10级初一下数学期末.doc

合集下载

初一数学期末考试题附答案

初一数学期末考试题附答案

【点评】此题考查了平移中点的改变规律,横坐标右移加,左移
组的解集是解答此题的关键.
减;纵坐标上移加,下移减.左右移动转变点的横坐标,上下移动转
18.△DEF〔三角形〕是由△ABC 平移得到的,点 A〔﹣1,﹣4〕的
变点的纵坐标.
对应点为 D〔1,﹣1〕,则点 B〔1,1〕的对应点 E,点 C〔﹣1,4〕的
④假如 b⊥a,c⊥a,那么 b∥c,是真命题.
20.已知三条不同的直线 a,b,c 在同一平面内,以下四个命题:
本文格式为 Word 版,下载可任意编辑
初一数学期末考试题附答案
【分析】先由已知条件得出∠1+∠2=90°,再依据平角的定义得 出∠1+∠DCE+∠2=180°,则∠DCE=90°,由垂直的定义可知 CD 与 CE
相互垂直.
1. 的算术平方根是 2 .
【解答】解:∵∠1=53°,∠2=37°,
【考点】算术平方根.
行,同位角相等. 10.如图,用同样规格的黑、白两色正方形瓷砖铺设地面,请观看
图形回答下列问题:第 n 个图形中需用黑色瓷砖 4n+4 块.〔用含 n
的代数式表示〕 【考点】规律型:图形的改变类. 【分析】由题意可知:第 n 个图形的瓷砖的总数有〔n+2〕2 个,
白瓷砖的数量为 n2 个,用总数减去白瓷砖的数量即为黑瓷砖的数量. 【解答】解:∵第 1 个图形中需用黑色瓷砖 32﹣12=8 块, 第 2 个图形中需用黑色瓷砖 42﹣22=12 块, 第 3 个图形中需用黑色瓷砖 52﹣32=16 块, … ∴第 n 个图形中需用黑色瓷砖〔n+2〕2﹣n2=4n+4 块. 故答案为:4n+4. 【点评】此题考查图形的改变规律,找出图形之间的联系,得出

七年级数学下册期末测试题10

七年级数学下册期末测试题10

54D3E21C BA2009-2010学年度七年级第二学期期末数学模拟试题一﹑精心选一选,你一定很棒。

1、点(-7,0)在( )A 、x 轴正半轴上B 、y 轴负半轴上C 、y 轴正半轴上D 、x 轴负半轴上 2. 若m >-1,则下列各式中错误..的是 A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 3、以下列各组线段为边,能组成三角形的是( ) A、1cm ,2cm ,4cm B、8cm ,6cm ,4cm C、12cm ,5cm ,6cm D、3cm ,4cm ,7cm 4.下列调查中,适宜采用全面调查(普查)方式的是()A .对全国中学生心理健康现状的调查B .对冷饮市场上冰淇淋质量情况的调查C .对我市市民实施低碳生活情况的调查D .以我国首架大型民用直升机各零部件的检查 5.方程组⎩⎨⎧=+=+610y x y mx 的解是⎩⎨⎧==24y x ,则m 的值是A.3B.3-C.2D.2-6.如右图,下列能判定AB ∥CD 的条件有( )个.(1) ︒=∠+∠180BCD B (2)21∠=∠;(3) 43∠=∠;(4) 5∠=∠B . A .1 B .2 C .3 D .47.以方程组21y x y x =-+⎧⎨=-⎩的解为坐标的点(x ,y )在平面直角坐标系中的位置是( )A .第一象限B .第二象限C .第三象限D .第四象限8. 有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③同一种四边形一定能进行平面镶嵌;④垂直于同一条直线的两条直线互相平行.其中真命题的个数为( )A .1B .2C .3D .49.如图,把直角梯形ABCD 沿AD 方向平移到梯形EFGH , HG=24m,MG=8m,MC=6m,则阴影部分地的面积是( )2m A .168 B.128 C.98 D.15610. 若关于x 的不等式组212x n x n >+⎧⎨>+⎩的解集为x>-1,则n 的B AF EC M DG H值为( ).A .3B .-3C .1D .-1 二﹑细心填一填,你一定能行。

