苏教版完整版 五年级下册期末复习数学专项练习题和答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏教版完整版五年级下册期末复习数学专项练习题和答案
一、苏教小学数学解决问题五年级下册应用题
1.池塘里有鸭子40只,比岸上鸭子只数的3倍少2只,岸上有多少只鸭子?(用方程解答)
2.学校有一块劳动实验田.总面积的种了蔬菜,种了玉米,剩下的全部种花生.种花生的面积占总面积的几分之几?
3.长75厘米、宽60厘米的长方形纸,要把它裁成同样大小的正方形,边长为整厘米,且没有剩余,裁成的正方形边长最大是多少厘米?至少可以裁成多少个这样的正方形?4.小刚去买文具,日记本3元一本、钢笔4元一支、文具盒12元一个。

如果小刚买了一些钢笔和文具盒,他付给营业员50元,找回17元,找的钱对吗?写出你的理由。

5.用长5厘米、宽4厘米的长方形,照下图的样子拼成正方形。

拼成的正方形的边长最小是多少厘米?需要几个长方形?
6.填出下面加法算式中的六个质数。

7.某校五年级一共有四个班,每班的学生在31人至39人之间。

(1)在一次捐书活动中,五(1)班捐助的书占总数的,五(2)班捐的书占总数的,
五(3)班捐的书占总数的。

五(4)班捐助的书占总数的几分之几?
(2)在一次学农活动中,把五年级四个班所有的学生平均分成8个组,或者平均分成12个组,都恰好分完没有剩余。

五年级四个班一共有多少名学生?
8.人们知道废电池对环境和人类的危害,同学们为保护环境,举行收集废电池的活动。

甲组7人收集了6千克,乙组8人收集了7千克,丙组6人收集了5千克。

哪个小组平均每人收集的电池多?写出主要理由。

9.五年级有48名同学报名参加义务劳动。

老师让他们自己分成人数相等的若干小组,要求组数大于2,小于10。

一共有几种分法?分别可以分成几组?(写出思考过程)10.一个长方体的体积是441立方厘米,如果它的高减少2厘米,它就变成一个正方体。

这个正方体的棱长是多少厘米?
11.AB两地相距384千米,甲乙两辆汽车同时从A地开往B地,当甲车到达B地时,乙车离B地还有60千米,已知乙车每小时行54千米,甲车每小时行多少千米?
12.小红今年比妈妈小25岁,今年妈妈年龄是小红的6倍,今年小红和妈妈各多少岁?(用方程方法解)
13.某书法兴趣班有学生49人,其中练习行书的人数是练习楷书的2.5倍。

练习行书和楷书的分别有多少人?
14.修一条长5km的路,第一天修了全程的,第二天修了全程的,还剩下全程的几分之几没有修?
15.王玲看一本故事书,第一天看了全书的,第二天看了全书的。

(1)两天一共读了全书的几分之几?
(2)还剩几分之几没看?
16.列式计算。

(1)除以的商减去,差是多少?
(2)一个数的加上得,这个数是多少?
17.一桶汽油倒出,倒出的正好是24千克,这桶汽油重多少千克?(列方程解答)18.市场运来一批水果,其中苹果的重量是梨的3倍,已知苹果比梨重270千克,苹果和梨各重多少千克?(列方程解答)
19.一条公路,已经修了干米,剩下的比已经修了的多千米,这条公路有多少千米?20.期末考试完后,张老师把121支水笔和47本练习本平均奖给被评上“优秀队员”的学生,班级中“优秀队员”最多有多少人?
21.南海公园有一个近似圆形的湖面,它的直径大约1000米。

(1)沿湖的一周每隔5米栽一棵柳树,一共要栽多少棵柳树?
(2)在湖里养鱼,按每100平方米能养路60条鱼计算,湖里-共可养鱼多少条?
22.成渝高速路长330千米,一辆大客车从重庆开往成都,一辆小轿车同时从成都开往重庆.2小时在途中相遇,已知小轿车的速度是大客车的1.2倍.两车每小时各行多少千米?23.把48块月饼装在盒子里,每个盒子装得同样多,有几种装法?(装在至少两个盒子里)每种装法各需要几个盒子?如果有47块月饼呢?
24.阳光小学五、六年级一个月共收集废电池80节。

