管壳式换热器换热管与管板胀管率的确定
换热管和管板连接通用工艺规程
换热管与管板连接通用工艺规程1主题内容与适应范围1.1本规程规定了钢制管壳式换热器换热管与管板连接的方法和要求。
1.2本规程适用于本公司制造的碳素钢、低合金钢、不锈钢等材料制管壳式换热器的换热管与管板的连接。
其它材料制造的换热器的换热管与管板的连接亦可参照执行。
2总则2.1换热管与管板连接接头的制造除符合本规程的规定外,还应遵守国家颁布的有关法令、法规、标准、本公司其它相应规程和图样及专用工艺文件的要求。
2.2换热管与管板连接的连接方式有胀接、焊接、胀焊并用等型式。
具体连接方式在图样或公司技术部门在制造专用工艺中规定。
3一般要求3.1当换热管与管板采用胀接连接时,换热管材料的硬度值一般须低于管板材料的硬度值10~20HB,除换热管材料为不锈钢或有应力腐蚀场合外,可采用管端局部退火的方式来降低换热管材料的硬度。
3.2管孔表面粗糙度a)当换热管与管板焊接连接时,管孔表面粗糙度Ra值不大于25μm,且符合图样要求;b)当换热管与管板胀接连接时,管孔表面粗糙度Ra值不大于12.5μm,且符合图样要求,同时管孔表面不得有影响胀接紧密性的缺陷,如贯通的纵向或螺旋状刻痕等。
3.3连接前,连接部位的换热管与管板表面应采用机械或化学方法清理干净,不应留有影响胀接或焊接连接质量的毛刺、铁屑、锈斑、油污等。
a) 穿管前,应对换热管进行机加工平头,平管公差L+1㎜。
b) 穿管前,应采用钢丝刷、钢丝轮、砂纸将换热管管头(包括管口端部)毛刺、铁屑、锈斑、油污去除干净,至呈金属光泽。
用于焊接时,换热管刷管范围不小于换热管外径尺寸,且不小于25㎜;用于胀接时,换热管应呈现金属光泽,其长度应不小于二倍的管板厚度。
刷管后,换热管应放置在干燥通风处,已经刷管处理的换热管必须在7天内与管板进行胀接或焊接连接,否则应重新进行刷管处理。
c) 换热管的外伸长度,按产品焊接工艺规程执行。
对需打磨的管头要求打磨平整,不得有卷边现象,并用机械或化学方法清除管板、管端表面残留的砂轮灰等杂物。
管壳式换热器通用工艺守则(修改)
张家港化工机械股份有限公司Q/ZHJ05.03-2010 管壳式换热器通用工艺守则编制:校对:审批:日期:管壳式换热器通用工艺守则本守则若与图样及工艺文件有矛盾时,应按图样及工艺文件为准,低于国家有关标准时以国家标准为准,反之以本守则为准。
1、材料1.1制造换热容器的主要受压元件(如壳体、封头、换热管等)的材料,质量及规格应符合国标、部标和有关技术条件要求。
材料证明上的内容按有关规定必须填写齐全。
采用国外材料时,应按《固定式压力容器安全技术监察规程》的第2.9条要求进行检验、验收及复验。
1.2 含碳量大于0.25%的材料不得用于焊制换热容器。
1.3制造换热容器的材料标准,热处理状态及许用应力值按GB150及GB151的规定。
1.4钢板的表面应光滑平整,不得有裂纹、分层、气泡、夹杂、结疤等缺陷。
钢板表面存在的深度缺陷不得超过钢板厚度公差1/2的下限,个别损伤,允许用细砂轮清除,但不得低于钢板厚度名义尺寸的下偏差。
1.5钢板的低倍组织不得有肉眼可见的缩孔、裂纹和夹杂。
1.6换热管的内外表面不得裂纹、折迭、轧折、离层、发纹和结疤缺陷存在,上述个别缺陷其深度未超过管壁厚负偏差时允许清除,并进行压力试验合格。
1.7 对于双管板换热器,换热管和管板材料还应符合以下要求:1.7.1换热管应采用较高级精度的管子,换热管外径的许用偏差控制在±0.10mm,管子壁厚偏差为±7%。
1.7.2换热管应按材料的不同规定材料的硬度。
1.7.3根据换热管材料的力学性能要求对管板的屈服强度和硬度提出采购要求。
通常将硬度差控制在管板比换热管硬度高HB30~HB60。
1.8 所有材料都必须有接货检验记录,并按公司相关规定进行标识。
1.9 材料在切割前应将标记进行移植。
2、筒体制造2.1施工者根据施工图,要求画下料展开图。
2.1.1焊缝布置:a、立式换热器左右对称布置。
b、卧式换热器,水平线以上部位对称布置(并不被鞍座覆盖)。
换热器管子与管板的5种连接结构形式
换热器管子与管板的5种连接结构形式管子与管板的连接,在管壳式换热器的设计中,是一个比较重要的结构部分。
它不仅加工工作量大,而且必须使每一个连接处在设备的运行中,保证介质无泄漏及承受介质压力能力。