北师版七年级下册数学期末试卷

北师版七年级下册数学期末试卷

北师版七年级下册数学期末试卷北师版七年级下册数学期末试卷鲜花纷纷绽笑颜,捷报翩翩最灿烂。

祝你七年级数学期末考试取得好,期待你的成功!以下是啦店铺为你整理的北师版七年级下册数学期末试卷,希望对大家有帮助!北师版七年级下册数学期末试题一、选择题(本大题共有10小题.每小题2分,共20分)1.下列运算正确的是( )A.﹣a2b+2a2b=a2bB.2a﹣a=2C.3a2+2a2=5a4D.2a+b=2ab2.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为( )A.1.94×1010B.0.194×1010C.19.4×109D.1.94×1093.已知(1﹣m)2+|n+2|=0,则m+n的值为( )A.﹣1B.﹣3C.3D.不能确定4.下列单项式的说法中,正确的是( )A.系数是3,次数是2B.系数是,次数是2C.系数是,次数是3D.系数是,次数是35.由一个圆柱体与一个长方体组成的几何体如图,这个几何体的左视图是( )A. B. C. D.6.如图,三条直线相交于点O.若CO⊥AB,∠1=56°,则∠2等于( )A.30°B.34°C.45°D.56°7.如图,E点是AD延长线上一点,下列条件中,不能判定直线BC∥AD的是( )A.∠3=∠4B.∠C=∠CDEC.∠1=∠2D.∠C+∠ADC=180°8.关于x的方程4x﹣3m=2的解是x=m,则m的值是( )A.﹣2B.2C.﹣D.9.下列说法:①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过直线外一点有且仅有一条直线与己知直线平行;④两点之间的距离是两点间的线段.其中正确的个数是( )A.1个B.2个C.3个D.4个10.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,…,则数字“2016”在( )A.射线OA上B.射线OB上C.射线OD上D.射线OF上二、填空题(本大题共有10小题,每小题3分,共30分)11.比较大小:﹣﹣0.4.12.计算: = .13.若∠α=34°36′,则∠α的余角为.14.若﹣2x2m+1y6与3x3m﹣1y10+4n是同类项,则m+n= .15.若有理数在数轴上的位置如图所示,则化简|a+c|+|a﹣b|﹣|c+b|= .16.若代数式x+y的值是1,则代数式(x+y)2﹣x﹣y+1的值是.17.若方程2(2x﹣1)=3x+1与方程m=x﹣1的解相同,则m的值为.18.已知线段AB=20cm,直线AB上有一点C,且BC=6cm,M 是线段AC的中点,则AM= cm.19.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为元.20.将一个边长为10cm正方形,沿粗黑实线剪下4个边长为cm的小正方形,拼成一个大正方形作为直四棱柱的一个底面;余下部分按虚线折叠成一个无盖直四棱柱;最后把两部分拼在一起,组成一个完整的直四棱柱,它的表面积等于原正方形的面积.三、解答题(本大题有8小题,共50分)21.计算:﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|.22.解方程:(1)4﹣x=3(2﹣x);(2) ﹣ =1.23.先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣1,b=﹣2.24.已知代数式6x2+bx﹣y+5﹣2ax2+x+5y﹣1的值与字母x的取值无关(1)求a、b的值;(2)求a2﹣2ab+b2的值.25.如图,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C,(2)过点P画OA的垂线,垂足为H,(3)线段PH的长度是点P到的距离,线段是点C到直线OB的距离.(4)因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段PC、PH、OC这三条线段大小关系是(用“<”号连接)26.某酒店有三人间、双人间客房若干,各种房型每天的收费标准如下:普通(元/间) 豪华(元/间)三人间 160 400双人间 140 300一个50人的团到该酒店入住,选择了一些三人普通间和双人豪华间入住,且恰好住满.已知该旅游团当日住宿费用共计4020元,问该旅游团入住的三人普通间和双人豪华间各为几间?27.已知∠AOC=∠BOD=α(0°<α<180°)(1)如图1,若α=90°①写出图中一组相等的角(除直角外) ,理由是②试猜想∠COD和∠AOB在数量上是相等、互余、还是互补的关系,并说明理由;(2)如图2,∠COD+∠AOB和∠AOC满足的等量关系是;当α=°,∠COD和∠AOB互余.28.如图,直线l上有AB两点,AB=12cm,点O是线段AB上的一点,OA=2OB(1)OA= cm OB= cm;(2)若点C是线段AB上一点,且满足AC=CO+CB,求CO的长;(3)若动点P,Q分别从A,B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s.设运动时间为ts,当点P与点Q重合时,P,Q两点停止运动.①当t为何值时,2OP﹣OQ=4;②当点P经过点O时,动点M从点O出发,以3cm/s的速度也向右运动.当点M追上点Q后立即返回,以3cm/s的速度向点P运动,遇到点P后再立即返回,以3cm/s的速度向点Q运动,如此往返,知道点P,Q停止时,点M也停止运动.在此过程中,点M行驶的总路程是多少?北师版七年级下册数学期末试卷答案一、选择题(本大题共有10小题.每小题2分,共20分)1.下列运算正确的是( )A.﹣a2b+2a2b=a2bB.2a﹣a=2C.3a2+2a2=5a4D.2a+b=2ab【考点】合并同类项.【专题】计算题.【分析】根据合并同类项的法则,合并时系数相加减,字母与字母的指数不变.【解答】解:A、正确;B、2a﹣a=a;C、3a2+2a2=5a2;D、不能进一步计算.故选:A.【点评】此题考查了同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.还考查了合并同类项的法则,注意准确应用.2.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为( )A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:194亿=19400000000,用科学记数法表示为:1.94×1010.故选:A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.已知(1﹣m)2+|n+2|=0,则m+n的值为( )A.﹣1B.﹣3C.3D.不能确定【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】本题可根据非负数的性质得出m、n的值,再代入原式中求解即可.【解答】解:依题意得:1﹣m=0,n+2=0,解得m=1,n=﹣2,∴m+n=1﹣2=﹣1.故选A.【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当非负数相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.4.下列关于单项式的说法中,正确的是( )A.系数是3,次数是2B.系数是,次数是2C.系数是,次数是3D.系数是,次数是3【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义可知,单项式的系数是,次数是3.故选D.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.5.由一个圆柱体与一个长方体组成的`几何体如图,这个几何体的左视图是( )A. B. C. D.【考点】由三视图判断几何体;简单组合体的三视图.【分析】找到从左面看所得到的图形即可.【解答】解:从左面可看到一个长方形和上面的中间有一个小长方形.故选:D.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.6.如图,三条直线相交于点O.若CO⊥AB,∠1=56°,则∠2等于( )A.30°B.34°C.45°D.56°【考点】垂线.【分析】根据垂线的定义求出∠3,然后利用对顶角相等解答.【解答】解:∵CO⊥AB,∠1=56°,∴∠3=90°﹣∠1=90°﹣56°=34°,∴∠2=∠3=34°.故选:B.【点评】本题考查了垂线的定义,对顶角相等的性质,是基础题.7.如图,E点是AD延长线上一点,下列条件中,不能判定直线BC∥AD的是( )A.∠3=∠4B.∠C=∠CDEC.∠1=∠2D.∠C+∠ADC=180°【考点】平行线的判定.【分析】分别利用同旁内角互补两直线平行,内错角相等两直线平行得出答案即可.【解答】解:A、∵∠3+∠4,∴BC∥AD,本选项不合题意;B、∵∠C=∠CDE,∴BC∥AD,本选项不合题意;C、∵∠1=∠2,∴AB∥CD,本选项符合题意;D、∵∠C+∠ADC=180°,∴AD∥BC,本选项不符合题意.故选:C.【点评】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.8.关于x的方程4x﹣3m=2的解是x=m,则m的值是( )A.﹣2B.2C.﹣D.【考点】一元一次方程的解.【专题】计算题;应用题.【分析】使方程两边左右相等的未知数叫做方程的解方程的解.【解答】解:把x=m代入方程得4m﹣3m=2,m=2,故选B.【点评】本题考查了一元一次方程的解,解题的关键是理解方程的解的含义.9.下列说法:①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过直线外一点有且仅有一条直线与己知直线平行;④两点之间的距离是两点间的线段.其中正确的个数是( )A.1个B.2个C.3个D.4个【考点】线段的性质:两点之间线段最短;两点间的距离;对顶角、邻补角;平行公理及推论.【分析】根据两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短可得①说法正确;根据对顶角相等可得②错误;根据平行公理:经过直线外一点,有且只有一条直线与这条直线平行,可得说法正确;根据连接两点间的线段的长度叫两点间的距离可得④错误.【解答】解:①两点之间的所有连线中,线段最短,说法正确;②相等的角是对顶角,说法错误;③过直线外一点有且仅有一条直线与己知直线平行,说法正确;④两点之间的距离是两点间的线段,说法错误.正确的说法有2个,故选:B.【点评】此题主要考查了线段的性质,平行公理.两点之间的距离,对顶角,关键是熟练掌握课本基础知识.10.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,…,则数字“2016”在( )A.射线OA上B.射线OB上C.射线OD上D.射线OF上【考点】规律型:数字的变化类.【分析】分析图形,可得出各射线上点的特点,再看2016符合哪条射线,即可解决问题.【解答】解:由图可知OA上的点为6n,OB上的点为6n+1,OC上的点为6n+2,OD上的点为6n+3,OE上的点为6n+4,OF上的点为6n+5,(n∈N)∵2016÷6=336,∴2016在射线OA上.故选A.【点评】本题的数字的变换,解题的关键是根据图形得出每条射线上数的特点.二、填空题(本大题共有10小题,每小题3分,共30分)11.比较大小:﹣> ﹣0.4.【考点】有理数大小比较.【专题】推理填空题;实数.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:|﹣ |= ,|﹣0.4|=0.4,∵ <0.4,∴﹣ >﹣0.4.故答案为:>.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.12.计算: = ﹣.【考点】有理数的乘方.【分析】直接利用乘方的意义和计算方法计算得出答案即可.【解答】解:﹣(﹣ )2=﹣ .故答案为:﹣ .【点评】此题考查有理数的乘方,掌握乘方的意义和计算方法是解决问题的关键.13.若∠α=34°36′,则∠α的余角为55°24′.【考点】余角和补角;度分秒的换算.【分析】根据如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角进行计算.【解答】解:∠α的余角为:90°﹣34°36′=89°60′﹣34°36′=55°24′,故答案为:55°24′.【点评】此题主要考查了余角,关键是掌握余角定义.14.若﹣2x2m+1y6与3x3m﹣1y10+4n是同类项,则m+n= 1 .【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程2m+1=3m﹣1,10+4n=6,求出n,m的值,再代入代数式计算即可.【解答】解:∵﹣2x2m+1y6与3x3m﹣1y10+4n是同类项,∴2m+1=3m﹣1,10+4n=6,∴n=﹣1,m=2,∴m+n=2﹣1=1.故答案为1.【点评】本题考查同类项的定义、方程思想及负整数指数的意义,是一道基础题,比较容易解答.15.若有理数在数轴上的位置如图所示,则化简|a+c|+|a﹣b|﹣|c+b|= 0 .【考点】实数与数轴.【专题】计算题.【分析】先根据数轴上各点的位置判断出a,b,c的符号及|a|,|b|和|c|的大小,接着判定a+c、a﹣b、c+b的符号,再化简绝对值即可求解.【解答】解:由上图可知,c∴a+c<0、a﹣b>0、c+b<0,所以原式=﹣(a+c)+a﹣b+(c+b)=0.故答案为:0.【点评】此题主要看错了实数与数轴之间的对应关系,要求学生正确根据数在数轴上的位置判断数的符号以及绝对值的大小,再根据运算法则进行判断.16.若代数式x+y的值是1,则代数式(x+y)2﹣x﹣y+1的值是1 .【考点】代数式求值.【专题】计算题.【分析】先变形(x+y)2﹣x﹣y+1得到(x+y)2﹣(x+y)+1,然后利用整体思想进行计算.【解答】解:∵x+y=1,∴(x+y)2﹣x﹣y+1=(x+y)2﹣(x+y)+1=1﹣1+1=1.故答案为1.【点评】本题考查了代数式求值:先把代数式根据已知条件进行变形,然后利用整体思想进行计算.17.若方程2(2x﹣1)=3x+1与方程m=x﹣1的解相同,则m的值为 2 .【考点】同解方程.【分析】根据解一元一次方程,可得x的值,根据同解方程的解相等,可得关于m的方程,根据解方程,可得答案.【解答】解:由2(2x﹣1)=3x+1,解得x=3,把x=3代入m=x﹣1,得m=3﹣1=2,故答案为:2.【点评】本题考查了同解方程,把同解方程的即代入第二个方程得出关于m的方程是解题关键.18.已知线段AB=20cm,直线AB上有一点C,且BC=6cm,M 是线段AC的中点,则AM= 13或7 cm.【考点】两点间的距离.【专题】计算题.【分析】应考虑到A、B、C三点之间的位置关系的多种可能,即点C在线段AB的延长线上或点C在线段AB上.【解答】解:①当点C在线段AB的延长线上时,此时AC=AB+BC=26cm,∵M是线段AC的中点,则AM= AC=13cm;②当点C在线段AB上时,AC=AB﹣BC=14cm,∵M是线段AC 的中点,则AM= AC=7cm.故答案为:13或7.【点评】本题主要考查两点间的距离的知识点,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.19.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为240 元.【考点】一元一次方程的应用.【专题】应用题.【分析】设这种商品每件的进价为x元,根据题意列出关于x的方程,求出方程的解即可得到结果.【解答】解:设这种商品每件的进价为x元,根据题意得:330×80%﹣x=10%x,解得:x=240,则这种商品每件的进价为240元.故答案为:240【点评】此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.20.将一个边长为10cm正方形,沿粗黑实线剪下4个边长为 2.5 cm的小正方形,拼成一个大正方形作为直四棱柱的一个底面;余下部分按虚线折叠成一个无盖直四棱柱;最后把两部分拼在一起,组成一个完整的直四棱柱,它的表面积等于原正方形的面积.【考点】展开图折叠成几何体.【分析】利用剪下部分拼成的图形的边长等于棱柱的底面边长求解即可.【解答】解:设粗黑实线剪下4个边长为xcm的小正方形,根据题意列方程2x=10÷2解得x=2.5cm,故答案为:2.5.【点评】本题考查了展开图折叠成几何体,解题的关键在于根据拼成棱柱的表面积与原图形的面积相等,从而判断出剪下的部分拼成的图形应该是棱柱的一个底面.三、解答题(本大题有8小题,共50分)21.计算:﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|.【考点】有理数的混合运算.【分析】利用有理数的运算法则计算.有理数的混合运算法则即先算乘方或开方,再算乘法或除法,后算加法或减法.有括号(或绝对值)时先算.【解答】解:﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|=﹣1﹣÷3×|3﹣9|=﹣1﹣× ×6=﹣1﹣1=﹣2.【点评】本题考查的是有理数的运算法则.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.22.解方程:(1)4﹣x=3(2﹣x);(2) ﹣ =1.【考点】解一元一次方程.【分析】去分母,去括号,移项,合并同类项,系数化一.【解答】解:(1)4﹣x=3(2﹣x),去括号,得4﹣x=6﹣3x,移项合并同类项2x=2,化系数为1,得x=1;(2) ,去分母,得3(x+1)﹣(2﹣3x)=6去括号,得3x+3﹣2+3x=6,移项合并同类项6x=5,化系数为1,得x= .【点评】本题考查解一元一次方程,关键知道去分母,去括号,移项,合并同类项,系数化一.23.先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣1,b=﹣2.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=﹣1,b=﹣2时,原式=﹣6+4=﹣2.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.24.已知代数式6x2+bx﹣y+5﹣2ax2+x+5y﹣1的值与字母x的取值无关(1)求a、b的值;(2)求a2﹣2ab+b2的值.【考点】整式的加减—化简求值.【专题】计算题.【分析】(1)原式合并后,根据代数式的值与字母x无关,得到x 一次项与二次项系数为0求出a与b的值即可;(2)原式利用完全平方公式化简后,将a与b的值代入计算即可求出值.【解答】解:(1)原式=(6﹣2a)x2+(b+1)x+4y+4,根据题意得:6﹣2a=0,b+1=0,即a=3,b=﹣1;(2)原式=(a﹣b)2=42=16.【点评】此题考查了整式的加减﹣化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.25.如图,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C,(2)过点P画OA的垂线,垂足为H,(3)线段PH的长度是点P到直线OA 的距离,线段PC的长是点C到直线OB的距离.(4)因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段PC、PH、OC这三条线段大小关系是PH【考点】垂线段最短;点到直线的距离;作图—基本作图.【专题】作图题.【分析】(1)(2)利用方格线画垂线;(3)根据点到直线的距离的定义得到线段PH的长度是点P到OA的距离,线段OP的长是点C到直线OB的距离;(4)根据直线外一点到直线上各点连接的所有线中,垂线段最短得到PC>PH,CO>CP,即可得到线段PC、PH、OC的大小关系.【解答】解:(1)如图:(2)如图:(3)直线0A、PC的长.(4)PH【点评】本题考查了垂线段最短:直线外一点到直线上各点连接的所有线中,垂线段最短.也考查了点到直线的距离以及基本作图.26.某酒店有三人间、双人间客房若干,各种房型每天的收费标准如下:普通(元/间) 豪华(元/间)三人间 160 400双人间 140 300一个50人的旅游团到该酒店入住,选择了一些三人普通间和双人豪华间入住,且恰好住满.已知该旅游团当日住宿费用共计4020元,问该旅游团入住的三人普通间和双人豪华间各为几间?【考点】一元一次方程的应用.【分析】首先设该旅游团入住的三人普通间数为x,根据题意表示出双人豪华间数为,进而利用该旅游团当日住宿费用共计4020元,得出等式求出即可.【解答】解:设该旅游团入住的三人普通间数为x,则入住双人豪华间数为 .根据题意,得160x+300× =4020.解得:x=12.从而 =7.答:该旅游团入住三人普通间12间、双人豪华间7间.(注:若用二元一次方程组解答,可参照给分)【点评】此题主要考查了一元一次方程的应用,根据题意表示出双人豪华间数进而得出等式是解题关键.27.已知∠AOC=∠BOD=α(0°<α<180°)(1)如图1,若α=90°①写出图中一组相等的角(除直角外) ∠AOD=∠BOC,理由是同角的余角相等②试猜想∠COD和∠AOB在数量上是相等、互余、还是互补的关系,并说明理由;(2)如图2,∠COD+∠AOB和∠AOC满足的等量关系是互补;当α=45 °,∠COD和∠AOB互余.【考点】余角和补角.【分析】(1)①根据同角的余角相等解答;②表示出∠AOD,再求出∠COD,然后整理即可得解;(2)根据(1)的求解思路解答即可.【解答】解:(1)①∵∠AOC=∠BOD=90°,∴∠AOD+∠AOB=∠BOC+∠AOB=90°,∴∠AOD=∠BOC;②∵∠AOD=∠BOD﹣∠AOB=90°﹣∠AOB,∴∠COD=∠AOD+∠AOC=90°﹣∠AOB+90°,∴∠AOB+∠COD=180°,∴∠COD和∠AOB互补;(2)由(1)可知∠COD+∠AOB=∠BOD+∠AOC=α+α=2α,所以,∠COD+∠AOB=2∠AOC,若∠COD和∠AOB互余,则2∠AOC=90°,所以,∠AOC=45°,即α=45°.故答案为:(1)AOD=∠BOC,同角的余角相等;(2)互补,45.【点评】本题考查了余角和补角,熟记概念并准确识图,理清图中各角度之间的关系是解题的关键.28.如图,直线l上有AB两点,AB=12cm,点O是线段AB上的一点,OA=2OB(1)OA= 8 cm OB= 4 cm;(2)若点C是线段AB上一点,且满足AC=CO+CB,求CO的长;(3)若动点P,Q分别从A,B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s.设运动时间为ts,当点P与点Q重合时,P,Q两点停止运动.①当t为何值时,2OP﹣OQ=4;②当点P经过点O时,动点M从点O出发,以3cm/s的速度也向右运动.当点M追上点Q后立即返回,以3cm/s的速度向点P运动,遇到点P后再立即返回,以3cm/s的速度向点Q运动,如此往返,知道点P,Q停止时,点M也停止运动.在此过程中,点M行驶的总路程是多少?【考点】一元一次方程的应用;数轴.【分析】(1)由于AB=12cm,点O是线段AB上的一点,OA=2OB,则OA+OB=3OB=AB=12cm,依此即可求解;(2)根据图形可知,点C是线段AO上的一点,可设CO的长是xcm,根据AC=CO+CB,列出方程求解即可;(3)①分0≤t<4;4≤t<6;t≥6三种情况讨论求解即可;②求出点P经过点O到点P,Q停止时的时间,再根据路程=速度×时间即可求解.【解答】解:(1)∵AB=12cm,OA=2OB,∴OA+OB=3OB=AB=12cm,解得OB=4cm,OA=2OB=8cm.故答案为:8,4;(2)设CO的长是xcm,依题意有8﹣x=x+4+x,解得x= .故CO的长是 cm;(3)①当0≤t<4时,依题意有2(8﹣2t)﹣(4+t)=4,解得t=1.6;当4≤t<6时,依题意有2(2t﹣8)﹣(4+t)=4,解得t=8(不合题意舍去);当t≥6时,依题意有2(2t﹣8)﹣(4+t)=4,解得t=8.故当t为1.6s或8s时,2OP﹣OQ=4;②[4+(8÷2)×1]÷(2﹣1)=[4+4]÷1=8(s),3×8=24(cm).答:点M行驶的总路程是24cm.【点评】本题考查了数轴及数轴的三要素(正方向、原点和单位长度).一元一次方程的应用以及数轴上两点之间的距离公式的运用,行程问题中的路程=速度×时间的运用.注意(3)①需要分类讨论.。

七年级下学期期末考试数学试卷(带答案)

七年级下学期期末考试数学试卷(带答案)

