高一数学教案:圆柱圆锥圆台和球2
2021学年高中数学1.1.1第2课时圆柱圆锥圆台和球的结构特征学案含解析人教A版必修2.doc
第2课时圆柱、圆锥、圆台和球的结构特征[目标] 1.记住圆柱、圆锥、圆台、球的定义及它们的结构特征;2.能用圆柱、圆锥、圆台的定义及结构特征解答一些相关问题.[重点] 圆柱、圆锥、圆台、球的定义及结构特征.[难点] 圆柱、圆锥、圆台之间关系的理解.知识点一圆柱[填一填]以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱.旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.棱柱和圆柱统称为柱体.[答一答]1.①在圆柱中,圆柱的任意两条母线是什么关系?过两条母线的截面是怎样的图形?②在圆柱中,过轴的截面是轴截面,圆柱的轴截面是什么图形?轴截面含有哪些重要的量?③圆柱上底面圆周上任一点与下底面圆周上任一点的连线是圆柱的母线吗?提示:①圆柱的任意两条母线平行,过两条母线的截面是矩形.②圆柱的轴截面是矩形,轴截面中含有圆柱的底面直径与圆柱的母线.③不一定.圆柱的母线与轴是平行的.知识点二圆锥[填一填]以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥.棱锥与圆锥统称为锥体.[答一答]2.直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥吗?提示:不是.当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图所示,它是由两个同底面圆锥组成的几何体.知识点三圆台[填一填]用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.棱台与圆台统称为台体.[答一答]3.类比圆柱、圆锥的形成过程,圆台可以由平面图形旋转而成吗?提示:(1)圆台可以看作是直角梯形以垂直底边的腰所在的直线为旋转轴,其他三边旋转一周而成的曲面所围成的几何体.(2)圆台也可以看作是等腰梯形以其两底边的中点连线为轴,各边旋转半周形成的曲面所围成的几何体.知识点四球体[填一填]以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称为球.半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径.[答一答]4.半圆或圆绕它的直径所在直线旋转一周形成什么?它与球有区别吗?提示:半圆或圆绕它的直径所在直线旋转一周形成球面.球面是一曲面,它只能度量面积而不能度量体积,球是由球面围成的几何体,它不仅可以度量球的表面积,还可以度量其体积.5.用一个平面去截球,得到的是一个圆吗?提示:不是,得到的是一个圆面,球是一个几何体,包括表面及其内部.类型一旋转体的结构特征[例1](1)下列叙述中,正确的个数是()①以直角三角形的一边为轴旋转所得的旋转体是圆锥.②以直角梯形的一腰为轴旋转所得的几何体是圆台.③用一个平面去截圆锥,得到一个圆锥和一个圆台.④圆面绕它的任一直径旋转一周形成的几何体是球.A.0个B.1个C.2个D.3个(2)给出下列命题:①圆柱的母线与它的轴可以不平行;②圆锥的顶点、底面圆的圆心与圆锥底面圆周上任意一点这三点的连线都可以构成直角三角形;③在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.其中正确的是()A.①②B.②③C.①③D.②④[解析](1)以直角三角形的斜边为轴旋转一周所得的旋转体不是圆锥,故①错;以直角梯形的一斜腰为轴旋转一周所得的旋转体不是圆台,故②错;当截面与底面不平行时,得到的两个几何体不是圆锥和圆台,故③错.故只有④是正确的.故选B.(2)由圆柱、圆锥、圆台的定义及母线的性质可知②④正确,①③错误.[答案](1)B(2)D简单旋转体判断问题的解题策略(1)准确掌握圆柱、圆锥、圆台和球的生成过程及其特征性质是解决此类概念问题的关键.(2)解题时要注意两个明确:①明确由哪个平面图形旋转而成;②明确旋转轴是哪条直线.。
8.3.2圆柱、圆锥、圆台、球的表面积和体积+教学案
8.3简单几何体的表面积与体积8.3.2 圆柱、圆锥、圆台、球的表面积与体积教学目标1. 了解圆柱、圆锥、圆台、球的表面积的求法2. 了解圆柱、圆锥、圆台、球的表面积计算公式,解决有关的实际问题 教学重点:圆柱、圆锥、圆台、球的表面积公式和体积公式 教学难点:球的体积公式的推导 教学过程:一、 导入新课,板书课题上节课我们学习了棱柱、棱锥、棱台的表面积和体积的求法,那么这节课我们学习圆柱、圆锥、圆台、球的表面积和体积的求法。
【圆柱、圆锥、圆台、球的表面积与体积】 二、 出示目标,明确任务1. 了解圆柱、圆锥、圆台的表面积的求法2. 了解圆柱、圆锥、圆台的体积的求法3. 了解球的表面积和体积的求法 三、 学生自学,独立思考(打开课本阅读116页-119页内容,限时5分钟) 1.找出你阅读内容中的知识点 2.找出你阅读内容中的重点3.找出你阅读内容中的困惑点、疑难问题 四、自学指导,紧扣教材自学指导一(阅读课本116页 至117页 归纳,限时5 分钟) 1.完成下列表格圆柱底面积: 侧面积:表面积: 圆锥底面积: 侧面积:表面积:圆台底面积: 侧面积:表面积:自学指导二(阅读课本117页 至119页 例4,限时5分钟) 1.球的表面积公式S =_______(R 为球的半径). 2.球的体积公式V =__________. 3. 阅读例3,完成以下几个问题(1)浮标可看成由________和_________组合而成; (2)1个浮标的表面积为:___________. 1000个浮标的表面积为:_________.则1000个浮标涂防水漆需要多少涂料:_______. 4. 阅读例4,完成以下几个问题已知,圆柱的底面直径和高都等于球的直径2R , (1) 球的体积为:________; (2) 圆柱的体积为:________;(3) 球与圆柱的体积之比为:________;五、 自学展示,精讲点拨1.学生口头回答自学指导问题,教师点拨并板书(答案见PPT )2.书面检测:课本119页练习1题 精讲点拨 自学指导1 1. 略2. 观察所给出的体积公式,得出棱柱、棱锥、棱台,它们之间的关系。
圆柱圆锥圆台和球
课题:圆柱、圆锥、圆台和球制作人:马中明审核:高一数学组时间:2012-11-23一.学习目标(1)理解圆柱、圆锥、圆台、球有关概念及其形成过程,理解球面距离的概念。
(2)通过对圆柱、圆锥、圆台、球的研究培养空间想象力及知识的自我生成和发展能力。
(3)通过观察实物模型或观察电脑演示圆柱、圆锥、圆台、球的生成过程,体会知识之间的有机联系,感受数学的整体性,激发学习兴趣.二.学习重点:圆柱、圆锥、圆台、球的概念的生成.三.学习难点:母线及其相关性质的理解和简单应用.四、学习过程【探究任务一】1、通过你的认真预习,你发现了圆柱、圆锥、圆台以及球在生成规律上有什么区别于棱柱、棱锥、棱台的特点?2、把矩形、直角三角形、直角梯形沿任意边所在直线旋转一周能否得到圆柱、圆锥、圆台?3、能否从圆柱、圆锥、圆台以及球的生成规律上,找出它们的共同特点,分别给他下一个定义呢?4、由棱锥截去一个小棱锥可以得到棱台,由圆锥经过怎样的变化可得到圆台,圆台能否补成圆锥?5、对照图形说出圆柱、圆锥、圆台以及球的基本元素。
【练习】1.判断下列几何体是否是圆柱、圆锥、圆台(1)【探究任务二】1.用垂直于圆柱的轴的一个平面去截一个圆柱,得到的截面是______,它和圆柱的底面______。
圆锥和圆台呢?2.在用任意的平面截圆柱所得的截面中,哪一类包含了圆柱的高、母线、底面圆的直径等特征元素?画出这一截面图形并指明各条边代表了圆柱的哪些元素。
3.圆锥、圆台的轴截面是什么图形?画出这一截面图形并指明各条边分别代表了圆锥,圆台的哪些元素。
4、【知识运用】例题用一个平行于圆锥底面的平面截这个圆锥,截得圆台上下底面半径的比是1:4,截去的圆锥的母线长是3cm,求圆台的母线长。
【探究任务三】1.任意一个平面截球所得的图形是,任意一个平面截球面所得的图形是。
【知识运用】例题球半径为25cm,球心到截面的距离为24cm,求此截面面积.【变式练习】我国首都靠近北纬40 纬线,求北纬40 纬线的长度等于多少km?(地球半径大约为6370km)2、什么是球的大圆?什么是球的小圆?地球上的经线和纬线中哪些是球的大圆?哪些是小圆?【课堂检测】1.一个圆台的上下底面面积分别为1cm 2、49cm 2,一个平行于底面的截面面积为25cm 2,则这个截面与上下底面的距离之比为( )A. 2:1B. 3:1 1:3.1:2.D C2.一个等边圆柱(底面直径等于高)的轴截面面积是S ,则它的一个底面面积是( ) A.2S π B. 4S π C. S D. S π 3.设球的半径为R ,则过球面上任意两点的截面圆中,最大面积是 。
1.1.圆柱、圆锥、圆台和球-苏教版必修2教案
1.1.圆柱、圆锥、圆台和球-苏教版必修2教案一、教学目标1.掌握圆柱、圆锥、圆台和球的基本概念和特征。
2.理解圆柱、圆锥、圆台和球的三视图和投影。
3.能够应用相关知识求解实际问题。
二、教学重点1.圆柱、圆锥、圆台和球的基本概念和特征。
2.圆柱、圆锥、圆台和球的三视图和投影。
三、教学难点1.圆柱、圆锥、圆台和球的相似关系。
2.圆柱、圆锥、圆台和球的表面积和体积的计算。
四、教学方法1.讲授法:结合教材对相关概念和知识进行解析和讲解。
2.演示法:通过具体的实例引导学生理解与应用相关知识。
3.实践法:让学生参与到相关问题的求解中,培养其应用知识解决实际问题的能力。
五、教学内容与进度安排1. 圆柱1.圆柱的定义和特征。
2.圆柱的各种投影。
3.圆柱的表面积和体积的计算。
4.圆柱的应用实例。
2. 圆锥1.圆锥的定义和特征。
2.圆锥的各种投影。
3.圆锥的表面积和体积的计算。
4.圆锥的应用实例。
3. 圆台1.圆台的定义和特征。
2.圆台的各种投影。
3.圆台的表面积和体积的计算。
4.圆台的应用实例。
4. 球1.球的定义和特征。
2.球的各种投影。
3.球的表面积和体积的计算。
4.球的应用实例。
