一件商品的进价为500元,标价为750元,商店要求以利润率不低于5%的售价打折出售,问售货员最低打几折出售此商品设打x折,用不等式表示题目中的不等关系.。

一元一次不等式(组)及其解法

一元一次不等式(组)及其解法
一元一次不等式(组 及其解法 一元一次不等式 组)及其解法
一.一元一次不等式的定义
只含有一个未知数, 只含有一个未知数,并且未知数的次数是一次的 不等式叫一元一次不等式. 不等式叫一元一次不等式.
二.形式: 形如 形式: 形如ax>b(a≠0)
如何解不等式ax>b(a ≠0)? 如何解不等式
b 分类讨论:a>0时,x> 分类讨论 时 a
1 − 3x 练习: (1)解不等式 − 7 ≤ <2 2 (2)解不等式组 : 4 + 2x > 7 x + 3 3x + 6 > 4 x + 5 2 x − 3 < 3x − 5
x+y=3 例8.方程组 8.方程组 的解满足 x-2y=-3+a 2y=-
x>0 ,求a的取值范围. 的取值范围. y>0
x
b a b a
x
b a<0时,x< 时 a
三.一元一次不等式的解法: 一元一次不等式的解法:
4 − 2x x −3 例1.解不等式 < 1− 3 4
去分母 去括号 移项b的形式 或 化成 的形式
练习:求不等式21 − 4 x > 5的非负整数解 1. 1 2 2.k取什么值时, 代数式 (1 − 5k ) − k的值为非负数. 2 3
2 3 x + 25 例2.关于x的方程 − ( x + m) = + 1的解是正数, 3 3 那么m的取值范围是什么?
四.一元一次不等式组
假设a>b 假设
x>a
(1)
x>b x>a
x>a
x<a

一元一次不等式(组)知识总结及经典例题分析

一元一次不等式(组)知识总结及经典例题分析

一元一次不等式(组)知识总结及经典例题分析一元一次不等式和不等式组【知识要点】一、一元一次不等式1. 一元一次不等式定义:含有一个未知数,并且未知数的最高次数是1的不等式叫做一元一次不等式。

2.一元一次不等式的解集:使一元一次不等式成立的每一个未知数的值叫做一元一次不等式的解。

一元一次不等式的所有解组成的集合是一元一次不等式的解集。

注:其标准形式: ax+b <0或ax+b ≤0, ax+b >0或ax+b ≥0(a ≠0).二、一元一次不等式的解法:解一元一次不等式,要根据不等式的性质,将不等式逐步化为x a<(x a >或)x a x a ≥≤或或的形式,其一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。

说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例如:131321≤---x x解不等式: 解:去分母,得 6)13(2)13≤---x x ((不要漏乘!x <a x >a x ≤a x ≥a五、不等式组解集的确定方法,可以归纳为以下四种类型(b a <)①⎩⎨⎧>>b x a x 的解集是b x >,如下图: ②⎩⎨⎧<<b x a x 的解集是a x <,如下图:同大取大 同小取小③⎩⎨⎧<>b xa x 的解集是b x a <<,如下图:④⎩⎨⎧><bx a x 无解,如下图:大小交叉取中间 大小分离解为空六、解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.七、一元一次不等式的综合应用1.列不等式解决问题比列方程解决问题的应用更广泛、更实际。