七年级下学期期末考试数学试卷(带答案)一、选择题(本题共10个小题,每小题3分,共30分)1.下列四个图形中,不是轴对称图形的为()A. B.C. D.2.在球的体积公式V=πR3中,下列说法正确的是()A.V、π、R是变量,为常量B.V、π是变量,R为常量C.V、R是变量,、π为常量D.以上都不对3.下列事件中是不可能事件的是()A.从一副扑克牌中任抽一张牌恰好是“红桃”B.在装有白球和黑球的袋中摸球,摸出了红球C.2022年大年初一早晨艳阳高照D.从两个班级中任选三名学生,至少有两名学生来自同一个班级4.新型冠状病毒(2019﹣nCoV)是目前已知的第7种可以感染人的冠状病毒,经研究发现,它的单细胞的平均直径约为0.000000203米,该数据用科学记数法表示为()A.2.03×10﹣8B.2.03×10﹣7C.2.03×10﹣6D.0.203×10﹣65.已知a,b,c分别为三角形的三边长,则化简|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a+b|的结果为()A.a+b+c B.﹣a+b﹣3c C.a+2b﹣c D.﹣a+b+3c6.等腰三角形的两边长分别为4和8,则这个等腰三角形的周长是()A.20或16 B.20C.16 D.以上答案均不对7.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,E是边AB上一点,若CD=6,则DE的长可以是()A.1 B.3 C.5 D.78.如图,下列条件中,不能判断直线a∥b的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°9.已知∠1=∠2,AC=AD,要使△ABC≌△AED,还需添加一个条件,那么在以下条件中不能选择的是()A.AB=AE B.BC=ED C.∠C=∠D D.∠B=∠E10.已知(x﹣2019)2+(x﹣2021)2=34,则(x﹣2020)2的值是()A.4 B.8 C.12 D.16二、填空题(本题共6小题,每小题3分,共18分.)11. 2-的相反数是_____.12. 如图,将三角形ABC沿直线BC平移得到三角形DEF,其中点A与点D是对应点,点B与点E是对应点,点BC=,EC=2,那么线段CF的长是_______.C与点F是对应点.如果513. 已知点P (2a −2,a +5),点Q (4,5),且直线PQ ∥y 轴,则点P 的坐标为________.14. 如图a ∥b,∠1+∠2=75°,则∠3+∠4=______________.15. 方程组{4x +3y =1,mx +(m −1)y =3的解x 和y 的值相等,则m =___.16. 已知实数x 满足{5(x +1)≥3x −112x −1≤7−32x ,若S =|x ﹣1|+|x+1|的最大值为m ,最小值为n ,则mn =_____.三、解答题(本题共9小题,共72分.解答应写出文字说明、证明过程或演算步骤)17.(6分)计算:||﹣+﹣(﹣1)2019.18.(6分)解方程组:.19.(6分)解不等式组.20.(8分)如图,在平面直角坐标系中,有三点A (1,0),B (3,0),C (4,﹣2).(1)画出三角形ABC ;(2)将三角形ABC 先向左平移4个单位长度,再向上平移3个单位长度,画出平移后的三角形DEF ,并写出D、E、F三点的坐标;(3)求三角形ABC的面积.21.(8分)某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了不完整的统计图表.身高分组频数频率152≤x<155 3 0.06155≤x<158 7 0.14158≤x<161 m0.28161≤x<164 13 n164≤x<167 9 0.18167≤x<170 3 0.06170≤x<173 1 0.02根据以上统计图表完成下列问题:(1)统计表中m=,n=;并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在什么范围内?22.(8分)实验室需要一批无盖的长方体模型,一张大纸板可以做成长方体的侧面30个,或长方体的底面25个,一个无盖的长方体由4个侧面和一个底面构成.现有26张大纸板,则用多少张做侧面,多少张做底面才可以使得刚好配套,没有剩余?23.(10分)已知,如图,∠CDG=∠B,AD⊥BC于点D,∠1=∠2,EF分别交AB、BC于点E、F,试判断EF与BC的位置关系,并说明理由.24.(10分)某业主贷款18920元购进一台机器,生产某种产品.已知产品的成本是每个5元,售价是每个8元,应付的税款和其他费用是售价的10%.若每个月能生产、销售2000个产品.(1)问每个月所获得利润为多少元?(2)问至少几个月后能赚回这台机器的贷款?25.(10分)已知数轴上三点A、O、B表示的数分别为4、0、﹣2,动点P从A点出发,以每秒3个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是.(2)另一动点R从点B出发,以每秒2个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多长时间追上点R?(3)若点M为AP的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.参考答案一、选择题1.选:C.2.选:C.3.选:B.4.选:B.5.选:D.6.选:B.7.选:D.8.选:B.9.选:B.10.选:D.二、填空题11、【答案】√5-212、【答案】313、【答案】(4,8)14、【答案】105°15、【答案】1116、【答案】16三、解答题17.【解答】解:原式=﹣1﹣2+2+1=.18.【解答】解:方程组整理得:,①+②得:﹣6y=6,解得:y=﹣1,把y=﹣1代入②得:x﹣2=1,解得:x=3,则方程组的解为.19.【解答】解:∵由①得:x≤3,由②得:x>﹣4,∴不等式组的解集为﹣4<x≤3.20.【解答】解:(1)如图所示,△ABC即为所求;(2)如图所示,△DEF即为所求;其中D(﹣3,3),E(﹣1,3),F(0,1);(3)三角形ABC的面积=×2×2=2.21.【解答】解:(1)测量的总人数是:3÷0.06=50(人),则m=50×0.28=14,n==0.26.补全频数分布直方图:故答案为14,0.26.(2)观察表格可知中位数在 161≤x<164范围内.22.【解答】解:设用x张做侧面,y张做底面才可以使得刚好配套,没有剩余,根据题意得:,解得:.答:用20张做侧面,6张做底面才可以使得刚好配套,没有剩余.23.【解答】解:EF与BC的位置关系是垂直关系.证明:∵∠CDG=∠B(已知),∴DG∥AB(同位角相等,两直线平行),∴∠1=∠DAB(两直线平行,内错角相等),又∠1=∠2(已知),∴∠2=∠DAB(等量代换),∴EF∥AD(同位角相等,两直线平行),∴∠EFB=∠ADB(两直线平行,同位角相等),又AD⊥BC(已知),∴∠ADB=90°,∴∠EFB=∠ADB=90°,∴EF与BC的位置关系是垂直(垂直的定义).24.【解答】解:(1)每个月总收入为:2000×8=16000(元),则应付的税款和其他费用为:16000×10%=1600(元),利润=16000﹣2000×5﹣1600=4400(元),答:每个月所获得利润为4400元;(2)设需要x个月后能赚回这台机器贷款,依题意,得:4400x≥18920,解得:x≥43.答:至少43个月后能赚回这台机器贷款.25.【解答】解:(1)∵A,B表示的数分别为4,﹣2,∴AB=6,∵PA=PB,∴点P表示的数是1,故答案为:1;(2)设P点运动x秒追上R点,由题意得:2x+6=3x 解得:x=6答:P点运动6秒追上R点.(3)MN的长度不变.①当P点在线段AB上时,如图示:∵M为PA的中点,N为PB的中点∴又∵MN=MP+NP∴∵AP+BP=AB,AB=6∴②当P点在线段AB的延长线上时,如图示:∵MN=MP﹣NP,AB=AP﹣BP=6∴=.。

七年级下册数学期末试卷人教版含答案免费

七年级下册数学期末试卷人教版含答案免费

2018~2019学年四川甘孜初一下学期期末数学试卷(人教版)-学生用卷一、选择题(本大题共10小题,每小题3分,共30分)1、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第1题3分2017~2018学年湖北武汉黄陂区初一下学期期中第1题3分2017~2018学年湖北武汉青山区初一下学期期末第2题3分点A(−2,1)在().A. 第一象限B. 第二象限C. 第三象限D. 第四象限2、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第2题3分不等式组{x+3>02x−4⩽0的解集在数轴上表示为().A.B.C.D.3、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第3题3分下列运动属于平移的是().A. 荡秋千B. 地球绕着太阳转C. 急刹车时,汽车在地面上的滑动D. 风筝在空中随风飘动4、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第4题3分已知x=2,y=−3是二元一次方程5x+my+2=0的解,则m的值为().A. 83B. −83C. 4D. −45、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第5题3分2018~2019学年5月河北廊坊三河市三河市第八中学初一下学期月考第2题3分2017~2018学年江西宜春丰城市初一下学期期末第2题3分2017~2018学年湖北武汉江汉区初一下学期期中第3题3分2016~2017学年湖北武汉江岸区初一下学期期中第5题3分如图,下列条件中不能判定AB//CD的是().A. ∠3=∠4B. ∠1=∠5C. ∠1+∠4=180°D. ∠3=∠56、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第6题3分要反映甘孜州一周内每天的最高气温的变化情况,宜采用().A. 条形统计图B. 扇形统计图C. 折线统计图D. 频数分布直方图7、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第7题3分如果a>b,那么下列结论一定正确的是().A. 3−a<3−bB. a−3<b−3C. ac2>bc2D. a2>b28、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第8题3分2017~2018学年12月陕西西安碑林区西安市第六中学初二上学期月考第6题3分2019~2020学年山东临沂兰山区临沂第三十六中学初一下学期期中第10题3分2017~2018学年福建泉州德化县初一下学期期末第9题4分2016~2017学年3月陕西西安高新区西安高新第一中学初一下学期月考(创新班)第8题3分一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为().A. {x=y−50 x+y=180B. {x=y+50 x+y=180C. {x=y+50 x+y=90D. {x=y−50 x+y=909、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第9题3分2016~2017学年北京丰台区初一下学期期末第4题3分2017~2018学年江苏连云港赣榆区初一下学期期末第5题3分2018~2019学年广西玉林博白县初一下学期期末第3题3分2017~2018学年福建莆田城厢区初一下学期期末第8题4分如果{x=1y=−2是关于x和y的二元一次方程ax+y=1的解,那么a的值是().A. 3B. 1C. −1D. −310、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第10题3分2017~2018学年河北保定定兴县初一下学期期末第9题3分2016~2017学年北京丰台区初一下学期期末第8题3分如果(x−1)2=2,那么代数式x2−2x+7的值是().A. 8B. 9C. 10D. 11二、填空题(本大题共8小题,每小题3分,共24分)11、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第11题3分2019~2020学年四川内江市中区内江市第六初级中学校初一下学期期中第13题4分2018~2019学年内蒙古呼和浩特玉泉区内蒙古师范大学附属第二中学初一下学期期中第15题3分2019~2020学年四川自贡贡井区自贡市田家炳中学初二上学期开学考试第10题3分2020~2021学年广东广州荔湾区广州市真光中学初一下学期期中(真光教育集团)第11题3分将方程2x−3y=5变形为用x的代数式表示y的形式是.12、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第12题3分2019~2020学年6月湖北武汉江夏区武汉市外国语学校美加分校初一下学期月考第11题3分2018~2019学年广西南宁宾阳县开智中学初一下学期期末第15题3分用不等式表示“a与5的差不是正数”:.13、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第13题3分2019~2020学年广东惠州惠城区惠州市惠台学校初一下学期期末第14题4分2019~2020学年黑龙江哈尔滨道里区哈尔滨第一一三中学初一上学期期中第14题3分2017~2018学年浙江宁波海曙区宁波市东恩中学初一上学期期中第14题3分2014~2015学年北京初一下学期期中东城朝阳海淀第16题已知a、b为两个连续的整数,且a<√11<b,则a+b=.14、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第14题3分2020~2021学年河南郑州金水区郑州十一中学分校初一上学期期中第12题3分2020~2021学年10月江苏苏州相城区南京师范大学苏州实验学校初一上学期月考第14题2016~2017学年11月天津宁河区初一上学期月考第13题3分2016~2017学年北京大兴区北京亦庄实验中学初一上学期期中第12题3分若|m−3|+(n−2)2=0,则m+2n的值为.15、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第15题3分2015年湖南株洲芦淞区初三中考一模第12题3分2019年广东揭阳榕城区初三中考一模(空港经济区)第12题2017~2018学年辽宁营口西市区营口市实验中学初一下学期期中第13题3分2017~2018学年4月浙江杭州江干区杭州市采荷中学初一下学期月考第12题4分如图,已知a//b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为.16、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第16题3分2012年江苏苏州中考真题第15题某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人,对其到校方式进行调查,并将调查的结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有人.17、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第17题3分2016~2017学年湖北武汉新洲区初一下学期期末第14题3分方程3x+y=20在正整数范围内的解有组.18、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第18题3分2017~2018学年重庆沙坪坝区重庆市名校联合中学校初一上学期期末第13题4分2017~2018学年重庆初一上学期期末第13题4分福布斯2017年全球富豪榜出炉,中国上榜人数仅次于美国,其中王健林以330亿美元的财富雄踞中国内地富豪榜榜首,这一数据用科学记数法可表示为美元.三、计算题(本大题共4小题,每小题5分,共20分)19、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第19题5分2019~2020学年北京海淀区海淀实验中学初一下学期期末第23题4分2017~2018学年北京昌平区初一下学期期末第20题5分2018~2019学年北京延庆区初一下学期期末第21题5分2019~2020学年河北石家庄裕华区石家庄市第四十中学初一下学期期末第26题6分解方程组:{x +y =13x +y =5.20、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第20题5分解不等式组:{x −2>02(x +1)⩾3x −1,并把解集在数轴上表示出来.21、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第21题5分2016~2017学年北京丰台区初一下学期期末第21题4分因式分解:−3a 3b −27ab 3+18a 2b 2.22、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第22题5分2017~2018学年北京昌平区初一下学期期末第21题5分2019~2020学年辽宁大连金普新区初一下学期期中第22题6分已知关于x ,y 的二元一次方程组{2ax +by =3ax −by =1的解为{x =1y =1求a +2b 的值.四、解答题(本大题共4小题,共26分)23、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第23题6分2019~2020学年云南大理巍山县初一下学期期末第17题5分2016~2017学年福建莆田秀屿区莆田第二十五中学初一下学期期末第22题10分如图所示,直线a、b被c、d所截,且c⊥a,c⊥b,∠1=70°,求∠3的大小.24、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第24题6分2016年河南南阳淅川县初三中考一模第18题9分2017~2018学年江苏南京建邺区南京师范大学附属中学新城初级中学初二下学期期中第20题6分某校为了开设武术、舞蹈、剪纸三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成下面两幅统计图,请你结合图中信息解答问题.(1) 将条形统计图补充完整.(2) 本次抽样调查的样本容量是;(3) 已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.25、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第25题7分2019~2020学年广东深圳福田区深圳外国语学校初二上学期单元测试《实数》第17题2014~2015学年广东广州越秀区广州市育才实验学校初一下学期期中第23题2019~2020学年广东广州海珠区广州市海珠区六中珠江中学初一下学期期中模拟第19题8分我们知道a +b =0时,a 3+b 3=0也成立,若将a 看成a 3的立方根,b 看成b 3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1) 试举一个例子来判断上述猜测结论是否成立.(2) 若√1−2x 3与√3x −53互为相反数,求1−√x 的值.26、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第26题7分2016~2017学年10月重庆石柱土家族自治县石柱中学校初一上学期月考2014~2015学年重庆渝中区重庆市巴蜀中学校初一上学期期末第28题2017~2018学年重庆初一上学期期末第25题4分2018~2019学年辽宁大连高新技术产业园区初一上学期期中第25题10分某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:方案一:按照商铺标价一次性付清铺款,每年可获得的租金为商铺标价的10%.方案二:按商铺标价的八折一次性付清铺款,前3年商铺的租金收益归开发商所有,3年后每年可获得的租金为商铺标价的9%(1) 问投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?(注:投资收益率=投资收益实际投资额×100%) (2) 对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益相差7.2万元.问甲乙两人各投资了多少万元?五、填空题(本大题共4小题,每小题4分,共16分)27、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第27题4分2015~2016学年江苏苏州初二下学期期中模拟第11题3分2018~2019学年辽宁沈阳浑南区育才实验学校初二下学期期中第11题3分2019年陕西宝鸡金台区初三中考一模第11题3分2018年山东滨州初三中考二模第13题5分分解因式:2m3−8m=.28、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第28题4分2019~2020学年四川绵阳涪城区绵阳南山中学双语学校初一下学期期末模拟第14题3分2016~2017学年湖北武汉新洲区初一下学期期末第12题3分在平面直角坐标系中,若A点坐标为(−1,3),AB//y轴,线段AB=5,则B点坐标为.29、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第29题4分关于x的一元一次方程2(x−m)=4+x的解是非负数,则m的取值范围是.30、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第30题4分已知如图,在频率分布直方图中,各小长方形的高之比AE:BF:CG:DH=2:4:3:1,则第3组的频率为.六、解答题(本大题共4小题,共34分)31、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第31题8分2019~2020学年江苏苏州工业园区金鸡湖学校初三下学期开学考试第20题6分2020年江苏苏州高新区苏州市高新区第一初级中学校初三中考二模第23题6分某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.(1) 该小区新建1个地上停车位和1个地下停车位各需多少万元?(2) 该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有哪几种建造停车位的方案?32、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第32题8分2018~2019学年西藏昌都地区左贡县左贡县中学初一下学期期末第26题4分丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题.33、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第33题8分河南许昌长葛市长葛市天隆学校初一下学期期末(1)第18题7分2020~2021学年3月江西南昌红谷滩区南昌市第五中学初一下学期月考第15题5分2017~2018学年山西吕梁柳林县初一下学期期末第19题6分2015~2016学年河南郑州中原区郑州外国语学校初二上学期期末第19题8分如图,已知AB//CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.34、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第34题10分如图1,平面直角坐标系中,直线AB与x轴负半轴交于点A(a,0),与y轴正半轴交于点B(0,b),且√a+6+|b−4|=0.(1) 求△AOB的面积.(2) 如图2,若P为直线AB上一动点,连接OP,且2S△AOP⩽S△BOP⩽3S△AOP,求P点横坐标x P的取值范围.1 、【答案】 B;2 、【答案】 D;3 、【答案】 C;4 、【答案】 C;5 、【答案】 D;6 、【答案】 C;7 、【答案】 A;8 、【答案】 C;9 、【答案】 A;10 、【答案】 A;;11 、【答案】y=2x−5312 、【答案】a−5⩽0;13 、【答案】7;14 、【答案】7;15 、【答案】50°;16 、【答案】216;17 、【答案】6;18 、【答案】3.3×1010;19 、【答案】{x=2y=−1.;20 、【答案】2<x⩽3.;21 、【答案】−3ab(a−3b)2;22 、【答案】a+2b=2.;23 、【答案】70°.;24 、【答案】 (1) 画图见解析.;(2) 100;(3) 360人.;25 、【答案】 (1) 证明见解析.;(2) −1.;26 、【答案】 (1) 投资者选择方案二所获得的投资收益率更高.;(2) 甲投资了60万元,乙投资了48万元.;27 、【答案】2m(m+2)(m−2);28 、【答案】(−1,8)或(−1,−2);29 、【答案】m⩾−2;30 、【答案】0.3;31 、【答案】 (1) 新建一个地上停车位需要0.1万元,新建一个地下停车位需要0.5万元.;(2) 共有3种建造方案.①建30个地上停车位,20个地下停车位;②建31个地上停车位,19个地下停车位;③建32个地上停车位,18个地下停车位.;32 、【答案】丁丁至少要答对22道题.;33 、【答案】32.5°.;34 、【答案】 (1) 12.;(2) P点横坐标x P的取值范围是−4.5⩽x P⩽−4或−12⩽x P⩽−9.;。