六、教学评估1.在学习过程中,及时反馈学生表现和掌握程度,对于表现出色的学生予以鼓励。
2.对于掌握程度较低的学生,及时进行巩固对基础知识的讲解,帮助他们更好地理解相关知识。
3.针对学生掌握程度和能力的不同,进行针对性的个性化评价,为学生提供有效的帮助和指导。
1.1.3圆柱、圆锥、圆台和球2
课题 1.1.3圆柱、圆锥、圆台和球(2)课型主备人李冬旭上课教师李冬旭上课时间学习目标圆柱、圆锥、圆台和球定义圆柱、圆锥、圆台和球的性质母线顶点教学重点了解圆柱、圆锥、圆台和球教学难点圆柱、圆锥、圆台和球中的一些计算教师准备教学过程时间分配集备修正3.圆台及相关概念1.定义:以直角梯形的一条直角边所在的直线为旋转轴,将直角梯形旋转一周而形成的曲面所围成的几何体叫做圆台。
2.相关概念:(1)圆台的轴:旋转轴叫做圆台的轴;(2)圆台的高:在轴上的这条边(或它的长度)叫做圆台的高;(3)圆台的底面:垂直于轴的边旋转而成的圆面叫做圆台的底面;(4)圆台的侧面:不垂直于轴的边旋转而成的曲面叫做圆台的侧面;(5)圆台的母线:无论旋转到什么位置,不垂直于轴的边都叫做圆台的母线。
3.圆台的表示方法:用表示它的轴的字母表示,如圆台OO1。
圆台是如何得到的?它有什么性质?1.圆台是由直角梯形以垂直于底边的腰所在的直线为旋转轴旋转而成的曲面所围成的几何体。
2.圆台可以看作是由等腰梯形绕其底边的中线旋转得到的,另外圆台也可以看作是用一个平行于圆锥底面的平面去截圆锥,底面和截面之间的部分。
3.圆台具有以下性质:(1)圆台的底面是两个半径不等的圆,两圆所在的平面互相平行又都和轴垂直;(2)平行于底面的截面是圆;(3)通过轴的各个截面是轴截面,各轴截面是全等的等腰梯形,如梯形AA1B1B。
(4)任意两条母线(它们延长后会相交)确定的平面,截圆台所得的截面是等腰梯形,如梯形AA1C1C。
(5)母线都相等,各母线延长后都相交于一点。
研习点4.球及相关概念:1.定义:以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的几何体叫做球。
另外将圆绕直径旋转180°度得到的几何体也是球。
2.相关概念:(1)球面:球面可以看作一个半圆绕着它的直径所在的直线旋转一周形成的曲面,也可以看作空间中到一个定点的距离等于定长的点的集合;(2)球心:形成球的半圆的圆心叫做球心;(3)半径:连接球面上一点和球心的线段叫球的半径;1’5x5’(4)直径:连接球面上的两点且通过球心的线段叫球的直径;3.球的表示方法:用表示球心的字母表示,如球O.4.球的截面性质:(1)球的截面是圆面,球面被经过球心的平面截得的圆叫做球的大圆,被不经过球心的平面截得的圆叫做球的小圆;(2)球心和截面圆心的连线垂直于截面;(3)22r R d=-(其中r为截面圆半径,R为球的半径,d为球心O 到截面圆的距离,即O到截面圆心O1的距离;5.球面距离:在球面上,两点之间的最短距离就是经过两点的大圆在这两点间的一段劣弧的长度。
1.1.2 圆柱、圆锥、圆台
A 例 2 以下几何体是由哪些简单几何体构成的?
图1
图2
例 3 把一个圆锥截成一个圆台, 已知圆台的上下底面半径是 1∶4, 母线长 为 10 cm,求圆锥的母线长. 2.练习. (1)①如图 1 将平行四边形 ABCD 绕 AB 边所在的直线旋转一周, 由此形成 的几何体是由哪些简单几何体构成的? ②如图 2 钝角三角形 ABC 绕 AB 边所在的直线旋转一周,由此形成的几何 体是由哪些简单几何体构成的?
第 1
页 共 4 页
厉庄高级中学
2011-2012 学年度第二学期
高一数学学科电子教案
思考:圆柱、圆锥、圆台之间有何关系?(引导学生从概念的形成和结构特 征来分析三者之间的关系) 3.球面及球的概念; 半圆绕着它的直径所在的直线旋转一周而形成的曲面叫做球面, 球面围成的 几何体叫做球体. 球面也可以看作空间中到一个定点的距离等于定长的点的集合 4.球的相关概念(球心、球半径、球的表示); 5.旋转面、旋转体的概念(引导学生总结). 四、数学运用 1.例题. 例 1 将直角梯形 ABCD 绕 AB 边所在的直线旋转一周,由此形成的几何体 是有哪些简单的几何体构成的? D C B
④圆锥侧面展开图为扇形,这个扇形所在圆的半径等于圆锥的底面圆的半 径. ⑤在圆柱的上下底面上各取一点,这两点的连线是圆柱的母线 五、要点归纳与方法小结 本节课学习了以下内容: 1.圆柱、圆锥、圆台和球的有关概念; 2.圆柱、圆锥、圆台和球的结构特征; 3.圆柱、圆锥、圆台和球的应用.
布置
P10 练习 1,2
第 2
页 共 4 页
厉庄高级中学
D
2011-2012 学年度第二学期
C A
高一数学学科电子教案
B
高中数学教学优秀教案(精选4篇)
高中数学教学优秀教案(精选4篇)高中数学教案篇一1、会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
2、能根据几何结构特征对空间物体进行分类。
3、提高学生的观察能力;培养学生的空间想象能力和抽象括能力。
教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
教学难点:柱、锥、台、球的结构特征的概括。
1、情景导入教师提出问题,引导学生观察、举例和相互交流,提出本节课所学内容,出示课题。
2、展示目标、检查预习3、合作探究、交流展示(1)引导学生观察棱柱的几何物体以及棱柱的图片,说出它们各自的特点是什么?它们的共同特点是什么?(2)组织学生分组讨论,每小组选出一名同学发表本组讨论结果。
在此基础上得出棱柱的主要结构特征。
(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。
概括出棱柱的概念。
(3)提出问题:请列举身边的棱柱并对它们进行分类(4)以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
(5)让学生观察圆柱,并实物模型演示,概括出圆柱的概念以及相关的概念及圆柱的表示。
(6)引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。
(7)教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。
4.质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。
(1)有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明)(2)棱柱的任何两个平面都可以作为棱柱的底面吗?(3)圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?(4)棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?(5)绕直角三角形某一边的几何体一定是圆锥吗?5、典型例题例1:判断下列语句是否正确。
⑴有一个面是多边形,其余各面都是三角形的几何体是棱锥。
高一数学必修一教案(5篇)
高一数学必修一教案(5篇)高一数学必修一优秀教案1一、教学目标1.学问与技能:把握画三视图的根本技能,丰富学生的空间想象力。
2.过程与方法:通过学生自己的亲身实践,动手作图,体会三视图的作用。
3.情感态度与价值观:提高学生空间想象力,体会三视图的作用。
二、教学重点:画出简洁几何体、简洁组合体的三视图;难点:识别三视图所表示的.空间几何体。
三、学法指导:观看、动手实践、争论、类比。
四、教学过程(一)创设情景,揭开课题展现庐山的风景图——“横看成岭侧看成峰,远近凹凸各不同”,这说明从不同的角度看同一物体视觉的效果可能不同,要比拟真实反映出物体,我们可从多角度观看物体。
(二)讲授新课1、中心投影与平行投影:中心投影:光由一点向外散射形成的投影;平行投影:在一束平行光线照耀下形成的投影。
正投影:在平行投影中,投影线正对着投影面。
2、三视图:正视图:光线从几何体的前面对后面正投影,得到的投影图;侧视图:光线从几何体的左面对右面正投影,得到的投影图;俯视图:光线从几何体的上面对下面正投影,得到的投影图。
三视图:几何体的正视图、侧视图和俯视图统称为几何体的三视图。
三视图的画法规章:长对正,高平齐,宽相等。
长对正:正视图与俯视图的长相等,且相互对正;高平齐:正视图与侧视图的高度相等,且相互对齐;宽相等:俯视图与侧视图的宽度相等。
3、画长方体的三视图:正视图、侧视图和俯视图分别是从几何体的正前方、正左方和正上方观看到有几何体的正投影图,它们都是平面图形。
长方体的三视图都是长方形,正视图和侧视图、侧视图和俯视图、俯视图和正视图都各有一条边长相等。
4、画圆柱、圆锥的三视图:5、探究:画出底面是正方形,侧面是全等的三角形的棱锥的三视图。
高一数学必修一优秀教案2【考点阐述】两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.【考试要求】(3)把握两角和与两角差的正弦、余弦、正切公式;把握二倍角的正弦、余弦、正切公式.(4)能正确运用三角公式,进展简洁三角函数式的`化简、求值和恒等式证明.【考题分类】(一)选择题(共5题)1.(海南宁夏卷理7) =( )A. B. C. 2 D.解:,选C。
高中数学必修二(人教B版):1.1.3《圆柱、圆锥、圆台和球》教案
《圆柱、圆锥、圆台和球》教案教学目标1.认识组成我们生活的世界的各种各样的旋转体.2.认识和掌握圆柱、圆锥、圆台、球体的几何结构特征.3.理解球和球面距离的概念、平面与球的各种位置关系.教学重难点重点:1圆柱、圆锥、圆台和球的概念及相关概念;2旋转体的概念。