五年级收集的废电池数量是六年级的1.5倍。

五、六年级各收集了多少节废电池?
25.把下面两根彩带剪成同样长的短彩带且没有剩余。

每根短彩带最长是多少厘米?一共可以剪成多少根短彩带?
26.某景区想要购买一棵直径大约在0.9~1.1米之间的银杏树。

为了较准确地测量,工人用一根绳子绕这棵树的树干(如图),量得10圈的绳长是31.4米。

这棵银杏树符合景区的标准吗?请列式计算说明你的想法。

27.一个水缸,从里面量,缸口直径是50厘米,缸璧厚5厘米。

要制作一个缸盖,使它正好盖住缸口的外沿,这个缸盖的面积是多少平方厘米?如果在缸盖的边沿贴上一圈金属条(不计接头),这圈金属条长多少厘米?
28.有两根木棒,一根长36dm,另一根长42dm,要把他们截成同样长的小段,而不能有剩余,每根小棒最长有多少dm?一共可以截成多少段?
29.35名学生分成甲、乙两队。

如果甲队人数为偶数,乙队人数为奇数还是偶数?如果甲队人数为奇数呢?
30.车站的4路电车每隔8分钟发一趟车,5路电车每隔12分钟发一趟车。

上午8时整4路电车和5路电车同时出发,再过多长时间两车又同时从车站出发?是几时几分?31.正方形,大三角形内的空白部分为一个正方形,三角形甲与三角形乙的面积和是39平方米。

求大三角形ABC的面积。

32.下面正方形的边长是6厘米,求涂色部分的周长。

33.欢欢和乐乐都报名参加了作文培训,欢欢9天去一次,乐乐12天去一次,5月3日他俩同时去培训,下次他俩同时去培训是在几月几日?
34.一个养殖场一共养鸡680只,其中母鸡的只数是公鸡的2.4倍。

公鸡和母鸡各有多少只?
35.南湖小区准备修建一个长4m,宽2.5m,高3.6m的长方体小型蓄水池。

(1)给这个蓄水池的地面铺正方形地砖,要使铺的地砖都是整块,地砖的边长最长是多少?一共需要这样的地砖多少块?
(2)在蓄水池的四壁上贴2.4米高的瓷砖,需要多少平方米的瓷砖?
36.东风湖湿地公园绿化栽树,每12棵栽一行,或者每16棵栽一行,都正好栽完而没有剩余。

这些树不到50棵,这些树一共有多少棵?
37.有一张长方形纸,长70厘米,宽50厘米,如果要剪成若干同样大小的正方形而没有剩余,剪出的小正方形的边长最长是几厘米?
38.如图,一只蚂蚁从A点走向B点,有两条路可走,一条路线是沿着图中最大的半圆弧走,另一条路线是沿着图中三个连续的相同的小半圆弧走。

你能分别算出这两条路线的长度吗?(单位:厘米)
39.甲、乙两人到体育馆健身,甲每6天去一次.乙每9天去一次,如果6月5日他们两人在体育馆相遇。

(1)那么下一次两人都到体育馆的时间是几月几日?
(2)如果丙6月5日也去了体育馆,他每4天去一次,他们三人下一次都到体育馆的时间是几月几日?
40.截止至2020年5月16日,我国有6个新冠肺炎确诊人数累计超过1000人的省级行政区,占我国省级行政区总数的。

我国一共有多少个省级行政区?【列方程解答】【参考答案】***试卷处理标记,请不要删除
一、苏教小学数学解决问题五年级下册应用题
1.解:设岸上有x只鸭子,
答:岸上有14只鸭子。

【解析】【分析】设岸上有x只鸭子,根据“岸上鸭子的只数×倍数-池塘的鸭子比岸上的鸭
子3倍少的只数=池塘鸭子的只数”即可列出方程,求解即可得出答案。

2.解:1--
=-
=-
=
答:种花生的面积占总面积的。

【解析】【分析】把总面积看作单位“1”,种花生的面积占总面积的几分之几=总面积(1)-蔬菜的面积占总面积的几分之几-玉米的面积占总面积的几分之几,代入数值计算即可。

3.解:75=3×5×5
60=2×2×3×5
75与60的最大公因数是3×5=15
75×60÷(15×15)
=4500÷225
=20(个)
答:正方形的边长是15厘米。

