重庆一中2018-2019学年八年级(下)期末数学试卷--解析版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年八年级(下)期末数学试卷一.选择题(共12小题)
1.﹣2的绝对值是()
A.2 B.﹣2 C.D.
2.下列窗花图案中,是轴对称图形的是()
A.B.
C.D.
3.函数y=中,自变量x的取值范围是()
A.x>﹣1 B.x<﹣1 C.x≠﹣1 D.x≠0 4.下列式子因式分解正确的是()
A.x2+2x+2=(x+1)2+1 B.(2x+4)2=4x2+16x+16
C.x2﹣x+6=(x+3)(x﹣2)D.x2﹣1=(x+1)(x﹣1)5.如图,在△ABC中,DE∥BC,若=,则的值为()
A.B.C.D.
6.下列命题是真命题的是()
A.平行四边形的对角线互相平分且相等
B.任意多边形的外角和均为360°
C.邻边相等的四边形是菱形
D.两个相似比为1:2的三角形对应边上的高之比为1:4
7.估算2﹣+1在哪两个整数之间()
A.0和1 B.1和2 C.2和3 D.3和4
8.根据以下程序,当输入x=﹣2时,输出结果为()
A.﹣5 B.﹣2 C.0 D.3
9.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需的时间与原计划生产450台机器所需时间相同.设原计划每天生产x台机器,则可列方程为()
A.B.
C.D.
10.如图,反比例函数y=(k≠0,x>0)图象经过正方形ABCD的顶点A,边BC在x轴的正半轴上,连接OA,若BC=2OB,AD=4,则k的值为()
A.2 B.4 C.6 D.8
11.如果关于x的分式方程有负数解,且关于y的不等式组无解,则符合条件的所有整数a的和为()
A.﹣2 B.0 C.1 D.3
12.在矩形ABCD中,AB=3,BC=2,点E在BC边上,连接DE,将△DEC沿DE翻折,得到△DEC',C'E交AD于点F,连接AC'.若点F为AD的中点,则AC′的长度为()
A.B.2C.2D.+1
二.填空题(共6小题)
13.计算:(π﹣3)0﹣(﹣)﹣2=.
14.若=.则=.
15.反比例函数y=图象上有两个点(x1,y1),(x2,y2),其中0<x1<x2,则y1,y2的大小关系是(用“<“连接).
16.在菱形ABCD中,对角线AC、BD交于点O,点F为BC中点,过点F作FE⊥BC于点F交BD于点E,连接CE,若∠BDC=34°,则∠ECA=°.
17.某日,王艳骑自行车到位于家正东方向的演赛厅听音乐会.王艳离家5分钟后自行车出现故障而且发现没有带钱包,王艳立即打电话通知在家看报纸的爸爸骑自行车赶来送钱包(王艳打电话和爸爸准备出门的时间忽略不计),同时王艳以原来一半的速度推着自行车继续走向演奏厅.爸爸接到电话后,立刻出发追赶王艳,追上王艳的同时,王艳坐上出租车并以爸爸速度的2倍赶往演奏厅(王艳打车和爸爸将钱包给王艳的时间忽略不计),同时爸爸立刻掉头以原速赶到位于家正西方3900米的公司上班,最后王艳比爸爸早到达目地的.在整个过程中,王艳和爸爸保持匀速行驶.如图是王艳与爸爸之间的距离y(米)与王艳出发时间x(分钟)之间的函数图象,则王艳到达演奏厅时,爸爸距离公司米.
18.古语说:“春眠不觉晓”,每到初春时分,想必有不少人变得嗜睡,而且睡醒后精神不佳.我们可以在饮食方面进行防治,比如以下食物可防治春困:香椿、大蒜、韭菜、山药、麦片.春天即将来临时,某商人抓住商机,购进甲、乙、丙三种麦片,已知销售每袋甲种麦片的利润率为10%,每袋乙种麦片的利润率为20%,每袋丙种麦片的利润率为30%,当售出的甲、乙、丙三种麦片的袋数之比为1:3:1时,商人得到的总利润率为22%;当售出的甲、乙、丙三种变片的袋数之比为3:2:1时,商人得到的总利润率为20%:那么当售出的甲、乙、丙三种麦片的袋数之比为2:3;4时,这个商人得到的总利润率为(用百分号表最终结果).
三.解答题(共8小题)
19.解方程:
(1)﹣=2
(2)2x2﹣2x﹣1=0
20.如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD于点F,交CB 于点E,且∠EAB=∠DCB.
