快速成型技术的发展和应用

合集下载

快速成型技术的应用及发展趋势

快速成型技术的应用及发展趋势
Page 8
11.1 跨境电子商务法律制度概述
➢ 11.1.2 跨境电子商务经营主体 2、跨境电商的卖家和消费者
目前我国跨境电商平台企业已超过5000家,境内通过各类平台开展跨境电子商 务的企业已超过20万家。2016年我国消费者通过“海淘”的消费额达到了9000 亿元。
3、跨境电商第三方服务企业
Page 13
11.1 跨境电子商务法律制度概述
➢ 11.1.3 跨境电子商务海关监管模式 2、跨境电商海关监管新政
(3)统一跨境贸易电子商务零售出口通关系统 海关总署统一跨境贸易电子商务零售出口通关系统,有利于各地跨境平台执行统 一的跨境服务标准,能应对外贸订单碎片化趋势、提升消费服务体验。 在跨境电商通关服务平台上,进境商品通关的最高标准是“三单对比”,三单是 指跨境电商公司提供的报关单、支付企业提供的支付清单以及物流企业提供的物 流运单,三单数据确认无误后即可放行进境。
Page 10
11.1 跨境电子商务法律制度概述
➢ 11.1.3 跨境电子商务海关监管模式 2、跨境电商海关监管新政
(1)增列海关监管方式代码 海关总署于2014年2月发布2014年第12号《关于增列海关监管方式代码的公告》, 增列了海关监管方式代码“9610”,全称“跨境贸易电子商务”,简称“电子商 务”,适用于境内个人或电子商务企业通过电子商务交易平台实现交易,并采用 “清单核放、汇总申报”模式办理通关手续的电子商务零售进出口商品。
务的外贸企业超过20万家。
2、跨境电子商务的特征
(1)全球性
(2)无边界
(3)以消费者为主导
(4)小批量、高频度 (5)数字化、监管难
Page 5
想一想
比较一下,相比传统国际贸易和国内电商,跨境电子商务有哪些异同?

快速成型技术在制造业中的应用

快速成型技术在制造业中的应用

快速成型技术在制造业中的应用一、背景介绍随着科技的不断发展,制造业也不断地更新迭代,快速成型技术应运而生。

快速成型技术是指利用计算机辅助设计技术和快速制造技术,通过将数字模型数据转化为实际物理模型的过程,实现快速制造的一种技术。

它具有制造周期短,制造成本低,制造精度高等优点,受到了制造业的广泛关注和应用。

二、快速成型技术的发展历程快速成型技术始于上世纪80年代,至今已经发展了30多年。

其核心技术是三维打印技术(3D打印),最初只能用于制造产品的概念模型和小批量试制,但随着科技的进步和应用范围的扩大,现在已经可以应用于生产具有工程实用价值的大批量零部件和成品。

三、快速成型技术在制造业中的应用1.汽车制造快速成型技术在汽车制造方面应用广泛。

汽车生产中有许多金属零部件需要进行加工和制造,传统的金属加工和制造过程需要多次的筛选和测试,而快速成型技术将这一过程简化为虚拟数字模型一次性的制造,大大节约了生产周期和生产成本。

2.航空航天制造在航空航天制造领域,不仅要求制造零件的构造合理,而且要求制造零件具有足够的强度,耐热性,抗腐蚀等性能。

快速成型技术可以制造设计复杂的零件,如涡轮叶片,喷嘴等高难度零件,此外,快速成型技术还可以用于制造航空用材料,如金属陶瓷等。

3.医疗设备制造在医疗设备制造方面,快速成型技术可用于生产高精度,高品质的假肢,矫形器和外科手术器械等医疗器械,这些器械具有良好的适应性和合理性,对手术质量和病人康复起到了重要作用。

四、快速成型技术的优势1.设计复杂零件快速成型技术可以通过复杂的数字模拟模型,将复杂的结构转化成实际的三维模型,可以简化设计,控制生产周期。

2.制造周期短传统加工制造技术需要大量的时间完成整个加工制造过程,快速成型技术可以大大缩短加工周期,在保证加工精度的同时,提高生产效率。

3.制造成本低传统的加工制造技术需要大量的安装和制造机械设备,而快速成型技术为基于数字模拟的生产模式,减少了机械设备的制造和安装成本。

快速成型的基本分类、发展趋势与应用

快速成型的基本分类、发展趋势与应用
蜡件或其他 可消失件 石膏 蜡件 金属件
快速成型技术——Rapid Prototyping Technology
2006.08.17
三、国内外快速成型技术的发展方向 • 精密铸造 精密铸造——陶瓷壳模 陶瓷壳模 • 陶瓷壳模浇注的金属范围广,能成型高 熔点的金属件 。 • 制作工艺方法有两种: • 一种是在可消失蜡件的表面一层一层的 涂上陶瓷浆,涂完一层后待干后再涂下 一层,达到一定厚度后即可,再进行焙 烧,可消失蜡件熔化消失,这就做出了 陶瓷壳模; • 另一种是直接快速成型出陶瓷壳模;
快速成型技术——Rapid Prototyping Technology
2006.08.17
三、国内外快速成型技术的发展方向 • 生物医学工程 生物医学工程——颅骨修复 颅骨修复 • 国外早在1995年开始借助 技术进行颅骨 年开始借助RP技术进行颅骨 国外早在 年开始借助 修补。 修补。 • 一般采用 及RT技术 先根据 图片经 一般采用RP及 技术 先根据CT图片经 mimics软件反求出三维实体,将其 软件反求出三维实体, 软件反求出三维实体 将其STL文 文 件格式导入到Magic RP软件中进行相关的 件格式导入到 软件中进行相关的 修复,再导入到RP中加工出实物 中加工出实物, 修复,再导入到 中加工出实物,快速作 出硅橡胶模具, 出硅橡胶模具,把PMMA(聚甲基丙烯酸 ( 甲酯) 甲酯)粉末和其溶剂的混合液注入到硅橡 胶模具中做出所要修复的颅骨。 胶模具中做出所要修复的颅骨。
快速成型技术——Rapid Prototyping Technology
2006.08.17
快速成型技术介绍——定义、原理、分类 定义、 一、快速成型技术介绍 定义 原理、 • • • • • • 分类 Stereo Lithography Apparatus (SLA) Selective Laser Sintering (SLS) Laminated Object Manufacturing (LOM) Fused Deposition Modeling (FDM) Three-Dimensional Printing (TDP)