有些问题用方程不能解决,而用不等式却能轻易解决。

一元一次不等式(组)的应用

  一元一次不等式(组)的应用

专题20 一元一次不等式(组)的应用知识要点1.一元一次不等式(组)在实际生活中的应用,就是将实际问题转化为刻画不等关系的数学模型即不等式(组)这一数学问题,其基本步骤:(1)审:通过审题,分析已知数和未知数;(2)设:根据题意设未知数;(3)找:找出能够符合题意的不等关系;(4)列:根据不等关系列出不等式(组);(5)解:解不等式(组);(6)求:从不等式(组);(7)答:写出答案.2.注意常见的反映不等关系的关键词:如至多(或最多),不超过,不足,至少,不低于,不少于.3.利润问题中除了“利润=售价一进价(成本)=利润率×成本”外,还要注意打n 折是售价×0.1n 而不是售价×n .4.不等式(组)的解集一般是取值范围,但在实际问题中往往需要根据问题的实际意义求未知数的某特殊解,比如笔的支数、车的辆数、人数等应是整数解或非负整数解等,解答这类问题的关键是明确解的特征.典例精析例1 某种商品进价为800元,出售时标价为1200元,后来由于该商品积压,商品准备打折出售,但要保持利润不低于5%,则至少可以打多少折.【分析】关键词“不低于”的不等关系可用不等式表示,列出不等式解之即可.【解】设打x 折,依题意,得., 解得x ≥7.答:至少可以打7折.【点评】注意设未知数应“设打x 折”,不能“设至少打x 折”,同时注意打x 折应为0.1x 或.拓展与变式1 某种商品进价为150元,出售时标价为225元,由于销售情况不好,商品准备降价出售,但要保持利润不低于5%,那么商店最多降 元出售商品.拓展与变式2 某商品的标价比成本价高25%,根据市场需要,该商品需降价出售,为了不亏本,至多降价百分之几?【反思】“至多”“至少”都是不等关系,结合利润问题中的数量关系和不等关系列出12000.18008005%x ⨯-≥⨯110x不等式.例2 某次数学竞赛活动,共有16道选择题,评分办法是:答对一题给6分,答错一题倒扣2分,不答题不得分也不扣分.某同学有一道题未答,那么这个学生至少答对多少题,成绩才能在60分以上?【分析】注意有15题计算分数,把答对题的分数和答错题的分数加起来,列出不等式求解,注意答对的题数应为正整数.【解】设这个学生答对x 道题,依题意得,解得.∵x 应取正整数,∴x 的最小值为12.答:这个学生至少答对12題,成绩才能在60分以上.【点评】注意根据不等式的解集结合实际情况取符合实际意义的解.拓展与变式3 为了举行班级晚会,小明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍作为奖品,已知乒乓球每个1.5元,球拍每个22元,如果购买金额不超过200元,那么小明最多可以买多少个球拍?拓展与变式4 某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过132000元,已知甲、乙、丙三种电冰箱的出厂价格分别为1200元/台,1600元/台,2000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求购买甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?【反思】找好不等关系列出不等式,同时注意问题的解要符合问题的实际意义.例3 甲、乙两家商场以同样的价格出售同样的电器,但是各自推出的优惠方案不同. 甲商场规定:凡购买超过1 000元电器的,超出的金额按90%实收;乙商场规定:凡购买超过500元电器的,超出的金额按95%实收.顾客怎样选择商场购买电器能获得更大的优惠? ()621560x x -->1114x >【分析】设顾客所购买电器的金额为x 元,分x >1000、500<x ≤100和0<x ≤500三种情况分别比较在甲、乙两商场购买时的实际金额数.【解】设顾客所购买电器的金额为x 元,由题意得当0<x ≤500时,可任意选择甲、乙两商场;当500<x ≤1000时,可选择乙商场;当x >1000时,设甲商场实收金额为,则元;乙商场实收金额为,则 元.①当<时,即1000+(x -1000)×0.9<500+(x -500)×0.95,0.9x +100<0.95x +25,即-0.05x <-75,解得x >1500.∴当x >1500时,可选择甲商场. ②当=时,即1000+(x -1000)×0.9=500+(x -500)×0.95,0.9x +100=0.9,即-0.05x =-75,解得x =1500.∴当x =1500时,可任意选择甲、乙两商场. ③当>时,即11000+(x -1000)×0.9>500+(x -500)×0.95,0.9x +100>0.95x +25,即-0.05x >-75,解得x <1500.∴当x <1500时,可选择乙商场. 综上所述,顾客对于商场的选择可参考如下:(1)当0<x ≤500或x =1500时,可任意选择甲、乙两商场;(2)当500<x <1500时,可选择乙商场;(3)当x >1500时,可选择甲商场.拓展与变式5 某大型超市为了促进商场的销售,推出了会员制度.共有两种会员卡,其中普通卡每年需交纳会员费100元,所购买商品均可享受9.5折优惠;贵宾卡每年需交纳会员费300元,所购买的商品均可享受9折优惠.小明家一年在该超市购买商品共消费5000元,应选择 卡合算.拓展与变式6 端午节是中华民族古老的传统节日.甲、乙两家超市在端午节当天对一种原来售价相同的粽子分别推出了不同的优惠方案.甲超市方案:购买该种粽子超过200元后,超出200元的部分按95%收费;乙超市方案:购买该种粽子超过300元后,超出300元的部分按90%收费.设某位顾客购买了x 元的该种粽子.(1)补充表格,填写在横线上:(2)列式计算说明,如果顾客在端午节当天购买该种粽子超过300元,那么到哪家超市花费更少?y 甲()()100010000.90.91000y x =+-⨯=+甲y 乙()()5005000.950.9525y x x =+-⨯=+乙y 甲y 乙y 甲y 乙y 甲y 乙【反思】方案选择问题需要分类讨论,需把各种情况进行比较,从而找出最优解.专题突破1.在一次“人与自然”知识竞赛中,竞赛题共25道,每道题都给出4个答案,其中只有一个答案正确,选对得4分,不选或选错扣2分,得分不低于60分才能得奖,那么要得奖至少应选对的题数为().A. 18B. 19C. 20D. 212.班级组织有奖知识竞赛,小明用100元班费购买笔记本和钢笔共30件,已知笔记本每本2元,钢笔每支5元,那么小明最多能买钢笔的数量为().A. 20支B. 14支C. 13支D. 10支3.某市举办以“行动起来,对抗雾霾”为主题的植树活动,某街道积极响应,决定对该街道进行绿化改造,共购进甲、乙两种树共500棵,已知甲树每棵800元,乙树每棵1200元.若购买甲树的金额不少于购买乙树的金额,问:至少应购买甲树多少棵?4.有学生若干人,住若干间宿舍,若每间住4人,则有20人无法安排住宿;若每间住8人,则有一间宿舍不满也不空,问:宿舍间数和学生人数分别是多少?5.某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元.(1)符合公司要求的购买方案有几种? 请说明理由;(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1 500元,那么应选择以上哪种购买方案?。

专题06 一元二次方程、一元一次不等式及其应用-备战2022年中考数学题源解密(原卷版)

专题06 一元二次方程、一元一次不等式及其应用-备战2022年中考数学题源解密(原卷版)