(1)求∠B的度数:
(2)求证:BC=3CE.
21.近年,教育部多次明确表示,今后中小学生参加体育活动情况、学生体质健康状况和运动技能等级纳入初中、高中学业水平考试,纳入学生综合素质评价体系.为更好掌握学生体育水平,制定合适的学生体育课内容,某初级中学对本校初一,初二两个年级的学生进行了体育水平检测.为了解情况,现从两个年级抽样调查了部分学生的检测成绩,过程如下:
【收集数据】从初一、初二年级分别随机抽取了20名学生的水平检测分数,数据如下:
初一年
88 58 44 90 71 88 95 63 70 90
级
81 92 84 84 95 31 90 85 76 85
75 82 85 85 76 87 69 93 63 84
初二年
级
90 85 64 85 91 96 68 97 57 88
【整理数据】按如下分段整理样本数据:
0≤x<60 60≤x<70 70≤x<80 80≤x<90 90≤x≤100 分段
年级
初一年级a 1 3 7 b
初二年级 1 4 2 8 5 【分析数据】对样本数据边行如下统计:
统计量
平均数中位数众数方差
年级
初一年级78 c90 284.6
初二年级81 85 d126.4 【得出结论】
(1)根据统计,表格中a、b、c、d的值分别是、、、.(2)若该校初一、初二年级的学生人数分别为800人和1000人,则估计在这次考试中,初一、初二成绩90分以上(含90分)的人数共有人.
(3)根据以上数据,你认为(填“初一“或“初二”)学生的体育整体水平较高.请说明理由(一条理由即可).
22.在平面直角坐标系中,直线l1:y=x+5与反比例函数y=(k≠0,x>0)图象交于点A(1,n);另一条直线l2:y=﹣2x+b与x轴交于点E,与y轴交于点B,与反比例函数y=(k≠0,x>0)图象交于点C和点D(,m),连接OC、OD.
(1)求反比例函数解析式和点C的坐标;
(2)求△OCD的面积.
23.我国古代数学名著《孙子算经》中有这样一道有关于自然数的题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?”就是说:一个数被3除余2,被5除余3,被7除余2,求这个数.《孙子算经》的解决方法大体是这样的先求被3除余2,同时能被5,7都整除的数,最小为140.再求被5除余3.回时能被3,7都整除的数,最小为63.最后求被7除余2,同时能被3,5都整除的数,最小为30.于是数140+63+30=233.就是一个所求的数.那么它减去或加上3,5,7的最小公倍数105的倍数,比如233﹣105=128,233+105=388…也是符合要求的数,所以符合要求的数有无限个,最小的是23.我们定义,一个自然数,若满足被2除余1,被3除余2,被5除余3,则称这个数是“魅力数”.
(1)判断43是否是“魅力数”?请说明理由;
(2)求出不大于100的所有的“魅力数”.
24.毎年6月,学校门口的文具店都会购进毕业季畅销商品进行销售.已知校门口“小光文具店“在5月份就售出每本8元的A种品牌同学录90本,每本10元的B种品牌同学录175本.
(1)某班班长帮班上同学代买A种品牌和B种品牌同学录共27本,共花费246元,请问班长代买A种品牌和B种品牌同学录各多少本?
(2)该文具店在6月份决定将A种品牌同学录每本降价3元后销售,B种品牌同学录每本降价a%(a>0)后销售.于是,6月份该文具店A种品牌同学录的销量比5月份多了a%,B种品牌同学录的销量比5月份多了(a+20)%,且6月份A、B两种品牌的同学录的销售总额达到了2550元,求a的值.
25.在平行四边形ABCD中,连接BD,过点B作BE⊥BD于点B交DA的延长线于点E,过点B作BG ⊥CD于点G.
(1)如图1,若∠C=60°,∠BDC=75°,BD=6,求AE的长度;
(2)如图2,点F为AB边上一点,连接EF,过点F作FH⊥FE于点F交GB的延长线于点H,在
△ABE的异侧,以BE为斜边作Rt△BEQ,其中∠Q=90°,若∠QEB=∠BDC,EF=FH,求证:BF+BH =BQ.
26.如图1,在平面直角坐标系中,直线l:y=x+2与x轴交于点A,与y轴交于点B,点C在x 轴的正半轴上,且OC=2OB.