快速成型技术及其在工业生产中的应用

快速成型技术及其在工业生产中的应用

快速成型技术及其在工业生产中的应用快速成型技术是近年来工业生产领域中一个炙手可热的技术,其将传统的制造方式推向了一个全新的境界,对于工业生产的质量、效率、成本的优化均有积极的帮助,在未来的发展中,其前景更加广阔。

一、快速成型技术概述快速成型技术是指通过计算机辅助设计(CAD)和计算机辅助制造(CAM)技术,利用激光、电子束、喷墨等方式将原料制造成零部件的新型制造技术。

目前,应用较广泛的快速成型技术主要有激光烧结成型、光固化成型、激光熔化成型、线切割成型、喷墨成型等。

二、快速成型技术在工业生产中应用1. 工业设计快速成型技术最大的优势是在产品设计阶段,可以快速制造出实际尺寸的零部件,从而帮助实现更好的设计效果。

传统的模型制作需要用手工完成,周期较长、成本高,且不利于修改,而快速成型技术可以快速、准确、灵活地制造出多种模型,帮助设计师实现更好的设计效果。

2. 制造业在工业生产领域中,快速成型技术广泛应用于各种制造行业,如汽车、航空、医疗等。

在汽车行业中,快速成型技术可以快速地生产出各种所需零部件,从而实现零部件的快速替换和更新,提高整车的制造效率和质量,同时,由于快速成型技术可以精确制造各种模具,因此可以生产各种复杂、精密的模具,为汽车制造业带来更大的便利。

在航空行业中,快速成型技术的应用范围也十分广泛,主要用于生产各种复杂、精密的零部件,从而提高飞机的制造效率和质量。

在医疗行业中,快速成型技术可以用于生产各种医疗器械和植入物。

其制造出来的零部件可以依据患者的具体情况进行制造,因此可以更好地满足医疗行业的需求。

3. 艺术设计快速成型技术还可以用于艺术设计领域。

由于其精度和灵活性较高,因此可以造就出更多新颖、独特的艺术品,对于传统艺术的转型和发展有着积极的作用。

由于快速成型技术可以将艺术家的想象力变为现实,因此可以给艺术家带来更多的自由度和创作灵感。

三、快速成型技术发展前景随着科技的不断进步和市场需求的不断增加,快速成型技术在工业生产领域中的应用前景十分广阔。

快速成型技术的现状和发展趋势

快速成型技术的现状和发展趋势

快速成型技术的现状和发展趋势快速成型技术(Rapid Prototyping Technology,RPT)是一种将设计文件快速转化为实体模型的技术。

它通过逐层堆叠材料的方式制造模型,相比传统的基于切割、拼接和加工的方法,具有快速、灵活和定制化的特点。

随着科技的不断发展和应用领域的扩大,快速成型技术也在不断创新和更新。

1.技术日臻成熟:快速成型技术经过多年的研发和实践,已经在各个领域有了广泛的应用,例如汽车制造、医疗器械、航空航天等。

技术的稳定性和可靠性得到了验证,成型精度和制造效率也有了很大提高。

2.多种成型技术:随着快速成型技术的发展,出现了许多不同的成型技术,包括光固化、喷墨、熔融沉积等。

每种技术都有自己的特点和适用范围,可以根据不同的需求选择合适的技术。

3.材料种类丰富:最初的快速成型技术只能使用一些特定的材料进行成型,如塑料、树脂等。

而现在,随着材料科学的进步,可以使用金属、陶瓷等多种材料进行快速成型,大大扩展了应用领域。

1.精度的提高:精度是快速成型技术的一个重要指标,未来的发展趋势是进一步提高成型的精度。

通过改进设备和材料,优化参数设置等方式,可以实现更加精细的成型,满足更高的需求。

2.成型速度的提升:虽然快速成型技术已经很快,但是在一些特定的应用场景下,速度还是有待提高。

未来的发展趋势是研发更加高效的成型设备和更快速的材料固化方式,以满足更加紧迫的需求。

3.结构复杂性的增加:快速成型技术的优势之一就是可以制造复杂结构的模型。

未来的发展趋势是进一步发展可以制造更加复杂的结构,如组织结构、微观结构等,以满足更多领域的需求。

4.材料种类的扩展:材料的种类对快速成型技术的应用范围有很大的影响。

未来的发展趋势是不断扩展可用材料的范围,如增加金属、陶瓷、生物材料等,以满足更广泛的应用需求。

总之,快速成型技术是一项具有广阔应用前景的技术,随着科技的不断发展和创新,将会在制造业、医疗、航空等领域发挥更为重要的作用。

快速成型技术在产品设计中的应用

快速成型技术在产品设计中的应用

快速成型技术在产品设计中的应用快速成型技术,即Rapid Prototyping,简称RP技术,是一种利用计算机辅助设计(CAD)和计算机辅助制造(CAM)技术,通过堆叠或涂覆材料来逐层制造实体模型的技术。