七年级下学期期末考试数学试卷(附含答案)

七年级下学期期末考试数学试卷(附含答案)

第5题图第9题图七年级下学期期末考试数学试卷(附含答案)一 选择题(每小题4分,共40分) 1. 9的平方根是( )A.3±B. 3C. 81D.81± 2.在平在直角坐标系中,点M (3,-2)位于( )A.第一象限B. 第二象限C. 第三象限D. 第四象限 3.下列调查中适合采用全面调查的是( )A.了解凯里市“停课不停学”期间全市七年级学生的听课情况B.了解新冠肺炎疫情期间某校七(1)班学生的每日体温C.了解疫情期间某省生产的所有口罩的合格率D.了解全国各地七年级学生对新冠状病毒相关知识的了解情况 4.下列运动属于平移的是( )A. 荡秋千B. 地球绕太阳转C. 风车的转动D.急刹车时,汽车在地面上的滑动5. 如图,在下列条件中,不能判定AB ∥DF 的是( )A. ∠A+∠AFD=180°B.∠A=∠CFDC. ∠BED=∠EDFD. ∠A=∠BED 6. 已知二元一次方程432=-y x ,用含x 的代数式表示y ,正确的是( ) A.342+=x y B. 342-=x y C. 234y x += D. 234yx -= 7. 已知b a >,下列不等式中错误的是( )A. 11+>+b aB. 22->-b aC. b a 22>D. b a 44->-8. 下列命题是真命题的是( )A.若||||b a =,则b a =B.经过直线外一点有且只有一条直线与已知直线平行C.同位角相等D.在同一平面内,如果b a ⊥,c b ⊥,那么c a ⊥ 9.如图,数轴上与40对应的点是( ) A.点A B.点B C.点C D.点D 10. 某种服装的进价为200元,出售时标价为300元; 由于换季,商店准备对该服装打折销售,但要保持利 润不低于20%,那么最多打( )A. 6折B. 7折C. 8折D. 9折 二 填空题(每小题4分,共32分) 11. 在实数①21,②11,③1415926.3,④16,⑤π,⑥ 2020020002.0(相邻两个2之间依次多一个0)中,无理数有 (填写序号).12. 如图,要在河岸l 上建立一水泵房引水到C 处,做法是:过点C 作CD ⊥l 于点D ,将水泵房建在了D 处.这样做最节省水管长度,其数学道理是 . 13. 已知⎩⎨⎧=-=13y x 是方程7=+y mx 的解,则m .14.如图,直线a ∥b ,点B 在a 上,点A 与点C 在b 上; 且AB ⊥BC.若∠1=034,则∠2= .第12题图第14题图15. 将50个数据分成5组列出频数分布表,其中第一组的频数为6,第二组与第五组的频数和为18,第三组的频率为0.2,则第四组的频率为 . 16.一个正数b 有两个不同的平方根1+a 和72-a ,则b a -21的立方根是 . 17.若关于x 的不等式组⎪⎩⎪⎨⎧<->-2210x a x 的所有整数解之和等于9,则a 的取值范围是 .18.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上 向右 向下 向右的方向依次不断移动,每次移动1个单位,移动的路线如图所示。