(1)点F是直线BC上一动点,点M是直线AB上一动点,点H为x轴上一动点,点N为x轴上另一动点(不与H点重合),连接OF、FH、FM、FN和MN,当OF+FH取最小值时,求△FMN周长的最小值;
(2)如图2,将△AOB绕着点B逆时针旋转90°得到△A′O′B,其中点A对应点为A′,点O 对应点为O',连接CO',将△BCO'沿着直线BC平移,记平移过程中△BCO'为△B'C'O″,其中点B对应点为B',点C对应点为C',点O′对应点为O″,直线C'O″与x轴交于点P,在平移过程中,是否存在点P,使得△O″PC为等腰三角形?若存在请直接写出点P的坐标;若不存在,请说明理由.
参考答案与试题解析
一.选择题(共12小题)
1.﹣2的绝对值是()
A.2 B.﹣2 C.D.
【分析】根据负数的绝对值等于它的相反数解答.
【解答】解:﹣2的绝对值是2,
即|﹣2|=2.
故选:A.
2.下列窗花图案中,是轴对称图形的是()
A.B.
C.D.
【分析】根据轴对称图形的概念求解.
【解答】解:A、是轴对称图形,符合题意;
B、不是轴对称图形,不合题意;
C、不是轴对称图形,不合题意;
D、不是轴对称图形,不合题意.
故选:A.
3.函数y=中,自变量x的取值范围是()
A.x>﹣1 B.x<﹣1 C.x≠﹣1 D.x≠0 【分析】根据分母不等于0列式计算即可得解.
【解答】解:根据题意得,x+1≠0,
解得x≠﹣1.
故选:C.
4.下列式子因式分解正确的是()
A.x2+2x+2=(x+1)2+1 B.(2x+4)2=4x2+16x+16
C.x2﹣x+6=(x+3)(x﹣2)D.x2﹣1=(x+1)(x﹣1)
【分析】利用因式分解定义,以及因式分解的方法判断即可.
【解答】解:分解因式正确的为x2﹣1=(x+1)(x﹣1),
故选:D.
5.如图,在△ABC中,DE∥BC,若=,则的值为()
A.B.C.D.
【分析】利用相似三角形的面积比等于相似比的平方解答.
【解答】解:DE∥BC,
∴△ADE∽△ABC,
∴=()2==,
故选:D.
6.下列命题是真命题的是()
A.平行四边形的对角线互相平分且相等
B.任意多边形的外角和均为360°
C.邻边相等的四边形是菱形
D.两个相似比为1:2的三角形对应边上的高之比为1:4
【分析】利用平行四边形的性质、多边形的外角和、菱形的判定及相似三角形的性质判断后即可确定正确的选项.
【解答】解:A、平行四边形的对角线互相平分但不一定相等,故错误,是假命题;
B、任意多边形的外角和均为360°,正确,是真命题;
C、邻边相等的平行四边形是菱形,故错误,是假命题;
D、两个相似比为1:2的三角形对应边上的高之比为1:2,故错误,是假命题,
故选:B.
7.估算2﹣+1在哪两个整数之间()
A.0和1 B.1和2 C.2和3 D.3和4
【分析】原式化简后,估算即可确定出范围.
【解答】解:原式=4﹣3+1=+1,
∵1<2<4,
∴1<<2,即2<+1<3,
则2﹣+1在2和3两个整数之间,
故选:C.
8.根据以下程序,当输入x=﹣2时,输出结果为()
A.﹣5 B.﹣2 C.0 D.3
【分析】根据所给的程序,用所给数的平方减去3,再把所得的结果和1比较大小,判断出需不需要继续计算即可.
【解答】解:当x=﹣2时,
(﹣2)2﹣3=1;
当x=1时,
12﹣3=﹣2;
∵﹣2<1,
∴当输入x=﹣2时,输出结果为﹣2.
故选:B.
9.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需的时间与原计划生产450台机器所需时间相同.设原计划每天生产x台机器,则可列方程为()
A.B.
C.D.
【分析】根据现在生产600台机器的时间与原计划生产450台机器的时间相同,所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.
【解答】解:设原计划每天生产x台机器,则现在可生产(x+50)台.
依题意得:=.
故选:C.
10.如图,反比例函数y=(k≠0,x>0)图象经过正方形ABCD的顶点A,边BC在x轴的正半轴上,连接OA,若BC=2OB,AD=4,则k的值为()
A.2 B.4 C.6 D.8
【分析】根据正方形的性质,和BC=2OB,AD=4,可求出OB、AB,进而确定点A的坐标,代入求出k即可.