随着科技的不断发展,快速成型技术在产品设计中的应用得到了越来越广泛的应用,为产品开发提供了更快、更灵活的解决方案。

本文将探讨快速成型技术在产品设计中的应用,并介绍其优势和未来发展趋势。

快速成型技术在产品设计中的应用主要体现在以下几个方面:1.快速制作实体模型:传统上,产品的开发需要花费大量的时间和成本来制作实体模型进行测试和验证。

而有了快速成型技术,设计师可以通过CAD软件设计出模型,并利用快速成型技术将设计图转化成实体模型,实现快速制作和验证设计的效果。

这样可以有效缩短产品开发周期,提高产品设计的灵活性和精度。

2.灵活性和创新性:快速成型技术可以很容易地制作复杂形状的实体模型,从而为设计师提供了更多的创意空间。

设计师可以通过快速成型技术制作出各种各样的模型,包括曲线、空间结构等复杂形状,从而激发设计的创新性,提高产品的竞争力。

3. 降低成本:传统的产品设计需要雕刻模型或制作模具,这些过程通常需要大量的时间和成本。

而快速成型技术可以直接将设计图转化为实体模型,无需制作模具和雕刻,从而大大节省了成本和时间。

4. 可视化效果:产品设计师可以通过快速成型技术将设计图快速转化为实体模型,从而更直观地展现给客户和团队成员,加快决策过程。

这种可视化效果可以帮助客户和团队更好地理解设计意图,提出意见和建议,从而更好地满足市场需求。

5. 高效的定制化生产:快速成型技术可以帮助企业快速响应市场需求,实现定制化生产。

设计师可以根据客户需求快速制作出客户需求的产品,实现小批量、多样化的生产,从而提高产品的市场竞争力。

未来,随着科技的不断发展和应用场景的不断扩大,快速成型技术在产品设计中的应用将会越来越广泛。

随着快速成型技术的不断创新和发展,将会有更多的材料可以用于快速成型技术,从而更好地满足产品设计的需求。

快速成型技术的发展与应用

快速成型技术的发展与应用

快速成型技术的发展与应用摘要:快速成型技术是现代制造技术较为先进的加工方法,其结合了数控、计算机制造、激光等技术。

本文主要介绍了几种快速成型技术的发展与现状及其加工原理,对其在产品设计、模具制造、建筑、医疗等方面的应用作了探讨,分析了该技术在应用中的优缺点。

关键词:快速成型技术;工作原理;应用1前言为了满足现代社会消费者的需求,各种各样的新产品不断出现。

现代产品的设计不但追求质量好,功能强,而且要求造型美观。

一方面,制造商要面对消费者“喜新厌旧”的心理,产品的更新换代不断加快,谁能够利用最短的时间不断的推出新产品,谁就能留住消费者;另一方面,现代制造业的市场是竞争越来越激烈,降低成本,生产出高质量的产品是商家制胜的法宝。

这就使得传统的产品设计与制造的方法已经不能完全满足现在产品设计的要求。

在这种形势下,催使快速成型技术(Rapid Prototyping Manufacturing,RPM)的出现与成熟。

2快速成型的原理传统的加工技术是采用去材料的加工方式,在毛坯上把多余的材料去除,得到我们想要的产品。

而快速成型技术即是采用加材料的方式进行加工,材料从没有到有,一层层的叠加得到产品,有别于传统的加工方式。

快速成型技术采用离散或堆积成型的原理,由三维的CAD模型根据不同的加工工艺进行分层,每一层就变成了一个二维图形,从而由大量的二维图形取代了三维图形,只要所分的层是足够的薄,那么大量的二维图形叠加在一起就越逼近三维图形。

然后经过对数据进行处理,让每一个二维图形生成数控程序,利用数控系统把所得的数控程序以平面加工的方式还原成每一层二维图形的薄片,让薄片一层一层的叠加起来就得到了三维的模型。

快速成型技术经过近年来的不断发展与完善,已经产生了很多种的加工方法。

目前主要的有:美国3D SYSTEM公司的光固化成型法(Stereo Lithography Apparatus,SLA)、美国Helisys的分层实体制造法(Laminated Object Manufacturing,LOM)、德国的ESO选择性激光烧结法(Selective LaserSintering,SLS)、美国Stratasys的熔融沉积法(Fused Deposition Modding,FDM)、美国MIT-Z的三维打印法(Three Dimensional Printing and Gluing,3DP)等常用的方法。

快速成型技术及其应用

快速成型技术及其应用

快速成型技术及其应用一、本文概述随着科技的迅速发展和市场竞争的日益激烈,产品的设计、开发和生产周期已经成为决定企业竞争力的关键因素。

在这一背景下,快速成型技术(Rapid Prototyping,简称RP技术)应运而生,以其独特的优势在生产制造领域引发了深刻的变革。

本文旨在全面介绍快速成型技术的基本概念、发展历程、主要类型及其在各行业中的应用实例,分析快速成型技术带来的经济效益与社会影响,并展望其未来的发展趋势和挑战。

通过对这一技术的深入探讨,我们期望能够帮助读者更好地理解并应用快速成型技术,以促进企业创新能力的提升和产业升级的加速。

二、快速成型技术的基本原理与分类快速成型技术(Rapid Prototyping, RP)是一种基于三维计算机辅助设计(CAD)数据,通过逐层堆积材料来制造三维实体的技术。

其基本原理可以概括为“离散-堆积”。

将三维CAD模型进行切片处理,得到一系列二维层面信息;然后,按照这些层面信息,通过特定的成型设备,如激光烧结机、熔融沉积机、光固化机等,将材料逐层堆积起来,最终形成与原始CAD模型一致的三维实体。

根据成型材料的不同和成型方式的差异,快速成型技术可以分为以下几类:熔融沉积成型(Fused Deposition Modeling, FDM):该技术使用热塑性材料,如蜡、ABS塑料等。

材料在喷头中加热至熔融状态,然后按照CAD模型的切片信息,通过喷头逐层挤出材料,冷却后形成实体。

光固化成型(Stereo Lithography, SLA):使用液态光敏树脂作为材料。

在紫外光照射下,液态树脂逐层固化,形成实体。

该技术精度较高,适用于制造复杂结构和高精度的模型。

选择性激光烧结(Selective Laser Sintering, SLS):采用粉末状材料,如塑料粉末、金属粉末、陶瓷粉末等。

在激光的作用下,粉末逐层烧结,形成实体。

该技术可以制造金属和陶瓷等高强度材料的零件。

快速成型与快速模具制造技术及其应用

快速成型与快速模具制造技术及其应用

1976年,P. L. DiMatteo进一步明确 地提出,这种堆积技术能够用来制 造用普通机加工设备难以加工的曲 面,如螺旋桨、三维凸轮和型腔模 具等。在具体实践中,通过铣床加 工成形沿高度标识的金属层片,然 后通过粘接成叠层状,采用螺栓和 带锥度的销钉进行连接加固,制作 了型腔模,如图所示。
由DiMatteo制作的型腔模叠层模型
第三节 快速成型技术的特点及优越性
❖ 快速成型技术的优越性
◎ 用户受益 用户在产品设计的最初阶段,也能见到产品样品甚至少量产品,这使得用户能及早、 深刻地认识产品,进行必要的测试,并及时提出意见,从而可以在尽可能短的时间 内,以最合理的价格得到性能最符合要求的产品。
第一章 概 论
1 快速成型技术的早期发展 2 快速成型技术的主要方法及分类 3 快速成型技术的特点及优越性 4 快速成型技术的发展趋势
1902年,Carlo Baese在他的美国专利(# 774549)中,提出了用光敏聚合 物制造塑料件的原理,这是现代第一种快速成形技术—“立体平板印 刷术”(StereoLithography)的初始设想。
1940年,Perera提出了在硬纸板上切割轮廓线,然后将这些纸板粘结 成三维地形图的方法。
第一章 概 论
1 快速成型技术的早期发展 2 快速成型技术的主要方法及分类 3 快速成型技术的特点及优越性 4 快速成型技术的发展趋势
第二节 快速成型技术的主要方法及分类
❖ 快速成型过程
快速成型离散和叠加过程
快速成型技术的制造方式是基 于离散堆积原理的累加式成型, 从成型原理上提出了一种全新 的思维模式,即将计算机上设 计的零件三维模型,通过特定 的数据格式存储转换并由专用 软件对其进行分层处理,得到 各层截面的二维轮廓信息,按 照这些轮廓信息自动生成加工 路径,在控制系统的控制下, 选择性地固化光敏树脂或烧结 粉状材料或切割一层层的成型 材料,形成各个截面轮廓薄片, 并逐步顺序叠加成三维实体, 然后进行实体的后处理,形成 原型或零件,如图所示。