难点:1圆柱、圆锥、圆台和球的性质及简单应用;2圆柱、圆锥、圆台的轴截面的性质;3球的截面的性质教学过程一、情景导入探究点一圆柱、圆锥、圆台的结构特征观察下面的几何体,你可能会判定它们分别是圆柱、圆锥、圆台.为什么你会判定它们分别是圆柱、圆锥、圆台呢?问题1圆柱、圆锥、圆台分别具有哪些性质?哪些性质可以分别作为圆柱、圆锥和圆台集合的特征性质?答:通过观察可以看出,圆柱、圆锥和圆台可以分别看作以矩形的一边、直角三角形的一直角边、直角梯形中垂直于底边的腰所在的直线为旋转轴,将矩形、直角三角形、直角梯形分别旋转一周而形成的曲面所围成的几何体(如图)问题 2 类比棱柱、棱锥、棱台中的底面、侧面、侧棱、高这些概念,在圆柱、圆锥、圆台中相应的有关概念是如何定义的?答:旋转轴叫做所围成的几何体的轴:在轴上的这条边(或它的长度)叫做这个几何体的高,垂直于轴的边旋转而成的圆面叫做这个几何体的底面:不垂直于轴的边旋转而成的曲面叫做这个几何体的侧面,无论旋转到什么位置,这条边都叫做侧面的母线.问题3 对圆柱、圆锥、圆台过轴的截面(简称轴截面)分别是什么样的图形?答:分别是矩形、等腰三角形、等腰梯形.问题4 圆柱、圆锥、圆台如何用字母表示?答:圆柱、圆锥、圆台用表示它的轴的字母表示,如问题1中的图中圆柱OO ′、圆锥SO 、圆台OO ′.问题5 圆柱、圆锥、圆台都是旋转体,它们在结构上有哪些相同点和不同点?三者的关系如何?当底面发生变化时,它们能否互相转化?答:它们的相同点是:它们都是由平面图形旋转得到的; 不同点是:圆柱和圆台有两个底面,圆锥只有一个底面,圆柱的两个底面是半径相等的圆,圆台的两个底面是半径不等的圆,圆锥只有一个底面; 当底面发生变化时,它们能相互转化,即圆台的上底面扩大,使上下底面全等,就是圆柱; 圆台的上底面缩为一个点就是圆锥例1 用一个平行于圆锥底面的平面截这个圆锥,截得圆台上下底面半径的比是14∶,截去的圆锥的母线长是3 cm ,求圆台的母线长(如图所示).解: 设圆台的母线长为y ,截得的圆锥底面与原圆锥底面半径分别是x ,4x ,根据相似三角形的性质得3/(3)/4y x x +=解此方程得9y =. 因此,圆台的母线长为9 cm .探究点二 球的结构特征问题 1 一个半圆绕着它的直径所在的直线旋转一周,半圆运动的轨迹是怎样的空间图形?答:半圆运动的轨迹是一个球面.问题2 球面的定义是怎样的?球心、球半径、球的直径是如何定义的?答:球面可以看作一个半圆绕着它的直径所在的直线旋转一周所形成的曲面,球面围成的几何体,叫做球.形成球的半圆的圆心叫球心; 连接球面上一点和球心的线段叫做球的半径;连接球面上两点且通过球心的线段叫做球的直径.如图中点O 为球心,OA 为球的半径,AB 为球O 的直径.问题3 如何用字母表示一个球?答:一个球用表示它的球心的字母来表示,例如球O .问题4 用集合的观点如何定义球面?答:球面可以看作空间中到一个定点的距离等于定长的点的集合.问题5 用一个平面去截一个球,如何说明截面是圆面?答:如图所示,设OO d '=,对于平面α与球面的交线上任意一点P ,O P r '=,是一个定值.因此,平面α截球面所得到的交线是以O ′为圆心,以r 为半径的一个圆,即截面是一个圆面.问题6 阅读教材14-15页,你能说出什么是球的大圆?什么是球的小圆?什么是球面距离吗?什么是旋转体?什么是组合体?答:(1)球面被经过球心的平面截得的圆叫做球的大圆;被不经过球心的平面截得的圆叫做球的小圆在球面上,两点之间的最短距离就是经过这两点的大圆在这两点间的一段劣弧的长度,这个弧长叫做两点的球面距离.(2)圆柱、圆锥、圆台、球等几何体,都是由一个平面图形绕着一条直线旋转产生的曲面所围成的几何体,这类几何体叫做旋转体.(3)现实世界中物体表示的几何体,除了柱体、锥体、台体、球体等简单几何体外,还有大量的几何体是由简单几何体组合而成的,这些几何体叫做简单组合体.例2 我国首都靠近北纬40°纬线.求北纬40°纬线的长度约等于多少km (地球半径约为6 370 km , 3.141 6π≈, 400.7660cos ︒=).解:如图所示,设A 是北纬40°圈上的一点,AK 是它的半径,所以OK AK ⊥.设c是北纬40°的纬线长,40AOB OAK ∠∠︒==····· 402 3.141663700.7660 3.066104c AK OAcos OAK OAcos πππ∴∠︒≈⨯⨯⨯≈⨯∧=2=2=2 (km).即北纬40°的纬线长约为3.066×104 km.二、课堂小结1.圆柱的平行于轴线的截面是一个以上、下底面圆的弦和母线组成的矩形.2.圆锥的过顶点且与底面相交的截面是一个由两条母线和底面圆的弦组成的等腰三角形;圆锥的母线l 、高h 和底面圆的半径R 的关系为222l h R ∧=∧+∧.3.圆台的母线l 、高h 和上下两底面圆的半径r 、R 组成一个直角梯形,圆台的有关计算问题,常归结为解这个直角梯形.“还台为锥”也是解决圆台问题的主要方法.4.球面与球体是有区别的.球面仅仅指球的表面,而球体不仅包括球的表面,也包括球面所包围的空间.三、巩固练习1.圆锥的轴截面是正三角形,则圆锥的高与母线的长分别为________.2.圆台的轴截面中,上、下底面边长分别为2 cm ,10 cm ,高为3 cm ,则圆台母线的长为________ cm .3.在半径为25 cm 的球内有一个截面,它的面积是49(2)cm π∧,求球心到这个截面的距离.四、布置作业课后练习A 、B .。
高中数学人教新课标B版必修2《1.1.3 圆柱、圆锥、圆台和球》教学设计
1.1.3 圆柱、圆锥、圆台一.教学目标1.德育教育目标:通过新闻实例使学生们认识到节约粮食的重要性2.教学目标:(1)知识与技能目标:理解圆柱、圆锥、圆台的定义,掌握它们的几何特征,并认识它们的图形。
(2)过程与方法目标:利用旋转的方法生成圆柱、圆锥、圆台等几何体。
(3)情感、态度与价值观目标:激情投入、高效学习,通过空间观察、合作研究和想象解决问题。
二.教学重难点:重点:圆柱、圆锥、圆台的概念生成。
难点:母线及其相关性质的理解和简单应用。
三.教学过程:(一)教学引入观察装最大扬州炒饭的大碗图片,从旋转体引入新课。
观察图片让学生回答图中物体是哪些常见的几何体。
(二)新课过程知识探究一.圆柱的结构特征1.圆柱观察下面的物体,说说它们有何共同点?学生回答并思考圆柱可以由什么几何图形经过怎样旋转得到?(1)通过道具手动演示和课件动态演示圆柱产生过程(2)总结得出圆柱及圆柱的底面、侧面、母线和轴的定义(3)从点、线、面三方面讨论构成圆柱这个几何体的元素的特征底面圆柱母线1. 圆柱可以由矩形旋转得到,圆锥可以由什么平面图形旋转得到?圆台可以由什么图形旋转得到?如何旋转?2.请同学们仿照圆柱中关于轴、底面、侧面、母线的定义,找出圆锥的轴、底面、侧面、母线。
类比得到棱台的方法找出得到圆台的另一种方法探索与研究对于圆锥、圆柱、圆台:(1)平行于底面的截面是什么样的图形?(2)过轴的截面(简称轴截面)分别是什么样的图形?(3)侧面展开图分别是什么图形?(4)圆柱、圆锥、圆台之间有什么关系?上底面 轴 侧面 母线 下底面(前三个问题通过学生分组讨论得出结论)应用举例例1 用一个平行于圆锥底面的平面截这个圆锥,截得圆台上下底面半径的比是1:4,截去的圆锥的母线长是3cm,求圆台的母线长.思想方法:把立体几何问题转化为平面几何问题求解上底缩小上底扩大 圆柱体 圆锥体 圆台体 A 0 A' O ' x y x 4s 0A A’ o’巩固练习1. 一个圆柱的母线长为5,底面半径为 2,求圆柱的轴截面的面积.2.一个圆台的母线长为5,上底面和下底面直径分别为2和8,求圆台的高.(学生板演)小结:(1) 旋转体;(2) 圆柱、圆锥、圆台的定义及特征性质;作业:(1)教材第13页 练习B 第4题(2)思考:球的定义及特征性质.O CB DA O ' A O ' DB E O C。
人教版高一数学必修一教案(3篇)
人教版高一数学必修一教案(3篇)篇一:人教版高一数学必修一教案篇一一、教学目标1.知识与技能:(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2.过程与方法:(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3.情感态度与价值观:(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
三、教学用具(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪。
四、教学过程(一)创设情景,揭示课题1、由六根火柴最多可搭成几个三角形?(空间:4个)2在我们周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?3、展示具有柱、锥、台、球结构特征的空间物体。
问题:请根据某种标准对以上空间物体进行分类。
(二)、研探新知空间几何体:多面体(面、棱、顶点):棱柱、棱锥、棱台;旋转体(轴):圆柱、圆锥、圆台、球。
1、棱柱的结构特征:(1)观察棱柱的几何物体以及投影出棱柱的图片,思考:它们各自的特点是什么?共同特点是什么?(学生讨论)(2)棱柱的主要结构特征(棱柱的概念):①有两个面互相平行;②其余各面都是平行四边形;③每相邻两上四边形的公共边互相平行。
(3)棱柱的表示法及分类:(4)相关概念:底面(底)、侧面、侧棱、顶点。
2、棱锥、棱台的结构特征:(1)实物模型演示,投影图片;(2)以类似的方法,根据出棱锥、棱台的结构特征,并得出相关的概念、分类以及表示。
棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形。
《圆柱、圆锥、圆台、球》教学设计