【解答】解:∵正方形ABCD,AD=4,
∴AB=AD=4=BC,
∵BC=2OB,
∴OB=2,
∴A(2,4)代入y=得:k=8,
故选:D.
11.如果关于x的分式方程有负数解,且关于y的不等式组无解,则符合条件的所有整数a的和为()
A.﹣2 B.0 C.1 D.3
【分析】解关于y的不等式组,结合解集无解,确定a的范围,再由分式方程有负数解,且a为整数,即可确定符合条件的所有整数a的值,最后求所有符合条件的值之和即可.
【解答】解:由关于y的不等式组,可整理得
∵该不等式组解集无解,
∴2a+4≥﹣2
即a≥﹣3
又∵得x=
而关于x的分式方程有负数解
∴a﹣4<0且
∴a<4且a≠2
于是﹣3≤a<4,且取a≠2的整数
∴a=﹣3、﹣2、﹣1、0、1、3
则符合条件的所有整数a的和为﹣2.
故选:A.
12.在矩形ABCD中,AB=3,BC=2,点E在BC边上,连接DE,将△DEC沿DE翻折,得到△DEC',C'E交AD于点F,连接AC'.若点F为AD的中点,则AC′的长度为()
A.B.2C.2D.+1
【分析】过点C'作C'H⊥AD于点H,由折叠的性质可得CD=C'D=3,∠C=∠EC'D=90°,由勾股定理可求C'F=1,由三角形面积公式可求C'H的长,再由勾股定理可求AC'的长.
【解答】解:如图,过点C'作C'H⊥AD于点H,
∵点F为AD的中点,AD=BC=2
∴AF=DF=
∵将△DEC沿DE翻折
∴CD=C'D=3,∠C=∠EC'D=90°
在Rt△DC'F中,C'F==1
∵S△C'DF=×DF×C'H=×C'F×C'D
∴×C'H=1×3
∴C'H=
∴FH==
∴AH=AF+FH=
在Rt△AC'H中,AC'==
故选:A.
二.填空题(共6小题)
13.计算:(π﹣3)0﹣(﹣)﹣2=﹣3 .
【分析】根据零指数幂以及负整数指数幂的意义即可求出答案.
【解答】解:原式=1﹣(﹣2)2=1﹣4=﹣3
故答案为:﹣3
14.若=.则= 1 .
【分析】直接利用已知将原式变形进而得出x,y之间的关系进而得出答案.
【解答】解:∵=,
∴2y=x+y,
故y=x,
则=1.
故答案为:1.
15.反比例函数y=图象上有两个点(x1,y1),(x2,y2),其中0<x1<x2,则y1,y2的大小关系是0<y2<y1(用“<“连接).
【分析】根据反比例函数的k确定图象在哪两个象限,再根据(x1,y1),(x2,y2),其中0<x1<x2,确定这两个点均在第一象限,根据在第一象限内y随x的增大而减小的性质做出判断.【解答】解:反比例函数y=图象在一、三象限,
(x1,y1),(x2,y2)在反比例函数y=图象上,且0<x1<x2,
因此(x1,y1),(x2,y2)在第一象限,
∵反比例函数在第一象限y随x的增大而减小,
∴0<y2<y1.
故答案为:0<y2<y1.
16.在菱形ABCD中,对角线AC、BD交于点O,点F为BC中点,过点F作FE⊥BC于点F交BD于点E,连接CE,若∠BDC=34°,则∠ECA=22 °.
【分析】根据菱形的性质可求出∠DBC和∠BCA度数,再根据线段垂直平分线的性质可知∠ECB =∠EBC,从而得出∠ECA=∠BCA﹣∠ECB度数.
【解答】解:∵四边形ABCD是菱形,
∴AC⊥BD,∠BDC=∠DBC=34°.
∠BCA=∠DCO=90°﹣34°=56°.
∵EF垂直平分BC,
∴∠ECF=∠DBC=34°.
∴∠ECA=56°﹣34°=22°.
故答案为22.
17.某日,王艳骑自行车到位于家正东方向的演赛厅听音乐会.王艳离家5分钟后自行车出现故障而且发现没有带钱包,王艳立即打电话通知在家看报纸的爸爸骑自行车赶来送钱包(王艳打电话和爸爸准备出门的时间忽略不计),同时王艳以原来一半的速度推着自行车继续走向演奏厅.爸爸接到电话后,立刻出发追赶王艳,追上王艳的同时,王艳坐上出租车并以爸爸速度的2倍赶往演奏厅(王艳打车和爸爸将钱包给王艳的时间忽略不计),同时爸爸立刻掉头以原速赶到位于家正西方3900米的公司上班,最后王艳比爸爸早到达目地的.在整个过程中,王艳和爸爸保持匀速行驶.如图是王艳与爸爸之间的距离y(米)与王艳出发时间x(分钟)之间的函数图象,则王艳到达演奏厅时,爸爸距离公司3400 米.