FDM快速成型技术及其应用

FDM快速成型技术及其应用

感谢观看
4、医疗行业:在医疗领域,FDM技术被用于制造人体植入物、医疗器械等。 由于其制造的材料安全、无毒,且精度高,使得FDM成为医疗行业的重要选择。
5、教育行业:在教育领域,FDM技术常被用于教学示范和实验中,通过打印 出三维模型来帮助学生更好地理解复杂的概念和结构。此外,学生也可以使用 FDM技术来制作自己的设计项目,提高实践能力和创新思维。
六、未来展望
随着科技的快速发展和社会的不断进步,我们期待快速成型技术能够在以下 几个方面有所突破:首先,设备的效率和稳定性还有待提高,以提高生产效率和 质量;其次,材料的种类和性能需要进一步拓展和优化,以满足不同应用场景的 需求;最后,我们期待这种技术能够更好地融入环保理念,以实现可持续的制造 和发展。
(4)材料广泛:光敏树脂种类繁多,可以满足各种不同类型制品的需求。
2、不足
然而,光固化快速成型技术也存在以下不足之处:
(1)成本较高:光固化快速成型技术的设备、材料和维护成本较高,限制 了其广泛应用。
(2)技术难度较大:光固化快速成型技术的技术门槛较高,需要专业人员 进行操作和维护。
(3)环境影响:光固化过程会产生有害的紫外光和挥发性有机化合物,对 环境和操作者的健康有一定影响。
8、环保行业:在环保领域,FDM技术提供了一种可持续的制造方法。通过使 用可降解或可回收的材料进行打印,可以减少废弃物的产生和对环境的影响。此 外,FDM技术还可以用于制造环保设备零件等。
9、科研领域:在科学研究领域,FDM技术常被用于制造实验模型和测试样品。 例如在材料科学中,研究人员可以使用FDM来制造不同材料的复合结构以研究其 物理和化学性能。此外在生物学领域,FDM技术也被用于制造生物组织的复杂结 构以研究其生长和发育的机制。

快速成型技术现状与行业发展趋势

快速成型技术现状与行业发展趋势

快速成型技术现状与行业发展趋势快速成型技术(Rapid Prototyping)是一种通过逐层添加材料构建三维实体模型的技术,也被称为三维打印技术。

不仅可以用于产品原型的制作,还可以应用于医学、建筑、艺术等多个领域。

快速成型技术的发展对于加速产品开发、提高设计效率和降低生产成本具有重要意义。

目前,快速成型技术已经成为制造业领域的重要技术之一,并呈现出以下的现状和发展趋势。

1. 技术不断创新:快速成型技术一直在不断创新和发展。

除了传统的层积累积(Stereolithography,SLA)、选择性激光烧结(Selective Laser Sintering,SLS)、三维打印(3D Printing)等技术之外,还有新的技术涌现,如聚合光束制造(Polymer Jetting)、电子束熔化(Electron Beam Melting,EBM)等。

这些新技术在速度、成品质量、材料适用范围等方面都有所提升。

2.应用领域不断扩大:快速成型技术开始应用于更多的领域。

除了常见的汽车、航空航天、电子产品等制造业领域,还涉及到医疗、教育、文化创意等多个领域。

医疗方面,快速成型技术可以用于制作适配性假肢、手术模拟器等。

教育方面,可以用于制作教学模型,提高教学效果。

文化创意方面,可以实现艺术品、建筑模型等的快速制作。

3.材料种类丰富:随着技术的发展,快速成型技术所应用的材料种类越来越丰富。

除了传统的塑料材料,还有金属、陶瓷等材料可以用于快速成型技术。

这使得快速成型技术的适用范围更广,可以实现更多的应用。

1.加快制造速度:快速成型技术的一个重要发展趋势是加快制造速度。

传统的快速成型技术需要较长的时间来完成一个实体模型的制作,限制了其在制造业中的应用。

因此,通过改进设备和工艺,加快制造速度是一个重要的发展方向。

2.提高成品质量:成品质量是快速成型技术发展的一个重要方向。

目前,由于制造过程中的一些技术限制,快速成型技术所制作的成品的表面质量和精度有一定的局限性。

快速成型技术在模具制造中的应用与发展前景

快速成型技术在模具制造中的应用与发展前景

快速成型技术在模具制造中的应用与发展前景快速成型技术(Rapid Prototyping,简称RP),又称增材制造技术(Additive Manufacturing,简称AM),是一种通过逐层逐点添加材料的方式,直接将三维数字模型转换为实体模型的制造技术。

它通过数控技术、计算机模型和数字化工艺的应用,极大地缩短了传统制造过程中从设计到加工的时间,提高了制造效率和产品质量,并在模具制造领域得到广泛应用。

快速成型技术在模具制造中的应用主要体现在以下几个方面:1. 制造复杂结构的模具:传统的模具制造往往需要多次加工和组装,制约了模具的结构复杂度和精度,而快速成型技术可以直接将复杂的三维数字模型转化为实体模型,使得制造复杂结构的模具变得更加容易。