专题06 一元二次方程与一元一次不等式(组)及其应用考向1 一元二次方程解法及其应用【母题来源】(2021·浙江丽水)【母题题文】用配方法解方程x2+4x+1=0时,配方结果正确的是()A.(x﹣2)2=5 B.(x﹣2)2=3 C.(x+2)2=5 D.(x+2)2=3【母题来源】(2021·浙江台州)【母题题文】关于x的方程x2﹣4x+m=0有两个不相等的实数根,则m的取值范围是()A.m>2 B.m<2 C.m>4 D.m<4【母题来源】(2021·浙江舟山)【母题题文】小敏与小霞两位同学解方程3(x﹣3)=(x﹣3)2的过程如下框:小敏:两边同除以(x﹣3),得3=x﹣3,则x=6.小霞:移项,得3(x﹣3)﹣(x﹣3)2=0,提取公因式,得(x﹣3)(3﹣x﹣3)=0.则x﹣3=0或3﹣x﹣3=0,解得x1=3,x2=0.你认为他们的解法是否正确?若正确请在框内打“√”;若错误请在框内打“×”,并写出你的解答过程.【母题来源】(2021·浙江湖州)【母题题文】今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.(1)求四月和五月这两个月中该景区游客人数平均每月增长百分之几;(2)若该景区仅有A,B两个景点,售票处出示的三种购票方式如下表所示:购票方式甲乙丙可游玩景点A B A和B门票价格 100元/人 80元/人 160元/人据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万,并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.①若丙种门票价格下降10元,求景区六月份的门票总收入;②问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?【试题分析】以上题目考察的一元二次方程的解法及其应用;【命题意图】一元二次方程的解法有四种,其中中考中对配方法与公式法考察较多;一元二次方程的应用题因为和一次方程的应用题的思考方式变化不大,中考中一般也不单独考察,常常和二次函数联合考察其应用;【命题方向】浙江中考中,一元二次方程这个考点通常不会单独出题,并不是因为它在中考中占分少,而是因为在后续几何题目中的计算,都会考到一元二次方程的解法,单独的应用题考察很少,或者基本不考;复习中,能用配方法、公式法、因式分解法熟练解一元二次方程,会用一元二次方程根的判别式判断方程根的情况,了解一元二次方程的根与系数的关系即可; 【得分要点】一元二次方式知识总结一般形式)(002≠=++a c bx ax特征:①自含有1个未知数②未知数的最高次数是2次 ③是整式方程解法直接开方法配方法用法提醒:①先将常数项移到=右边;②二次项系数为1时,配方时加上的是一次想系数一半的平方因式分解法因式分解的一般步骤:①提取公因式,②套用乘法公式,③二次三项式想十字相乘公式法求根公式:)(042422≥--±-=ac b aac b b x根的判别式ac b 42-方程没有实数根;<根;方程有两个相等的实数数根;方程有两个不相等的实>⇔-⇔=-⇔-040404222ac b ac b ac b 韦达定理若一元二次方程)(002≠=++a c bx ax 的两个根分别为21x x 、则ac x x a bx x =•-=+2121; 实际应用 一般步骤:①审题, ②设元, ③列方程, ④解方程, ⑤检验, ⑥写出答案考向2 一元一次不等式(组)的解法【母题来源】(2021·浙江金华)【母题题文】一个不等式的解集在数轴上表示如图,则这个不等式可以是( )A .x +2>0B .x ﹣2<0C .2x ≥4D .2﹣x <0【母题来源】(2021·浙江丽水)【母题题文】若﹣3a >1,两边都除以﹣3,得( ) A .a <﹣B .a >﹣C .a <﹣3D .a >﹣3【母题来源】(2021·浙江衢州)【母题题文】 不等式2(y +1)<y +3的解集为 . 【母题来源】(2021·浙江湖州)【母题题文】不等式3x ﹣1>5的解集是( ) A .x >2B .x <2C .x >D .x <【母题来源】(2021·浙江温州) 【母题题文】 不等式组的解集为 .【母题来源】(2021·浙江绍兴)【母题题文】(1)计算:4sin60°﹣+(2﹣)0.(2)解不等式:5x+3≥2(x+3).【母题来源】(2021·浙江杭州)【母题题文】以下是圆圆解不等式组的解答过程:解:由①,得2+x>﹣1,所以x>﹣3.由②,得1﹣x>2,所以﹣x>1,所以x>﹣1.所以原不等式组的解集是x>﹣1.圆圆的解答过程是否有错误?如果有错误,请写出正确的解答过程.【母题来源】(2021·浙江宁波)【母题题文】(1)计算:(1+a)(1﹣a)+(a+3)2.(2)解不等式组:.【试题分析】以上题目都考察了一元一次不等式(组)的解法,以及在数轴上表示不等式的解集;【命题意图】一元一次不等式(组)的解法是在理解并掌握不等式的基本性质的基础上,对一元一次不等式的解法步骤的考察,而不等式组则是在解完每个不等式后,考察考生对解集公共部分的理解;【命题方向】浙江中考中,一元一次不等式(组)的解法考察形式较多,选择题、填空题或者简答题都有可能单独出题,而且一般都会考,但考题难度一般不大,考生需要掌握的能力为:准确掌握一元一次不等式(组)的解法,并能在数轴上表示出解集,会用数轴确定由两个一元一次不等式组成的不等式组的解集。