至少可以裁成20个这样的正方形。

【解析】【分析】此题主要考查了最大公因数的应用,要求把长方形纸裁成同样大小的正方形,边长为整厘米,且没有剩余,要求裁成的正方形边长最大是多少厘米?就是求长与宽的最大公因数,据此利用分解质因数的方法,求出长与宽的最大公因数,就是裁成的正方形最大边长;
要求至少可以裁成多少个这样的正方形?依据长方形的面积÷小正方形的面积=可以裁的个数,据此列式解答。

4. 50-17=33(元)
33是奇数,找的钱不对。

答:找的钱不对。

理由是钢笔和文具盒的单价都是偶数,所以不管怎么买,花的钱也是偶数,付的钱50元也是偶数,所以找回的钱应该是偶数才对。

【解析】【分析】一个数×偶数=偶数;偶数+偶数=偶数,偶数-偶数=偶数,据此解答。

5.解:4×5=20,即拼成的正方形的边长最小是20厘米;
20÷4×(20÷5)
=5×4
=20(个)
答:拼成的正方形的边长最小是20厘米,需要20个长方形。

【解析】【分析】此题主要考查了最小公倍数的应用,根据题意可知,拼成的正方形的边长最小是小长方形长与宽的最小公倍数,据此计算;
要求需要几个长方形,分别用除法求出长、宽部分需要的长方形个数,然后相乘即可,据
此列式解答。

6.解:936+287=1223或936+387=1323或936+587=1523或936+787=1723,
所以;

;。

【解析】【分析】由竖式加法算式可以知道,每个位置的质数只能是一位数,而10以内的质数有:2、3、5、7,然后再把每个质数代入算式进行验证。

7.(1)解:1- - - =
答:五(4)班捐助的书占总数的。

(2)解:8、12的最小公倍数是24,24÷4=6,31~39之间是6的倍数的是36,所以平均每班36人,一共有:36×4=144(人)
答:五年级四个班一共有144名学生。

【解析】【分析】(1)把捐赠书的总数看作单位“1”,用1-五(1)班占的分率-五(2)班占的分率-五(3)班占的分率=五(4)班占总数的几分之几。

(2)五年级四个班所有的学生人数,既能够整除8,又能够整除12,说明五年级四个班的总人数是8和12的公倍数,先找出8和12的最小公倍数,再算4个班,平均每个班的人数,而每班的学生在31人至39人之间,接着具体确定平均每个班的具体人数是多少,就可以确定总人数了。

8.解:甲:6÷7= (千克/人)
乙:7÷8= (千克/人)
丙:5÷6= (千克/人)
>>
答:乙小组平均每人收集的电池多。

【解析】【分析】根据题意可知,分别用除法求出每个小组平均每人收集的电池质量,然后对比即可解答。

9.解:48=1×48=2×24=3×16=4×12=6×8,
因为组数大于2,小于10,一共有4种分法,①分成3组,每组16人,②分成4组,每组12人,③分成6组,每组8人,④分成8组,每组6人。

答:有4种分法,分别可以分成3组、4组、6组和8组。

【解析】【分析】根据题意可知,先求出48的因数,然后根据条件“ 分成人数相等的若干小组,要求组数大于2,小于10 ”可知,2<组数<10,据此找出合适的分组方法。

10.解:441=3×3×7×7=7×7×9,
9-2=7(厘米)
答:正方体的棱长是7厘米。

【解析】【分析】长方体的高减少2厘米后是正方体,所以长方体的长和宽相等,而长方体的体积=长×宽×高,所以可以先把长方体的体积分解质因数,只需要有两个数值相等,另一个数值比这两个值小2,那么相等的这个数值就是正方体的棱长。

11.解:设甲车每小时行x千米,则
384÷x=(384-60)÷54
384÷x=324÷54
384÷x=6
x=384÷6
x=64
答:甲车每小时行64千米。

【解析】【分析】设甲车每小时行x千米,根据甲车和乙车行驶的时间相同即可得出等量关系式“甲车行驶的路程÷甲车的速度=乙车行驶的路程÷乙车的速度”,可列出方程384÷x=(384-60)÷54,根据等式的基本性质求解即可得出x的值。