对于管子与管板的连接结构形式,主要有以下三种,(1)胀接, (2)焊接,(3)胀焊结合。
这几种形式除本身结构所固有的特点外, 在加工中,对生产条件,操作技术都有一定的关系。
Ol胀接用于管壳之间介质渗漏不会引起不良后果的情况下,胀接结构简单,管子修补容易。
由于胀接管端处在胀接时产生塑性变形,存在着残余应力,随着温度的上升,残余应力逐渐消失,这样使管端处降低密封和结合力的作用。
所以此胀接结构,受到压力和温度的一定限制。
一般适用压力P0≤4MPa,管端处残余应力消失的极限温度,随材料不同而异,对碳钢、低合金钢当操作压力不高时,其操作温度可用到300°Co为了提高胀管质量,管板材料的硬度要求高于管子端的硬度, 这样才能保证胀接强度和紧密性。
对于结合面的粗糙度,管孔与管子间的孔隙大小,对胀管质量也有一定的影响,如结合面粗糙,可以产生较大的摩擦力,胀接后不易拉脱,若太光滑则易拉脱,但不易产生泄漏,一般粗糙度要求为Ral2.5o为了保证结合面不产生泄漏现象,在结合面上不允许存在纵向的槽痕。
期炸既接管孔有光孔和带环形槽孔两种,管孔的形式和胀接强度有关,在胀口所受拉脱力较小时,可采用光孔,在拉脱力较大时可采用带环形槽的结构。
光孔结构用于物料性质较好的换热器,胀管深度为管板厚度减3mm,当管板厚度大于50m∏b胀接深度e一般取50 mm,管端伸出长度2~3 mmo 当胀接时,将管端胀成圆锥形,由于翻边的作用,可使管子与管板结合得更为牢固,抗拉脱力的能力更高。
当管束承受压应力时,则不采用翻边的结构形式。
管孔开槽的目的,与管口翻边相似,主要是提高抗拉脱力及增强密封性。
其结构形式是在管孔中开一环形小槽,槽深一般为0.4~0∙5 mm,当胀管时,管子材料被挤入槽内,所以介质不易外泄。
管壳式换热器胀管工艺
1 胀管工艺规程编制审核2管子与管板“焊、胀”连接工艺一、原理及适用条件本工艺的实施步骤是焊-胀。
它巧妙地运用胀接过程的超压过载技术通过对管与管板的环形焊缝进行复胀造成应变递增而应力不增加即让该区域处于屈服状态在焊缝的拉伸残余应力场中留下一个压缩残余应力体系。
两种残余应力相互叠加的结果使其拉伸残余应力的峰值大减二次应变又引起应力的重新分布结果起到调整和均化应力场的效果最终将残余应力的峰值削弱到预定限度以下。
本工艺适用于管子与管板的胀、焊并用连接型列管式换热器的工厂或现场加工。
管板厚度范围为16100mm材质为碳钢者就符合GB150-98第二章2.2条的规定若采用16Mn时就分别符合GB3247—88和GBI51—99中的有关规定换热管束应符合GB8163、GB9948-88、GB6479-86、GB5310-85的规定。
二、焊、胀工艺一准备工作1、对换热管和管板的质量检查1管子内外表面不允许有重皮、裂纹、砂眼及凹痕。
管端头处不得有纵向沟纹横向沟纹深度不允许大于壁厚的1/10。
管子端面应与管子轴线垂直其不垂直度不大于外径的2。
2换热管的允许偏差应符合表1-1要求。
3管孔表面粗糙度Ra不大于12.5μm表面不允许纵向或螺旋状刻痕。
管孔壁面不得有毛刺、铁屑、油污。
4管孔的直径允许偏差应符合表1-2规定。
3 换热管的允许偏差表1-1 Ⅰ级换热器Ⅱ级换热器材料标准外径×厚度mm 外径偏差mm ?诤衿 頼m 外径偏差mm 壁厚偏差mm19×2 25×2 25×2.5 ±0.2 ±0.4 32×3 38×3 45×3 ±0.3 12 10 ±0.45 15 10 碳钢GB8163-87 57×3.5 ±0.8 ±10 ±1 12 10 抽查区域应不小于管板中心角60。
管壳式换热器制造有效贴胀技术1
管壳式换热器制造有效液压贴胀工艺生产运行部黄科达摘要介绍管壳式换热器制造进程中常经常使用到的一种有效的液压贴胀工艺。
关键词管壳式管热器液压贴胀工艺Abstract Present a way of practical light hydraulic expansion jointing which is used frequently in the manufacture of the tube and shell heat exchanger.Key words: tube and shell heat exchanger, light hydraulic expansion jointing1 绪论在炼厂及化工厂中要用到许多管壳式换热器,随着工业的进展,换热器的工作压力、温度和容量不断提高。