方程(组)与不等式(组)

方程(组)与不等式(组)
10.如果方程ax2+2x+1=0有两个不相等的实数根则实数a的取值范围是_.
11.方程x2-2x-1=0的两个实数根分别为x1,x2,则(x1-1)(x2-1)=______.
12.已知方程ax2+4x-1=0,则(1)当a取什么值时,方程有两个相等的实数根?(2)当a取什么值时,方程没有实数根?(3)当a取什么值时,方程有实数根?
归类示例
类型之一 等式的概念和等式的性质
[2010·威海]如图6-1①,在第一个天平上,砝码A的质量等于砝码B加上砝码C的质量;如图②,在第二个天平上,砝码A加上砝码B的质量等于3个砝码C的质量.请你判断:1个砝码A与________个砝码C的质量相等.
►类型之二 一元一次方程的解法
[2011·滨州]依据下列解方程=的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据.
A.3(x+1)-2x-3=6B.3(x+1)-2x-3=1
C.3(x+1)-(2x-3)=12D.3(x+2a=7的解,则a的值为______.
5.解方程:-=1.
考点2二元一次方程组及其解法
二元一次方程组的概念
含有______个未知数,并且未知数的最高次数是______的方程叫二元一次方程.把具有相同未知数的两个二元一次方程组合在一起叫做二元一次方程组.
归类示例
►类型之一 一元二次方程的有关概念
[2011·济宁]已知关于x的方程x2+bx+a=0有一个根是-a(a≠0),则a-b的值为() A.-1 B.0 C.1 D.2
►类型之二 一元二次方程的解法
[2011·南京]解方程:x2-4x+1=0.
类型之三 一元二次方程根的判别式
[2011·江津]已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是()

2025年湖南中考数学一轮复习考点研析 第二章 方程(组)与不等式(组)第6讲 一元二次方程及其应用

2025年湖南中考数学一轮复习考点研析 第二章 方程(组)与不等式(组)第6讲 一元二次方程及其应用
×100%;总利润
进价(成本)
利润问题 =总售价-总进价(总成本)=单个利润×总销售量.
“每每问题”:若单价每涨a元,少卖b件,则涨价x元,少卖的数量


·


常见
等量关系
类型
面积
问题
S阴影=(a-2x)
S阴影=(a-x)(b-x)
·(b-2x)
循环 握手问题:总次数=(-1)(x为人数)
2
D.6
答案
(2023·怀化)已知关于x的一元二次方程x2+mx-2=0的一个根为
-1
x=-1,则m的值为_______,另一个根为x=_____.
2
变式2-2
变式2-3
(2023·常德)若关于x的一元二次方程x2-2x+a=0有两个不相等
a<1
的实数根,则实数a的取值范围是________.
考点3
答案
1.(2024·贵州)一元二次方程x2-2x=0的解是( B )
A.x1=3,x2=1
B.x1=2,x2=0
C.x1=3,x2=-2
D.x1=-2,x2=-1
2.[易错题](2024·龙东地区)关于x的一元二次方程(m-2)x2+4x+2=0有两个
实数根,则m的取值范围是( D )
A.m≤4
B.m≥4
解:设这款文创产品每件应降价x元.
根据题意,得(30-x)(100+10x)=3 640,
即x2-20x+64=0,
解得x=4或x=16.
当x=4时,100+10x=140;
当x=16时,100+10x=260.
∵要尽快减少库存,
∴x=16.
答:这款文创产品每件应降价16元.

初中数学重点梳理:一元一次不等式(组)

初中数学重点梳理:一元一次不等式(组)

一元一次不等式(组)知识定位不等式是一个比较重要的知识点,难度不是很大,在理解的基础上,使用适当的技巧即可解决。

知识梳理一、不等式与不等式的性质1、不等式:表示不等关系的式子。

(表示不等关系的常用符号:≠,<,>)。

2、不等式的性质:(l )不等式的两边都加上(或减去)同一个数,不等号方向不改变,如a > b , c 为实数⇒a +c >b +c(2)不等式两边都乘以(或除以)同一个正数,不等号方向不变,如a >b , c >0⇒ac >bc 。

(3)不等式两边都乘以(或除以)同一个负数,不等号方向改变,如a >b ,c <0⇒ac <bc.注:在不等式的两边都乘以(或除以)一个实数时,一定要养成好的习惯、就是先确定该数的数性(正数,零,负数)再确定不等号方向是否改变,不能像应用等式的性质那样随便,以防出错。

3、任意两个实数a ,b 的大小关系(三种):(1)a – b >0⇔ a >b(2)a – b=0⇔a=b(3)a–b <0⇔a <b4、(1)a >b >0⇔b a >(2)a >b >0⇔22b a <二、不等式(组)的解、解集、解不等式1、能使一个不等式(组)成立的未知数的一个值叫做这个不等式(组)的一个解。

不等式的所有解的集合,叫做这个不等式的解集。

不等式组中各个不等式的解集的公共部分叫做不等式组的解集。

2.求不等式(组)的解集的过程叫做解不等式(组)三、不等式(组)的类型及解法1、一元一次不等式:(l )概念:含有一个未知数并且含未知数的项的次数是一次的不等式,叫做一元一次不等式。