12.解:设小红今年年龄是x岁,妈妈今年年龄是6x岁。

6x-x=25
5x=25
x=25÷5
x=5
6x=6×5=30
答:今年小红5岁,妈妈30岁。

【解析】【分析】依据等量关系式:妈妈的年龄-小红的年龄=25岁,据此列出方程解答即可。

13.解:设练习楷书有x人,练习行书有2.5x人。

2.5x+x=49
3.5x=49
x=49÷3.5
x=14
2.5×14=35(人)
答:练习行书和楷书的分别有14人和35人。

【解析】【分析】本题可以用方程作答,即设练习楷书有x人,那么练习行书有2.5x人,题中存在的等量关系是:练习楷书的人数+练习行书的人数=该书法兴趣班有学生的人数,据此代入数据和字母作答即可。

14.解:1--
=1--
=
答:还剩下全程的。

【解析】【分析】还剩下全程的几分之几=1-第一天修了全程的几分之几-第二天修了全程的几分之几,代入数值计算即可。

15.(1)
答:两天一共读了全书的。

(2)
答:还剩没有看。

【解析】【分析】(1)把两天看的分率相加即可求出一共读了全书的几分之几;
(2)用1减去两天读的分率即可求出还剩几分之几没看。

16.(1)解:÷-
=×5-
=1
(2)解:设这个数是x,则
x+=
x+-=-
x=
x×=×
x=
所以这个数是。

【解析】【分析】(1)根据题意可列出式子为÷-,先计算除法再计算减法即可;
(2)设这个数是x,根据题意可列出方程x+=,求解方程即可得出x的值。

17.解:设这桶汽油重x千克,则
x=24
x×=24×
x=64
答:这桶汽油重64千克。

【解析】【分析】设这桶汽油重x千克,根据“这桶汽油的总重量×倒出的几分之几=倒出汽油的重量”即可列出方程,求解即可得出x的值。

18.解:设梨的重量是x千克,则苹果的重量是3x千克,故有
3x-x=270
2x=270
x=135
苹果的重量=135×3=405(千克)
答:苹果重405千克,梨重135千克。

【解析】【分析】设梨的重量是x千克,则苹果的重量是3x千克,根据“ 苹果比梨重270千克”即可列出方程,求解即可得出答案。

19.解:+(+)
=++
=
=(千米)
答:这条公路有千米。

【解析】【分析】这条公路的总长=已经修了的千米数+剩下的千米数(已经修了的千米数+剩下的比已经修了的多的千米数),代入数值计算即可。

20.解:121-1=120(支)
47+1=48(本)
所以“优秀队员”的学生人数实际上是120和48的最大公因数,120和48的最大公因数是24。

答:班级中“优秀队员”最多有24人。

【解析】【分析】把练习本本数加上1本,把水笔支数减去1支。

班级中“优秀队员”最多就是120和48的最大公因数,由此求出两个数的最大公因数即可。

21.(1)解:3.14×1000÷5
=3.14×200
=628(棵)
答:一共要栽628棵。

(2)解:半径:1000÷2=500(米)
面积:3.14×500×500
=3.14÷250000
=785000(平方米)
785000÷100×60
=7850×60
=471000(条)
答:湖里一共养471000条鱼。

【解析】【分析】(1)3.14×直径=圆的周长,圆的周长÷间距=栽树棵树;
(2)直径÷2=半径,3.14×半径的平方=面积,面积÷100×60=湖里-共可养鱼条数。

22.解:设大客车每小时行x千米,则小轿车每小时行1.2x千米。

(1.2x+x)×2=330
2.2x×2=330
4.4x=330
x=330÷4.4
x=75
75×1.2=90(千米)
答:大客车每小时行75千米,小轿车每小时行90千米。

【解析】【分析】本题属于相遇问题,等量关系:(大客车的速度+小客车的速度)×行驶时间=行驶路程,根据等量关系列方程,根据等式性质解方程。

23.解:平均每个盒子里装2块月饼,需要48÷2=24(个)盒子;
平均每个盒子里装3块月饼,需要48÷3=16(个)盒子;
平均每个盒子里装4块月饼,需要48÷4=12(个)盒子;
平均每个盒子里装6块月饼,需要48÷6=8(个)盒子;
平均每个盒子里装8块月饼,需要48÷8=6(个)盒子;
平均每个盒子里装12块月饼,需要48÷12=4(个)盒子;
平均每个盒子里装24块月饼,需要48÷24=2(个)盒子;
如果有47块月饼,做不到每个盒子装得同样多。