例如,快速成型技术可以实现内部空腔、内螺纹结构等复杂形状的模具制造,大大提高了模具的功能性和应用领域。

2. 减少制造周期:快速成型技术可以大大缩短模具的设计和制造周期。

传统的模具制造需要经过设计、加工、组装等多个环节,而且每个环节都可能出现问题导致延误。

而快速成型技术可以直接将数字模型转化为实体模型,减少了多个环节的中间过程,加快了模具的制造速度。

尤其是在产品开发的初期阶段,这种快速制造模具的能力非常重要,可以提高产品研发的效率和竞争力。

3. 优化模具结构和性能:快速成型技术可以通过不断试验迅速调整模具的设计和结构,提高模具的性能和质量。

在传统的模具制造中,往往需要经过多次试验和修改才能最终确定模具的结构和参数。

而快速成型技术可以通过快速制造并测试多个不同设计的模具样品,迅速找到最优设计方案,减少了试错的成本和周期,提高了模具的效率和性能。

4. 减少模具制造成本:快速成型技术不仅可以缩短制造周期,还可以降低模具制造的成本。

传统的模具制造方式往往需要大量的人工和设备投入,制造周期长,成本高。

而快速成型技术可以通过直接从数字模型中生成模具,减少了多个加工环节和设备的投入,降低了制造成本。

快速成型技术-第一章

快速成型技术-第一章

1Hale Waihona Puke 1.2发展历史快速成型技术并非是一项完全崭新的技术,其核心思想可以追溯到19
世纪照相雕塑和地貌成形专利。但,受限于当时材料技术与计算技术等众
多因素,这些早期的快速成型技术实践并没有得到广泛的商业化应用。现 代意义上的快速成型技术研究始于20世纪70年代,直到80年代,该技术才
得以变为现实。
1.萌芽期
2.奠基期 1986年,分层实体制造成型技术(LOM)由Michael Feygin 发明并申请专利,该技术使用薄片材料、激光与热熔胶来 进行制件的层压成型。1990年前后,Feygin组建的Helisys 公司在美国国家科学基金会的赞助下,研发出第一台投入 商用的快速成型机LOM-1015,成为快速成型技术商业化应 用的先驱。
2012年,4月,在快速成型产业 迅猛发展的大背景下,英国著 名经济学杂志《经济学人》推 出了《3D打印推动第三次工业 革命》的封面文章,认为3D打 印技术将“与其他数字化生产 模式一起推动实现第三次工业 革命”,2012年也因此被称为 “3D打印技术的科普元年”。
纵观全球,欧美日等发达国家已将快速成型技术视为实现 “再工业化”的重要契机。 2012年,美国建立国家增材制造创新研究院(NAMII),将发展 快速成型技术提升至国家战略高度; 欧盟及成员国致力于发展金属快速成型技术,相关产业发 展和技术均走在世界前列; 俄罗斯凭借在激光领域的技术优势,积极发展激光快速成 型技术研究及应用; 日本则全力推进快速成型与制造业的深度融合,意图借助 快速成型技术重塑制造业的国际竞争力。 2013年以来,快速成型技术已进入爆发式增长阶段,新技术、 新材料或者新型应用成果陆续发布。2013年5月,3D打印产业 联盟正式成立。

快速成型技术在汽车工业中的应用

快速成型技术在汽车工业中的应用

快速成型技术在汽车工业中的应用随着科技的不断进步,越来越多的新技术被应用到各个行业中,汽车工业也不例外。

其中,快速成型技术作为一种革命性的制造技术,已经被广泛应用于汽车制造中。

本文将从快速成型技术的定义、发展历程和应用领域三个方面,对快速成型技术在汽车工业中的应用进行详细探讨。

一、快速成型技术的定义和发展历程快速成型技术(Rapid Prototyping,RP),是一种先进的制造技术,通过三维数控系统将计算机辅助设计(CAD)文件直接转换为三维物理模型。

其主要优势是减少了传统制造过程中的工具和模具制造、组装和加工等一系列繁琐复杂的工序,进而大幅提高了制造效率和质量。

快速成型技术的起源可以追溯到20世纪80年代初期,在此期间,美国麻省理工学院的Charles Hull首次提出了激光造型技术(Stereolithography,SLA),同时日本的石井辅也独立研发出了光固化成型技术(PhotoSolidification),意味着快速成型技术的诞生。

此后,快速成型技术得到了快速发展,包括选择性激光烧结(Selective Laser Sintering,SLS)、喷墨成型(Inkjet Printing)等技术的推广和应用,以及新型成型材料的研究和不断完善。

二、快速成型技术在汽车工业中的应用快速成型技术在汽车工业中的应用可以分为三个方面:1、汽车设计和开发制造利用快速成型技术的制造优势,汽车公司可以在短时间内制造出零部件甚至整个汽车原型,对汽车进行试装、试制和试运行。

这样可以大大缩短汽车开发周期和成本,并提高产品的质量和可靠性,同时也为消费者提供更多更好的汽车产品。

目前,利用快速成型技术制造汽车原型已成为很多汽车公司普遍采用的方法。

2、汽车维修和保养快速成型技术可以在维修和保养汽车时起到很大的作用。

利用快速成型技术制造汽车零部件甚至发动机部件,可以大大缩短维修时间,提高维修效率和质量,同时也减少了汽车零部件的订购和库存成本。

快速成型技术

快速成型技术

快速成型技术快速成型技术(Rapid Prototyping Technology)是一种通过计算机辅助设计(CAD)或三维扫描等手段,直接将数字模型转换成实体模型的技术。

这种技术在制造业中应用广泛,特别是在产品设计和开发阶段。

它的出现极大地加快了产品开发的速度,提高了产品质量,降低了开发成本。

快速成型技术最早出现在20世纪80年代末期,当时它被称为快速成型制造(Rapid Prototyping Manufacturing,RPM)。

最初,这项技术主要用于制造模型和原型,以便用于产品的验收、检测和展示。

随着科技的不断进步,快速成型技术逐渐应用于大批量生产,成为了现代制造业中不可或缺的部分。

快速成型技术的原理是将数字模型切片,在计算机控制下,通过一层层的积累堆积物料(如塑料或金属粉末),最终形成实体模型。

常见的快速成型技术有激光烧结成型法(Selective Laser Sintering,SLS)、光固化成型法(Stereolithography,SLA)和熔融沉积成型法(Fused Deposition Modeling,FDM)等。