换热器上管子和管板的连接部位多、要求简单节省、连接靠得住,因此液压胀管工艺取得大力进展。
我公司承制的广西石化271-E110换热器,换热管与管板的连接采纳强度焊加贴胀。
换热管管板厚度50mm,胀接长度32mm,但由于我公司只有一台液压胀管机,故只能采纳液压贴胀工艺。
2 胀接设备和胀接原理胀接设备用的是吴江市长江特种工具厂生产的型号为YZJ- A—5型300MPa液压胀管机,它有一个用来安装液压胀头的胀管头,实施胀接的时候,把液压胀头装在那个胀管头上,然后插入换热管内,在管热管和液压胀头间形成一个很小的间隙,实际胀接的时候高压水流被压入液压胀头中,使得液压胀头的胶体部位膨胀,进而使换热管发生弹性和塑性变形,在换热管胀大的进程中管子外径贴到管板孔内表面,管板也要发生弹性和塑性变形。
当液压胀管机的压力释放后,由于管板的弹性恢复比管子要多,因此在连接处就有牢靠、均匀的结合。
3 液压胀接的优势液压胀接,较之于机械胀接,具有效率高、胀接均匀、操作简单方便等优势。
只是液压胀接对管板孔的尺寸误差、粗糙度,管孔的尺寸误差、粗糙度等阻碍胀接的因素要求较高,因此,要用好液压胀接技术就必需做好相关的工作。
管壳式换热器的胀接工艺
管壳式换热器的胀接工艺管板和换热管都是换热器的主要受压元件,两者之间的连接处是换热器的关键部位。
胀接是实现换热管与管板连接的一种方法,胀接质量的好坏对换热器的正常运行起着关键的作用。
因此,换热管与管板之间的胀接工艺技术就显得非常重要。
1胀接形式及胀接方法胀接形式按胀紧度可分为贴胀和强度胀。
贴胀是为消除换热管与管板孔之间缝隙的轻度胀接,其作用是可以消除缝隙腐蚀和提高焊缝的抗疲劳性能。
强度胀是为保证换热管与管板连接的密封性能及抗拉脱强度的胀接。
贴胀后胀接接头的抗拉脱力应达到1MPa以上,强度胀后胀接接头的抗拉脱力应达到4MPa以上。
胀接方法按胀接工艺的不同可分为机械胀、爆炸胀、液压胀和脉冲胀等。
机械胀是用滚珠进行胀管的,具有操作简单方便、制造成本低等优点,因而得到了广泛应用。
2胀管器的选用胀管器的种类,有三槽直筒式、五槽直筒式、轴承式、调节式、翻边式。
它的选用主要根据换热管的内径、管板厚度、胀接长度及胀接特点而确定。
3换热管与管板硬度的测定换热管与管板材料应有适当的硬度差,管板硬度应当大于换热管的硬度,其差值最好达到HB30以上,否则胀接后管子的回弹量接近或大于管板的回弹量而造成胀接接头不紧。
胀接的原理是胀接时硬度较低的管子产生塑性变形,而硬度较高的管板产生弹性变形,胀接后塑性变形的管子受到弹性回复的管板孔壁的挤压而使管子和管板紧密地结合在一起。
因此在胀管之前应首先测定管子与管板的硬度差是否匹配。
如果两者硬度值相差很小时应对管子端部进行退火热处理。
管子端部退火热处理长度一般为管板厚度加100mm。
4试胀正式胀接之前应进行试胀。
试胀的目的是验证胀管器质量的好坏,验证预定的管子与管板孔的结构是否合理,检验胀接部位的外观质量及接头的紧密性能,测试胀接接头的抗拉脱力,寻找合适的胀管率,以便制定出合理的产品胀接工艺。
试胀应在试胀工艺试板上进行。
试板应与产品管板的材料、厚度、管孔大小一致,试板上孔的数量应不少于5个,其管孔的排列形式见图1所示。
换热器管子与管板胀接工艺分析
换热器管子与管板胀接工艺分析管子与管板的连接是管壳式换热器生产中最主要的工序之一。
由于这类工程需耗费大量工时,更重要的是,连接的地方在运行中容易发生故障。
因此,发展高效率、高质量的连接技术已成为制造中的重点研究课题。
根据换热器的使用条件不同,加工条件不同,连接的方法基本上分为胀接、焊接和胀焊结合三种,由于胀接法能承受较高的压力,特别适用于材料可焊性差及制造厂的焊接工作量过大的情况。
因此该方法在实际生产中运用广泛。
随着技术的不断发展,现已相继开发出滚柱胀管、爆炸胀管及液压、液袋和橡胶胀管等新工艺。
本文拟对这几种胀管工艺进行比较,为实际生产选择合理的胀管工艺提供参考。
1传统胀接工艺1.1 滚柱胀管法该方法是在一个构架上嵌入三个小直径的滚子,中间有一根锥型心轴的胀管器,如图1所示。
胀管时将胀管器的圆柱部分塞入管孔内,利用电动、风动等动力旋转心轴,通过滚子沿心轴周向旋转,使心轴挤入管内面并强迫管子扩大,达到一定的胀紧度,使管子紧紧地胀接于管板的孔上。
