(完整版)解圆锥曲线问题常用方法及性质总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解圆锥曲线问题常用方法+椭圆与双曲线的经典结论+
椭圆与双曲线的对偶性质总结
解圆锥曲线问题常用以下方法:
1、定义法
(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法
因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:
(1))0(122
22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02
020=+k b y a x 。
(2))0,0(122
22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02
020=-k b
y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.
椭圆与双曲线的对偶性质总结
椭 圆
1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.
2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的
两个端点.
3. 以焦点弦PQ 为直径的圆必与对应准线相离.
4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.
5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y
a b +=.
6. 若000(,)P x y 在椭圆22
221x y a b
+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程
是00221x x y y a b +=. 7. 椭圆22
221x y a b
+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点
角形的面积为122
tan
2
F PF S b γ
∆=.
8. 椭圆22
221x y a b
+=(a >b >0)的焦半径公式:
10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).
9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦
点F 的椭圆准线于M 、N 两点,则MF ⊥NF.
10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P
和A 1Q 交于点N ,则MF ⊥NF.
11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则2
2OM AB b k k a ⋅=-,
即020
2y a x b K AB -=。
12. 若000(,)P x y 在椭圆22
221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+.
13. 若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y
x y a b a b
+=+.
双曲线
1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.
2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长
轴的两个端点.
3. 以焦点弦PQ 为直径的圆必与对应准线相交.
4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)
5. 若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y y
a b -=.
6. 若000(,)P x y 在双曲线22
221x y a b
-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则
切点弦P 1P 2的直线方程是00221x x y y
a b
-=.
7. 双曲线22
221x y a b
-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,
则双曲线的焦点角形的面积为122t
2
F PF S b co γ
∆=.
8. 双曲线22
221x y a b
-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c
当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.
当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--
9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别
交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.
10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于
点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.
11. AB 是双曲线22
221x y a b -=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则
0202y a x b K K AB OM =⋅,即020
2y a x b K AB =。
12. 若000(,)P x y 在双曲线22
221x y a b
-=(a >0,b >0)内,则被Po 所平分的中点弦的方程是
22
00002222x x y y x y a b a b
-=-. 13. 若000(,)P x y 在双曲线22
221x y a b
-=(a >0,b >0)内,则过Po 的弦中点的轨迹方程是
22002222x x y y x y a b a b
-=-.
椭圆与双曲线的经典结论
椭 圆
1. 椭圆22
221x y a b
+=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2时
A 1P 1与A 2P 2交点的轨迹方程是22
221x y a b
-=.
2. 过椭圆22
221x y a b
+= (a >0, b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,
则直线BC 有定向且20
20BC b x k a y =(常数).
3. 若P 为椭圆22
221x y a b
+=(a >b >0)上异于长轴端点的任一点,F 1, F 2是焦点, 12PF F α∠=,
21PF F β∠=,则
tan t 22
a c co a c αβ
-=+. 4. 设椭圆22
221x y a b
+=(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2
中,记12F PF α∠=, 12PF F β∠=,12F F P γ∠=,则有
sin sin sin c
e a
αβγ==+.
5. 若椭圆22
221x y a b
+=(a >b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当0<e ≤21-时,可
在椭圆上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.
6. P 为椭圆22
221x y a b
+=(a >b >0)上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,则
2112||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P 三点共线时,等号成立.
7. 椭圆
22
0022
()()1x x y y a b --+=与直线0Ax By C ++=有公共点的充要条件是2222200()A a B b Ax By C +≥++. 8. 已知椭圆22
221x y a b
+=(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ ⊥.(1)
22
221111||||OP OQ a b +=+;(2)|OP|2+|OQ|2的最大值为22224a b a b +;(3)OPQ S ∆的最小值是2222a b a b +. 9. 过椭圆22
221x y a b
+=(a >b >0)的右焦点F 作直线交该椭圆右支于M,N 两点,弦MN 的垂直平分线交
x 轴于P ,则
||||2PF e
MN =. 10. 已知椭圆22
221x y a b
+=( a >b >0) ,A 、B 、是椭圆上的两点,线段AB 的垂直平分线与x 轴相交于点
0(,0)P x , 则2222
0a b a b x a a ---<<.
11. 设P 点是椭圆22
221x y a b
+=( a >b >0)上异于长轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则
(1)2122||||1cos b PF PF θ=+.(2) 122
θtan 2
PF F S b ∆=.