快速成型技术的优点之一是节省了时间。

在传统的制造工艺中,产品开发需要制作模具,然后进行注塑、冲压等工艺,这些过程非常繁琐且耗时。

而快速成型技术可以直接从数字模型生成实体模型,省去了制造模具的步骤,大大缩短了开发时间。

设计师可以通过快速成型技术轻松地进行多次迭代,使产品的设计更加完善,提高了开发效率。

此外,快速成型技术还能够降低产品开发的成本。

由于快速成型技术可以直接从数字模型制作实体模型,省去了制造模具的费用,尤其是在小批量生产或个性化定制的情况下,可以大大降低成本。

另外,由于快速成型技术可以提供高质量的产品样品,从而减少了开发过程中的重大错误和返工次数,并降低了产品开发的风险。

快速成型技术也在产品设计中起到了重要的作用。

通过快速成型技术,设计师可以将虚拟的设计概念转变为实际的实体模型,以便进行物理实验、形态研究和外观评估。

快速成型技术-第七章

快速成型技术-第七章

7.2 逆向工程、快速成型与快速模具系统的集成
(一) RE相关技术及应用 1. RE技术 逆向工程技术也称为反求工程、反向工程等,它能将已有实物或
模型转换为三维点云数据资料,借助这些数据资料能在短时间内快速地对已有产 品或模型进行造型上的修改与创新设计,即RE技术的主要内容就是将实物转变为 三维CAD数据资料并进行几何模型重构与产品的快速制造。
7.1 产品快速设计与制造系统的集成
三、产品快速设计与制造系统的应用
利用产品快速设计与制造系统的基本框架及软硬件相关资源,可快速地实现产 品的三维设计。 (一)借助RE技术实现产品的快速设计与制造 图7-2所示为对某一吉普车车轮进 行反求与再设计,图7-3所示为对吉普车车轮进行的多次再设计与LOM模型。在满 足车轮刚度、强度等使用要求的前提下,尽量使其外观具有美感。同时,在设计车 轮外观时,对每一种设计都进行LOM原型制件的快速制作与仿真,对车轮的外观及 结构进行多次改进,最终确定合理的设计方案并生产出车轮样件。
从以上两种产品的快速设计方法及步骤中可以看出,它们都是借助 计算机三维CAD设计、快速成型与快速模具制造等技术来进行产品 的快速设计与制造。不同点则是前者是采用逆向思维的方式,而后者 是采用正向思维的方式进行产品的快速设计与制造。
7.1 产品快速设计与制造系统的集成
产品快速设计与制造过程不仅仅是 考虑某个单一因素,而是集工业设计、 美学、产品的功能与结构性能、产品 的制造工艺性以及成本等多种因素于 一体的设计过程,有时甚至可能还需通 过对产品在实际工作环境中进行仿真 或在仿真基础上进行相关的优化设计, 最终达到产品的设计目的。图7-1所示 为产品快速设计与制造系统的基本框 架。
通过RE技术构建三维CAD数据资料的主要内容是:首先借助三维测量装置对 实物进行三维点云数据资料的采样以获取实物的三维点云数据资料,即对实物进 行三维离散数字化处理,这是RE的关键技术;其次再对三维点云数据资料进行预处 理,如进行数据的平滑滤波、消除噪声、删除冗余数据资料、重要特征的提取与 排序等,初步确定实物的几何特征信息;然后再进行三维曲面的修改与重构,如将数 据资料按研发需求进行曲面的建构与重构、拼接等工作;最后将曲面模型进行检 查与修改并等待输出。

快速成形技术的发展及应用

快速成形技术的发展及应用

快速成形技术的发展及应用摘要快速成形技术(Rapid Prototyping,RP)是一种借助计算机、激光,精密传动和数控等现代手段,将计算机辅助设计(CAD)和计算机辅助制造(CAM)集成于一体,根据在计算机上构造的三维模形,以逐层累计的建造方式在很短时间内直接制造产品样品的技术,无需传统的机械加工机床和模具。

该项技术创立了产品开发的新模式,使设计师以前所未有的直观方式体会设计的感觉,感性而迅速的验证和检查所设计的产品结构和外形,从而使设计工作进入了一种全新的境界,改善了设计过程中的人机交流,缩短了产品开发的周期,加快了产品更新换代的速度,降低了企业投资新产品的风险,加强了企业引导消费者的力度。

关键词快速成形先进技术高效制造正文快速成形技术又称快速原型制造技术,诞生于20世纪80年代后期,是基于材料堆积法的一种高新制造技术,被认为是近20年来制造领域的一个重大成果。

它集机械工程、CAD、逆向工程技术、分层制造技术、数控技术、材料科学、激光技术于一身,可以自动、直接、快速、精确地将设计思想转变为具有一定功能的原型或直接制造零件,从而为零件原型制作、新设计思想的校验等方面提供了一种高效低成本的实现手段。

即,快速成形技术就是利用三维CAD的数据,通过快速成型机,将一层层的材料堆积成实体原型。

下面我将从RP起源、RP技术分类、RP特点、RP应用四个方面来讲解。

1、RP起源分层制造三维物体的思想雏形可追溯到4000年前。

中国出图的漆器用粘结剂把丝、麻粘结起来铺敷在底胎(类似RP的基板)上,待漆干后挖去底胎成形。

人们发现,古埃及人在公元前就已经将木材切成板后重新铺叠,制成像现代胶合板似的叠合材料。

1892年,Blanther主张用分层方法制作三维地图模形。

1979年,东京大学的中川威雄教授利用分层技术制造了金属冲裁模、成形模和注塑模。

20世纪70年代末到80年代初,美国3M公司的Alan J.Hebert(1978年)、日本的小玉秀男(1980年)、美国UVP公司的Charles W.Hull(1982年)和日本的丸谷洋二(1983年),各自独立的提出了RP的概念,即利用连续层的选取固化制作三维实体的新思想。

机械设计中的快速成型技术如何发展

机械设计中的快速成型技术如何发展

机械设计中的快速成型技术如何发展在当今科技飞速发展的时代,机械设计领域也在不断寻求创新和突破。

快速成型技术作为一项具有重要意义的制造手段,正逐渐改变着机械设计的流程和方式。

那么,这项技术在未来将如何发展呢?快速成型技术,也被称为增材制造技术,它是一种基于离散堆积原理,通过逐层添加材料来构建三维物体的制造方法。

与传统的减材制造方法相比,快速成型技术具有诸多优势。

它能够快速地将设计理念转化为实际产品,大大缩短了产品开发周期,降低了开发成本。

同时,它还能够制造出复杂形状的零件,突破了传统制造工艺的限制。

在材料方面,快速成型技术未来将不断拓展可用材料的种类。

目前,常用的材料包括塑料、金属、陶瓷等,但随着技术的进步,更多高性能、特殊功能的材料将被应用于快速成型。

例如,具有高强度、高韧性的新型合金材料,能够满足航空航天等高端领域对零件性能的严格要求;具有生物相容性的材料,可用于医疗领域的人体器官制造;具有耐高温、耐腐蚀性能的材料,适用于极端环境下的机械部件生产。