人教版数学七年级下册《期末考试试卷》附答案

人教版数学七年级下册《期末考试试卷》附答案

人 教 版 数 学 七 年 级 下 学 期期 末 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共30分,每小题3分,第1~10题符合题意的选项均只有一个) 1. 把不等式x+2≤0的解集在数轴上表示出来,则正确的是( ) A. B. C. D. 2.若13a =,则实数a 在数轴上对应的点P 的大致位置是( )A. B. C. D.3.如图所示,用量角器度量∠AOB 和∠AOC 的度数. 下列说法中,正确的是A. 110AOB ∠=︒B. AOB AOC ∠=∠C. 90AOB AOC ∠+∠=︒D. 180AOB AOC ∠+∠=︒4.下列说法错误..的是( )A. 9的算术平方根是3B. 64的立方根是8±C. 5-没有平方根D. 平方根是本身的数只有05.下列调查中,适合用全面调查方式的是( )A. 调查“神舟十一号”飞船重要零部件的产品质量B. 调查某电视剧的收视率C. 调查一批炮弹的杀伤力D. 调查一片森林的树木有多少棵6.如图,两条直线AB ,CD 交于点O ,射线OM 是∠AOC 的平分线,若∠BOD =80°,则∠BOM 等于( )A. 140°B. 120°C. 100°D. 807.下列命题中是真命题的是( )A. 两个锐角的和是锐角B. 两条直线被第三条直线所截,同位角相等C. 点(3,2)-到x 轴的距离是2D. 若a b >,则a b ->-8.如图,在平面直角坐标系中,点A 的坐标为(1,3),点B 的生标,(2,1),将线段AB 沿某一方向平移后,若点A 的对应点'A 的坐标为(-2,0),则点B 的对应点B ′的坐标为( )A. (5,2)B. (-1,-2)C. (-1,-3)D. (0,-2)9.如图,小宇计划在甲、乙、丙、丁四个小区中挑选一个小区租住,附近有东西向的交通主干道a 和南北向的交通主干道b ,若他希望租住的小区到主干道a 和主干道b 的直线距离之和最小,则图中符合他要求的小区是( )A. 甲B. 乙C. 丙D. 丁10.某公园门票的收费标准如下:门票类别成人票儿童票团体票(限5张及以上)价格(元/人)100 40 60有两个家庭分别去该公园游玩,每个家庭都有5名成员,且他们都选择了最省钱的方案购买门票,结果一家比另一家少花40元,则花费较少的一家花了()元.A. 300B. 260C. 240D. 220二、填空题(本大题共18分,第11-16每题2分,第17,18题每题3分)11.颐和园坐落在北京西郊,是第一批全国重点文物保护单位之一.小万去颐和园参加实践活动时发现有的窗户造型是正八边形,如下图所示,则∠1=__°.12.用一组a,b的值说明命题“若a2>b2,则a>b”是错误的,这组值可以是a=____,b=____.13.有两边相等的三角形的一边是7,另一边是4,则此三角形的周长是_____.14.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO 的度数为______.15.己知关于,x y的方程组4723x y mx y m+=-⎧⎨-=+⎩的解满足0x>,0y>.则m的取值范围是______.16.数学课上, 老师要求同学们利用三角板画两条平行线.老师说苗苗和小华两位同学画法都是正确的,两位同学的画法如下:苗苗的画法:①将含30°角的三角尺的最长边与直线a 重合,另一块三角尺最长边与含30°角的三角尺的最短边紧贴; ②将含30°角的三角尺沿贴合边平移一段距离,画出最长边所在直线b ,则b//a.小华的画法:①将含30°角三角尺的最长边与直线a 重合,用虚线做出一条最短边所在直线;②再次将含30°角三角尺的最短边与虚线重合,画出最长边所在直线b ,则b//a.请在苗苗和小华两位同学画平行线的方法中选出你喜欢的一种,并写出这种画图的依据.答:我喜欢__________同学的画法,画图的依据是__________.17.如图,在平面直角坐标系xOy ,(1,0)A -,(3,3)B --,若//BC OA ,且BC=4OA .(1)点C 的坐标为______;(2)ABC V 的面积等于_____.18.定义一种新运算“a b ☆”的含义为:当a b …时,a b a b =+☆,当a b <时,a b a b =-☆.例如:3(4)3(4)1-=+-=-☆,111(6)(6)6222-=--=-☆ (1)(4)3-=☆_____;(2)(37)(32)2x x --=☆,则x =______.三、解答题(本大题共18分,第19,20题每题4分,第21,22每题5分)19.3-832|+()2-33. 20.解方程组35342x y x y +=-⎧⎨-=-⎩ ..21.解不等式组5178(1)1062x xxx-<-⎧⎪⎨--≤⎪⎩并写出它的所有正整数解.....22.如图,直线CD与直线AB相交于C,根据下列语句画图、解答.(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由四、解答题(本大题共11分,23题5分,24题6分)23.已知:如图,在ABCV中,BE平分ABC∠交AC于E,CD AC⊥交AB于D,BCD A∠=∠,求BEA∠的度数.24.为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?(2)若购买B种树苗数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.五、解答题(本大题共23分,25题4分,26题6分,27题6分,28题7分)25.某年级共有400名学生,为了解该年级学生上学的交通方式,从中随机抽取100名学生进行问卷调查,并对调查数据进行整理、描述和分析,下面给出了部分信息A.不同交通方式学生人数分布统计图如下:B .采用公共交通方式单程所花费时间(分钟)的频数分布直方图如下(数据分成6组:1020x <…,2030x <…,3040x <…,4050x <…,5060x <…,6070x <…);根据以上信息,完成下列问题:(1)补全频数分布直方图;(2)根据不同交通方式学生人数所占的百分比,算出“私家车方式”对应扇形的圆心角是度_____. (3)请你估计全年级乘坐公共交通上学有_____人,其中单程不少于60分钟的有_____人.26.如图,在平面直角坐标系xOy 中,把一个点P 的横、纵坐标都乘以同一个实数a ,然后将得到的点先向右平移m 个单位,再向上平移n 个单位(0,0)m n >>,得到点P '(1)若(2,1)P -,5a =,1m =,2n =,则点P '坐标是_____;(2)对正方形ABCD 及其内部的每个点进行上述操作,得到正方形A B C D ''''及其内部的点,其中点,A B 的对应点分别为,A B ''.求,,m n a ;(3)在(2)的条件下,己知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F '与点F 重合,求点F 的坐标.27.在AOB V 中,90AOB ∠=︒,点C 为直线AO 上的一个动点(与点,O A 不重合),分别作OBC ∠和ACB ∠的角平分线,两角平分线所在直线交于点E .(1)若点C 在线段AO 上,如图1.①依题意补全图1;②求BEC ∠的度数;(2)当点C 在直线AO 上运动时,BEC ∠的度数是否变化?若不变,请说明理由;若变化,画出相应的图形,并直接写出BEC ∠的度数.28.在平面直角坐标系xOy 中,对于P ,Q 两点给出如下定义:若点P 到x ,y 轴的距离中的最大值等于点Q 到x ,y 轴的距离中的最大值,则称P ,Q 两点为“等距点”图中的P ,Q 两点即为“等距点”.(1)已知点A 的坐标为(3,1)-.①在点(0,3),E (3,3),F -(2,5)G -中,为点A 的“等距点”的是________;②若点B 的坐标为(,6)m m +,且A ,B 两点为“等距点”,则点B 的坐标为________.(2)若1(1,3),T k ---2(4,43)T k -两点为“等距点”,求k 的值答案与解析一、选择题(本大题共30分,每小题3分,第1~10题符合题意的选项均只有一个) 1. 把不等式x+2≤0的解集在数轴上表示出来,则正确的是( ) A.B. C. D.【答案】D【解析】试题分析:根据一元一次不等式的解法解不等式x+2≤0,得x≤﹣2. 表示在数轴上为:. 故选D考点:不等式的解集2.若13a =,则实数a 在数轴上对应的点P 的大致位置是( )A.B. C.D. 【答案】C【解析】【分析】根据3134<<,即可选出答案.【详解】解:∵3134<<,故选C .【点睛】本题主要考查了无理数的估算和实数在数轴上的表示,能判断无理数的估值是解答此题的关键. 3.如图所示,用量角器度量∠AOB 和∠AOC 的度数. 下列说法中,正确的是A. 110AOB ∠=︒B. AOB AOC ∠=∠C. 90AOB AOC ∠+∠=︒D. 180AOB AOC ∠+∠=︒【答案】D【解析】【分析】先根据量角器读出∠AOB 和∠AOC 的度数,再结合选项,得出正确答案.【详解】由图可知70AOB ∠=︒,110AOC ∠=︒,故A 项错误,B 项错误;因为180AOB AOC ∠+∠=︒,所以C 项错误,D 项正确.【点睛】本题考查量角器的度数,解题的关键是会根据量角器读出度数.4.下列说法错误..的是( ) A. 9的算术平方根是3B. 64的立方根是8±C. 5-没有平方根D. 平方根是本身的数只有0【答案】B【解析】【分析】根据平方根、算术平方根与立方根的定义和求法逐个选项进行判断,即可得解.【详解】A. 9的算术平方根是3,说法正确;B. 64的立方根是8±,说法错误,正确答案为4;C. 5-没有平方根,说法正确;D. 平方根是本身的数只有0,说法正确.故答案为:B .【点睛】本题关键是区分并掌握平方根、算术平方根及立方根的定义和求法.5.下列调查中,适合用全面调查方式的是( )A. 调查“神舟十一号”飞船重要零部件的产品质量B. 调查某电视剧的收视率C. 调查一批炮弹的杀伤力D. 调查一片森林的树木有多少棵 【答案】A【解析】【分析】全面调查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,据此逐个选项分析判断.【详解】A. 调查“神舟十一号”飞船重要零部件的产品质量,由于是“重要零部件”,适合全面调查;B. 调查某电视剧的收视率,适合抽样调查;C. 调查一批炮弹的杀伤力,适合抽样调查;D. 调查一片森林的树木有多少棵,适合抽样调查.故选:A .【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查,要根据所要考察的对象的特征灵活选用.一般来说对于具有破坏性的调查,无法进行普查,普查的意义或价值不大应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.如图,两条直线AB ,CD 交于点O ,射线OM 是∠AOC 的平分线,若∠BOD =80°,则∠BOM 等于()A. 140°B. 120°C. 100°D. 80【答案】A【解析】【分析】先根据对顶角相等得出∠AOC =80°,再根据角平分线的定义得出∠COM =40°,最后解答即可.【详解】解:∵∠BOD =80°,∴∠AOC =80°,∠COB =100°,∵射线OM 是∠AOC 的平分线,∴∠COM =40°,∴∠BOM =40°+100°=140°,故选A .【点睛】此题考查对顶角和角平分线的定义,关键是得出对顶角相等.7.下列命题中是真命题的是( )A. 两个锐角和是锐角B. 两条直线被第三条直线所截,同位角相等C. 点(3,2)-到x 轴的距离是2D. 若a b >,则a b ->-【答案】C【解析】【分析】根据角的定义、平行线的性质、点的坐标及不等式的性质对各选项进行分析判断,即可得解.【详解】A. 两个锐角的和是锐角是假命题,例如80°+80°=160°,是钝角,不是锐角,故本选项错误;B. 两条直线被第三条直线所截,同位角相等是假命题,两条平行线被第三条直线所截,同位角才相等,故本选项错误;C. 点(3,2)-到x 轴的距离是2是真命题,故本选项正确;D. 若a b >,则a b ->-是假命题,正确结果应为a b -<-,故本选项错误.故选:C .【点睛】本题考查真假命题的判断,解题关键是认真判断由条件是否能推出结论,如果能举出一个反例,或由条件推出的结论与题干结论不一致,则为假命题.8.如图,在平面直角坐标系中,点A 的坐标为(1,3),点B 的生标,(2,1),将线段AB 沿某一方向平移后,若点A 的对应点'A 的坐标为(-2,0),则点B 的对应点B ′的坐标为( )A. (5,2)B. (-1,-2)C. (-1,-3)D. (0,-2)【答案】B【解析】【分析】 点A (1,3)平移到点'A (-2,0),横坐标减3,纵坐标减3,点B 的平移规律和点A 一样,由此可知点B ′的坐标.【详解】解:因为点A (1,3)平移到点'A (-2,0),横坐标减3,纵坐标减3,故点B (2,1)平移到点B ′横、纵坐标也都减3,所以B ′的坐标为(-1,-2).故选:B【点睛】本题考查了平面直角坐标系中图形的平移变化规律,根据一组对应点的平移找准平移规律是解题的关键.9.如图,小宇计划在甲、乙、丙、丁四个小区中挑选一个小区租住,附近有东西向的交通主干道a 和南北向的交通主干道b,若他希望租住的小区到主干道a和主干道b的直线距离之和最小,则图中符合他要求的小区是()A. 甲B. 乙C. 丙D. 丁【答案】C【解析】【分析】分别作甲、乙、丙、丁四个小区关于道路a和道路b的对称点,分别连接对称点,线段最短的即为所求【详解】解:分别作甲、乙、丙、丁四个小区关于道路a和道路b的对称点,分别连接对称点,线段最短的即为所求,如图:从图中可知丙小区到两坐标轴的距离最短;故选C.【点睛】本题考查轴对称求最短路径;通过两次作轴对称,将问题转化为对称点的连线最短是解题的关键.10.某公园门票的收费标准如下:有两个家庭分别去该公园游玩,每个家庭都有5名成员,且他们都选择了最省钱的方案购买门票,结果一家比另一家少花40元,则花费较少的一家花了()元.A. 300B. 260C. 240D. 220【答案】B【解析】【分析】根据题意,分情况讨论:若花费较少的一家的购票方案为5人团购,则另一家花费340元,据此组合验证是否能凑成整数张成人票和儿童票;若花费较少的一家的购票方案是成人票和儿童票分开购买,则可根据题意设未知数,列方程求解并验证.【详解】若花费较少的一家是60×5=300(元),则花费较多的一家为340元,经检验可知,成人和儿童共5张票无法组合成340元.x+元,根据题意得:设花费较少的一家花了x元,则另一家花了40x+⨯40=605x=解得:260检验可知,该家庭有1个成人,4个儿童,共花费100+40×4=260(元);故选:B.【点睛】本题考查一元一次方程应用,理清题意,找准等量关系,正确列出方程是解题关键.二、填空题(本大题共18分,第11-16每题2分,第17,18题每题3分)11.颐和园坐落在北京西郊,是第一批全国重点文物保护单位之一.小万去颐和园参加实践活动时发现有的窗户造型是正八边形,如下图所示,则∠1=__°.【答案】45【解析】【分析】利用正八边形的外角和等于360度即可求出答案.【详解】解:360°÷8=45°,故答案为:45.【点睛】本题主要考查了多边形的外角和定理,明确任何一个多边形的外角和都是360°是解题的关键. 12.用一组a ,b 的值说明命题“若a 2>b 2,则a >b ”是错误的,这组值可以是a =____,b =____.【答案】 (1).3a =-, (2). 1b =-【解析】【分析】举出一个反例:a =−3,b =−1,说明命题“若a 2>b 2,则a >b”是错误的即可.【详解】解:当a =−3,b =−1时,满足a 2>b 2,但是a <b ,∴命题“若a 2>b 2,则a >b”是错误的.故答案为−3、−1.