1.1 空间几何体的结构1.1.3 圆柱、圆锥、圆台、球(张伟)一、教学目标(一)核心素养通过这节课学习,了解圆柱、圆锥、球的定义,培养空间想象能力,体会立体几何的特点.(二)学习目标1.通过实例,了解圆柱、圆锥、球的定义和性质.2.会识别圆柱、圆锥的展开图.3.会处理和圆柱、圆锥、球的截面有关的简单问题.(三)学习重点1.圆柱、圆锥、球的概念.2.圆柱、圆锥、球的性质.(四)学习难点1.利用圆柱、圆锥的展开图处理最短路径问题.2.球的截面.3.棱柱、棱锥的外接球和内切球问题.二、教学设计(一)课前设计1.预习任务(1)读一读:阅读教材第4页至第6页,填空:圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的旋转体叫做圆柱.旋转轴叫做圆柱的轴;垂直于旋转轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面,圆柱的侧面又称为圆柱面,无论转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.圆锥的定义:以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转而形成的面所围成的旋转体叫做圆锥.旋转轴叫做圆锥的轴;垂直于旋转轴的边旋转而成的圆面称为圆锥的底面;不垂直于旋转轴的边旋转而成的曲面叫做圆锥的侧面,圆锥的侧面又称为圆锥面,无论转到什么位置,这条边都叫做圆锥侧面的母线.圆台的定义:以直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆台.还可以看成是用平行于圆锥底面的平面截这个圆锥,截面与底面之间的部分.旋转轴叫做圆台的轴;垂直于旋转轴的边旋转而成的圆面称为圆台的底面;不垂直于旋转轴的边旋转而成的曲面叫做圆台的侧面,无论转到什么位置,这条边都叫做圆台侧面的母线.球的定义:以半圆的直径所在的直线为旋转轴,将半圆旋转一周所形成的曲面称为球面,球面所围成的旋转体称为球体,简称球.半圆的圆心称为球心,连接球面上任意一点与球心的线段称为球的半径,连接球面上两点并且过球心的线段称为球的直径.大家观察课本第2页的图,结合定义,找出其中的圆柱、圆锥、圆台、球.大家举例说明,生活中那些物体含有圆柱、圆锥、圆台、球?2.预习自测(1)圆柱的轴截面一定为()A.矩形B.正方形C.菱形D.梯形【答案】A.【知识点】圆柱的定义【解题过程】圆柱的轴截面不一定为正方形,B错;但一定为矩形【思路点拨】以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的旋转体叫做圆柱.(2)以直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做()A.圆柱B.圆锥C.圆台D.球【答案】C.【知识点】圆台的定义【解题过程】圆台的有轴、底面、侧面、母线,本题中垂直于底边的腰所在的直线是圆台的轴线,另一条腰是母线,故选C.【思路点拨】空间想象出由一平面图形得到的旋转体.(3)球的截面一定是()A.圆B.圆或三角形C.圆或矩形D.圆或椭圆【答案】A.【知识点】球的定义【解题过程】球的任一截面一定是圆,故选A.【思路点拨】空间想象出球的截面.(二)课堂设计1.知识回顾:上节课我们主要学习了棱锥和棱台.我们一起回忆一下:(1)有一面为多边形,其余各面都是有一个公共顶点的三角形,这些面围成的多面体叫做棱锥.(2)用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台.(3)底面是正多边形并且顶点在底面的射影是底面正多边形中心的棱锥叫正棱锥.(4)由正棱锥截得的棱台叫做正棱台.2.问题探究探究一认识圆柱、圆锥、圆台,球★我们可以这样认识圆柱、圆锥、圆台:静态的观点:底面为圆,侧面是曲面(圆锥的顶点可以看作退化的点圆).动态的观点:平面图形绕某条边旋转形成的面围成的旋转体.OO圆柱的表示方法:用表示它的轴的字母表示,如圆柱'圆锥的表示方法:用表示它的轴的字母表示,如圆锥SO.OO圆台的表示方法:用表示轴的字母表示,如圆台'球的表示方法:用表示球心的字母表示,如球O●活动①性质分析通过定义,我们分析一下圆柱、圆锥、圆台,球的性质.类比上节课我们对棱锥和棱台的分析,大家可以用表格的形式来比较.大家讨论完毕之后,老师总结如下:结构特征圆柱圆锥圆台球定义以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆柱以直角三角形的一条直角边为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆锥以直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆台以半圆的直径所在的直线为旋转轴,将半圆旋转一周所形成的曲面称为球面,球面所围成的几何体称为球体,简称球底面两底面是平行且半径相等的圆圆两底面是平行但半径不相等的圆无侧面展开图矩形扇形扇环不可展开母线平行且相等相交于顶点延长线交于一点无【设计意图】类比棱柱、棱锥、棱台,培养对知识的归纳整理能力.●活动②辨析概念请大家判断正误:(1)以直角三角形的一直角边为轴旋转所得的旋转体是圆锥.(2)圆柱、圆锥、圆台都有两个底面.(3)以直角梯形的一腰为轴旋转所得的旋转体是圆台.(4)圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥底面圆的半径.分析与解答:根据圆锥的定义,(1)正确;圆锥仅有一个底面,所以(2)不正确以直角梯形垂直于底的腰为轴,旋转所得的旋转体才是圆台,所以(3)不正确圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥的母线长,所以(4)不正确大家做对了吗?【设计意图】通过概念辨析,加深对概念内涵与外延的理解,突破重点.●活动③简单的组合体问题:矿泉水塑料瓶由哪些几何体构成?灯管呢?现实生活中的物体大多是简单组合体.简单组合体的构成有两种方式:由简单几何体拼接而成;由简单几何体截去或挖去一部分而成.将下列几何体按结构特征分类填空:(1)集装箱;(2)运油车的油罐;(3)排球;(4)羽毛球;(5)魔方;(6)金字塔;(12)三棱镜;(8)滤纸卷成的漏斗;(9)量筒;(10)量杯;(11)地球;一桶方便面;(13)一个四棱锥形的建筑物被飓风挂走了一个顶,剩下的上底面与地面平行;①棱柱结构特征的有________________________;②棱锥结构特征的有________________________;③圆柱结构特征的有________________________;④圆锥结构特征的有________________________;⑤棱台结构特征的有________________________;⑥圆台结构特征的有________________________;⑦球的结构特征的有________________________;⑧简单组合体有_____________________________答案:棱柱结构:(1)、(5)、(7)棱锥结构:(6)圆柱结构:(2)、(9)圆锥结构:(8)棱台结构:(13)圆台结构:(10)、(12)球结构:(3)、(11)简单组合体:(4)请指出下列几何体是由哪些简单几何体组合而成的.观察上图,结合生活实际经验,简单组合体有几种组合形式?请你总结长方体与球体能组合成几种不同的组合体.它们之间具有怎样的关系?让学生仔细观察上图,教师适当时候再提示.图中的三个组合体分别代表了不同形式.学生可以分组讨论,教师可以制作有关模型展示.讨论结果总结:由简单几何体组合而成的几何体叫做简单组合体.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成.图(1)是一个四棱锥和一个长方体拼接成的,这是多面体与多面体的组合体.图(2)是一个圆台挖去一个圆锥构成的,这是旋转体与旋转体的组合体;图(3)是一个球和一个长方体拼接成的,这是旋转体与多面体的组合体.【设计意图】通过生活中的数学模型,对抽象的数学概念有直观的理解. 探究二 多面体和旋转体的整体比较★●活动① 理清我们学过的多面体和旋转体的关系⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧球圆台圆锥圆柱旋转体棱台棱锥棱柱多面体简单几何体【设计意图】通过复习,加深对多面体和旋转体的认识.●活动② 截面问题请想一想正方体的截面可能是什么形状的图形? 请同学积极思考,发言对于正方体的分割,可通过实物模型,实际切割实验,还可借助于多媒体手段进行切割实验.对于切割所得的平面图形可根据它的定义进行证明,从而判断出各个截面的形状. 探究:本题考查立体几何的空间想象能力,通过尝试、归纳,可以有如下各种肯定或否定性的 教师总结如下:(1)截面可以是三角形:等边三角形、等腰三角形、一般三角形.(2)截面三角形是锐角三角形,截面三角形不能是直角三角形、钝角三角形.(3)截面可以是四边形:平行四边形、矩形、菱形、正方形、梯形、等腰梯形;截面为四边形时,这个四边形至少有一组对边平行. (4)截面不能是直角梯形.(5)截面可以是五边形:截面五边形必须有两组分别平行的边,同时有两个角相等;截面五边形不可能是正五边形.(6)截面可以是六边形:截面六边形必须有分别平行的边,同时有两个角相等. (7)截面六边形可以是等角(均为120°)的六边形,即正六边形. 截面图形如图12中各图所示:【设计意图】培养立体几何的空间想象能力,培养学生联想、尝试、归纳,构造的能力.活动③巩固基础,检查反馈例1 圆台的上底面和下底面是()A.全等的圆B.不全等的圆C.全等的多边形D.相似的多边形【知识点】棱台和圆台的区别.【数学思想】【解题过程】由圆台的定义可知B正确.【思路点拨】对比定义逐一分析即可.【答案】B.同类训练圆锥的轴截面一定是()A.等腰三角形B.等边三角形C.圆D.直角三角形【知识点】圆锥的定义.【数学思想】【解题过程】圆锥的轴截面是等腰三角形,圆锥的母线为其两腰.【思路点拨】准确理解圆锥定义.【答案】A.例2 下列几个命题中,①两个面平行且相似,其余各面都是梯形的多面体是棱台;②有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台;③各侧面都是正方形的四棱柱一定是正方体;④分别以矩形两条不等的边所在直线为旋转轴,将矩形旋转,所得到的两个圆柱是两个不同的圆柱.其中正确的有()个.A.1B.2 C.3 D.4【知识点】多面体和旋转体的综合问题.【数学思想】【解题过程】①中两个底面平行且相似,其余各面都是梯形,并不能保证侧棱会交于一点,①错误.②中两个底面互相平行,其余四个面都是等腰梯形,也有可能两底面根本就不相似,②错误.③中底面不一定是正方形,所以③不正确根据定义④是正确的.【思路点拨】使用定义逐一分析.【答案】A.●活动④强化提升、灵活应用例3 一个无盖的正方体盒子展开后的平面图,如下图所示,A、B、C是展开图上的三点,则在正方体盒子中∠ABC=____________.【知识点】多面体的展开图.【数学思想】构造.【解题过程】如下图所示,折成正方体,很明显点A、B、C是上底面正方形的三个顶点,则∠ABC=90°【思路点拨】发挥空间想象能力,将正方体还原.