12. 设A 、B 是椭圆22
221x y a b
+=( a >b >0)的长轴两端点,P 是椭圆上的一点,PAB α∠=,
PBA β∠=,BPA γ∠=,c 、e 分别是椭圆的半焦距离心率,则有(1)22222|cos |
||s ab PA a c co αγ
=-.(2)
2
tan tan 1e αβ=-.(3) 22222cot PAB
a b S b a
γ∆=-. 13. 已知椭圆22
221x y a b
+=( a >b >0)的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相交
于A 、B 两点,点C 在右准线l 上,且BC x ⊥轴,则直线AC 经过线段EF 的中点.
14. 过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线
垂直.
15. 过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直. 16. 椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率). (注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.) 17. 椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e. 18. 椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.
双曲线
1. 双曲线22
221x y a b
-=(a >0,b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交双曲线
于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22
221x y a b
+=.
2. 过双曲线22
221x y a b
-=(a >0,b >o )上任一点00(,)A x y 任意作两条倾斜角互补的直线交双曲线于
B,C 两点,则直线BC 有定向且20
20BC b x k a y =-(常数).
3. 若P 为双曲线22
221x y a b
-=(a >0,b >0)右(或左)支上除顶点外的任一点,F 1, F 2是焦点,
12PF F α∠=, 21PF F β∠=,则
tan t 22c a co c a αβ-=+(或tan t 22
c a co c a βα
-=+). 4. 设双曲线22
221x y a b
-=(a >0,b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为双曲线上任意一点,
在△PF 1F 2中,记12F PF α∠=, 12PF F β∠=,12F F P γ∠=,则有
sin (sin sin )c
e a
αγβ==±-.
5. 若双曲线22
221x y a b
-=(a >0,b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当1<e ≤21
+时,可在双曲线上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.
6. P 为双曲线22
221x y a b
-=(a >0,b >0)上任一点,F 1,F 2为二焦点,A 为双曲线内一定点,则
21||2||||AF a PA PF -≤+,当且仅当2,,A F P 三点共线且P 和2,A F 在y 轴同侧时,等号成立.
7. 双曲线22
221x y a b
-=(a >0,b >0)与直线0Ax By C ++=有公共点的充要条件是
22222A a B b C -≤.
8. 已知双曲线22
221x y a b
-=(b >a >0),O 为坐标原点,P 、Q 为双曲线上两动点,且OP OQ ⊥.
(1)22
221111||||OP OQ a b +=-;(2)|OP|2+|OQ|2的最小值为22224a b b a -;(3)OPQ S ∆的最小值是2222a b b a -. 9. 过双曲线22
221x y a b
-=(a >0,b >0)的右焦点F 作直线交该双曲线的右支于M,N 两点,弦MN 的
垂直平分线交x 轴于P ,则
||||2PF e
MN =. 10. 已知双曲线22
221x y a b
-=(a >0,b >0),A 、B 是双曲线上的两点,线段AB 的垂直平分线与x 轴相
交于点0(,0)P x , 则220a b x a +≥或22
0a b x a
+≤-.
11. 设P 点是双曲线22
221x y a b
-=(a >0,b >0)上异于实轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,
则(1)2122||||1cos b PF PF θ=-.(2) 122
θcot 2PF F S b ∆=.
12. 设A 、B 是双曲线22
221x y a b
-=(a >0,b >0)的长轴两端点,P 是双曲线上的一点,PAB α∠=,
PBA β∠=,BPA γ∠=,c 、e 分别是双曲线的半焦距离心率,则有(1)222
2
2|cos |
|||s |
ab PA a c co αγ=-. (2) 2
tan tan 1e αβ=-.(3) 22222cot PAB
a b S b a
γ∆=+. 13. 已知双曲线22
221x y a b
-=(a >0,b >0)的右准线l 与x 轴相交于点E ,过双曲线右焦点F 的直线与
双曲线相交于A 、B 两点,点C 在右准线l 上,且BC x ⊥轴,则直线AC 经过线段EF 的中点. 14. 过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线
必与切线垂直.
15. 过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂
直.
16. 双曲线焦三角形中,外点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率). (注:在双曲线焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点). 17. 双曲线焦三角形中,其焦点所对的旁心将外点与非焦顶点连线段分成定比e. 18. 双曲线焦三角形中,半焦距必为内、外点到双曲线中心的比例中项.。