胀管操作可分为前进式和后退式两种,前进式是将构架插入管内,旋转心轴,前进挤大,达到所定的紧固程度后电动机反转,由管中拔出完成胀管过程。
反转式和前进式一样旋转心轴前进,达到原定的紧固程度后电动机停止,同时后退装置的离合器啮合反转,滚子和心轴的相对位置保持不变,一边反转一边由该深度到入口处连续均匀地进行平行胀管。
由于这种胀接过程是由里至外,管子的伸长,发生在管板外侧,可以消除管束的受力状态,提高产品质量[2],故用于胀接长度大于60cm的连接。
1.2 爆炸胀管工艺该方法是利用高能源的炸药,使其在爆炸瞬间(10×10-6~12×10-6s)所产生冲击波的巨大压力,迫使管子产生高速塑性变形,从而把管子与管板胀接在一起,实现管子与管板的连接。
图2为爆炸胀接的示意图,图中柱状炸药放置于管端的中心,为防止冲击波对管壁的损伤,炸药的周围有一管状缓冲填料(粘性物或者塑料),使压力能均匀地传递到管壁上。
换热管与管板胀接技术
换热管与管板胀接技术浅谈摘要:本论文以某企业转化器为例,探讨了胀接方式的选择、胀管工艺的实施等,为相关工程的实际操作提供了参考。
关键词:换热管、管板、胀接前言钢制管壳式换热器在化工生产中应用十分普遍,不管是固定管板还是浮头管板、u形管壳式换热器,管子与管板的连接是换热器中十分重要的结构和环节。
由于换热管和管板是换热器管程和壳程之间的唯一屏障,因此换热管与管板连接接头质量的好环是管壳式换热器失效最主要的因素,本文以我公司制作的转化器(dn2800×16×5690)为例来进行说明。
该转化器为衡阳某公司20万吨/年pvc 扩改(四期)工程关键设备之一,该设备为立式固定管板式换热器。
设计压力:管程0.08mpa、壳程0.32mpa,工作压力:管程0.07mpa、壳程0.30mpa,设计温度:管程170℃、壳程99℃,工作温度:管程110~170℃、壳程95~99℃,工作物料:管程为氯化氢、乙炔、活性碳、氯乙烯;壳程为热水。
主要材料:管程为q345r(gb713-2008)、10(gb/t8163-2008),壳程为q235-b(gb/t3274-2007)。
管板为q345r材质,板厚70mm,换热管规格为φ45×3、长度为3000mm,材料为10#无缝钢管,每台数量为2031根,总换热面积为831m2。
该设备共制造10台。
一、胀接方法选择换热管与管板的连接方式主要有胀接、焊接、胀焊并用三种。
根据设备介质以及连接方式的适用范围,转化器换热管与管板之间的连接方式为强度焊加贴胀。
胀接目前主要有滚柱胀管、爆炸胀管及液压、液袋和橡胶胀管等工艺。
1.几种胀管工艺方法的比较液压胀管工艺又称软胀接,一次可以胀接较多的管接头。
液压胀管是一种新的胀接技术,它是通过对管子内表面施加高的液压力,使管子塑性变形而胀接于板孔内表面的。
液压胀接的胀管头是直径略小于管子内径的一段芯棒,芯棒两端的外圆表面上有多个密封件,在芯棒中部设有进油孔,在两段密封件之间的管段内施以高压,使管子发生塑性胀大变形而实现胀接。
管壳式换热器走管程和壳程如何定
不是这么简单,需要考虑很多因素:宜走管内的流体:1)不洁净和易结垢的流体,因为管内清洗方便;2)腐蚀性的流体,因为可避免管子、壳体同时受腐蚀,且管子便于清洗和检修;3)压强高的流体,因为可以节省壳体材料;4)有毒的流体,因为可减少泄漏的机会.宜走壳程的介质:1)饱和蒸汽,因为可便于及时排除冷凝液,且蒸汽比较干净,清洗比较方便; 2)被冷却的流体,因为可利用壳体散热,增强冷却效果;3)粘度大的流体或流量小的流体,因为流体在折流板的作用下,可提高流动对流传热系数;4)对于刚性结构的换热器,若两流体的温差大,对流传热系数较大的介质走壳程,可减少热应力。
换热器中管壳程介质的确定原则如下:1、不清洁的流体走管内,以便于清洗.例如冷却水一般通入管内,因为冷却水常常用江河水或井水,比较脏,硬度较高、受热后容易结垢,在管内便于机械清洗。
此外管内流体易于维持高速,可避免悬浮颗粒的沉积。
2、流量小的流体,或传热系数小的流体走管内。
因管内截面一般比管间截面小,流速可高些,有利于提高传热系数。
3、有腐蚀性的流体走管内,这样只要管子、管板用耐腐蚀材料即可。
此外,管子便于检修。
4、压强高的流体走管内,因管子较宜承受高压。
5、高温或低温流体走管内,这样可以减少热量或冷量向周围大气散失而造成的热损失。