(2)解法:与解一元一次方程类似,但要特别注意当不等式的两边同乘以(或除以)一个负数时,不等号方向要改变。

2、一元一次不等式组:(l )概念:含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。

(2)解法:先求出各不等式的解集,再确定解集的公共部分。

注:求不等式组的解集一般借助数轴求解较方便。

微专题六 一元一次不等式(组)的解法及其应用

微专题六 一元一次不等式(组)的解法及其应用
20
B品牌运动服/件
30
累计采购款/元
10 200
(1)A,B两种品牌运动服的进货单价各是多少元?
解:(1)设 A,B 两种品牌运动服的进货单价分别为 x 元和 y 元.
根据题意,得
+ = ,
= ,
解得
= ,
+ = ,
∴A,B 两种品牌运动服的进货单价分别为 240 元和 180 元.
①有哪几种购买方案?
②若每包儿童口罩8元,每包成人口罩25元,哪种方案总费用最少?
解:(2)①设购买儿童口罩 m 包,则购买成人口罩(5-m)包.
+ (-) ≥ ,
根据题意,得
解得 2≤m≤3.
+ (-) ≤ ,
∵m 为整数,∴m=2 或 m=3.∴共有两种购买方案:
-
解不等式 x-4<

,得 x<2,
则不等式组的解集为-3≤x<2,
∴不等式组的所有负整数解为-3,-2,-1.
一元一次不等式的应用
6.某商城的运动服装专柜,对A,B两种品牌的运动服分两次采购试销后,效益可观,计划继续采购进行
销售.已知这两种服装过去两次的进货情况如表所示:
进货批次
第一次
A品牌运动服/件
故此商场至少需购进6件A种商品.
一元一次不等式组的应用
8.小明网购了一本课外书,同学们想知道书的价格,小明让他们猜.甲说:“至少25元”.乙说:“至多
22元,”丙说:“至多20元,”小明说:“你们三个人都说错了”.则这本书的价格x(元)所在的范围为(
)
B
A.20<x<22
B.22<x<25

衔接教程-第6讲、简单不等式的解法(教师版)

衔接教程-第6讲、简单不等式的解法(教师版)

第3讲简单不等式的解法知识点1、一元一次不等式1、解法:ax b +0>0<0a >b x a >-b x a <-a <b x a <-b x a >-2、步骤:①利用不等式性质1,去分母移项整理;②利用不等式性质3,去系数(注意系数为负,不等号一定要变号);③写结果。

3、注意:一次项系数是否为0的情况,即讨论0a =,此时解集无解或恒成立。

如:0ax b ax b+>⇒>-当0,0a b =>时:解集为任意实数;当0,0a b =<时:解集为无解。

1、解法:2(0)ax bx c a ++>24b ac∆=-0∆>0∆=0∆<图像20ax bx c ++=12,x x x x ==12x x x ==无解20ax bx c ++>2x x >或1x x <1x x ≠所有实数20ax bx c ++≥2x x ≥或1x x ≤所有实数所有实数20ax bx c ++<12x x x <<无解无解20ax bx c ++≤12x x x ≤≤12x x x ==无解2、步骤:(1)首正:整理成一般形式化二次项系数为正。

若为负,不等号一定变号;(2)求根:检验判别式,若0∆≥,计算一元二次方程的两根。

①首选因式分解法求出12,x x (其中12x x <);②无法因式分解的用求根公式;③若0∆<,对二次三项式进行配方变形成2224()24b ac b ax bx c a x a a-++=++,再结合完全平方式为非负数的性质求解。

(3)根据不等号方向确定解集“0>”型的解为12x x x x <>或(“两根之外”);“0<”型的解为12x x x <<(“两根之间”);有等号,一律取等。

知识点3、分式不等式1、解分式不等式的基本思路:将分式不等式转化为整式不等式,利用符号法则进行求解。

一元一次不等式(组)的应用

一元一次不等式(组)的应用

(2) 预计在该线路上 A型和 B型公交车每辆年均载客量分别为 60万人次和100万人
次.若该公司购买A型和B型公交车的总费用不超过1 200万元,且确保这10辆公交 车在该线路的年均载客总和不少于 680万人次,则该公司有哪几种购车方案?哪种 购车方案总费用最少?最少总费用是多少?
不等 关系:
总费用不超过1 200万 总和不少于680万人次
(某个数量介于某个范围之中)
某数量
2、普通不等式组
(两个量分别满足两个不等关系)
Hale Waihona Puke 类型之一:列一元一次不等式解应用题 1.晨光文具店用进货款1 620元购进A品牌的文具盒40个, B品牌的文具盒60个.其中A品牌文具盒的进货价比B品牌文 具盒的进货价多3元.
(1)求A,B两种文具盒的进货单价;
(2)已知A品牌文具盒的售价为23元/个,若使这批文具盒全 部售完后利润不低于500元,B品牌文具盒的销售单价最少是 多少? 语言文字
(1)购买 A 型公交车每辆需 100 万元,购买 B 型公交车每辆需 150 万元 (2) 设 购 买 A 型 公 交 车 a 辆 , 则 B 型 公 交 车 (10 - a) 辆 , 由 题 意 得
100a+150(10-a)≤1200 ,解得 6≤a≤8, 60a+100(10-a)≥680
数学符号
不等关系:
利润不低于500元
解: (1)设A品牌文具盒的进价为x元/个,依题意得: 40x+60(x-3)=1620,解得:x=18,x-3=15. 答:A品牌文具盒的进价为18元/个,B品牌文具盒的进价为15元/个 (2)设B品牌文具盒的销售单价为y元,依题意得: (23-18)×40+60(y-15)≥500,解得:y≥20. 答:B品牌文具盒的销售单价最少为20元