(答案不唯一)【点睛】此题主要考查了命题与定理,要熟练掌握,解答此题的关键是要明确:任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可. 13.有两边相等的三角形的一边是7,另一边是4,则此三角形的周长是_____.【答案】15或18【解析】【分析】有两边相等的三角形是等腰三角形,由于不确定哪边是底,哪边是腰,故分两种情况讨论,并结合构成三角形的三边的关系,即可得解.【详解】若7为底,则三边为7,4,4,由于4+4>7,故可以构成三角形,周长为15;若4为底,则三边为4,7,7,也可以构成三角形,周长为18.故答案为:15或18.【点睛】本题考查等腰三角形的性质及三角形三边关系,分类讨论哪边为底哪边为腰是解题关键. 14.如图,将一副三角板叠放在一起,使直角的顶点重合于点O ,AB ∥OC ,DC 与OB 交于点E ,则∠DEO 的度数为______.【答案】75°【解析】【分析】由平行线的性质求出∠AOC=120°,再求出∠BOC=30°,然后根据三角形的外角性质即可得出结论.【详解】解:∵AB ∥OC ,∠A=60°,∴∠A+∠AOC=180°,∴∠AOC=120°, ∴∠BOC=120°-90°=30°,∴∠DEO=∠C+∠BOC=45°+30°=75°.故答案为75°.【点睛】本题主要考查了平行线的性质、三角形的外角性质;熟练掌握平行线的性质和三角形的外角性质是解决问题的关键.15.己知关于,x y 的方程组4723x y m x y m +=-⎧⎨-=+⎩的解满足0x >,0y >.则m 的取值范围是______. 【答案】5m >【解析】【分析】用加减消元法解关于,x y 的二元一次方程组;根据0x >,0y >,解关于m 的不等式组,可得m 的解集. 【详解】4732235x y m x m x y m y m +=-=-⎧⎧⇒⎨⎨-=+=-⎩⎩∵0x >,0y >,∴232053505m m m m m ⎧->>⎧⎪⇒⇒>⎨⎨->⎩⎪>⎩ 故答案为:5m >.【点睛】本题考查解二元一次方程组和一元一次不等式组,关键是先求出含m 的x 和y ,再根据题意列不等式组求解.16.数学课上, 老师要求同学们利用三角板画两条平行线.老师说苗苗和小华两位同学画法都是正确的,两位同学的画法如下:苗苗的画法:①将含30°角的三角尺的最长边与直线a 重合,另一块三角尺最长边与含30°角的三角尺的最短边紧贴; ②将含30°角的三角尺沿贴合边平移一段距离,画出最长边所在直线b ,则b//a.小华的画法:①将含30°角三角尺的最长边与直线a 重合,用虚线做出一条最短边所在直线;②再次将含30°角三角尺的最短边与虚线重合,画出最长边所在直线b ,则b//a.请在苗苗和小华两位同学画平行线的方法中选出你喜欢的一种,并写出这种画图的依据.答:我喜欢__________同学的画法,画图的依据是__________.【答案】 (1). 苗苗,同位角相等,两直线平行. (2). 小华,内错角相等,两直线平行.【解析】分析】结合两人的画法和“平行线的判定”进行分析判断即可.【详解】(1)如图1,由“苗苗”的画法可知:∠2=∠1=60°,∴a ∥b (同位角相等,两直线平行);(2)如图2,由“小华”的画法可知:∠2=∠1=60°,∴a ∥b (内错角相等,两直线平行).故答案为(1)苗苗,同位角相等,两直线平行;或(2)小华,内错角相等,两直线平行.【点睛】读懂题意,熟悉“三角尺的各个角的度数和平行线的判定方法”是解答本题的关键.17.如图,在平面直角坐标系xOy ,(1,0)A -,(3,3)B --,若//BC OA ,且BC=4OA .(1)点C 的坐标为______;(2)ABC V 的面积等于_____.【答案】 (1). (1,-3)或(-7,-3) (2). 6【解析】【分析】(1)先由//BC OA ,确定C 点纵坐标与B 点相同,再根据BC=4OA ,确定BC 的长,然后分别求出C 点在B 点左侧和右侧的横坐标,即可得解;(2)由三角形面积公式求解即可.【详解】(1)∵//BC OA ,∴点C 纵坐标为-3,又∵BC=4OA=4∴当点C 在点B 右边,点C 横坐标为-3+4=1,故C(1,-3),当点C 在点B 左边,点C 横坐标为-3-4=-7,故C(-7,-3),故答案为:(1,-3)或(-7,-3);(2)S △ABC =12BC ×3=12×4×3=6 故答案为:6.【点睛】本题结合坐标系考查平行和三角形面积,关键是由平行确定C 点纵坐标,并对C点横坐标进行分情况讨论.18.定义一种新运算“a b ☆”的含义为:当a b …时,a b a b =+☆,当a b <时,a b a b =-☆.例如:3(4)3(4)1-=+-=-☆,111(6)(6)6222-=--=-☆ (1)(4)3-=☆_____;(2)(37)(32)2x x --=☆,则x =______.【答案】 (1). -7 (2). 6【解析】【分析】(1)根据新定义计算即可;(2)分3732x x -≥-和3732x x -<-两种情况,根据新定义列方程求解即可.【详解】(1)(4)3437-=--=-☆故答案为:-7;(2)当3732x x -≥-,即2x ≥时,由题意得:(37)+(32)2x x --=解得:6x =;当3732x x -<-,即2x <时,由题意得:(37)(32)2x x ---= 解得:125x =(舍). 故答案为:6.【点睛】本题考查新定义,解题关键是根据新定义列出一元一次不等式和一元一次方程并准确求解.三、解答题(本大题共18分,第19,20题每题4分,第21,22每题5分)19.2|+.【解析】【分析】直接利用立方根的性质和绝对值的性质、二次根式的性质分别化简得出答案.【详解】原式=﹣2+2=.【点睛】本题考查了实数运算,正确化简各数是解题的关键.20.解方程组35342x y x y +=-⎧⎨-=-⎩ .. 【答案】21x y =-⎧⎨=-⎩【解析】【分析】利用加减消元法将方程组中的未知数消去,可求得的值,再将值代入其中一个方程解得的值,即得原方程组的解.【详解】解:35342x y x y +=-⎧⎨-=-⎩①②①×3得: 3915x y +=-③, ③-②,得1313y =-∴ 1y =-把1y =-代入①,得x= -2∴21x y =-⎧⎨=-⎩ 是原方程组的解 21.解不等式组5178(1)1062x x x x -<-⎧⎪⎨--≤⎪⎩并写出它的所有正整数解..... 【答案】不等式组的解集是-3<x ≤2,正整数解是1、2【解析】【分析】先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分,然后从解集中找出所有的正整数即可.【详解】解:() 517811062x xxx⎧-<-⎪⎨--≤⎪⎩①②,解①得,x>-3,解②得,x≤2,∴原不等式组的解是-3<x≤2.∴原不等式组的正整数解有:1,2.点睛:本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.22.如图,直线CD与直线AB相交于C,根据下列语句画图、解答.(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由【答案】(1)见解析;(2)见解析;(3)∠PQC=60°,理由见解析【解析】【详解】解:如图所示:(1)画出如图直线PQ(2)画出如图直线PR(3)∠PQC=60°理由是:因为PQ ∥CD所以∠DCB+∠PQC=180°又因为∠DCB=120°所以∠PQC=180°-120°=60° 四、解答题(本大题共11分,23题5分,24题6分)23.已知:如图,在ABC V 中,BE 平分ABC ∠交AC 于E ,CD AC ⊥交AB 于D ,BCD A ∠=∠,求BEA ∠的度数.【答案】135°【解析】【分析】设BCD A x ∠=∠=,ABE CBE y ∠=∠=,根据三角形外角定理,分别用, x y 表示∠ADC 和∠BEC ,结合∠A 与∠ADC 互余,列方程即可求出∠BEC ,由邻补角的性质进而可求出BEA ∠的度数.【详解】设BCD A x ∠=∠=,ABE CBE y ∠=∠=,∵CD AC ⊥∴∠A+∠ADC=∠A+(∠BCD+∠ABC)=()()22=90x x y x y ++=+︒∴45x y +=︒∴∠BEC=∠A+∠ABE=45x y +=︒∠=180°-45°=135°∴BEA∠的度数为135°.即BEA【点睛】本题主要考察三角形外角定理、互余与邻补角的性质,解题关键是用未知数表示出角的度数,进而根据它们之间的关系进行代数运算.24.为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.【答案】(1)购进A种树苗10棵,B种树苗7棵(2)购进A种树苗9棵,B种树苗8棵,这时所需费用为1200元【解析】【分析】(1)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,利用购进A、B两种树苗刚好用去1220元,结合单价,得出等式方程求出即可;(2)结合(1)的解和购买B种树苗的数量少于A种树苗的数量,可找出方案.【详解】解:(1)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,根据题意得:80x+60(17﹣x )=1220,解得:x=10.∴17﹣x=7.答:购进A种树苗10棵,B种树苗7棵.(2)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,根据题意得:17﹣x<x,解得:x>8.5.∵购进A、B两种树苗所需费用为80x+60(17﹣x)=20x+1020,是x的增函数,∴费用最省需x取最小整数9,此时17﹣x=8,所需费用为20×9+1020=1200(元).答:费用最省方案:购进A种树苗9棵,B种树苗8棵,这时所需费用为1200元.五、解答题(本大题共23分,25题4分,26题6分,27题6分,28题7分)25.某年级共有400名学生,为了解该年级学生上学的交通方式,从中随机抽取100名学生进行问卷调查,并对调查数据进行整理、描述和分析,下面给出了部分信息A.不同交通方式学生人数分布统计图如下:B .采用公共交通方式单程所花费时间(分钟)的频数分布直方图如下(数据分成6组:1020x <…,2030x <…,3040x <…,4050x <…,5060x <…,6070x <…);根据以上信息,完成下列问题:(1)补全频数分布直方图;(2)根据不同交通方式学生人数所占的百分比,算出“私家车方式”对应扇形的圆心角是度_____. (3)请你估计全年级乘坐公共交通上学有_____人,其中单程不少于60分钟的有_____人.【答案】(1)补图见解析;(2)108°;(3)200;8.【解析】【分析】(1)用抽查总人数乘以乘坐公共交通的百分比可得其人数,再减去图中已知的不同花费时间的人数,即得4050x <…的人数,从而补全图形;(2)用360°乘以乘坐私家车所占百分比即可得解;(3)利用样本估算总体,计算求解.【详解】(1)∵选择公共交通的人数为100×50%=50(人),∴4050x <…的人数为50-(5+17+14+4+2)=8(人)故补全直方图如下:(2)“私家车方式”对应扇形的圆心角为360°×30%=108°故答案为:108°;(3)全年级乘坐公共交通上学人数为400×50%=200(人)单程不少于60分钟的有200×250=8(人) 故答案为:200;8.【点睛】本题主要考察读图与计算,解题关键是从图表中准确读取数据信息. 26.如图,在平面直角坐标系xOy 中,把一个点P 的横、纵坐标都乘以同一个实数a ,然后将得到的点先向右平移m 个单位,再向上平移n 个单位(0,0)m n >>,得到点P '(1)若(2,1)P -,5a =,1m =,2n =,则点P '坐标是_____;(2)对正方形ABCD 及其内部的每个点进行上述操作,得到正方形A B C D ''''及其内部的点,其中点,A B 的对应点分别为,A B ''.求,,m n a ;(3)在(2)的条件下,己知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F '与点F 重合,求点F 的坐标.【答案】(1)(11,3)-;(2)12a =,12m =,2n =;(3)()1,4 【解析】【分析】(1)根据题意和平移的性质求点P '坐标;(2)由正方形的性质,结合题意列方程组求解;(3)设点F 的坐标为(,)x y ,根据平移规律列方程组求解.【详解】(1)∵(2,1)P -,5a =,1m =,2n =,∴(251,152)P '⨯+-⨯+∴(11,3)P '-故答案为:(11,3)-;(2)根据题意得:313202a m a m a n -+=-⎧⎪+=⎨⎪⋅+=⎩解得12122a m n ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩即12a =,12m =,2n =; (3)设点F 的坐标为(,)x y ,根据题意得1122122x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩ 解得14x y =⎧⎨=⎩∴F 的坐标为()1,4.【点睛】本题主要考察平移变换,关键是掌握坐标系中平移变换与横、纵坐标的变化规律.27.在AOB V 中,90AOB ∠=︒,点C 为直线AO 上的一个动点(与点,O A 不重合),分别作OBC ∠和ACB ∠的角平分线,两角平分线所在直线交于点E .(1)若点C 在线段AO 上,如图1.①依题意补全图1;②求BEC ∠的度数;(2)当点C 在直线AO 上运动时,BEC ∠的度数是否变化?若不变,请说明理由;若变化,画出相应的图形,并直接写出BEC ∠的度数.【答案】(1)①补图见解析;②45°;(2)图见解析,∠BEC 的度数为45°或135°.【解析】【分析】(1)①根据题意作图即可;②设∠EBO=∠EBC=x ,∠BCK=∠ACK=y ,由三角形外角定理列方程组求BEC ∠的度数;(2)分情况讨论点C 在OA 和AO 延长线上时BEC ∠的度数,结合(1),即点C 在线段OA 上时BEC ∠的度数,可得结论.【详解】(1)①依题意补图如下:②设∠EBO=∠EBC=x ,∠BCK=∠ACK=y ,∵∠ACB=∠OBC+∠BOC ,∠BCK=∠EBC+∠BEC∴2290y x y x BEC =+︒⎧⎨=+∠⎩∴∠BEC=45°(2)如图,当点C 在OA 延长线上时,∵∠AOB=90°,∴∠OBC+∠OCB=90°,∵BE 、CE 分别是OBC ∠和ACB ∠的角平分线,∴∠EBC+∠ECB=90°×12=45°, ∴∠BEC=180°-45°=135°;如图,当点C 在AO 延长线上时,同理,可得∠BEC=135°;由(1)知,当点C 在线段OA 上时,∠BEC=135°.综上可知,当点C 在直线AO 上运动时,BEC ∠的度数为45°或135°.【点睛】本题主要考查角平分线的定义、三角形外角定理,解题关键是熟练掌握基础知识,并根据题意准确画图.28.在平面直角坐标系xOy 中,对于P ,Q 两点给出如下定义:若点P 到x ,y 轴的距离中的最大值等于点Q 到x ,y 轴的距离中的最大值,则称P ,Q 两点为“等距点”图中的P ,Q 两点即为“等距点”.(1)已知点A 的坐标为(3,1)-.①在点(0,3),E (3,3),F -(2,5)G -中,为点A 的“等距点”的是________;②若点B 的坐标为(,6)m m +,且A ,B 两点为“等距点”,则点B 的坐标为________.(2)若1(1,3),T k ---2(4,43)T k -两点为“等距点”,求k 的值.【答案】(1)①E ,F . ②()3,3-;(2)1k =或2k =.【解析】【分析】(1)①找到E 、F 、G 中到x 、y 轴距离最大为3的点即可;②先分析出直线上的点到x 、y 轴距离中有3的点,再根据“等距点”概念进行解答即可;(2)先分析出直线上的点到x 、y 轴距离中有4的点,再根据“等距点”概念进行解答即可.。