【答案】90°同类训练有一粒正方体的骰子每一个面有一个英文字母,如下图所示.从3种不同角度看同一粒骰子的情况,请问H反面的字母是___________.【知识点】柱体性质.【数学思想】【解题过程】正方体的骰子共有6个面,每个面都有一个字母,从每一个图中都看到有公共顶点的三个面,与标有S的面相邻的面共有四个,由这三个图,知这四个面分别标有字母H、E、O、p、d,因此只能是标有“p”与“d”的面是同一个面,p与d是一个字母;翻转图②,使S面调整到正前面,使p转成d,则O为正下面,所以H的反面是O.【思路点拨】空间想象,还原正方体六个面上的字母.【答案】O.3.课堂总结知识梳理(1)以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的旋转体叫做圆柱.(2)以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转而形成的面所围成的旋转体叫做圆锥.(3)以直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆台.(4)以半圆的直径所在的直线为旋转轴,将半圆旋转一周所形成的曲面称为球面,球面所围成的旋转体称为球体.重难点归纳(1)圆柱和圆锥的轴截面性质.(2)圆柱和圆锥的展开图.(三)课后作业基础型自主突破1.圆台的轴截面一定是()A.矩形B.三角形C.直角梯形D.等腰梯形【知识点】圆台的定义.【数学思想】【解题过程】由定义可知圆台的轴截面为等腰梯形.【思路点拨】准确理解圆台的定义.【答案】D.2.圆锥的底面半径为1,母线长度为2,则圆锥的高为()A .1B .2C .3D .5【知识点】圆锥的高与母线的区别.【数学思想】 【解题过程】由勾股定理,高等于31222=-.【思路点拨】分离局部图形,立体几何问题平面几何化.【答案】C .3. 球O 与棱长为1的正方体的所有面均相切,则球O 的半径为( )A .1B .2C .21D .22【知识点】简单的内切球问题.【数学思想】 【解题过程】正方体的内切球直径等于正方体的棱长,故半径为21.【思路点拨】想象出球与正方体相切的状态. 【答案】C . 4.下列叙述中正确的个数是( )①以直角三角形的一边为轴旋转所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转所得的旋转体是圆台;③一个圆绕其直径所在的直线旋转半周所形成的曲面围成的几何体是球;④用一个平面去截圆锥,得到一个圆锥和一个圆台.A .0B .1C .2D .3【知识点】柱体和锥体的定义. 【数学思想】【解题过程】①错误.应以直角三角形的一条直角边为轴;②错误.应以直角梯形的垂直于底边的腰为轴;③错误.应把“圆”改成“圆面”;④错误,应是平面与圆锥底面平行时.【思路点拨】紧扣定义,逐一判断.【答案】A . 5.请描述下图所示的组合体的结构特征.【知识点】识别简单的组合体.【数学思想】 【解题过程】 图(1)是由一个圆锥和一个圆台拼接而成的组合体;图(2)是由一个长方体截去一个三棱锥后剩下的部分得到的组合体;图(3)是由一个圆柱挖去一个三棱锥剩下的部分得到的组合体.【思路点拨】准确理解简单多面体的定义,对简单的多面体有直观的判断.【答案】见解题过程. 6.用一个平行于圆锥底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1:16,截去的圆锥的母线长是3cm ,求圆台的母线长.【知识点】圆台轴截面的性质.【数学思想】 【解题过程】设圆台的母线为,截得圆台的上、下底面半径分别为r ,4r . 根据相似三角形的性质得:l 33=rr 4,解得l =9. 所以圆台的母线长为9cm .【思路点拨】分离出圆台的轴截面,利用相似三角形求解.【答案】9cm . 能力型 师生共研 7.连接正方体的相邻各面的中心(所谓中心是指各面所在正方形的两条对角线的交点),所得的一个几何体是几面体?并画图表示该几何体.【知识点】构造多面体.【数学思想】构造 【解题过程】如上图(1),正方体ABCD —A 1B 1C 1D 1,O 1、O 2、O 3、O 4、O 5、O 6分别是各表面的中心.由点O 1、O 2、O 3、O 4、O 5、O 6组成了一个八面体,而且该八面体共有6个顶点,12条棱.该多面体的图形如图(2)所示.【思路点拨】先画出正方体,然后取各个面的中心,并依次连成线观察即可.【答案】见解题过程.8.下图为某竞赛中,获得第一名的代表队被授予的奖杯,试分析这个奖杯是由哪些简单几何体组成的?【知识点】简单的组合体.【数学思想】【解题过程】奖杯由一个球,一个四棱柱和一个四棱台组成.【思路点拨】熟悉各种简单多面体的直观图. 【答案】见解题过程.探究型 多维突破9.设圆锥母线长为2,高为1,过圆锥的两条母线作一个截面,求截面面积的最大值.【知识点】圆锥轴截面的性质.【数学思想】数形结合 【解题过程】由已知圆锥轴截面等腰三角形的顶角为 120,截面面积θsin 21⋅⋅⋅=l l S , 其中l 为圆锥的母线,θ为截面等腰三角形的顶角,且 1200<<θ故当 90=θ时面积最大,最大值为221max =⋅⋅=l l S .【思路点拨】写出截面的函数解析式,再求它的最大值.【答案】2.10.将一个半径为R 的木球削成尽可能大的正方体,求正方体的棱长.【知识点】正方体的外接球.【数学思想】构造 【解题过程】正方体的体对角线为球的直径,设正方体的棱长为x ,则R x R x x x 3322222=⇒=++.【思路点拨】想象出内接正方体的状态,再列方程求解. 【答案】R 332. 自助餐1.把直角三角形绕斜边旋转一周,所得的几何体是( )A .圆锥B .圆柱C .圆台D .由两个底面贴近的圆锥组成的组合体【知识点】旋转体.【数学思想】【解题过程】可以想象出几何体是两个“背靠背”的圆锥.【思路点拨】画出图形分析即可.【答案】D . 2.下列几何体的轴截面一定是圆面的是( )A .圆柱B .圆锥C .球D .圆台【知识点】旋转体.【数学思想】【解题过程】由球的定义可知,它的轴截面一定是圆面.【思路点拨】按照定义,逐一分析.【答案】C . 3.下列几个命题中,正确的有 (填序号).①圆锥的截面一定是三角形;②棱台的侧面一定是等腰梯形;③棱柱的上下底面一定是全等的多边形;④圆台截面可能是圆面.【知识点】多面体和旋转体的定义与性质.【数学思想】【解题过程】与圆锥底面平行的截面为圆,故①错误;棱台的侧面一定是梯形,未必等腰,故②错误;由棱柱定义可知③正确;与圆台底面平行的截面为圆,故④正确.【思路点拨】按照定义,逐一验证.【答案】③④.4.用一个平行于圆锥底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm,圆台的上底面半径为1 cm,则圆台的高为.【知识点】圆台轴截面.【数学思想】数形结合【解题过程】∵圆台的上底半径为1,故下底半径为4,根据相似三角形可知圆台的母线长度等于9,如下图所示,在Rt△A′HA中A′H=AA′2-AH2=92-32=62.故圆台的高为62cm.【思路点拨】分离出轴截面,用平几知识求解.【答案】6 2 cm.5.已知AB是直角梯形ABCD中与底边垂直的一腰,如下图所示.分别以AB,BC,CD,DA所在的直线为轴旋转,试说明所得几何体的结构特征.【知识点】旋转体. 【数学思想】 【解题过程】(1)以AB 边为轴旋转所得旋转体是圆台.如图①所示.(2)以BC 边为轴旋转所得旋转体是一组合体:下部为圆柱,上部为圆锥,如图②所示(3)以CD 边为轴旋转所得旋转体为一个组合体:上部为圆锥,下部为圆台,再挖去一个小圆锥.如图③所示(4)以AD 边为轴旋转得到一个组合体:一个圆柱上部挖去一个圆锥,如图④所示.① ② ③ ④【思路点拨】以直角梯形的不同边所在直线为轴旋转,所得到的几何体是不同的. 【答案】见解题过程.6.若母线长是4的圆锥的轴截面的面积是8,求该圆锥的高.【知识点】圆锥的轴截面. 【数学思想】方程思想.【解题过程】设圆锥的底面半径为r ,则圆锥的高h =42-r 2.所以由题意可知12·(2r )·h =r 42-r 2=8,∴r 2=8,∴h =22.【思路点拨】设字母表示未知量,列方程求解.【答案】22.。
新人教版高中数学必修第二册《圆柱、圆锥、圆台、球的表面积和体积》教学设计
【新教材】8.3.2圆柱、圆锥、圆台、球的表面积和体积教学设计(人教A版)本节是在学生已从圆柱、圆锥、圆台、球的结构特征和直观图两个方面认识了旋转体的基础上,进一步从度量的角度认识圆柱、圆锥、圆台、球,主要包括表面积和体积.课程目标1.通过对圆柱、圆锥、圆台、球的研究,掌握圆柱、圆锥、圆台、球的表面积和体积计算公式.2.能运用圆柱、圆锥、圆台、球的表面积和体积公式进行计算和解决有关实际问题.数学学科素养1.数学抽象:圆柱、圆锥、圆台、球的表面积与体积公式;2.数学运算:求旋转体及组合体的表面积或体积;3.数学建模:数形结合,运用圆柱、圆锥、圆台、球的表面积和体积公式进行计算和解决有关实际问题.重点:掌握圆柱、圆锥、圆台、球的表面积和体积计算公式和应用;难点:圆台的体积公式的理解.教学方法:以学生为主体,小组为单位,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