一元一次不等式组的解法及应用

一元一次不等式组的解法及应用

家庭作业
解答题 1.解不等式组
⑴⎩⎨⎧-≤+>+145321x x x x ⑵⎪⎩⎪
⎨⎧-≥-->+35663
4)1(513x x x x
2.某中学需要刻录一批电脑光盘,若到电脑公司刻录,每张需8元(包括空白光盘费);若学校自刻,出租用刻录机需120元外,每张光盘还需成本4元(包括空白光盘费)。

问刻录这批电脑光盘,该校如何选择,才能使费用较少?
3.将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。

问有笼多少个?有鸡多少只?
附加题:
1.如果不等式03<-a x 的正整数是1,2,3,那么a 的取值范围是多少?
2.已知不等式42213x a x +>-的解集为2>x ,求a x a ->-2)(3
1
的解集。

3.解不等式0412<--x
4.某宾馆底层客房比二楼少5间,一旅游团有48人,若全安排住底层,每间住4人,则房间不够,若每间安排住5人,则有房间没有住满5人。

又若全安排住在二楼,每间住3人,房间不够;每间住4人,则有房间没有住满4人,问该宾馆共有多少间客房?。

一元一次不等式组(公开课课件)

一元一次不等式组(公开课课件)

形式
一元一次不等式组通常表 示为“{①,②,③...}”, 其中①,②,③...是一元 一次不等式。
特点
一元一次不等式组中至少 包含两个不等式,且每个 不等式只含有一个未知数 。
一元一次不等式组的解集
定义
满足一元一次不等式组中 所有不等式的未知数的取 值范围称为该不等式组的 解集。
性质
解集具有封闭性,即满足 所有不等式的解都在解集 中。
求法
通过解每个不等式,找出 满足所有不等式的解,再 确定解集。
一元一次不等式组的分类
分类标准
简单型
根据一元一次不等式组中不等式的个数和 形式,可以将一元一次不等式组分为简单 型、线性型、多项式型等。
由两个一元一次不等式组成的不等式组, 如“{2x > 3, x < 5}”。
线性型
多项式型
由两个或多个线性一元一次不等式组成的 不等式组,如“{3x + 2 > 0, 4x - 1 < 5}” 。
VS
解集关系
一元一次不等式组的解集与相应的一元一 次方程组的解集存在一定的包含关系,可 以根据方程组的解来推断不等式组的解。
一元一次不等式组在实际问题中的应用
资源分配问题
例如,在有限资源下如何分配任 务以达到最优效果。
最优化问题
例如,在一定条件下如何选择方案 以达到最优目标。
经济问题
例如,在预算限制下如何选择商品 或服务以实现最大效益。
生产问题
总结词
企业生产过程中的资源配置问题
详细描述
生产问题涉及到企业生产过程中的资源配置,如原材料、设备和人力资源的分配。一元 一次不等式组可以用来解决生产中的成本和效率问题,例如优化生产流程以降低成本和

第6讲-一元一次不等式(组)

第6讲-一元一次不等式(组)

第6讲┃ 一元一次不等式(组)
12. [2013· 黄冈 ] 为支援四川雅安地震灾区,某市民政局组织募 捐了 240 吨救灾物资,现准备租用甲、乙两种货车,将这批 救灾物资一次性全部运往灾区,它们的载货量和租金如下表: 甲种货车 载货量 (吨 /辆 ) 租金 (元 /辆 ) 45 400 乙种货车 30 300
第6讲┃ 一元一次不等式(组)
一元一次 不等式组
x>b, x<a x<b, x>a
解集在数轴 上的表示
解集
语言叙述 大小小大中间找 大大小小是空集
b<x<a ________ 无解 ________
说明:在数轴上表示解集时,要注意“空心圆圈”和“实心 圆点”的区别.
[中考点金] 利用不等式( 组) 解决方案设计问题,应先根据题意列 出不等式 (组 ),求出不等式( 组) 的解集,再由解集确定其 正整数解,一般有几个整数解,就有几种方案.此时,应 注意不等号是否含有等于,防止遗漏.
第6讲┃ 一元一次不等式(组)
变式题 [2013· 莱芜 ] 某学校将周三“阳光体育”项目定为跳 绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单 价比短跳绳单价的两倍多 4 元, 且购买 2 条长跳绳与购买 5 条短跳 绳的费用相同. (1)两种跳绳的单价各是多少元? (2)若学校准备用不超过 2000 元的现金购买 200 条长、 短跳绳, 且短跳绳的条数不超过长跳绳的 6 倍, 问学校有几种购买方案可供 选择?
m
( A ) 5 B.m< 3 5 D. m≥ 3
第6讲┃ 一元一次不等式(组)
探究二
利用不等式(组)进行方案设计
例 2 某汽车租赁公司要购买轿车和面包车共 10 辆, 其中轿车至少要购买 3 辆,轿车每辆 7 万元,面包车每辆 4 万元,公司可投入的购车款不超过 55 万元. (1)符合公司要求的购买方案有几种?请说明理由; (2)如果每辆轿车的日租金为 200 元, 每辆面包车的日租 金为 110 元,假设新购买的这 10 辆车每日都可租出,要使 这 10 辆车的日租金不低于 1500 元, 那么应选择以上哪种购 买方案?