在精度和表面质量方面,快速成型技术也有着巨大的提升空间。

通过不断改进设备的精度控制、优化工艺参数以及采用更先进的扫描和沉积技术,未来快速成型制造的零件精度将能够达到甚至超越传统加工方法的水平。

同时,表面质量也将更加光滑、细腻,减少后续处理的工作量,提高产品的整体质量和性能。

多材料复合成型是快速成型技术发展的一个重要趋势。

在一个零件中集成多种不同性能的材料,能够实现零件功能的最优化。

例如,在机械传动部件中,可以将耐磨材料用于接触表面,高强度材料用于承受载荷的部位,而轻质材料则用于减轻整体重量。

这种多材料复合成型技术将为机械设计带来更多的创新空间,使产品能够更好地满足复杂的工作条件和性能要求。

快速成型技术与其他制造技术的融合也将成为未来发展的方向。

例如,与传统的铸造、锻造、切削加工等技术相结合,取长补短,形成更加高效、灵活的制造体系。

通过快速成型技术制造出复杂形状的毛坯,再经过传统加工方法进行后续的精度加工,可以在保证产品质量的前提下,提高生产效率,降低成本。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北劳动关系职业学院机电一体化专业毕业论文设计论文题目快速成型技术的发展应用在现代市场经济全球一体化背景下的今天,企业要在竞争日益激烈的市场经济中掌握先机,占据有利地位,需要有技术和产品上的创新,把握并引导市场的发展方向。

与此同时,对于市场的需求,企业需要做出快速的响应,切合当前需求,而现有的常规技术手段已经不能对市场的需求做出最快的反应。

与此同时快速制造技术的快速发展,体现了现代先进制造技术对全球制造业的支撑,通过应用快速成型技术企业能迅速响应市场需求,最快速度的抢占新兴市场。

企业需要通过采用快速成型技术来降低开发、生产成本、缩短研发周期、提高市场快速响应能力,快速成型(Rapid Prototyping)是上世纪80年代末及90 年代初发展起来的高新制造技术,是由三维CAD模型直接驱动的快速制造任意复杂形状三维实体的总称。

它集成了CAD技术、数控技术、激光技术和材料技术等现代科技成果,是先进制造技术的重要组成部分。

由于它把复杂的三维制造转化为一系列二维制造的叠加,因而可以在不用模具和工具的条件下生成几乎任意复杂的零部件,极大地提高了生产效率和制造柔性,与传统制造方法不同,快速成型从零件的CAD几何模型出发,通过软件分层离散和数控成型系统,用激光束或其他方法将材料堆积而形成实体零件。

通过与数控加工、铸造、金属冷喷涂、硅胶模等制造手段相结合,已成为现代模型、模具和零件制造的强有力手段,在航空航天、汽车摩托车、家电等领域得到了广泛应用。

快速成型技术兴起于20世纪80年代,是现代工业发展不可或缺的一个重要环节。

本文介绍了快速成型技术的产生、技术原理、工艺特点、设备特点等方面,快速成型将向复合成型、降低成本、简化工艺,提高速度和精度的方向发展,同时简述快速成型技术在国内的发展历程。

关键词:快速成型,烧结,固化,叠加,发展服务,降低成本目录前言 (III)摘要 (IV)目录 (V)1.第一章快速成型技术的概述 (1)1.1快速成型技术的产生 (1)1.2快速成型技术原理 (2)2.第二章快速成型技术的软件系统和工艺工程 (3)2.1软件系统 (3)2.2工艺过程 (3)3. 第三章几种常用快速成型技术的原理 (4)3.1立体印刷 (4)3.2选择性激光烧结 (4)3.2.1 SLS技术的应用领域 (7)3.2.2目前选择性激光烧结成型技术尚存在的一些问题 (7)3.3分层实体制造 (8)3.4熔融沉积成型 (9)3.4.1熔融沉积造型(FDM)的工艺原理 (9)4. 第四章快速成型与传统工艺 (10)4.1 RP技术的特点 (10)4.2几种典型的快速成型工艺及其比较 (11)4.2.1几种典型的快速成型工艺 (11)4.2.2几种典型快速成型工艺的比较 (11)5. 第五章快速成技术的应用 (12)5.1快速原型制造 (12)5.2快速模具制造 (12)5.3快速铸造 (13)5.4快速成型技术在工业设计中的应用 (14)5.4.1在外观及人机评价中的应用 (14)5.4.2在产品结构评价中的应用 (14)5.4.3与反求工程结合 (14)6.第六章快速成型技术的发展前景 (16)6.1快速成型的发展趋势 (16)6.1.1开发概念模型机或台式机 (16)6.1.2开发新的成形能源 (16)6.1.3开发性能优越的成形材料 (16)6.1.4研究新的成形方法与工艺 (16)6.1.5集成化 (17)6.2快速成型的应用对制造业的影响 (17)(1)RP技术在制造方式上具有革命性的突破 (17)(2)RP技术优化了产品开发过程,是快速市场响应的重要保证 (17)(3)产品在设计阶段接受设计评估与校审 (18)(4)产品在设计阶段就可进行功能试验 (18)(5)可进行快速模具制造或成品制造 (18)6.3拓展快速成型应用的新型材料 (18)6.4快速成型技术在向产品生产化发展中所存在的主要问题 (19)6.5快速成型技术产业面临的应用化挑战 (20)结束语 (21)参考文献 (22)1.第一章快速成型技术的概述快速成形技术又称快速原型制造(Rapid Prototyping Manufacturing,简称RPM)技术,诞生于20世纪80年代后期,是基于材料堆积法的一种高新制造技术,被认为是近20年来制造领域的一个重大成果。

它集机械工程、CAD、逆向工程技术、分层制造技术、数控技术、材料科学、激光技术于一身,可以自动、直接、快速、精确地将设计思想转变为具有一定功能的原型或直接制造零件,从而为零件原型制作、新设计思想的校验等方面提供了一种高效低成本的实现手段。