一、情景导入前面已经学习了三种多面体的表面积与体积公式,那么如何求圆柱、圆锥、圆台、球的表面积与体积公式?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本116-119页,思考并完成以下问题1.圆柱、圆锥、圆台、的侧面积、底面积、表面积公式各是什么?2.圆柱、圆锥、圆台的体积公式各是什么?3.球的表面积与体积公式各式什么?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究(一)圆柱、圆锥、圆台的表面积圆柱(底面半径为r,母线长为l)圆锥(底面半径为r,母线长为l)圆台(上、下底面半径分别为r′,r,母线长为l)侧面展开图底面积S底=2πr2S底=πr2S底=π(r′2+r2)侧面积S侧=2πrl S侧=πrl S侧=π(r′+r)l表面积S表=2πr(r+l) S表=πr(r+l) S表=π(r′2+r2)+ π(r′+r)l(二) 棱柱、棱锥、棱台的表面积1.棱柱:柱体的底面面积为S,高为h,则V=Sh.2.棱锥:锥体的底面面积为S,高为h,则V=13 Sh.3.棱台:台体的上、下底面面积分别为S′、S,高为h,则V=13(S′+S′S+S)h.(三) 球的体积公式与表面积公式 1.球的体积公式V=43πR3(其中R为球的半径).2.球的表面积公式S=4πR2.四、典例分析、举一反三题型一圆柱、圆锥、圆台的表面积例1 若一个圆锥的轴截面是边长为4 cm的等边三角形,则这个圆锥的侧面积为________cm2,表面积为________cm2.【答案】8π 12π.【解析】如图所示,∵轴截面是边长为4 cm的等边三角形,∴OB=2 cm,PB=4 cm,∴圆锥的侧面积S侧=π×2×4=8π (cm2),表面积S表=8π+π×22=12π (cm2).解题技巧(求旋转体表面积注意事项)旋转体中,求面积应注意侧面展开图,上下面圆的周长是展开图的弧长.圆台通常还要还原为圆锥. 跟踪训练一1.圆台的上、下底面半径和高的比为1∶4∶4,若母线长为10,则圆台的表面积为( )A.81πB.100πC.168πD.169π【答案】C【解析】选C 先画轴截面,再利用上、下底面半径和高的比求解.圆台的轴截面如图所示,设上底面半径为r ,下底面半径为R ,则它的母线长为l =5r =10,所以r =2,R =8.故S 侧=π(R +r )l =π(8+2)×10=100π,S 表=S 侧+πr 2+πR 2=100π+4π+64π=168π.题型二 圆柱、圆锥、圆台的体积例2 如图,某种浮标由两个半球和一个圆柱黏合而成,半球的直径是0.3m ,圆柱高0.6m 如果在浮标表面涂一层防水漆,每平方米需要0.5kg 涂料,那么给1000个这样的浮标涂防水漆需要多少涂料?(π取3.14)【答案】423.9kg【解析】一个浮标的表面积是()2220.150.640.150.8478mππ⨯⨯+⨯=,所以给1000个这样的浮标涂防水漆约需涂料0.84780.51000423.9(kg)⨯⨯=.解题技巧(求几何体积的常用方法)(1)公式法:直接代入公式求解.(2)等积法:例如四面体的任何一个面都可以作为底面,只需选用底面积和高都易求的几何体即可.(3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,棱台补成棱锥等.(4)分割法:将几何体分割成易求解的几部分,分别求体积.跟踪训练二1.如图,一个底面半径为2的圆柱被一平面所截,截得的几何体的最短和最长母线长分别为2和3,求该几何体的体积.【答案】10π.【解析】用一个完全相同的几何体把题中几何体补成一个圆柱,如图,则圆柱的体积为π×22×5=20π,故所求几何体的体积为10π.2. 梯形ABCD中,AD∥BC,∠ABC=90°,AD=a,BC=2a,∠DCB=60°,在平面ABCD内过点C作l⊥BC,以l为轴将梯形ABCD旋转一周,求旋转体的表面积和体积.【答案】见解析【解析】由题意知以l为轴将梯形ABCD旋转一周后形成的几何体为圆柱中挖去一个倒置的且与圆柱等高的圆锥,如图所示.在梯形ABCD中,∠ABC=90°,AD∥BC,AD=a,BC=2a,∠DCB=60°,∴CD=BC-ADcos60°=2a,AB=CD sin60°=3a,∴DD′=AA′-2AD=2BC-2AD=2a,∴DO=12DD′=a.由上述计算知,圆柱的母线长为3a,底面半径为2a;圆锥的母线长为2a,底面半径为a.∴圆柱的侧面积S1=2π·2a·3a=43πa2,圆锥的侧面积S2=π·a·2a=2πa2,圆柱的底面积S3=π(2a)2=4πa2,圆锥的底面积S4=πa2,∴组合体上底面面积S5=S3-S4=3πa2,∴旋转体的表面积S=S1+S2+S3+S5=(43+9)πa2.又由题意知形成的几何体的体积为圆柱的体积减去圆锥的体积,且V柱=π·(2a)2·3a=43πa3,V锥=13·π·a2·3a=33πa3.∴旋转体的体积V=V柱-V锥=43πa3-33πa3=1133πa3.题型三球的表面积与体积例3 如图,圆柱的底面直径和高都等于球的直径,求球与圆柱的体积之比.【答案】23【解析】 设球的半径为R ,则圆柱的底面半径为R ,高为2R .球的体积3143V R π=,圆柱的体积23222V R R R ππ=⋅=,123342::233V V R R ππ∴==.例4 平面α截球O 的球面所得圆的半径为1.球心O 到平面α的距离为2,则此球的体积为( )A.6π B .43π C .46π D .63π【答案】B【解析】如图,设截面圆的圆心为O ′,M 为截面圆上任一点,则OO ′=2,O ′M =1.∴OM =(2)2+1=3.即球的半径为3.∴V =43π(3)3=43π.解题技巧(与球有关问题的注意事项)1.正方体的内切球球与正方体的六个面都相切,称球为正方体的内切球,此时球的半径为r 1=a2,过在一个平面上的四个切点作截面如图(1).2.球与正方体的各条棱相切球与正方体的各条棱相切于各棱的中点,过球心作正方体的对角面有r 2=2a2,如图(2).3.长方体的外接球长方体的八个顶点都在球面上,称球为长方体的外接球,根据球的定义可知,长方体的体对角线是球的直径,若长方体过同一顶点的三条棱长为a ,b ,c ,则过球心作长方体的对角面有球的半径为r 3=a 2+b 2+c 22,如图(3).4.正方体的外接球正方体棱长a 与外接球半径R 的关系为2R =3a .5.正四面体的外接球正四面体的棱长a 与外接球半径R 的关系为:2R =62a .6、有关球的截面问题常画出过球心的截面圆,将问题转化为平面中圆的有关问题解决.跟踪训练三1、将棱长为2的正方体木块削成一个体积最大的球,则该球的体积为( )A.4π3B.2π3C.3π2D.π6【答案】A.【解析】由题意知,此球是正方体的内切球,根据其几何特征知,此球的直径与正方体的棱长是相等的,故可得球的直径为2,故半径为1,其体积是V 球=43×π×13=4π3.2.设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2 B.73πa 2 C.113πa 2 D .5πa 2【答案】B.【解析】选B 由题意知,该三棱柱为正三棱柱,且侧棱与底面边长相等,均为a .如图,P 为三棱柱上底面的中心,O 为球心,易知AP =23×32a =33a ,OP =12a ,所以球的半径R =OA 满足R 2=(33a)2+(12a)2=712a 2,故S 球=4πR 2=73πa 2.五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计七、作业课本119页练习,119页习题8.3的剩余题.本节课的重点是掌握圆柱、圆锥、圆台、球的表面积和体积计算公式和应用,通过本节课的例题及练习,学生基本掌握.须注意的是:①求面积时看清求的是侧面积,还是底面积,还是表面积;②对本节课的难点的理解类比棱台与棱锥、棱锥的联系;③解决实际问题时先抽象出几何图形,再利用相关公式解决.3、球的表面积与体积公式。
02圆柱、圆锥、圆台和球
第2课时圆柱、圆锥、圆台和球教学目标:(1)感知并认识圆柱、圆锥、圆台和球的结构特征,初步形成空间观念;(2)了解圆柱、圆锥、圆台和球的概念,能画出圆柱、圆锥、圆台和球的示意图;(3)能用运动变化的观点认识圆柱、圆锥、圆台和球的辨证关系.教学重点、难点:(1)圆柱、圆锥、圆台和球的结构特征和有关概念.(2)圆柱、圆锥、圆台和球的结构特征.教学过程:一.问题情境问题:我们知道棱柱是由平面图形沿一个给定的方向平移而成的,请观察这些几何体,它们有什么共同特点或生成规律?归纳:__________________________________________________________。
二、自主建构数学1.旋转体的定义(1)圆柱、圆锥、圆台的定义:______________________________________________________ (2)轴______________________________;底面___________________侧面______________________________;母线_________________________(3)球面的定义:_____________________________________________________ 球体(或球)_____________________________________________________2.圆柱、圆锥、圆台和球的表示方法:_______________________________________________。
3.旋转体的性质:(1)轴截面定义:过圆柱、圆锥、圆台的轴的截面称为圆柱、圆锥、圆台的轴截面。