第六课时:不等式(组)的解法及应用

第六课时:不等式(组)的解法及应用
中考复习
第六课时:不等式(组 )的解法及应用
知识点1不等式的概念
1、不等式:用 连接起来的式子叫做不等式 2、不等式的解:使不等式成立的 值,叫做不等式的解 3、不等式的解集:一个含有未知数的不等式的解的 叫做 不等式的解集 【名师提醒:1、常用的不等号有 ____________等,2、不等 式的解与解集是不同的两个概念,不等式的解事单独的未知数 的值,而解集是一个范围的未知数的值组成的集合,一般由无 数个解组成;3、不等式的解集一般可以在数轴上表示出来。 注意“>”“<”在数轴上表示为 ,而“≥”“≤”在数轴上表示 为 】
提分必练:
为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两 种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需 要950元;若购进A种纪念品5件,B种纪念品6件,需要800元 .(1)求购进A、B两种纪念品每件各需多少元?(2)若该 商店决定购进这两种纪念品共100件,考虑市场需求和资金周 转,用于购买这100件纪念品的资金不少于7500元,但不超过 7650元,那么该商店共有几种进货方案?(3)若销售每件A 种纪念品可获利润20元,每件B种纪念品可获利润30元,在第 (2)问的各种进货方案中,哪一种方案获利最大?最大利润 是多少元?
知识点4:一元一次不等式组及其解法
1.概念:含有相同未知数的若干个________不等式所组成的不 等式组叫做一元一次不等式组. 2.一元一次不等式组的解集:一元一次不等式组中各个不等 式的________的公共部分. 3.解一元一次不等式组的步骤:(1)先求出各个不等式的____; (2)再利用数轴找它们的______;(3)写出不等式组的解集. 4.几种常见的不等式组的解集(a<b,且a、b为常数):(如表)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6讲一元一次不等式(组)及其应用【知识梳理】知识点一:不等式及一元一次不等式的基本概念1.不等式:用不等号连结起来的式子,叫做不等式.2.不等式的解:使不等式成立的未知数的值,叫做不等式的解.3.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.4.一元一次不等式:只含有一个未知数,并且未知数的次数是1且系数不等于零的不等式,叫做一元一次不等式.其一般形式为ax+b<0或ax+b>0(a≠0).5.解不等式:求不等式解集的过程或证明不等式无解的过程,叫做解不等式.重点:把握一元一次不等式和不等式组的解答过程。

难点:确定不等式组解集。

知识点二:不等式的基本性质1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变,即若a<b,则a+c < b+c(或a-c<b-c);2.不等式两边都乘以(或除以)同一个正数,不等号的方向不变,即若a<b且c>0,则ac <bc(或ac<bc);3.不等式两边都乘以(或除以)同一个负数,不等号的方向改变,即若a<b且c<0,则ac >bc(或ac>bc).重点:灵活运用不等式的基本性质。

难点:在具体运用时容易疏忽性质3的运用。

知识点三:一元一次不等式组的有关概念1.把两个含有相同未知数的一元一次不等式合起来,就组成了一个一元一次不等式组.2.解集:几个不等式的解集的公共部分叫做它们所组成的不等式组的解集.重点:列出不等式组。