6、饱和蒸汽走管内,便于排除冷凝液.冷热流体哪一个走管程,哪一个走壳程,需要考虑的因素很多,难以有统一的定则;但总的要求是首先要有利于传热和防腐,其次是要减少流体流动阻力和结垢,便于清洗等。
一般可参考如下原则并结合具体工艺要求确定。
(1)腐蚀性介质走管程,以免使管程和壳程材质都遭到腐蚀。
(2)有毒介质走管程,这样泄漏的机会少一些。
(3)流量小的流体走管程,以便选择理想的流速,流量大的流体宜走壳程。
(4)高温、高压流体走管程,因管子直径较小可承受较高的压力.(5)容易结垢的流体在固定管板式和浮头式换热器中走管程、在u形管式换热器中走壳程,这样便于清洗和除垢;若是在冷却器中,一般是冷却水走管程、被冷却流体走壳程。
换热器管子与管板接头胀接工艺守则
换热器管子与管板接头胀接工艺守则换热器管子与管板接头胀接工艺守则本守则规定了压力管子与管板的胀接方法和技术要求,适用于GB150、GB151及《固容规》涉及的强度胀、焊后胀,胀后焊结构的产品。
胀接操作人员胀接操作人员必须经过有关部门技术培训,考试合格后方能上岗。
胀接操作人员应掌握所用胀接设备的使用性能,熟悉产品图样、工艺文件及标准要求。
此外,胀接操作人员应认真做好胀接场地的管理工作,对所用工、量、检具能正确使用和妥善保管。
胀接设备与胀管器胀接设备与胀管器应能满足胀接技术条件及有关标准要求。
胀接设备一般有如下几种:无自动控制胀管率装置的机械式胀管机、液压驱动扭矩自动控制胀管率的胀管机、微机控制胀管率的机械式胀管机和液压橡胶柔性胀管机。
上述胀接设备可视产品情况选择使用。
胀管器按用途一般分为12°~15°扳边胀管器、90°扳边胀管器和无扳边胀管器。
胀管器按胀柱数量一般分为3个胀柱胀管器和5个胀柱胀管器,应优先选用5胀柱胀管器。
90°扳边胀管器一般有普通90°扳边胀管器与90°无声扳边胀管器之分,应优先选用无声扳边胀管器。
胀接管子的技术要求胀接管子的外表面不得有重皮、裂纹、压扁等缺陷,胀接管端不得有纵向刻痕。
如有横向刻痕、麻点等缺陷时,缺陷深度不得超过管子公称壁厚的5%。
胀接管子的端面倾斜度△f 应不大于管子公称外径的1.5%,且最大不超过1mm。
管端硬度宜低于管板硬度,若管端硬度大于管板硬度时,应进行退火处理。
硬度检查应符合下列规定:用于胀接的管子按每个炉批号管子总数的1%取样,且不少于3个;用于管板的钢板,每个炉批号取1个试样;样坯切取位置及方向应符合GB2975的规定;硬度测试可在切取的试样上进行,亦可在管板和胀接管端上直接进行;测试前,应将测点处的氧化皮、锈蚀、油污清除掉,使之露出金属光泽;当在试样上进行时,试验方法、试样尺寸及表面要求应符合GB231的规定。
管壳式换热器管子与管板连接技术介绍及质量分析
管壳式换热器管子与管板连接技术介绍及质量分析管壳式换热器管子与管板接头连接一般采用胀接或焊接型式。
其中机械胀接由于优点多,操作简单,因此应用广泛,但在使用过程中容易产生泄漏、腐蚀和破损导致设备失效,本文主要介绍各类连接方法的优缺点,及如何提高连接质量。
标签:管壳式换热器;失效;连接形式;焊胀结合;机械胀接管壳式换热器是化工企业常用的设备之一,是目前应用最广泛的一种换热器。
换热器主要有壳体、管束、管板和封头等部分组成,管板为最核心部件,也是加工制作工期最长难度最大的部件。
在制造和使用过程中,如果在操作时连接处发生泄漏,将会导致两种流体混合,轻者损失热量与产品,重者将危及人与设备的安全。
因此把管板常规的几种连接形式进行分析比较,找出每一种形式优缺点,改进优化,达到既满足工程设计,同时满足加工制作方便的双重效果。
1 管壳式换热器管子与管板的连接方式1.1 胀接胀接是利用胀管器插入管口旋转,将穿入管板孔内的管端部胀大,使管子达到塑性变形,同时管板孔被胀大,产生弹性变形。
胀管器退出后,管板弹性恢复,管子与管板的接触表面产生很大的挤压力,使管子与管板牢固地结合在一起,达到既密封又能抗拉脱力两个目的。
1.2 焊接换热管和管板之间的焊接有端面焊接和内孔焊接两种结构类型。
端面焊接典型结构如图1所示。
1.3 焊接加胀接焊接加胀接根据加工条件可分为先焊后胀、先胀后焊,其优缺点如下:①先胀后焊制造工艺对管子和管板的清洁程度要求较高,否则极易产生制造缺陷。
而先焊后胀对管板和管子的清洁程度要求不高;②先胀后焊工艺其焊接对胀接有不利影响,易造成胀接部位松弛。