最新七年级(下)期末数学试卷 解析版 (3)

最新七年级(下)期末数学试卷  解析版 (3)

一、选择题(本大题共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的选项涂黑.1.(3分)在、﹣π、﹣3、2这四个数中,最小的数是()A.B.﹣πC.﹣3D.22.(3分)如图,能判定AD∥BC的条件是()A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠43.(3分)如果a>b,c<1,那么下列不等式一定成立的是()A.ac>bcB.a+c>bC.ac<bcD.a﹣c>b﹣c4.(3分)已知点P的坐标是(﹣2﹣,﹣1),则点P在()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.6.(3分)某医疗机构为了了解所在地区老年人参与新冠病毒核酸和抗体检测的比例,分别作出了四种不同的抽样调查,你认为抽样比较合理的是()A.在公园选择1000名老年人调查是否参与了新冠病毒核酸和抗体检测B.随意调查10名老年人是否参与了新冠病毒核酸和抗体检测C.在各医院、卫生院调查1000名老年人是否参与了新冠病毒核酸和抗体检测D.利用所辖派出所的户籍网随机调查10%老年人是否参与了新冠病毒核酸和抗体检测7.(3分)对于三个数字a,b,c,用max{a,b,c}表示这三个数中最大数,例如max{﹣2,﹣1,0}=0,max{﹣2,﹣1,a}=.如果max{3,8﹣2x,2x﹣5}=3,则x的取值范围是()A.≤x≤B.≤x≤4C.<x<D.<x<48.(3分)某人从一袋黄豆中取出25粒染成蓝色后放回袋中并混合均匀,接着抓出100粒黄豆,数出其中有5粒蓝色的黄豆,则估计这袋黄豆约有()A.380粒B.400粒C.420粒D.500粒9.(3分)下列六个命题:①有理数与数轴上的点一一对应;②两条直线被第三条直线所截,内错角相等;③直线外一点到这条直线的垂线段叫做点到直线的距离;④平行于同一条直线的两条直线互相平行;⑤垂直于同一条直线的两条直线互相平行;⑥如果一个角的两边分别平行于另一个角的两边,那么这两个角相等,其中假命题的个数是()A.3个B.4个C.5个D.6个10.(3分)已知关于x、y的方程组的解都为正数,且满足a+b=4,b>0,z=a﹣3b,则z的取值范围是()A.﹣8<z<4B.﹣7<z<8C.﹣7<z<4D.﹣8<z<8二、填空题(本大题共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接写在答题卡指定位置.11.(3分)在平面直角坐标系中,点(﹣5,1)到y轴的距离等于.12.(3分)一个容量为90的样本,样本中最大值是176,最小值是150,取组距为3,则该样本可以分为组.13.(3分)求不等式(2x﹣1)(x+3)>0的解集.解:根据“同号两数相乘,积为正”可得:①或②.解①得x>;解②得x<﹣3.∴原不等式的解集为x>或x<﹣3.请你仿照上述方法解决下列问题:直接写出不等式(2x+3)(5﹣x)≤0的解集.14.(3分)幻方(MagicSquare)是一种将数字排放在正方形格子中,使其每行、每列和对角线上的数字和都相等的图表.在如图所示的三阶幻方中,x+y的值为.3 4 x﹣2 y a2y﹣x c b15.(3分)如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上.将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置,…,则正方形铁片连续旋转2021次后,点P的坐标为.16.(3分)已知关于x的不等式x﹣a<0的最大整数解为3a+6,则a=.三、解答题(本大题共8小题,共72分)下列各题需要在答题卡指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(8分)解方程组:.18.(8分)解不等式组:,并把解集在数轴上表示出来.19.(8分)已知点M(3|a|﹣9,4﹣3a)在y轴的负半轴上,直线MN∥x轴,且线段MN长度为4.(1)求点M的坐标;(2)求点N的坐标.20.(8分)某校组织全体学生开展汉字听写大赛,从中抽取部分学生成绩(得分为正整数,满分为100分)进行统计,绘制了两幅不完整的统计图,直方图从左至右分别对应A、B、C、D、E组,其中C组图象缺失.已知A组的频数比B组小48.请你根据图中提供的信息解答下列问题:(1)求频数分布直方图中的a、b的值;(2)求扇形图中D部分所对的圆心角的度数,并补全频数分布直方图;(3)若80分以上为优秀,全校共有1000名学生,估计成绩优秀的学生有多少名?21.(8分)(1)请在如图所示的网格中建立平面直角坐标系,使得A,B两点的坐标分别为(5,1),(2,﹣2);(2)在(1)的条件下,过点B作x轴的垂线,垂足为点M,在BM的延长线上截取MC=BM.①写出点M的坐标;②平移线段AB使点A移动到点C,画出平移后的线段CD,并直接写出点D的坐标.③若P为直线AB上一动点,请直接写出P点到x轴和到y轴的距离和的最小值,和此时P点横坐标的取值范围.22.(10分)随着新能源汽车的发展,某公交公司将用新能源公交车淘汰某一条线路上“冒黑烟”较严重的燃油公交车,计划购买A 型和B型新能源公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需280万元;若购买A型公交车2辆,B型公交车1辆,共需260万元,(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该条线路上A型和B型公交车每辆车的年均载客量分别为60万人次和80万人次.若该公司购买A型和B型公交车的总费用不超过900万元,且确保这10辆公交车在该线路的年均载客量总和不少于670万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?23.(10分)已知AB∥CD,点M、N分别是AB、CD上的点,点G在AB、CD之间,连接MG、NG.(1)如图1,若GM⊥GN,求∠AMG+∠CNG的度数;(2)如图2,若点P是CD下方一点,MG平分∠BMP,ND平分∠GNP,已知∠BMG=28°,求∠MGN+∠MPN的度数;(3)如图3,若点E是AB上方一点,连接EM、EN,且GM的延长线MF平分∠AME,NE平分∠CNG,2∠MEN+∠MGN=108°,求∠AME的度数(直接写出结果).24.(12分)在平面直角坐标系中,点A的坐标为(m,n),且,点B的坐标为(1,2).(1)求点A的坐标;(2)若存在点M(2,b),使△ABM的面积S△ABM=5.试求出b的值;(3)已知点P的坐标为(7,0),若把线段AB上下平移,恰使△ABP的面积S△ABP=4,直接写出平移方式.2021-2022学年湖北省武汉市洪山区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的选项涂黑.1.(3分)在、﹣π、﹣3、2这四个数中,最小的数是()A.B.﹣πC.﹣3D.2【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:∵﹣π<﹣3<﹣<2,∴在、﹣π、﹣3、2这四个数中,最小的数是﹣π.故选:B.2.(3分)如图,能判定AD∥BC的条件是()A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠4【分析】根据平行线的判定方法进行分析即可.【解答】解:A、∠1=∠2不能判定AD∥BC,故此选项错误;B、∠2=∠3能判定AD∥BC,故此选项正确;C、∠1=∠4可判定AB∥CD,不能判定AD∥BC,故此选项错误;D、∠3=∠4不能判定AD∥BC,故此选项错误;故选:B.3.(3分)如果a>b,c<1,那么下列不等式一定成立的是()A.ac>bcB.a+c>bC.ac<bcD.a﹣c>b﹣c【分析】根据不等式的性质,可得答案.【解答】解:c是正是负无法确定,根据不等式的基本性质,A、C 无法判定;当c<0时,a+c<b,则B不一定成立;不等式a>b两边都减去同一个数c,不等号方向不改变,则D正确.故选:D.4.(3分)已知点P的坐标是(﹣2﹣,﹣1),则点P在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答即可.【解答】解:∵,∴,∴点P在第三象限.故选:C.5.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别解两个不等式,然后求它们的公共部分即可得到原不等式组的解集,再在数轴上表示出来即可求解.【解答】解:,由①得x≤1;由②得x>﹣1;故不等式组的解集为﹣1<x≤1,在数轴上表示出来为:.故选:C.6.(3分)某医疗机构为了了解所在地区老年人参与新冠病毒核酸和抗体检测的比例,分别作出了四种不同的抽样调查,你认为抽样比较合理的是()A.在公园选择1000名老年人调查是否参与了新冠病毒核酸和抗体检测B.随意调查10名老年人是否参与了新冠病毒核酸和抗体检测C.在各医院、卫生院调查1000名老年人是否参与了新冠病毒核酸和抗体检测D.利用所辖派出所的户籍网随机调查10%老年人是否参与了新冠病毒核酸和抗体检测【分析】根据随机抽样逐项判断得结论【解答】解:在公园、医院、卫生院选择老人调查,样本不具有代表性,故选项A、C抽样不合理;随机调查10人,样本容量太小,不具有代表性,故选项B抽样不合理;利用所辖派出所的户籍网随机调查10%老年人进行调查,抽样具有随机性和代表性,抽样合理.故选:D.7.(3分)对于三个数字a,b,c,用max{a,b,c}表示这三个数中最大数,例如max{﹣2,﹣1,0}=0,max{﹣2,﹣1,a}=.如果max{3,8﹣2x,2x﹣5}=3,则x的取值范围是()A.≤x≤B.≤x≤4C.<x<D.<x<4【分析】根据max{a,b,c}表示这三个数中最大数,对于max{3,8﹣2x,2x﹣5}=3,可得不等式组,可得结论;【解答】解:∵max{3,8﹣2x,2x﹣5}=3,则,∴x的取值范围为:≤x≤4,故选:B.8.(3分)某人从一袋黄豆中取出25粒染成蓝色后放回袋中并混合均匀,接着抓出100粒黄豆,数出其中有5粒蓝色的黄豆,则估计这袋黄豆约有()A.380粒B.400粒C.420粒D.500粒【分析】用蓝色黄豆的数量除以所抽取样本中蓝色黄豆所占比例即可得.【解答】解:估计这袋黄豆约有25÷=500(粒),故选:D.9.(3分)下列六个命题:①有理数与数轴上的点一一对应;②两条直线被第三条直线所截,内错角相等;③直线外一点到这条直线的垂线段叫做点到直线的距离;④平行于同一条直线的两条直线互相平行;⑤垂直于同一条直线的两条直线互相平行;⑥如果一个角的两边分别平行于另一个角的两边,那么这两个角相等,其中假命题的个数是()A.3个B.4个C.5个D.6个【分析】分别根据有理数、平行线的判定与性质以点到直线的距离分别判断得出即可.【解答】解:①实数与数轴上的点一一对应,原命题是假命题;②两条平行线线被第三条直线所截,内错角相等,原命题是假命题;③直线外一点到这条直线的垂线段的长度叫做点到直线的距离,原命题是假命题;④平行于同一条直线的两条直线互相平行,是真命题;⑤垂直于同一平面内的同一条直线的两条直线互相平行,原命题是假命题;⑥如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,原命题是假命题;故选:C.10.(3分)已知关于x、y的方程组的解都为正数,且满足a+b=4,b>0,z=a﹣3b,则z的取值范围是()A.﹣8<z<4B.﹣7<z<8C.﹣7<z<4D.﹣8<z<8【分析】先把不等式组解出,再根据解为正数列关于a的不等式组解出即可得到a的范围;根据题意得出b=4﹣a>0,即可得到1<a<4,代入z=a﹣3b得到z=4a﹣12,根据a的取值可得结论.【解答】解:解这个方程组的解为:,由题意,得,则原不等式组的解集为a>1;∵a+b=4,b>0,∴b=4﹣a>0,∵a>1,∴1<a<4,∵a﹣3b=a﹣3(4﹣a)=4a﹣12,z=a﹣3b,故﹣8<z<4.故选:A.二、填空题(本大题共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接写在答题卡指定位置.11.(3分)在平面直角坐标系中,点(﹣5,1)到y轴的距离等于5 .【分析】直接利用点的坐标特点得出答案.【解答】解:点(﹣5,1)到y轴的距离等于:|﹣5|=5.故答案为:5.12.(3分)一个容量为90的样本,样本中最大值是176,最小值是150,取组距为3,则该样本可以分为9 组.【分析】求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.【解答】解:最大值与最小值的差是:176﹣150=26,则可以分成的组数是:26÷3≈9(组),故答案为:9.13.(3分)求不等式(2x﹣1)(x+3)>0的解集.解:根据“同号两数相乘,积为正”可得:①或②.解①得x>;解②得x<﹣3.∴原不等式的解集为x>或x<﹣3.请你仿照上述方法解决下列问题:直接写出不等式(2x+3)(5﹣x)≤0的解集x≥5或x≤﹣.【分析】仿照阅读材料中的方法求出所求不等式的解集即可.【解答】解:根据“异号两数相乘,积为负”可得:①或②,解①得:x≥5;解②得:x≤﹣,∴原不等式的解集为x≥5或x≤﹣.故答案为:x≥5或x≤﹣.14.(3分)幻方(MagicSquare)是一种将数字排放在正方形格子中,使其每行、每列和对角线上的数字和都相等的图表.在如图所示的三阶幻方中,x+y的值为 1 .3 4 x﹣2 y a2y﹣x c b【分析】根据“每行、每列和对角线上的数字和都相等”列出方程组并解答.【解答】解:根据题意,得.解得.所以x+y=﹣1+2=1.故答案是:1.15.(3分)如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上.将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置,…,则正方形铁片连续旋转2021次后,点P的坐标为(6065,2).【分析】首先求出P1~P5的坐标,探究规律后,利用规律解决问题.【解答】解:第一次P1(5,2),第二次P2(8,1),第三次P3(10,1),第四次P4(13,2),第五次P5(17,2),…发现点P的位置4次一个循环,∵2021÷4=505余1,P2021的纵坐标与P1相同为2,横坐标为5+12×505=6065,∴P2021(6065,2),故答案为(6065,2).16.(3分)已知关于x的不等式x﹣a<0的最大整数解为3a+6,则a=﹣.【分析】求出不等式的解集,根据已知得出3a+6<a≤3a+7,求出﹣3.5≤a<﹣3,设m=3a+6,则a=m﹣2,得出不等式组﹣3.5≤m﹣2<﹣3,求出m即可.【解答】解:解不等式x﹣a<0得:x<a,∵关于x的不等式x﹣a<0的最大整数解为3a+6,∴3a+6<a≤3a+7,解得:﹣3.5≤a<﹣3,∵3a+6为整数,设m=3a+6,则a=m﹣2,即﹣3.5≤m﹣2<﹣3,解得:﹣4.5≤m<﹣3,∵m为整数,∴m=﹣4,即a=(﹣4)﹣2=﹣,故答案为:﹣.三、解答题(本大题共8小题,共72分)下列各题需要在答题卡指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(8分)解方程组:.【分析】方程组整理后,利用加减消元法求出解即可.【解答】解:方程组整理得:,①+②×2得:11x=22,解得:x=2,把x=2代入①得:y=0,则方程组的解为.18.(8分)解不等式组:,并把解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:由①得:x≥3,由②得:x<8,∴不等式组的解集为3≤x<8,在数轴上表示如下:.19.(8分)已知点M(3|a|﹣9,4﹣3a)在y轴的负半轴上,直线MN∥x轴,且线段MN长度为4.(1)求点M的坐标;(2)求点N的坐标.【分析】(1)由点M在y轴负半轴上,可得点M的横坐标等于0,列出关于a的绝对值方程,可解得a的值,则点M的坐标可求得;(2)由直线MN∥x轴及点M的坐标,可设N(x,﹣5),结合线段MN长度为4,可得关于x的方程,解得x的值,则点N的坐标可得.【解答】解:(1)∵M在y轴负半轴上,∴3|a|﹣9=0,且4﹣3a<0,∴a=±3,且a>,∴a=3.∴4﹣3a=﹣5,∴M(0,﹣5);(2)∵直线MN∥x轴,M(0,﹣5),∴设N(x,﹣5),又∵线段MN长度为4,∴MN=|x﹣0|=|x|=4,∴x=±4,∴N(4,﹣5)或(﹣4,﹣5).20.(8分)某校组织全体学生开展汉字听写大赛,从中抽取部分学生成绩(得分为正整数,满分为100分)进行统计,绘制了两幅不完整的统计图,直方图从左至右分别对应A、B、C、D、E组,其中C组图象缺失.已知A组的频数比B组小48.请你根据图中提供的信息解答下列问题:(1)求频数分布直方图中的a、b的值;(2)求扇形图中D部分所对的圆心角的度数,并补全频数分布直方图;(3)若80分以上为优秀,全校共有1000名学生,估计成绩优秀的学生有多少名?【分析】(1)根据扇形统计图中的数据和A组的频数比B组小48,可以求得本次调查的人数,然后即可计算出a、b的值;(2)根据直方图中的数据,可以计算出扇形图中D部分所对的圆心角的度数和C组的人数,从而可以将频数分布直方图补充完整;(3)根据扇形统计图中的数据,可以计算出成绩优秀的学生有多少名.【解答】解:(1)本次调查的学生有:48÷(20%﹣8%)=400(人),a=400×8%=32,b=400×20%=80,即a的值是32,b的值是80;(2)扇形图中D部分所对的圆心角的度数:360°×=126°,C组的人数为:400×25%=100,补全的频数分布直方图如右图所示;(3)1000×(1﹣8%﹣20%﹣25%)=470(名),答:成绩优秀的学生有470名.21.(8分)(1)请在如图所示的网格中建立平面直角坐标系,使得A,B两点的坐标分别为(5,1),(2,﹣2);(2)在(1)的条件下,过点B作x轴的垂线,垂足为点M,在BM的延长线上截取MC=BM.①写出点M的坐标;②平移线段AB使点A移动到点C,画出平移后的线段CD,并直接写出点D的坐标.③若P为直线AB上一动点,请直接写出P点到x轴和到y轴的距离和的最小值,和此时P点横坐标的取值范围.【分析】(1)利用点的坐标的确定x轴和y轴;(2)①M点的横坐标与B点的横坐标相同;②利用点A、C点的坐标变换规律写出D点坐标,然后描点即可;③点P在直线AB与坐标轴的两交点所得线段上时,P点到x轴和到y轴的距离和有最小值.【解答】解:(1)如图;(2)①M点的坐标为(2,0);②如图,CD为所作,D点坐标为(﹣1,﹣1);③P点到x轴和到y轴的距离和的最小值为4,此时P点横坐标的取值范围为0≤x≤4.22.(10分)随着新能源汽车的发展,某公交公司将用新能源公交车淘汰某一条线路上“冒黑烟”较严重的燃油公交车,计划购买A 型和B型新能源公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需280万元;若购买A型公交车2辆,B型公交车1辆,共需260万元,(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该条线路上A型和B型公交车每辆车的年均载客量分别为60万人次和80万人次.若该公司购买A型和B型公交车的总费用不超过900万元,且确保这10辆公交车在该线路的年均载客量总和不少于670万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?【分析】(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,根据“A型公交车1辆,B型公交车2辆,共需280万元;A型公交车2辆,B型公交车1辆,共需260万元”列出方程组解决问题;(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由“购买A型和B型公交车的总费用不超过900万元”和“10辆公交车在该线路的年均载客量总和不少于670万人次”列出不等式组探讨得出答案即可.【解答】解:(1)设购买A型新能源公交车每辆需x万元,购买B 型新能源公交车每辆需y万元,由题意得:,解得,答:购买A型新能源公交车每辆需80万元,购买B型新能源公交车每辆需100万元.(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得,解得:5≤a≤6.5,因为a是整数,所以a=5,6;则共有两种购买方案:①购买A型公交车5辆,则B型公交车5辆:80×5+100×5=900(万元);②购买A型公交车4辆,则B型公交车6辆:80×4+100×6=920(万元);购买A型公交车5辆,则B型公交车5辆费用最少,最少总费用为900万元.23.(10分)已知AB∥CD,点M、N分别是AB、CD上的点,点G在AB、CD之间,连接MG、NG.(1)如图1,若GM⊥GN,求∠AMG+∠CNG的度数;(2)如图2,若点P是CD下方一点,MG平分∠BMP,ND平分∠GNP,已知∠BMG=28°,求∠MGN+∠MPN的度数;(3)如图3,若点E是AB上方一点,连接EM、EN,且GM的延长线MF平分∠AME,NE平分∠CNG,2∠MEN+∠MGN=108°,求∠AME的度数(直接写出结果).【分析】(1)过点G作GE∥AB,根据平行线的性质得∠AMG+∠CNG=∠MGN,再由垂直的定义得答案;(2)过G作GE∥AB,过P作PH∥AB,通过平行线的性质,和角平分的定义及角的和差得∠MGN+∠MPN=3∠BMG,便可求得结果;(3)过E作EK∥AB,过G作GH∥AB,通过平行线的性质,和角平分的定义及角的和差,由2∠MEN+∠MGN=108°,得∠AMF 的方程,求得∠AMF,便可求得结果.【解答】解:(1)过点G作GE∥AB,如图1,∵AB∥CD,∴AB∥GE∥CD,∴∠AMG=∠MGE,∠CNG=∠NGE,∴∠AMG+∠CNG=∠MGE+∠NGE=∠MGN,∵GM⊥GN,∴∠AMG+∠CNG=∠MGN=90°;(2)过G作GE∥AB,过P作PH∥AB,如图2,∵AB∥CD,∴AB∥EG∥CD∥FP,∴∠BMG=∠MGE,∠DNG=∠NGE,∠BMP=∠FPM,∠FPN=∠DNP,∵MG平分∠BMP,ND平分∠PNG,∴∠BMP=2∠BMG=2∠PMG,∠PND=∠DNG=∠PNG,∴∠MGN+∠MPN=∠MGE+∠NGE+∠FPM﹣∠FPN=∠BMG+∠PND+2∠BMG﹣∠PND=3∠BMG,∵∠BMG=28°,∴∠MGN+∠MPN=84°;(3)∠AME=48°.理由如下:如图3,过E作EK∥AB,过G作GH∥AB,∵AB∥CD,∴∠KEM=∠AME,∠KEN=∠CNE,∠AMF=∠BMG=∠MGH,∠DNG=∠NGH,∵MF平分∠AME,NE平分∠CNG,∴∠AME=2∠AMF,∠CNE=∠ENG,∴∠DNG=180°﹣2∠CNE,∴∠MEN=∠KEN﹣∠KEM=∠CNE﹣2∠AMF,∠MGN=∠MGH+∠NGH=∠AMF+180°﹣2∠CNE,∵2∠MEN+∠MGN=108°,∴2(∠CNE﹣2∠AMF)+(∠AMF+180°﹣2∠CNE)=108°,即﹣3∠AMF+180°=108°,∴∠AMF=24°,∴∠AME=2∠AMF=48°.24.(12分)在平面直角坐标系中,点A的坐标为(m,n),且,点B的坐标为(1,2).(1)求点A的坐标;(2)若存在点M(2,b),使△ABM的面积S△ABM=5.试求出b的值;(3)已知点P的坐标为(7,0),若把线段AB上下平移,恰使△ABP的面积S△ABP=4,直接写出平移方式.【分析】(1)根据非负性得出n=4,m=5,即可得出点A的坐标;(2)根据三角形面积得出方程,解方程即可;(3)分情况讨论,根据图形的平移和图形面积解答即可.【解答】解:(1)∵,∴,∴n=4,∴=0,∴m=5,∴点A的坐标为(5,4);(2)如图1:∵A(5,4).B(1,2),M(2,b),∴S△ABM=(5﹣1)(b﹣2)﹣(2﹣1)(b﹣2)﹣×(5﹣2)(b﹣4)﹣(5﹣1)(4﹣2)=5,或S△ABM=(5﹣1)(4﹣b)﹣(2﹣1)(2﹣b)﹣(5﹣2)(4﹣b)﹣(5﹣1)(4﹣2)=5,解得:b=5,或b=0;(3)分两种情况:①当线段AB向上平移c个单位长度,如图2:则A′(5,4+c),B'(1,2+c),∵P点的坐标为(7,0),∴S△A′B′P=(4+c+2)×(7﹣1)﹣×2×(5﹣1)﹣×(4+c)×(7﹣5)=4,解得:c=﹣3<0,不合题意舍去;②当线段AB向下平移c个单位长度,如图3:则A′(5,4﹣c),B(1,2﹣c),则S△A′B′P=×(c﹣2)×(7﹣1)﹣×(5﹣1)×2﹣×(c ﹣4)×2﹣2×2=4,解得:b=10.综上所述,把线段AB向下平移10个单位,恰使△ABP的面积S△ABP=4.。