【分析】根据函数图象可知,王艳出发10分钟后,爸爸追上了王艳,根据此时爸爸的5分钟的行程等于王艳前5分钟的行程与后5分钟的行程和,得到出爸爸的速度与王艳骑自行车的速度的关系,再根据函数图象可知,爸爸到赶到公司时,公司距离演奏厅的距离为9400米,再根据已知条件,便可求得家与演奏厅的距离,由函数图象又可知,王艳到达演奏厅的时间为秒,据此列出方程,求得王艳的速度与爸爸的速度,进而便可求得结果.
【解答】解:设王艳骑自行车的速度为xm/s,则爸爸的速度为:
(5x+5×x)÷5=x(m/s),
由函数图象可知,公司距离演奏厅的距离为9400米,
∵公司位于家正西方3900米,
∴家与演奏厅的距离为:9400﹣3900=5500(米),
根据题意得,5x+5×x+()×=5500,
解得,x=200(m/s),
∴爸爸的速度为:(m/s)
∴王艳到达演奏厅时,爸爸距离公司的距离为:5×300+3900﹣()×300=3400(m).故答案为:3400.
18.古语说:“春眠不觉晓”,每到初春时分,想必有不少人变得嗜睡,而且睡醒后精神不佳.我们可以在饮食方面进行防治,比如以下食物可防治春困:香椿、大蒜、韭菜、山药、麦片.春天即将来临时,某商人抓住商机,购进甲、乙、丙三种麦片,已知销售每袋甲种麦片的利润率为10%,每袋乙种麦片的利润率为20%,每袋丙种麦片的利润率为30%,当售出的甲、乙、丙三种麦片的袋数之比为1:3:1时,商人得到的总利润率为22%;当售出的甲、乙、丙三种变片的袋数之比为3:2:1时,商人得到的总利润率为20%:那么当售出的甲、乙、丙三种麦片的袋数之比为2:3;4时,这个商人得到的总利润率为25% (用百分号表最终结果).
【分析】设甲、乙、丙三种蜂蜜的进价分别为a、b、c,丙蜂蜜售出瓶数为cx,则当售出的甲、
乙、丙蜂蜜瓶数之比为1:3:1时,甲、乙蜂蜜售出瓶数分别为ax、3bx;当售出的甲、乙、丙蜂蜜瓶数之比为3:2:1时,甲、乙蜂蜜售出瓶数分别为3ax、2bx;当售出的甲、乙、丙蜂蜜瓶数之比为5:6:1时,甲、乙蜂蜜售出瓶数分别为5ax、6bx;列出方程,解方程求出,即可得出结果.
【解答】解:设甲、乙、丙三种麦片的进价分别为a、b、c,丙麦片售出袋数为cx,
由题意得:,
解得:,
∴===25%,
故答案为:25%.
三.解答题(共8小题)
19.解方程:
(1)﹣=2
(2)2x2﹣2x﹣1=0
【分析】(1)先把分式方程转化成整式方程,求出方程的解即可;
(2)先求出b2﹣4ac的值,再代入公式求出即可.
【解答】解:(1)方程两边都乘以x﹣7得:x+1=2(x﹣7),
解得:x=15,
检验:当x=15时,x﹣7≠0,
所以x=15是原方程的解,
即原方程的解是x=15;
(2)2x2﹣2x﹣1=0,
b2﹣4ac=(﹣2)2﹣4×2×(﹣1)=12,
x=,
x1=,x2=.
20.如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD于点F,交CB 于点E,且∠EAB=∠DCB.
(1)求∠B的度数:
(2)求证:BC=3CE.
【分析】(1)根据余角的性质得到∠ECF=∠CAF,求得∠CAD=2∠DCB,由CD是斜边AB上的中线,得到CD=BD,推出∠CAB=2∠B,于是得到结论;
(2)根据直角三角形的性质即可得到结论.