焊接时产生的气体不易排除,易出现焊缝缺陷,而先焊后胀可以根本上避免这种情况发生;③从焊缝质量和使用效果方面来看,先焊后胀工艺亦大大优于先胀后焊工艺。
1.4 新型胀接法①爆炸胀接法。
此法起源于60年代,在70年代得到广泛应用。
其原理是应用爆炸时的径向作用力达到胀紧;②液压胀接法。
胀管守则
管子与管板胀接工艺守则编制:审核:批准:2013年6月管子与管板胀接工艺守则1总则1.1本守则适用于按GB151-1999《管壳式换热器》及相关制造标准制造的换热器的管子与管板的胀接。
1.2本守则应和有关的产品图样及工艺文件等一同使用。
2胀接操作人员的要求2.1胀接操作人员需经培训上岗。
2.2胀接操作人员应掌握所用胀接设备的的使用性能,熟悉换热器产品图样,工艺文件及标准要求。
2.3胀接操作人员应认真做好胀接场地的管理工作,对所用工、量、检具应能正确使用妥善保管。
3胀接准备3.1 胀接管端胀接前按以下要求进行清理。
3.1.1管端外表面应用半自动双磨管机除锈设备除锈磨光,磨光长度2倍管板厚度且不小于50mm、除锈磨光后的表面不应有起皮、凹痕、裂纹和纵向沟槽等缺陷、管端内表面应无严重锈蚀和铁屑等杂物。
3.1.2 除锈磨光后的胀接管子应及时胀接,如不能及时装配胀接,则应妥善保管以防再次生锈。
3.2 胀接管孔的要求3.2.1用酒精或四氯化碳等溶剂清洗胀接孔壁上的油污、再用细纱布沿孔壁圆周方向打磨残留锈蚀,去除管孔边缘毛刺。
打磨后,管孔壁的表面粗糙度Ra不得大于12.5μm。
3.2.2 清理后的管壁不得有贯穿的纵向或旋螺形刻痕等。
4胀接4.1机械胀接方法:当换热管壁厚≤1.5mm,通常采用自动胀接,当换热管壁≥2mm,通常采用手工半自动胀接。
4.1.1 胀接前应进行试胀,一切正常后,方可进行正式胀接。
4.1.2检查管端和管内是否清洁、不清洁者不允许胀接。
4.1.3检查胀管器及胀珠、胀杆、胀套。
磨损严重的不允许使用,胀管器要清洁,不允许有铁屑,铁锈等杂质。
4.1.4将自动控制仪和稳压器置于平稳处,控制仪的灵敏度,电流表指数根据胀接试样的要求定在一个位置,以便操作时参照。
4.1.5手持电动胀管工具,必须有安全保护以防漏电伤人,使用前应做安全检查。
4.1.6调试胀管机,控制仪系统,胀接试样合格后进行胀管操作。
4.1.7在擦洗干净的胀管器胀珠上滴少量润滑油后,插入管内进行胀管。
管壳式换热器管子与管板的贴胀
Ab s t r a c t :T h e l i g h t e x p a n s i o n j o i n t o f t u b e a n d t u b e p l a t e o f t h e t u b u l a r h e a t e x c h a n g e r w a s a n a l y z e d . T h e
如果换 热管 与管 板 的连接采 用 贴胀 加密 封焊 的 方式 【 1 ] .其 密封焊 就应按 照经 焊接 工艺 评定 后所 制 定 的焊接 工艺来 进行 。但 是这 种贴 胀加 密封 焊 的连 接方 式 .所采用 的贴 胀工 艺并 没有 相关 的标 准作 出
何 寅 ,男 ,1 9 8 6 年 生 ,助 理 工 程 师 。衢 州 市 ,3 2 4 0 0 0 。
( 4 )胀管 器 的选择 。
5 1
他综 合 因素 的作 用下 ,也 容易 产生 连接 失效 ;贴胀 时 由于 贴胀 不到 位 。焊接 应力 也不 会得 到 很好 的释 放 。在 换热 管发 生振 动 的情况 下 ,振 动产 生 的力直 接作 用 在焊 接接 头 的焊缝 部位 ,加 上焊 接接 头 可 能
进行 。
的运行 情况 ,以及 上述 因 素的综合 影 响 。分 析这 些 情 况可 以发 现 ,这些影 响 因素与贴 胀 的质 量都 有 密 切 的关 系 。如果 贴胀不 够 紧密 ,换 热 介质 进 入管 孔 与 管子 的 间隙 ,以及发 生结 垢情 况 等 ,就 会 导致 换 热 环境 恶劣 。管板 和管 子金 属材 料 的组织 结 构发 生
强度胀 接 头 的胀 接质 量 ,根据 《 固定 式压 力 容器 安 全 技 术监 察 规程 》 和 《 管 壳 式 换 热 器 》 的 有 关 要 求 ,在进行 胀 管之前 应该 制定 出胀接 工 艺规 程 ,操 作人 员应 按照胀 接工 艺规 程进行 胀 管操作 。 换 热 管与 管板 的连接 采用 焊接 连接 时 ,需要 进 行焊 接工 艺评定 。焊 接工 作应按 照 相应 的焊 接工 艺