答:每个盒子装得同样多,有7种装法,从多到少各需要24、16、12、8、6、4、2个盒子,如果有47块月饼,做不到每个盒子装得同样多。

【解析】【分析】根据48的因数分析,两个数相乘积是48,一个因数是盒子数,一个因数是盒子里装的月饼数,据此解答。

24.解:设六年级收集废电池x节,则五年级收集1.5x节,
1.5x+x=80
2.5x=80
2.5x÷2.5=80÷2.5
x=32
五年级:32×1.5=48(节)
答:五年级收集48节废电池,六年级收集32节废电池。

【解析】【分析】此题主要考查了列方程解决问题,设六年级收集废电池x节,则五年级收集1.5x节,五年级收集的废电池数量+六年级收集的废电池数量=80,据此列方程解答。

25.解:48=12×4;36=12×3;
48和36的最大公因数是12;
每根短彩带最长是多少12厘米;
48÷12+36÷12=4+3=7(根)。

答:每根短彩带最长是多少12厘米,一共可以剪成7根短彩带。

【解析】【分析】48和36的最大公因数就是每根短彩带最长的长度;彩带的长度÷每根短彩带最长的长度=可以剪成短彩带的根数,据此解答。

26.解:31.4÷10÷3.14
=3.14÷3.14
=1(米)
0.9<1<1.1
答:这棵银杏树符合景区的标准。

【解析】【分析】10圈的长度÷10÷π=圆的直径。

27.解:缸口半径:50÷2=25(厘米)
缸盖半径:25+5=30(厘米)
缸盖的面积:3.14×30×30=2826(平方厘米)
缸盖周长:2×3.14×30=188.4(厘米)
答:这个缸盖的面积是2826平方厘米,这圈金属条长188.4厘米。

【解析】【分析】缸口直径÷2=缸口半径;缸口半径+缸璧厚=缸盖半径;缸盖的面积=π×缸盖半径×缸盖半径;缸盖周长=2×π×缸盖半径。

28.解:36=2×2×3×3
42=2×3×7
36和42的最大公因数是2×3=6
一共可以截成:36÷6+42÷6=13(段)
答:每根小棒最长有6dm,一共可以截成13段。

【解析】【分析】此题主要考查了最大公因数的应用,用分解质因数的方法求两个数的最大公因数,先把每个数分别分解质因数,再把两个数中的全部公有质因数提取出来连乘,所得的积就是这两个数的最大公因数,也就是每根小棒最长的长度;
要求一共可以截成几段,分别用除法求出两根木棒截的段数,然后相加即可。

29.解:如果甲队人数为偶数,乙队人数为奇数;如果甲队人数为奇数,乙队人数为偶数。

【解析】【分析】奇数+奇数=偶数;奇数+偶数=奇数;偶数+偶数=偶数。

据此作答即可。

30.解:8=2×2×2,12=2×2×3,
所以8和12的最小公倍数是:2×2×2×3=24,8时+24分=8时24分。

答:再过24分钟两车又同时从车站出发,是8时24分。

【解析】【分析】求两辆电车同时发车的两次之间的间隔时间就是两辆电车分别发车的间隔时间的最小公倍数;
第二次同时发车的时间=第一次同时发车的时间+两辆电车同时发车的两次之间的间隔时间,据此代入数值解答即可。

31.解:设正方形边长为a,根据等量关系列式:
4a÷2+9a÷2=39
2a+4.5a=39
6.5a=39
a=39÷6.5
a=6
正方形面积:6×6=36(平方米),所以大三角形面积为:36+39=75(平方米)
答:大三角形ABC的面积75平方米。

【解析】【分析】看图可知,甲、乙都是直角三角形,一条直角边是正方形的边长,所以设正方形边长是a,等量关系:甲的面积+乙的面积=39,根据等量关系列出方程,解方程求出正方形的边长,然后用正方形面积加上甲、乙的面积和就是大三角形的面积。