难点:确定不等式组的解集。

知识点四:一元一次不等式(组)的解法1.解一元一次不等式的基本步骤:去分母,去括号,移项,合并同类项,系数化为1.2.解不等式组一般先分别求出不等式组中各个不等式的解集,再求出它们的公共部分(一般方法是在数轴上把每个不等式的解集表示出来,由图形得出公共部分),就得到不等式组的解集.3.两个一元一次不等式所组成的不等式组的解集一般情况可见下表(其中a<b):【考点解析】 类型一:一元一次不等式的解法 例题:解不等式:2723x x --≤. 【考点】解一元一次不等式.【分析】根据去分母,去括号,移项,合并同类项,系数化为1等步骤解不等式【解答】解:()()420561423214637223≤≤+≤+-≤--≤-x x x x xx x x∴不等式组的解集为4≤x类型二:一元一次不等式组的解法(2017山东滨州)不等式组的解集为 ﹣7≤x <1 .【考点】CB :解一元一次不等式组. 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x ﹣3(x ﹣2)>4,得:x <1,解不等式≤,得:x ≥﹣7,则不等式组的解集为﹣7≤x <1,故答案为:﹣7≤x <1.类型三:一元一次不等式组的应用【例题】为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A 、B 两类学校进行改扩建,根据预算,改扩建2所A 类学校和3所B 类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?【分析】(1)可根据“改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元”,列出方程组求出答案;(2)要根据“国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元”来列出不等式组,判断出不同的改造方案.【解答】解:(1)设改扩建一所A类和一所B类学校所需资金分别为x万元和y万元由题意得,解得,答:改扩建一所A类学校和一所B类学校所需资金分别为1200万元和1800万元.(2)设今年改扩建A类学校a所,则改扩建B类学校(10﹣a)所,由题意得:,解得,∴3≤a≤5,∵x取整数,∴x=3,4,5.即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.【点评】本题考查了一元一次不等式组的应用,二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.【中考热点】(2017•玉林)某新建成学校举行美化绿化校园活动,九年级计划购买A,B两种花木共100棵绿化操场,其中A花木每棵50元,B花木每棵100元.(1)若购进A,B两种花木刚好用去8000元,则购买了A,B两种花木各多少棵?(2)如果购买B花木的数量不少于A花木的数量,请设计一种购买方案使所需总费用最低,并求出该购买方案所需总费用.【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用..【分析】(1)设购买A种花木x棵,B种花木y棵,根据“A,B两种花木共100棵、购进A,B两种花木刚好用去8000元”列方程组求解可得;(2)设购买A种花木a棵,则购买B种花木(100﹣a)棵,根据“B花木的数量不少于A 花木的数量”求得a的范围,再设购买总费用为W,列出W关于a的解析式,利用一次函数的性质求解可得.【解答】解:(1)设购买A种花木x棵,B种花木y棵,根据题意,得:,解得:,答:购买A种花木40棵,B种花木60棵;(2)设购买A种花木a棵,则购买B种花木(100﹣a)棵,根据题意,得:100﹣a≥a,解得:a≤50,设购买总费用为W,则W=50a+100(100﹣a)=﹣50a+10000,∵W随a的增大而减小,∴当a=50时,W取得最小值,最小值为7500元,答:当购买A种花木50棵、B种花木50棵时,所需总费用最低,最低费用为7500元.【点评】本题主要考查二元一次方程组、一元一次不等式及一次函数的性质,理解题意找到题目蕴含的相等关系列出方程和函数解析式,熟练掌握一次函数性质是解题的关键.【达标检测】1.(2017湖南株洲)已知实数a,b满足a+1>b+1,则下列选项错误的为()A.a>b B.a+2>b+2 C.﹣a<﹣b D.2a>3b【考点】C2:不等式的性质.【分析】根据不等式的性质即可得到a>b,a+2>b+2,﹣a<﹣b.【解答】解:由不等式的性质得a>b,a+2>b+2,﹣a<﹣b.故选D.2.(2017湖南株洲)已知“x的3倍大于5,且x的一半与1的差不大于2”,则x的取值范围是<x≤6.【考点】C6:解一元一次不等式.【分析】根据题意列出不等式组,再求解集即可得到x的取值范围.【解答】解:依题意有,解得<x≤6.故x的取值范围是<x≤6.故答案为:<x≤6.3. (2017湖北江汉)解不等式组,并把它的解集在数轴上表示出来.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式5x+1>3(x﹣1),得:x>﹣2,解不等式x﹣1≤7﹣x,得:x≤4,则不等式组的解集为﹣2<x≤4,将解集表示在数轴上如下:4. (2017•黄石)已知关于x的不等式组错误!未找到引用源。

恰好有两个整数解,求实数a的取值范围.【考点】CC:一元一次不等式组的整数解.【分析】首先解不等式组求得解集,然后根据不等式组只有两个整数解,确定整数解,则可以得到一个关于a的不等式组求得a的范围.【解答】解:解5x+1>3(x﹣1)得:x>﹣2,解错误!未指定书签。

x≤8﹣错误!未指定书签。

x+2a得:x≤4+a.则不等式组的解集是:﹣2<x≤4+a.不等式组只有两个整数解,是﹣1和0.根据题意得:0≤4+a<1.解得:﹣4≤a<﹣3.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.5. 为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买()A.16个B.17个C.33个D.34个【考点】C9:一元一次不等式的应用.【分析】设买篮球m个,则买足球(50﹣m)个,根据购买足球和篮球的总费用不超过3000元建立不等式求出其解即可.【解答】解:设买篮球m个,则买足球(50﹣m)个,根据题意得:80m+50(50﹣m)≤3000,解得:m≤16,∵m为整数,∴m最大取16,∴最多可以买16个篮球.故选:A.6. (2017乌鲁木齐)解不等式组:.【考点】CB:解一元一次不等式组.【分析】分别求出两个不等式的解集,求其公共解.【解答】解:,由①得,x>1,由②得,x<4,所以,不等式组的解集为1<x<4.7. 某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?【考点】C9:一元一次不等式的应用;8A:一元一次方程的应用.【分析】(1)设甲队胜了x场,则负了(10﹣x)场,根据每队胜一场得2分,负一场得1分,利用甲队在初赛阶段的积分为18分,进而得出等式求出答案;(2)设乙队在初赛阶段胜a场,根据积分超过15分才能获得参赛资格,进而得出答案.【解答】解:(1)设甲队胜了x场,则负了(10﹣x)场,根据题意可得:2x+10﹣x=18,解得:x=8,则10﹣x=2,答:甲队胜了8场,则负了2场;(2)设乙队在初赛阶段胜a场,根据题意可得:2a+(10﹣a)≥15,解得:a≥5,答:乙队在初赛阶段至少要胜5场.。

相关文档
最新文档