【解答】解:(1)∵AE⊥CD,
∴∠AFC=∠ACB=90°,
∴∠CAF+∠ACF=∠ACF+∠ECF=90°,
∴∠ECF=∠CAF,
∵∠EAD=∠DCB,
∴∠CAD=2∠DCB,
∵CD是斜边AB上的中线,
∴CD=BD,
∴∠B=∠DCB,
∴∠CAB=2∠B,
∵∠B+∠CAB=90°,
∴∠B=30°;
(2)∵∠B=∠BAE=∠CAE=30°,
∴AE=BE,CE=AE,
∴BC=3CE.
21.近年,教育部多次明确表示,今后中小学生参加体育活动情况、学生体质健康状况和运动技能等级纳入初中、高中学业水平考试,纳入学生综合素质评价体系.为更好掌握学生体育水平,制定合适的学生体育课内容,某初级中学对本校初一,初二两个年级的学生进行了体育水平检测.为了解情况,现从两个年级抽样调查了部分学生的检测成绩,过程如下:
【收集数据】从初一、初二年级分别随机抽取了20名学生的水平检测分数,数据如下:
初一年
88 58 44 90 71 88 95 63 70 90
级
81 92 84 84 95 31 90 85 76 85
初二年
75 82 85 85 76 87 69 93 63 84
级
90 85 64 85 91 96 68 97 57 88 【整理数据】按如下分段整理样本数据:
0≤x<60 60≤x<70 70≤x<80 80≤x<90 90≤x≤100 分段
年级
初一年级a 1 3 7 b
初二年级 1 4 2 8 5
【分析数据】对样本数据边行如下统计:
平均数中位数众数方差
统计量
年级
初一年级78 c90 284.6
初二年级81 85 d126.4
【得出结论】
(1)根据统计,表格中a、b、c、d的值分别是 3 、 6 、84.5 、85 .
(2)若该校初一、初二年级的学生人数分别为800人和1000人,则估计在这次考试中,初一、初二成绩90分以上(含90分)的人数共有490 人.
(3)根据以上数据,你认为“初二”(填“初一“或“初二”)学生的体育整体水平较高.请说明理由(一条理由即可).
【分析】(1)根据给出的统计表求出a、b,根据中位数和众数的概念求出c、d;
(2)用样本估计总体,得到答案;
(3)根据平均数的性质解答.
【解答】解:(1)由统计表中的数据可知,a=3,b=6,c==84.5,d=85,
故答案为:3;6;84.5;85;
(2)初一成绩90分以上(含90分)的人数共有:800×=240(人),
初二成绩90分以上(含90分)的人数共有1000×=250(人),
240+250=490(人),
故答案为:490;
(3)“初二”学生的体育整体水平较高,
原因是:初二年级的平均数大于初一年级的平均数,
故答案为:“初二”.
22.在平面直角坐标系中,直线l1:y=x+5与反比例函数y=(k≠0,x>0)图象交于点A(1,n);另一条直线l2:y=﹣2x+b与x轴交于点E,与y轴交于点B,与反比例函数y=(k≠0,x>0)图象交于点C和点D(,m),连接OC、OD.
(1)求反比例函数解析式和点C的坐标;
(2)求△OCD的面积.
【分析】(1)点A(1,n)在直线l1:y=x+5的图象上,可求点A的坐标,进而求出反比例函数关系式,点D在反比例函数的图象上,求出点D的坐标,从而确定直线l2:y=﹣2x+b的关系式,联立求出直线l2与反比例函数的图象的交点坐标,确定点C的坐标,
(2)求出直线l2与x轴、y轴的交点B、E的坐标,利用面积差可求出△OCD的面积.
【解答】解:(1)∵点A(1,n)在直线l1:y=x+5的图象上,
∴n=6,
∴点A(1,6)代入y=得,
k=16,
∴反比例函数y=,
当x=时,y=12,
∴点D(,12)代入直线l2:y=﹣2x+b得,
b=13,
∴直线l2:y=﹣2x+13,
由题意得:解得:,,
∴点C(6,1)
答:反比例函数解析式y=,点C的坐标为(6,1).
(2)直线l2:y=﹣2x+13,与x轴的交点E(,0)与y轴的交点B(0,13)
∴S△OCD=S△BOE﹣S△BOD﹣S△OCE
=×13×﹣×13×﹣××1=,
答:△OCD的面积为.