32.解:圆的直径=6÷2=3(厘米)
6×4+3.14×3×4
=24+37.68
=61.68(厘米)
答:阴影部分的周长是61.68厘米。

【解析】【分析】正方形的周长=正方形的边长×4,4个圆的周长=π×圆的直径×4;涂色部分的周长=正方形的周长+4个圆的周长,据此解答。

33.解:9=3×3,12=3×4,
9和12的最小公倍数是3×3×4=36,
5月3日+36日=5月3日+28日+8日=6月8日。

答:下次他俩同时去培训是在6月8日。

【解析】【分析】9和12的最小公倍数就是他们下次相遇时间隔的时间,第一次同去时间+间隔的时间=下次同去的时间。

34.解:设公鸡有x只,则母鸡有2.4x只,
x+2.4x=680
3.4x=680
3.4x÷3.4=680÷3.4
x=200
母鸡:200×2.4=480(只)
答:公鸡有200只,母鸡有480只。

【解析】【分析】此题主要考查了列方程解决问题,设公鸡有x只,则母鸡有2.4x只,公鸡的只数+母鸡的只数=养殖场一共养鸡的只数,据此列方程解答。

35.(1)解:4m=40dm;2.5m=25dm,
因为40和25的最大公因数是5,所以地砖的边长最长是5dm,
所以一共需要这样的地砖的块数=(40÷5)×(25÷5)
=8×5
=40(块)
答:地砖的边长最长是0.5米;一共需要这样的地砖40块。

(2)解:需要瓷砖的面积=(4×2.4+2.5×2.4)×2
=(9.6+6)×2
=15.6×2
=31.2(平方米)
答:需要31.2平方米的瓷砖。

【解析】【分析】(1)将4m和2.5m转化成dm,即4m=40dm;2.5m=25dm,地砖的边长最长是40和25的最大公因数,40和25的最大公因数是5dm,所以一共需要地砖的块数=(蓄水池的长÷最大公因数)×(蓄水池的宽÷最大公因数),代入数值计算即可;(2)需要瓷砖的面积=(蓄水池的长×四壁贴瓷砖的高度+蓄水池的宽×四壁贴瓷砖的高度)×2,代入数值计算即可。

36.解:12的倍数有:12、24、36、48、60……
16的倍数有:16、32、48、64……
既是12的倍数,又是16的倍数,且在50以内的数是48,
所以这些树一共有48棵。

答:这些树一共有48棵。

【解析】【分析】每12棵栽一行,或者每16棵栽一行,都正好栽完而没有剩余,说明这些树的棵树是12和16的倍数,再分别列出12和16的倍数,然后找到既是12的倍数,又是16的倍数,并且比50小的数就是答案了。

37.解:70=7×2×5;
50=5×2×5;
70和50的最大公因数是2×5=10,剪出的小正方形的边长最长是10厘米。

答:剪出的小正方形的边长最长是10厘米。

【解析】【分析】此题主要考查了最大公因数的应用,用分解质因数的方法求两个数的最大公因数,先把每个数分别分解质因数,再把两个数中的全部公有质因数提取出来连乘,所得的积就是这两个数的最大公因数,也是剪出的小正方形的边长的最大数值,据此解答。

38.解:24×3.14÷2
=75.36÷2
=37.68(厘米)
答:这两条路线的长度都是37.68厘米。

【解析】【分析】观察图可知,两条路线的长度都是直径为24厘米的圆的周长的一半,C=πd÷2,据此列式解答。

39.(1)解:6和9的最小公倍数是18,
6月5日向后推18天是6月23日。

答:下一次两人都到体育馆的时间是6月23日。

(2)解:4、6、9的最小公倍数是36,6月5日向后推36天是7月11日。

答:他们三人下一次都到体育馆的时间是7月11日。

【解析】【分析】(1)他们两人下一次都到体育馆经过的时间一定是6和9的最小公倍数,由此确定两个数的最小公倍数,在从6月5日向后推算时间即可;
(2)他们三人下一次都到体育馆经过的时间一定是4、6、9的最小公倍数,三个数的最小公倍数是36。

6月是小月共30天,6月5日过25天是6月30日,再过11天就是7月11日。

40.解:设我国一共有x个省级行政区。

x=6
x=6÷
x=6×
x=34
答:我国一共有34个省级行政区。

【解析】【分析】等量关系:我国省级行政区总数× =6个省级行政区;根据等量关系列方程,根据等式性质解方程。

相关文档
最新文档