浅析换热器管板与换热管胀焊胀工艺方法
浅析换热器管板与换热管胀焊胀工艺方法作者:万咏知来源:《环球市场》2018年第26期摘要:本论文阐述了在管壳式换热器的设计中换热管与管板的连接结构形式如何确定,确定了最佳的换热管连接方式为贴胀+密封焊+消除应力胀,防止换热器管板裂纹的产生,在生产中得到推广应用。
关键词:换热器;换热管;管板;强度胀;强度焊在管壳式换热器中,换热管与管板的连接是一个比较重要的结构部分。
根据管壳式换热器的使用条件不同,加工条件不同,管子与管板的连接通常采用:胀接或焊接的连接方式,胀接连接运行一段时间,随着冷热交替管板和管子间容易发生泄露,增加了维修频率;焊接连接的管子因过于密集,管孔桥间距较小,相邻焊缝的焊接热影响区叠加,容易产生焊接残余应力,焊后管板上易出现裂纹。
一、胀焊胀前准备(一)材料准备:Q345钢材,t=20,200×200(中间开φ32+0.74孔),一块;20#管子,φ32×2.5,L=150,一段;(二)设备、工具的准备:胀管器一个;WS-400氩弧焊一台;焊接辅助工具若干;(三)组对:将准备好的管子与管板组对起来,管子伸出长度4-5mm。
二、胀焊胀操作工艺要点(一)贴胀主要反映在管孔是否开槽和焊接坡口及管子伸出长度等方面,对一些比较苛刻的使用场合也有用强度焊+强度胀的管接头连接方式,如双管板换热器设计要求采取强度焊+强度胀。
我们在设计换热器时无论采取哪种方式,其要求满足的基本条件有两条:一是良好的气密性;二是足够的结合力。
(二)胀接胀接是一个连续的弹塑性力学过程,胀管时管子产生了严重的塑性变形,管板则主要处于弹性状态,卸载时由于回弹管孔将管子压紧而形成胀接接头。
强度胀是利用胀管器,使伸到管板中的管子端部直径扩大产生塑性变形而管板只达到弹性变形,因而胀管后管板与管子间就产生一定的挤压力,使管子能嵌入到管孔的环形槽内,达到密封紧固连接的目的。
(三)采用胀接时要求管板硬度较换热管硬度高,这样可免除在胀接时因管孔产生塑性变形而影响胀接的紧密性。
管壳式换热器换热管与管板胀管率的确定
管壳式换热器换热管与管板胀管率的确定刘敏(大连冷冻机股份有限公司,辽宁大连116033)摘要:对胀管率的控制进行了详细的论述,并对胀管率的计算方法进行了比较,从而提出了不同材料的胀管率的控制范围;同时对影响胀接质量的因素作了总结。
关键词:胀管率;强度胀;贴胀;内径控制法由国家质量技术监督局颁发的《压力容器安全技术监察规程》第104条、第105条对换热管与管板的胀接方法及胀接的基本要求做出了原则性的规定,但对胀管率没有具体的规定,目前也没有国家标准可依。
而胀接又是管壳式换热器制造中的重要工序之一,所以为保证胀接质量,如何确定胀接方法及合适的胀管率尤显重要。
1胀接方法换热管与管板的胀接方法有机械胀接和柔性胀接(或称均匀胀接)。
机械胀接的方法为非均匀性的胀接,一般在胀接过程中需要加油润滑(由于油的污染造成胀接后不能保证焊接质量和污染胀接处的表面质量),并且机械滚珠在碾轧中使管径扩大产生较大的冷作应力,因此机械胀接不利于有应力腐蚀的场合。
但是由于它的操作简便,直到目前许多厂家仍然广泛地使用在中、薄管板的胀接上。
本文将着重对不同材料的换热管采用机械胀接方法的胀管率作以介绍。
2胀管率的确定2 1胀管率为确保胀接质量,应确定合适的胀管率,通常用胀紧程度与管板孔原有直径、换热管内径或换热管壁厚的百分比来表示胀管率,胀紧程度可以用公式(1)表示:H=d12-d11-b(1)式中H———换热管胀紧程度,mmd11,d12———换热管胀前、后的内径,mmb———胀前换热管与管板孔的双边间隙量,mm胀管率是以胀紧度对换热管内径、管板孔直径或换热管壁厚的百分率来表示。
2.2常见材料的胀管率表1为常见材料的胀管率参考值,利用公式(1)可以换算出换热管胀后的内径范围。
胀管率的确定,除了要考虑胀接方法(强度胀与贴胀的胀紧程度区别较大),同时还应考虑管板孔的公差范围、换热管外径及壁厚的公差等因素。
2 3胀管率的计算方法胀管率的计算方法有多种形式,以下为国内外常见的几种计算公式。
热交换器换热管与管板的连接评定实践
热交换器换热管与管板的连接评定实践摘要:火力发电厂的高压给水加热器简称“高加”。
