深圳观澜观澜中学数学三角形填空选择章末训练(Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深圳观澜观澜中学数学三角形填空选择章末训练(Word版含解
析)
一、八年级数学三角形填空题(难)
1.如图,△ABC中,点D、E、F分别在三边上,E是AC的中点,AD、BE、CF交于一点G,BD=2DC,S△GEC=3,S△GDC=4,则△ABC的面积是_____.
【答案】30
【解析】
【分析】
由于BD=2DC,那么结合三角形面积公式可得S△ABD=2S△ACD,而S△ABC=S△ABD+S△ACD,可得出S△ABC=3S△ACD,而E是AC中点,故有S△AGE=S△CGE,于是可求S△ACD,从而易求S△ABC.
【详解】
解:∵BD=2DC,∴S△ABD=2S△ACD,∴S△ABC=3S△ACD.
∵E是AC的中点,∴S△AGE=S△CGE.
又∵S△GEC=3,S△GDC=4,∴S△ACD=S△AGE+S△CGE+S△CGD=3+3+4=10,∴S△ABC=3S△ACD=3×10=30.
故答案为30.
【点睛】
本题考查了三角形的面积公式、三角形之间的面积加减计算.注意同底等高的三角形面积相等,面积相等、同高的三角形底相等.
2.若△ABC三条边长为a,b,c,化简:|a-b-c|-|a+c-b|=__________.
【答案】2b-2a
【解析】
【分析】
【详解】
根据三角形的三边关系得:a﹣b﹣c<0,c+a﹣b>0,
∴原式=﹣(a﹣b﹣c)﹣(a+c﹣b)=﹣a+b+c﹣a﹣c+b=2b﹣2a.
故答案为2b﹣2a
【点睛】
本题考查了绝对值得化简和三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边;一个正数的绝对值等于它的本身,零的绝对值还是零,一个负数的绝对值等于它的相反数,据此解答即可.
3.如图,在∆ABC 中, ∠A =80︒, ∠ABC 与∠ACD 的平分线交于点A 1,得∠A 1; ∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2;……; ∠A 7BC 与∠A 7CD 的平分线相交于点A 8,得∠A 8,则∠A 8的度数为_________.
.
【答案】
516
【解析】
【分析】 利用外角等于不相邻的两个内角之和,以及角平分线的性质求∠A 1=
12∠A ,再依此类推得,∠A 2=
212∠A ,……,∠A 8= 812∠A ,即可求解. 【详解】
解:根据三角形的外角得:
∠ACD=∠A+∠ABC. 又∵∠ABC 与∠ACD 的平分线交于点A 1, ∴
1111222
A ABC A ABC ∠+∠=∠+∠ ∴∠A 1=12∠A 依此类推得,∠A 2= 212∠A ,……,∠A 8= 812∠A=180256
⨯=516 故答案为
516
. 【点睛】 本题考查三角形外角、角平分线的性质,解答的关键是弄清楚角之间的关系..
4.直角三角形中,一个锐角等于另一个锐角的2倍,则较小的锐角是_______.
【答案】30°
【解析】
【分析】
设较小的锐角是x ,然后根据直角三角形两锐角互余列出方程求解即可.
【详解】
设较小的锐角是x ,则另一个锐角是2x ,
由题意得,x +2x =90°,
解得x =30°,
即此三角形中最小的角是30°.
故答案为:30°.
【点睛】
本题考查了直角三角形的性质,熟练掌握该知识点是本题解题的关键.
5.已知ABC 中,90A ∠=,角平分线BE 、CF 交于点O ,则BOC ∠= ______ .
【答案】135 【解析】
解:∵∠A =90°,∴∠ABC +∠ACB =90°,∵角平分线BE 、CF 交于点
O ,∴∠OBC +∠OCB =45°,∴∠BOC =180°﹣45°=135°.故答案为:135°.
点睛:本题考查了角平分线的定义、三角形的内角和定理:三角形的内角和等于180°.
6.如图,七边形ABCDEFG 中,AB ,ED 的延长线交于点O ,若l ∠,2∠,3∠,4∠的外角和等于210,则BOD ∠的度数为______.
【答案】30
【解析】
【分析】
由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE 的内角和,则可求得∠BOD .
【详解】
1∠、2∠、3∠、4∠的外角的角度和为210,
12342104180∠∠∠∠∴++++=⨯,
1234510∠∠∠∠∴+++=,
五边形OAGFE 内角和()52180540=-⨯=,
1234BOD 540∠∠∠∠∠∴++++=,
BOD 54051030∠∴=-=.
故答案为:30
【点睛】
本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.
7.如图,在△ABC 中,∠A =60°,若剪去∠A 得到四边形BCDE ,则∠1+∠2=______.
【答案】240.
【解析】
【详解】
试题分析:∠1+∠2=180°+60°=240°.
考点:1.三角形的外角性质;2.三角形内角和定理.
8.如图,△ABC 中,∠B 与∠C 的平分线交于点O ,过O 作EF ∥BC 交AB 、AC 于E 、F ,若△ABC 的周长比△AEF 的周长大12cm ,O 到AB 的距离为4cm ,△OBC 的面积_____cm 2.
【答案】242cm .
【解析】
【分析】
由BE=EO 可证得EF ∥BC ,从而可得∠FOC=∠OCF ,即得OF=CF ;可知△AEF 等于AB+AC ,所以根据题中的条件可得出BC 及O 到BC 的距离,从而能求出△OBC 的面积.
【详解】
∵BE=EO ,∴∠EBO=∠EOB=∠OBC ,∴EF ∥BC ,∴∠FOC=∠OCB=∠OCF ,
∴OF=CF ;△AEF 等于AB+AC ,
又∵△ABC 的周长比△AEF 的周长大12cm ,∴可得BC=12cm ,
根据角平分线的性质可得O 到BC 的距离为4cm ,
∴S △OBC =12
×12×4=24cm 2.