23.我国古代数学名著《孙子算经》中有这样一道有关于自然数的题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?”就是说:一个数被3除余2,被5除余3,被7除余2,求这个数.《孙子算经》的解决方法大体是这样的先求被3除余2,同时能被5,7都整除的数,最小为140.再求被5除余3.回时能被3,7都整除的数,最小为63.最后求被7除余2,同时能被3,5都整除的数,最小为30.于是数140+63+30=233.就是一个所求的数.那么它减去或加上3,5,7的最小公倍数105的倍数,比如233﹣105=128,233+105=388…也是符合要求的数,所以符合要求的数有无限个,最小的是23.我们定义,一个自然数,若满足被2除余1,被3除余2,被5除余3,则称这个数是“魅力数”.
(1)判断43是否是“魅力数”?请说明理由;
(2)求出不大于100的所有的“魅力数”.
【分析】(1)验证43是否满足“被2除余1,被3除余2,被5除余3”这三个条件,若全部满足,则为“魅力数”,若不全满足,则不是“魅力数”;
(2)根据样例,先求被1除余1,同时能被3,5都整除的数,最小为15.再求被3除余2.回时能被2,5都整除的数,最小为20.最后求被5除余3,同时能被2,3都整除的数,最小为18.于是数15+20+18=53,再用它减去或加上2,3,5的最小公倍数30的倍数得结果.
【解答】解:(1)43不是“魅力数”.理由如下:
∵43=14×3+1,
∴43被3除余1,不余2,
∴根据“魅力数”的定义知,43不是“魅力数”;
(2)先求被1除余1,同时能被3,5都整除的数,最小为15.
再求被3除余2.回时能被2,5都整除的数,最小为20.
最后求被5除余3,同时能被2,3都整除的数,最小为18.
∴数15+20+18=53是“魅力数”,
∵2、3、5的最小公倍数为30,
∴53﹣30=23也是“魅力数”,
53+30=83也是“魅力数”,
故不大于100的所有的“魅力数”有23、53、83三个数.
24.毎年6月,学校门口的文具店都会购进毕业季畅销商品进行销售.已知校门口“小光文具店“在5月份就售出每本8元的A种品牌同学录90本,每本10元的B种品牌同学录175本.
(1)某班班长帮班上同学代买A种品牌和B种品牌同学录共27本,共花费246元,请问班长代买A种品牌和B种品牌同学录各多少本?
(2)该文具店在6月份决定将A种品牌同学录每本降价3元后销售,B种品牌同学录每本降价a%(a>0)后销售.于是,6月份该文具店A种品牌同学录的销量比5月份多了a%,B种品牌同学录的销量比5月份多了(a+20)%,且6月份A、B两种品牌的同学录的销售总额达到了2550元,求a的值.
【分析】(1)设班长代买A种品牌同学录x本,B种品牌同学录y本,根据总价=单价×数量结合购买A、B两种品牌同学录27本共花费246元,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)根据总价=单价×数量,即可得出关于a的一元二次方程,解之取其正值即可得出结论.【解答】解:(1)设班长代买A种品牌同学录x本,B种品牌同学录y本,
依题意,得:,
解得:.
答:班长代买A种品牌同学录12本,B种品牌同学录15本.
(2)依题意,得:(8﹣3)×90(1+a%)+10(1﹣a%)×175[1+(a+20)%]=2550,
整理,得:a2﹣20a=0,
解得:a1=20,a2=0(舍去).
答:a的值为20.
25.在平行四边形ABCD中,连接BD,过点B作BE⊥BD于点B交DA的延长线于点E,过点B作BG ⊥CD于点G.
(1)如图1,若∠C=60°,∠BDC=75°,BD=6,求AE的长度;
(2)如图2,点F为AB边上一点,连接EF,过点F作FH⊥FE于点F交GB的延长线于点H,在△ABE的异侧,以BE为斜边作Rt△BEQ,其中∠Q=90°,若∠QEB=∠BDC,EF=FH,求证:BF+BH =BQ.
【分析】(1)根据平行四边形性质可证:△BDE是等腰直角三角形,运用勾股定理或解直角三角形可求DE和AD,AE即可求得;
(2)过点E作ET⊥AB交BA的延长线于T,构造直角三角形,由平行四边形性质及直角三角形性质可证:△BEQ≌△BET(AAS),△BFH≌△TEF(AAS),进而可证得结论.