它是利用从汽轮机抽取的蒸汽加热锅炉给水的装置。
高压加热器可以提高电厂的热效率,节省燃料,并有利于机组的安全、稳定、环保、经济地运行。
高压给水加热器均为表面式加热器,以管子为传热面,汽轮机抽汽进入加热器壳内,因分程隔板的阻挡,给水转弯向下流入管板的上端,由此进入管子,加热蒸汽(汽轮机抽汽)的热量通过管壁传递给管内给水,给水流经U形管过程被加热,之后进入水室的出口侧,经出水口流出加热器,被送往锅炉。
从汽轮机中抽出一定数量的做过部分功的蒸汽用来加热锅炉给水的回热过程,可提高机组循环热效率。
管侧给水设计压力大于或等于9.8MPa的高压至超超临界压力等级机组的高压加热器。
其管子和管板之间的连接一般采用液压胀管加焊接。
如何保证换热管与管板的可靠连接,进而保证高压给水加热器的安全可靠运行,是热交换器制造企业的一个重要课题。
关键词:胀接拉脱焊接连接工艺评定2019年由我公司为华能济宁高新区热电有限公司2×350MW机组设计的图号为NX2019-119的高压给水加热器其壳程设计温度达420℃,压力9.2MPa,管程设计给水温度325℃,设计压力35MPa。
设计参数如此高的热交换器,在我公司的制造生产中还比较少见,高压加热器的换热管和管板连接处发生泄漏是高压加热器的主要故障之一,为了确保产品质量,保证高压加热器的安全可靠性,我们对换热管与管板的连接进行了试验评定。
1.换热管与管板之间的胀接连接换热管与管板之间的间隙在设备运行中会产生间隙腐蚀,同时高温、高压、高速的蒸汽作用也加剧了换热管的震动,增加了换热管与管板孔之间的磨损,因此通过胀接换热管消除其与管板孔之间的间隙,是管束制造过程中的重要环节,为了保证既不欠胀又不过胀,我们做了以下胀接试验的评定。
1.胀接试验材料的准备1.1胀接试板规格110×140×440 1块材质20MnMoⅣ1.2换热管规格ф16×2.2×550 12根材质 SA556-C2(换热管管壁外涂红丹)2 .胀接试验胀接试验图见图2.1胀接压力的计算2.1.1使管子与试板孔开始产生剩余应力的最小胀管压力Pmin(MPa)(1)管板材料的屈服应力 MPa式中:σsp……其中:Fp……考虑胀管两侧管板影响的内压放大系数。
管壳式换热器标准的一些常见问题
管壳式换热器标准的一些常见问题换热器-1 GB151-1999管壳式换热器的适用范围是什么?答:1.适用于固定管板式、浮头式、U形管式和填料函式换热器。
2.适用的参数为:公称直径DN ≤2600mm;公称压力PN ≤35MPa;且公称直径(mm)和公称压力(MPa)的乘积不大于1.75×104。
换热器-2 对于管、壳程设计压力均为内压的管壳式换热器,其受压元件在什么情况下可按压差设计?还应考虑什么问题?答:对于同时受管、壳程内压作用的元件,仅在能保证管、壳程同时升、降压时,才可以按压差设计。
压差的取值还应考虑在压力试验过程中可能出现的最大压差值,同时设计者应提出压力试验的步进程序。
换热器-3 试述管壳式换热器中管、壳程设计温度与管壁、壳壁温度的差异及作用。
答:管、壳程设计温度分别为管程管箱和壳程壳体的设计温度,是对应于管、壳程设计压力分别设定的管、壳程受压元件金属温度(沿元件金属横截面的温度平均值)的最高值或最低值。
用于确定元件材料的许用应力。
管壁、壳壁温度分别为沿长度平均的换热管、壳程圆筒金属温度,分别是传热过程中形成的换热管、壳程圆筒金属温度沿长度方向的平均值。
用于计算壳程圆筒与换热管的热膨胀差在管板、换热管和壳程圆筒中引起的应力。
这两组温度不仅定义、性质和作用不同,而且数值上也会有较大差异,因此,在计算时一定要注意,不可混用。
换热器-4 管壳式换热器中同时受管、壳程温度作用的元件的设计温度如何确定?答:管壳式换热器中同时受管、壳程温度作用的元件的设计温度可按金属温度确定,也可取较高侧的设计温度。
换热器-5 管壳式换热器主要元件腐蚀裕量的考虑原则是什么?答:管壳式换热器主要元件腐蚀裕量的考虑原则:a)管板、浮头法兰、球冠形封头和钩圈两面均应考虑腐蚀裕量;b)平盖、凸形封头、管箱和圆筒的内表面应考虑腐蚀裕量;c)管板和平盖上开槽时,可把高出隔板槽底面的金属作为腐蚀裕量,但当腐蚀裕量大于槽深时,还应加上两者的差值;d)压力容器法兰和管法兰的内直径面上应考虑腐蚀裕量;e)换热管不考虑腐蚀裕量;f)拉杆、定距管、折流板和支持板等非受压元件,一般不考虑腐蚀裕量。