(1)圆柱、圆锥、圆台的性质:①轴截面的形状:______________________________________②轴与底面的位置关系:____________________________. (2)球的性质:_________________________________________________.4.旋转面:___________________________________________________________________.5.旋转体:___________________________________________________________________.三、数学运用例1、(1)如下图,将直角梯形ABCD绕AB边所在的直线旋转一周,由此形成的几何体是由哪些简单几何体构成的?(2)指出图中的几何体是由哪些简单几何体构成的?例2、下列说法中:(1)圆锥的侧面上存在线段;(2)球的直径是球面上任意两点间连线段长度的最大值;(3)用一个平面截圆柱,所得截面一定是圆;(4)过圆柱、圆锥、圆台的轴截面分别是全等的矩形、等腰三角形、等腰梯形;(5)圆柱的任意两条母线平行,其中说法正确的是_____________例3、(1)长和宽分别为3和4的矩形绕它的一条边旋转得到的圆柱,则该圆柱的体积为________(2)把一个圆锥截成圆台,已知圆台的上下底的半径之比为1:4,圆台的母线长是9,则圆锥的母线长为__________(3)已知圆锥的母线长为5,底面半径为4,则过圆锥的顶点的平面截圆锥所得三角形的面积的最大值为______________(4) 已知圆锥的母线长为5,底面半径为4,有一个正方体内接于圆锥(4个顶点在侧面上,4个顶点在底面上),则正方体的边长为__________四、回顾小结:五、课外作业1. 有下列命题:(1)以直角三角形的一边为轴,旋转一周所得的旋转体是圆锥;(2)以直角梯形的一腰为轴,旋转一周所得的旋转体是圆台;(3)圆锥、圆台的底面都是圆;(4)圆锥被平行于底面的平面所截,得到两个几何体,其中一个仍然圆锥,另一个是圆台,其中正确命题的个数为___________2. 将一个边长为4和8的矩形纸片卷成一个圆柱,则圆柱的体积为__________3. 将等边三角形绕它的一边上的中线旋转180 ,所得到的几何体为__________4. 下列结论中:(1)各个面都是三角形的几何体是三棱锥;(2)以直角三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体为圆锥;(3)棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥;(4)圆锥的顶点与底面圆周上的任意一点的连线都是母线,其中不正确的结论是__________5. (1)如果一个球内切于一个棱长为10的正方体盒子(球与正方体的6个面都相切),那么这个球的半径为__________;(2)如果一个球与一个棱长为10的正方体盒子8条棱都相切,那么这个球的半径为__________;6. 一个正方体内接于一个球(8个顶点都在球面上),过球心作截面,下面几个截面中正确的是____________(4)(3)(2)(1)7. 已知半径为1的球内切于一个轴截面为直角三角形的圆锥,求此圆锥的轴截面面积8.把一个圆锥截成圆台,已知圆台的上、下底面的面积为4:9,母线长为9cm,求圆锥的母线长。
高中数学 第一章 立体几何初步 1.1.2 圆柱、圆锥和圆台数学教案
1.1.2 圆柱、圆锥、圆台和球【教学目标】1.了解旋转的定义和特点;2.借助于旋转掌握圆柱、圆锥、圆台和球的概念,明确其各自相应的基本图形和性质;3.理解旋转体的概念。
【教学重点】理解圆柱、圆锥、圆台和球的概念的生成过程。
【教学难点】组合体的分割。
【过程方法】利用实物模型、计算机软件观察空间图形、认识圆柱、圆锥、圆台、球、旋转体及其简单组合体的结构特征,并能找出它们之间的联系,确立正确的认识问题的世界观。
【教学过程】一、导入新课:下面的几何体与多面体不同,仔细观察这些几何体,他们有什么共同特点或生成规律?1.旋转旋转是指将一个图形上所有点绕着一个固定点或一条固定直线转过相同的角度。
2.圆柱、圆锥、圆台的定义将矩形、直角三角形、直角梯形分别绕着它的一边、一条直角边、垂直于底边的腰所在的直线旋转一周,形成的几何体分别叫做圆柱、圆锥和圆台,这条直线叫做轴(旋转轴),垂直于轴的边旋转而成的圆面叫做底面,不垂直于轴的边旋转而成的曲面叫做侧面,无论旋转到什么位置,这条边都叫做母线。
3.圆柱、圆锥、圆台的结构特征(1)圆柱①圆柱的轴通过上、下底面的圆心,并且垂直于底面;②圆柱的母线长都相等,并且等于圆柱的高;③平行于圆柱底面的平面截圆柱所得的截面是与底面相等的圆;④经过圆柱轴的平面截圆柱所得的截面是全等的矩形。
这样的截面称为圆柱轴截面。
(2)圆锥①圆锥的轴过顶点和下底面的圆心,并且垂直于底面;②圆锥的母线长都相等,并且相交于一点;③平行于圆锥底面的平面截圆锥所得的截面是圆面;④经过圆锥的轴的平面截圆锥所得的截面是全等的等腰三角形。
这样的截面称为圆锥轴截面。
(3)圆台①圆台的轴通过上、下底面的圆心,并且垂直于底面;②圆台的所有母线长都相等;③平行于圆台底面的平面截圆台所得的截面是圆面;④经过圆台轴的平面截圆台所得的截面是全等的等腰梯形。
这样的截面称为圆台轴截面。
(4)圆柱、圆锥、圆台的画法4.球的定义半圆绕着它的直径所在的直线旋转一周而形成的几何体叫做球,亦称球体;半圆弧旋转而形成的曲面叫做球面。
第二高中数学《圆柱圆锥圆台和球》教案 必修
芯衣州星海市涌泉学校第二中学高一数学圆柱、圆锥、圆台和球教案必修2教学过程:复习引入1、圆柱、圆锥、圆台,它们分别由矩形、直角三角形、直角梯形旋转而成的。
2、通过篮球、排球、足球等等球体的形象引出课题.新授1、球的概念:球也可以由一个平面图形旋转得到。
半圆以它的直径为旋转轴,旋转所成的曲面叫球面。
球面所围成的几何体叫球体,简称球。
指出球心、半径、直径。
值得注意的是:1〕球面与球体是两个不同的概念,我们要注意它们的区别与联络。
2〕球面的概念可以用集合的观点来描绘。
球面是由点组成的,球面上的点有什么一一共同的特点呢?与定点的间隔等于定长的所有点的集合〔轨迹〕叫球面。
假设点到球心的间隔小于球的半径,这样的点在球的内部.否那么在外部.3〕球的表示:用表示球心的字母表示球,比方,球O.2、球的截面的性质:用一个平面去截球,得到一个截面,截面是圆面,把过球心的截面圆叫大圆,不过球心的截面圆叫小圆.球的截面有什么性质呢?连接球心与截面圆心,连线OO1与截面圆O1会有什么关系呢?1) 球心与截面圆心的连线垂直于截面。
2) 设球心到截面的间隔为d ,截面圆的半径为r ,球的半径为R ,那么:r=22d R3、练习一:判断正误:〔对的打√,错的打×〕〔1〕半圆以其直径为轴旋转所成的曲面叫球。
〔〕〔2〕到定点的间隔等于定长的所有点的集合叫球。
〔〕〔3〕球的小圆的圆心与球心的连线垂直于这个小圆所在平面。
〔〕〔4〕经过球面上不同的两点只能作一个大圆。
〔〕〔5〕球的半径是5,截面圆的半径为3,那么球心到截面圆所在平面的间隔为4。
〔〕4、关于地球的几个概念:地球可以近似的看作一个球体,为了描绘地球上某地的地理位置,我们在地球上规定了经线、纬线、南极、北极等概念。
5、球面间隔:假设我们要坐飞机从到巴西去,选择怎样的航线航程最短呢?我们把球面上过两点的大圆,在这两点之间的劣弧的长叫球面上两点间的球面间隔。
因此,飞机、轮船都尽可能以大圆弧为航线航行。
高中数学-圆柱圆锥圆台和球教案
1.1.3 圆柱、圆锥、圆台和球示范教案整体设计教学分析本节教材展示大量几何体的实物、模型、图片等,让学生感受圆柱、圆锥、圆台和球的结构特征,从整体上认识空间几何体,再深入细节认识,更符合学生的认知规律.值得注意的是:由于没有点、直线、平面的有关知识,所以本节的学习不能建立在严格的逻辑推理的基础上,这与以往的教材有较大的区别,教师在教学中要充分注意到这一点.本节教学尽量使用信息技术等手段,向学生展示更多具有典型几何结构特征的空间物体,增强学生的感受.三维目标1.掌握圆柱、圆锥、圆台和球的结构特征,学会观察、分析图形,提高空间想象能力和几何直观能力.2.能够描述现实生活中简单物体的结构,学会建立几何模型研究空间图形,培养数学建模的思想.重点难点教学重点:了解圆柱、圆锥、圆台和球的结构特征.教学难点:归纳圆柱、圆锥、圆台和球的结构特征.课时安排1课时教学过程导入新课设计 1.在小学和初中,我们已经接触到了圆柱、圆锥、圆台和球,那么这些几何体有什么特征性质呢?教师点出课题.设计 2.从古至今,各个国家的建筑物都有各自的特色,古有埃及的金字塔,现有各城市大厦的旋转酒吧、旋转餐厅,上海东方明珠塔上的两个球形建筑等.它们都是独具匠心、整体协调的建筑物,是建筑师们集体智慧的结晶.今天我们如何从数学的角度来看待这些建筑物呢?教师点出课题.推进新课新知探究提出问题(1)观察下图所示的几何体,分别是圆柱、圆锥、圆台,那么圆柱、圆锥、圆台有什么结构特征呢?(2)阅读教材,给出几何体的轴、高、底面、侧面、母线的定义.讨论结果:(1)通过观察可以看出,圆柱、圆锥和圆台可以分别看作以矩形的一边、直角三角形的一直角边、直角梯形中垂直于底边的腰所在的直线为旋转轴,将矩形、直角三角形、直角梯形分别旋转一周而形成的曲面所围成的几何体(如下图).(2)旋转轴叫做所围成的几何体的轴;在轴上的这条边(或它的长度)叫做这个几何体的高;垂直于轴的边旋转而成的圆面叫做这个几何体的底面;不垂直于轴的边旋转而成的曲面叫做这个几何体的侧面,无论旋转到什么位置,这条边都叫做侧面的母线.如上图中,直线O′O,SO是轴,线段O′O,SO是高,A′A,SA是母线.提出问题1球是大家非常熟悉的几何体,那么球集合具有什么特征性质呢?2阅读教材,给出球心、球的半径和直径的定义?3球的截面是什么形状?具有什么性质?4阅读教材,什么叫球面上的两点距离?讨论结果:(1)让我们做一个实验:一个半圆绕着它的直径所在的直线旋转一周,研究半圆运动的轨迹是怎样的空间图形.通过观察可以发现,球面可以看作一个半圆绕着它的直径所在的直线旋转一周所形成的曲面,球面围成的几何体,叫做球(如下图).(2)形成球的半圆的圆心叫球心;连结球面上一点和球心的线段叫球的半径;连结球面上两点且通过球心的线段叫球的直径.如下图中点O为球心,OA为球的半径,AB为球O的直径.一个球用表示它的球心的字母来表示,例如球O.球面也可以看作空间中到一个定点的距离等于定长的点的集合.(3)用一个平面α去截半径为R的球O(下图),不妨设平面α水平放置且不过球心,OO′为平面α的垂线,并与平面α交于点O′,OO′=d,则对于平面α与球面的交线上任意一点P,都有O′P=R2-d2,是一个定值.这说明截面与球面的交线是在平面α内,并且到定点O′的距离等于定长的点的集合.因此平面α截球面所得到的交线是以O′为圆心,以r=R2-d2(R是球的半径)为半径的一个圆.也就是说,截面是一个圆面(圆及其内部).如果平面α过球心,则d=0,r=R.截面是半径等于球的半径的一个圆面.球面被经过球心的平面截得的圆叫做球的大圆;被不经过球心的平面截得的圆叫做球的小圆.当我们把地球看作一个球时,经线就是球面上从北极到南极的半个大圆;赤道是一个大圆,其余的纬线都是小圆(如左下图).(4)在球面上,两点之间的最短距离,就是经过这两点的大圆在这两点间的一段劣弧的长度.事实上,人们把这个弧长叫做两点的球面距离.例如,右上图中劣弧PQ的长度就是P,Q两点的球面距离.飞机、轮船都是尽可能地以大圆弧(劣弧)为航线航行的.提出问题阅读教材,给出组合体的定义.