即,快速成形技术就是利用三维CAD的数据,通过快速成型机,将一层层的材料堆积成实体原型。

1.1快速成型技术的产生快速原型(Rapid Prototyping,RP)技术,又称快速成形技术,是当今世界上飞速发展的制造技术之一。

快速成形技术最早产生于二十世纪70年代末到80年代初,美国3M公司的阿伦赫伯特于1978年、日本的小玉秀男于1980年、美国UVP公司的查尔斯胡尔1982年和日本的丸谷洋二1983年,在不同的地点各自独立地提出了RP的概念,即用分层制造产生三维实体的思想。

查尔斯胡尔在UVP的继续支持下,完成了一个能自动建造零件的称之为Stereolithography Apparatus (SLA)的完整系统SLA-1,1986年该系统获得专利,这是RP发展的一个里程碑。

同年,查尔斯胡尔和UVP的股东们一起建立了3D System公司。

与此同时,其它的成形原理及相应的成形系统也相继开发成功。

1984年米歇尔法伊杰提出了薄材叠层(Laminated Object Manufacturing,以下简称LOM)的方法,并于1985年组建Helisys公司,1992年推出第一台商业成形系统LOM-1015。

1986年,美国Texas大学的研究生戴考德提出了选择性激光烧结(Selective Laser Sintering,简称SLS)的思想,稍后组建了DTM公司,于1992年开发了基于SLS 的商业成形系统Sinterstation。

斯科特科瑞普在1988年提出了熔融成形(Fused Deposition Modeling,简称FDM)的思想,1992年开发了第一台商业机型3D-Modeler。

自从80年代中期SLA光成形技术发展以来到90年代后期,出现了几十种不同的RP技术,但是SLA、SLS和FDM几种技术,目前仍然是RP技术的主流,最近几年LJP(立体喷墨打印)技术发展迅速,以色列、美国、日本等国的RP设备公司都力推此类技术设备。

RP技术与传统制造方法(即机械加工)有着本质的区别,它采用逐渐增加材料的方法(如凝固、焊接、胶结、烧结、聚合等)来形成所需的部件外型,由于RP技术在制造产品的过程中不会产生废弃物造成环境的污染,(传统机械加工的冷却液等是污染环境的),因此在当代讲究生态环境的今天,这也是一项绿色制造技术。

RP技术集成了CAD、CAM、激光技术、数控技术、化工、材料工程等多项技术,解决了传统加工制造中的许多难题。

RP技术的基本工作原理是离散与堆积,在使用该技术时,首先设计者借助三维CAD或者通过逆向工程所采集的几何数据,建立数字化模型,这是完成快速成型制造的一项基本条件,借助现有的主流三维设计软件建立三维模型,再经过三维CAD导出相应的文件格式输入快速成型机当中,通过逐点、逐面进行三维的立体堆积,部件完成后,再经过必要的后续处理,使完成的部件在性能、形状尺寸、外观上等方面达到设计要求。

[4]1.2快速成型技术原理快速成型技术采用离散/堆积成型原理,对三维CAD 模型进行分层,使其转换成厚度很薄的二维平面模型。

通过平面模型的数控代码指导加工,再将加工出每个薄层粘结而成形。

主要包括如下几个主要步骤:(1)产品CAD实体模型构建:构建方法有两种,一是可通过概念设计,设计出所需零件的计算机三维模型(数字模型、CAD模型);二是可通过逆向工程,通过三维数字扫描仪对产品原型进行扫描,而后结合逆向工程对扫描数据进行处理。

(2)三维模型的分层处理:即按照一定的规律将该模型离散为一系列有序的单元,通常在Z向将其按一定厚度进行离散(习惯称为分层),把原来的三维CAD模型变成一系列的层片。

(3)层层制造堆积成型:根据每个层片的轮廓信息,输入加工参数,自动生成数控代码。

(4)后处理:由成形系统成形一系列层片并自动将它们联接起来,得到一个三维物理实体。

[4]2.第二章快速成型技术的软件系统和工艺工程2.1软件系统快速成型制造系统包括机械系统、控制系统、和软件系统。

机械系统是基础,控制系统是关键,软件系统是灵魂。

软件系统的一部分是数据处理软件,另一部分是控制软件。

数据处理软件的主要任务是根据物体的CAD模型或其他模型经过分层、填充,产生工艺加工信息的层片文件,这个层片文件可以通过转换生成可供数控加工的NC代码、控制实时加工等。

STL/STC/CLI及HPGL等文件是快速成形技术的数据转换格式,其中STL文件格式最初是立体印刷技术中得到应用,由于它在数据处理上比较简单,而且与CAD系统无关,因此很快发展为快速成形领域中CAD系统与快速成型系统之间数据转换的标准。

[4]2.2工艺过程(1)产品三维模型的构建。

由于快速成型系统只接受计算机的构造的产品三维模型,然后再进行切片处理,因此,首先要在PC机或工作站上构建所加工工件的三维CAD模型。

该三维CAD模型可以利用计算机辅助软件根据产品要求直接构建,也可以将已有产品的二维图样进行转换而形成三维模型,或在逆向工程中,用测量仪对已有的产品实体进行激光扫描,CT断层扫描,得到点云数据,然后利用反求工程的方法来构造三维模型。

(2)三维模型的近似处理。

由于产品往往有一些不规则的自由曲面,加工前要对模型进行近似处理,方便后续的数据处理工作。

经过近似处理获得的三维模型文件STL格式文件,由一系列相连的空间三角形组成。

由于STL文件格式简单、实用,目前已经成为快速成型领域的标准接口文件。

典型的CAD软件都有转换盒输出STL格式文件的接口。

(3)三维模型的分层处理。

由于快速成型工艺是按一层层截面轮廓进行加工的,因此加工前须根据被加工模型的特征选择合适的加工方向。

在成型高度方向上将三维模型离散成一系列有序的二维层片,以便提取截面的轮廓信息。

间隔范围可取0.05-0.5mm,常用0.1mm。

间隔越小,成型精度越高,但成型时间也越长,效率就越低;反之则精度低,但效率高。

层片间隔选定后,成型时每层叠加的材料厚度应与其相适应。

(4)截面加工。

根据切片处理的截面轮廓,在计算机控制下,快速成型系统中的成型头由数控系统控制,在XOY平面内按截面轮廓进行扫描,得到一层层截面。

相关文档
最新文档