【解答】解:(1)如图1,过点D作DR⊥BC于R,
∵ABCD是平行四边形
∴AB∥CD,AD∥BC,AD=BC
∵∠C=60°,∠BDC=75°,
∴∠CBD=180°﹣(∠C+∠BDC)=45°
∴∠ADB=∠CBD=45°
∵BE⊥BD
∴∠DBE=90°
∴∠E=∠BDE=45°
∴DE=BD=12
∵DR⊥BC
∴∠BRD=∠CRD=90°
∴∠BDR=∠CBD=45°,DR=BR=BD•sin∠CBD=6sin45°=6 ∵∠C=60°
∴∠CDR=90°﹣60°=30°
∴CR=2,CD=4
∴AD=BC=DR+CR=6+2,
∴AE=DE﹣AD=12﹣(6+2)=6﹣2;
(2)如图2,过点E作ET⊥AB交BA的延长线于T,则∠T=90°
∵ABCD是平行四边形
∴AB∥CD,
∴∠ABD=∠BDC
∵∠QEB=∠BDC
∴∠QEB=∠ABD
∵BG⊥CD,BE⊥BD,FH⊥FE
∴∠BGC=∠ABG=∠DBE=∠EFH=∠Q=90°
∴∠EBT+∠BET=∠EBT+∠ABD=∠EFT+∠BFH=∠EFT+∠FET=90°,∴∠BET=∠ABD=∠QEB,∠BFH=∠FET
∵BE=BE,EF=FH
∴△BEQ≌△BET(AAS),△BFH≌△TEF(AAS)
∴BQ=BT,BH=FT
∵BF+FT=BT
∴BF+BH=BQ.
26.如图1,在平面直角坐标系中,直线l:y=x+2与x轴交于点A,与y轴交于点B,点C在x 轴的正半轴上,且OC=2OB.
(1)点F是直线BC上一动点,点M是直线AB上一动点,点H为x轴上一动点,点N为x轴上另一动点(不与H点重合),连接OF、FH、FM、FN和MN,当OF+FH取最小值时,求△FMN周长的最小值;
(2)如图2,将△AOB绕着点B逆时针旋转90°得到△A′O′B,其中点A对应点为A′,点O 对应点为O',连接CO',将△BCO'沿着直线BC平移,记平移过程中△BCO'为△B'C'O″,其中点B对应点为B',点C对应点为C',点O′对应点为O″,直线C'O″与x轴交于点P,在平移过程中,是否存在点P,使得△O″PC为等腰三角形?若存在请直接写出点P的坐标;若不存在,请说明理由.
【分析】(1)先求出点A,点B坐标,用待定系数法求出直线BC的解析式,作点O关于直线BC 的对称点O'(,),过点O'作O'H⊥OC于点F,交BC于点H,此时OF+FH的值最小,求出点F坐标,作点F关于直线AB与直线OC的对称点,连接F'F''交直线AB于点M,交直线OC于点N,此时△FMN周长有最小值,由两点距离公式可求△FMN周长的最小值;
(2)分O''C=PC,O''P=PC,O''P=O''C三种情况讨论,由等腰三角形的性质可求解.
【解答】解:(1)∵直线y=x+2与x轴交于点A,与y轴交于点B,
∴当x=0时,y=2,
当y=0时,x=﹣2,
∴点A(﹣2,0),点B(0,2)
∴OB=2
∵OC=2OB.
∴OC=4
∴点C(4,0)
设直线BC解析式为:y=kx+2,且过点C(4,0)
∴0=4k+2
∴k=﹣
∴直线BC解析式为:y=﹣x+2,
如图,作点O关于直线BC的对称点O'(,),过点O'作O'H⊥OC于点F,交BC于点H,此时OF+FH的值最小.
∴点F的横坐标为
∴点F(,)
作点F关于直线OC的对称点F'(,﹣),
作点F关于直线AB的对称点F''(﹣,)
连接F'F''交直线AB于点M,交直线OC于点N,此时△FMN周长有最小值,
∴△FMN周长的最小值==
(2)∵将△AOB绕着点B逆时针旋转90°得到△A'O’B,∴O'点坐标(2,2)
设直线O'C的解析式为:y=mx+b
∴
∴
∴直线O'C的解析式为:y=﹣x+4
如图,过点O'作O'E⊥OC
∴OE=2,O'E=2
∴EC=O'E=2
∴∠O'CE=45°
∵将△BCO'沿着直线BC平移,
∴O''O'∥BC,O'C∥O''C',
∴设O'O''的解析式为y=﹣x+n,且过(2,2)
∴2=﹣×2+n
∴n=3
∴直线O'O''的解析式为y=﹣x+3
若CO''=CP,
∵O'C∥O''C',
∴∠O'CE=∠O''PC=45°
∵CO''=CP
∴∠CO''P=∠O''PC=45°
∴∠O''CP=90°。