讨论结果:我们观察周围的物体,除了柱、锥、台、球等基本几何体外,还有大量的几何体是由柱、锥、台、球等基本几何体组合而成的.这些几何体叫做组合体.如下图所展示的机械可以看成是由一些基本几何体构成的组合体.对组合体可以通过把它们分解为一些基本几何体来研究.应用示例思路1例1用一个平行于圆锥底面的平面截这个圆锥,截得圆台上下底面半径的比是1∶4,截去的圆锥的母线长是3 cm,求圆台的母线长(下图).解:设圆台的母线长为y ,截得的圆锥底面与原圆锥底面半径分别是x,4x ,根据相似三角形的性质,得33+y =x4x,解此方程得y =9. 因此,圆台的母线长为9 cm.点评:解决本题的关键是利用截面三角形来解决问题.圆锥的母线、高、底面半径构成直角三角形.变式训练1.(2008 湖北,理3)用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( )A.8π3 B.82π3 C .82π D.32π3解析:设球半径为R ,截面小圆的半径为r ,则πr 2=πr =1.又R 2=12+r 2=2, ∴R=2.∴V=43πR 3=82π3.答案:B2.圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392 cm 2,母线 与轴的夹角是45°,求这个圆台的高、母线长和底面半径. 分析:这类题目应该选取轴截面研究几何关系. 解:圆台的轴截面如下图,设圆台上、下底面半径分别为x cm 和3x cm ,延长AA 1交OO 1的延长线于S. 在Rt△SOA 中,∠ASO=45°, 则∠SAO=45°. 所以SO =AO =3x. 所以OO 1=2x.又12(6x +2x)·2x=392, 解得x =7(负值舍去),所以圆台的高OO 1=14 cm ,母线长l =2OO 1=14 2 cm ,而底面半径分别为7 cm 和21 cm.答:圆台的高14 cm ,母线长14 2 cm ,底面半径分别为7 cm 和21 cm.例2我国首都北京靠近北纬40°.求北纬40°纬线的长度(单位:km,地球半径约为6 370 km,结果保留四位有效数字).解:如下图,设A是北纬40°圈上的一点,AK是它的半径,所以OK⊥AK.设c是北纬40°的纬线长,因为∠AOB=∠OAK=40°,所以c=2π·AK=2π·OA·cos∠OAK=2π·OA·cos40°≈2×3.141 6×6 370×0.766 0≈3.066×104(km).即北纬40°的纬线长约为3.066×104 km.点评:赤道是地球的大圆,纬线(东西方向)是地球的小圆.变式训练1.圆心到球的截面距离d=3 cm,截面圆的半径r=4 cm,则球的半径R=________ cm.解析:截面半径、球的半径、球心到截面距离构成直角三角形,则R2=d2+r2,即R2=32+42=25,∴R=5.答案:52.(2008 四川高考,8)(理)设M、N是球O半径OP上的两点,且NP=MN=OM,分别过N、M、O作垂直于OP的平面,截球面得三个圆,则这三个圆的面积之比为( ) A.3∶5∶6 B.3∶6∶8C.5∶7∶9 D.5∶8∶9(文)设M是球O半径OP的中点,分别过M、O作垂直于OP的平面,截球面得两个圆,则这两个圆的面积比值为( )A.14B.12C.23D.34解析:(理)设过N、M、O且垂直于OP的三个圆的半径分别为r1,r2,R,则r1=R2-23R2=53R,r2=R2-13R2=223R.∴三个圆的面积比等于它们的半径平方之比,即(53R)2∶(223R)2∶R2=5∶8∶9.(文)如下图所示,∵M为OP中点,∴OM=R 2.∴MA=OA 2-OM 2=R 2-R 22=32R. ∴小圆面积S 1=π·(32R)2,大圆面积S 2=πR 2. ∴两圆面积比为S 1S 2=34.答案:(理)D (文)D思路2例3说出下列几何体的主要结构特征:解:(1)由圆锥与圆台构成的组合体. (2)由棱锥和四棱柱构成的组合体.点评:本题主要考查组合体的结构特点以及简单几何体的判断方法. 变式训练1. (2008 浙江高考,理14)如左下图,已知球O 的面上四点A 、B 、C 、D ,DA⊥平面ABC ,AB⊥BC,DA =AB =BC =3,则球O 的体积等于________.解析:如右上图,据题意可知,球O 即棱长为3的正方体外接球,其半径r =32+32+322=32,V =43πr 3=92π. 答案:92π2.下图所示是某单位公章,这个几何体是由简单几何体中的________组成的. 答案:半球、圆柱、圆台知能训练1.下图所示几何体由一个圆柱挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得.现用一个竖直的平面去截这个几何体,则所截得的图形可能是( )A .(1)(2)B .(1)(3)C .(1)(4)D .(1)(5) 答案:D2.将一个边长分别是2 cm 和5 cm 、两邻边夹角为60°的平行四边形绕其5 cm 边上的高所在直线旋转一周形成的几何体是(写出一种情况)________.答案:高为3,两底半径分别为4,5的圆台 拓展提升1. (2008 陕西高考,文8)长方体ABCD-A 1B 1C 1D 1的各顶点都在半径为1的球面上,其中AB∶AD∶AA 1=2∶1∶3,则A ,B 两点的球面距离为( )A.π4B.π3C.π2D.2π3解析:由题意知,长方体内接于球,此时具有两个性质: ①长方体的体对角线为球体的直径(由题意,直径为2); ②长方体的中心就是球心O.先由性质①:BD 1=AB 2+AD 2+AA 21=2,再结合条件“AB∶AD∶AA 1=2∶1∶3”,可设AB =2k ,AD =k ,AA 1=3k ,所以有4k 2+k 2+3k 2=2,解得k =22(负值舍去).因此AB =2,AD =22. 再由性质②:O 是球心同时也是BD 1的中点, ∴OB=12BD 1=OA =1,而OA 2+OB 2=AB 2,∴∠AOB=90°.再由球面距离的定义,AB 的球面距离就是扇形AOB 的劣弧长. 由弧长公式可得AB =90×π×1180=π2.∴AB 的球面距离为π2.答案:C 课堂小结 本节课学习了:1.圆柱、圆锥、圆台和球的结构特征; 2.组合体的构成. 作业本节P 13练习A 4,5题;P 16练习A 2题.设计感想本节课的教学设计,重点突出了学生的“自主性”和“探究性”.因此在实际教学中,应注意多留给学生思考的时间,不要直接给出结论.备课资料知识总结:1.棱柱、棱锥、棱台的结构特征比较,如下表所示:3.简单几何体的分类:简单几何体⎩⎪⎪⎨⎪⎪⎧ 简单多面体⎩⎪⎨⎪⎧棱柱棱锥棱台简单旋转体⎩⎪⎨⎪⎧圆柱圆锥圆台球。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆柱、圆锥、圆台和球(2)
教学目标:1、理解球面、球体和组合体的基本概念,
2、掌握球的截面的性质,
3、掌握球面距离的概念.
教学重点:球的截面的性质及应用,会求球面上两点之间的距离
教学过程:
复习引入
1、圆柱、圆锥、圆台,它们分别由矩形、直角三角形、直角梯形旋转而成的。
2、通过篮球、排球、足球等
等球体的形
象引出
课题.
新
授
1、球的概念:球也可以由一个平面图形旋转得到。
半圆以它的直径为旋转轴,旋转所成的曲面叫球面。
球面所围成的几何体叫球体,简称球。
指出球心、半径、直径。
值得注意的是:
1)球面与球体是两个不同的概念,我们要注意它们的区别与联系。
2)球面的概念可以用集合的观点来描述。
球
面是
由点组成的,球面上的点有什么共同的特点呢?与
定点的距离等于定长的所有点的集合(轨迹)叫球面。
如果点到球心的距离小于球的半径,这样的点在球的内
部. 否则在外部.
3)球的表示:用表示球心的字母表示球,比如,球O.
2、球的截面的性质:用一个平面去截球,得到一个截面,截面是圆面,把过球心的截面圆叫大圆,不过球心的截面圆叫小圆.
球的截面有什么性质呢?连接球心与截面
圆
心,连线OO 1与截面圆O 1会有什么关系呢?
1) 球心与截面圆心的连线垂直于截面。
2) 设球心到截面的距离为d ,截面圆的半径为r ,球的半径为R ,则:r=22d R
3、练习一:
判断正误:(对的打√,错的打×)
(1)半圆以其直径为轴旋转所成的曲面叫球。
()
(2)到定点的距离等于定长的所有点的集合叫球。
()
(3)球的小圆的圆心与球心的连线垂直于这个小圆所在平面。
()
(4)经过球面上不同的两点只能作一个大圆。
()
(5)球的半径是5,截面圆的半径为3,则球心到截面圆所在平面的距离为4。
()
4、关于地球的几个概念:地球可以近似的看作一个球体,为了描述地球上某地的地理位置,我们在地球上规定了经线、纬线、南极、北极等概念。
5、球面距离:假如我们要坐飞机从北京到巴西去,选择怎样的航线航程最短呢?我们把球面上过两点的大圆,在这两点之间的劣弧的长叫球面上两点间的球面距离。
因此,飞机、轮船都尽可能以大圆弧为航线航行。
6、例1 我国首都北京靠近北纬40度。
(1)求北纬40°纬线圈的半径约为多少千米。
(2)求北纬40度纬线的长度约为多少千米(地球半径约为6370千米)。
7、练习二:
1)填空
(1)设球的半径为R,则过球面上任意两点的截面圆中,最
大面积是。
(2)过球的半径的中点,作一个垂直于这条半径的截面,则
这截面圆的半径是球半径的。
(3)在半径为R的球面上有A、B两点,半径OA、OB的夹角
是n°(n<180=,求A、B两点的球面距离。
2)地面上,地球球心角1′所对的大圆弧长约为1海里,一海里约是多少千米?
3)思考题:地球半径为R,A、B是北纬45°纬线圈上两点,它们的经度差是90°,求A、 B两地的球面距离。
8、组合体
请举出一些由柱、锥、台组合而成的几何体的实例
课堂练习:教材第16页练习A、B
小结:
a) 半圆以它的直径为旋转轴,旋转所成的曲面叫做球面。
球面所围成的几何体叫做球体. b) 以过球心的平面截球面,截面圆叫大圆。
以不经过球心的平面截球面,截面圆叫小圆. c) 球心和截面圆心的连线垂直于截面,由勾股定理,有:22d R r -=.
d) 把地球看作一个球时,经线就是球面上从北极到南极的半个大圆。
赤道是一个大圆,其
余的纬线都是小圆.
球面距离是球面上过两点的大圆在这两点之间的劣弧的长度.
课后作业:略。