七年级下学期期末考试数学试卷(附答案解析)

七年级下学期期末考试数学试卷(附答案解析)

七年级下学期期末考试数学试卷(附答案解析)一、选择题(本大题10小题,每小题3分共30分)1.数4的算术平方根是()A.2 B.﹣2 C.±2 D.2.下列图形中,∠1与∠2互为邻补角的是()A.B.C.D.3.下列各数中是无理数的是()A.B.C.D.3.144.在下列调查中,适宜采用全面调查的是()A.了解某省中学生的视力情况B.了解某班学生的身高情况C.检测一批电灯泡的使用寿命D.调查一批汽车的抗撞击能力5.在乡村振兴活动中,某村通过铺设水管将河水引到村庄C处,为节省材料,他们过点C向河岸l作垂线,垂足为点D,于是确定沿CD铺设水管,这样做的数学道理是()A.两点之间,线段最短B.过一点有且只有一条直线与已知直线垂直C.垂线段最短D.两条直线相交有且只有一个交点6.第三象限内的点P到x轴的距离是5,到y轴的距离是6,那么点P的坐标是()A.(5,6)B.(﹣5,﹣6)C.(6,5)D.(﹣6,﹣5)7.李老师设计了一个关于实数运算的程序:输入一个数,乘以后再减去,输出结果.若小刚按程序输入2,则输出的结果应为()A.2 B.C.﹣D.38.下列语句中,是真命题的是()A.如果|a|=|b|,那么a=bB.一个正数的平方大于这个正数C.内错角相等,两直线平行D.如果a>b,那么ac>bc9.若a﹣b<0,则下列不等式正确的是()A.3a>3b B.﹣2a>﹣2b C.a﹣1>b﹣1 D.3﹣a<3﹣b10.已知关于x,y的二元一次方程组,下列结论中正确的是()①当这个方程组的解x,y的值互为相反数时,a=﹣1;②当x为正数,y为非负数时,﹣<a≤;③无论a取何值,x+2y的值始终不变.A.①②B.②③C.①③D.①②③二、填空题(本大题7小题,每小题4分,共28分)11.(4分)计算:|﹣|=.12.(4分)在平面直角坐标系中,将点A(3,m﹣2)在x轴上,则m=.13.(4分)根据如表数据回答259.21的平方根是.x16 16.1 16.2 16.3x2256 259.21 262.44 265.6914.(4分)已知二元一次方程2x﹣3y﹣5=0的一组解为,则2a﹣3b+3=.15.(4分)某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明想得分不少于90分,他至少要答对题.16.(4分)如图,将长方形ABCD沿对角线AC折叠,使点B落在点E处,AE交CD于点F.若∠EFC=70°,则∠ACF=°.17.(4分)为组织研学活动,王老师把班级里50名学生计划分成若干小组,若每组只能是4人或5人,则有种分组方案.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)在等式y=kx+b中,当x=3时,y=3;当x=﹣1时,y=1.求k,b的值.19.(6分)解不等式组,并将不等式组的解集在数轴上表示出来.20.(6分)在平面直角坐标系中,点P(﹣5,2)和点Q(m+1,3m﹣1),当线段PQ与x轴平行时,求线段PQ的长.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)某校为了解学生的体育锻炼情况,围绕“你最喜欢的一项体育活动”进行随机抽样调查,从而得到一组数据,如图是根据这组数据绘制的两个统计图.请结合统计图,解答下列问题:(1)该校对名学生进行了抽样调查:在扇形统计图中,“羽毛球”所对应的圆心角的度数为度;(2)补全条形统计图;(3)若该校共有2400名学生,请你估计全校学生中最喜欢跳绳活动的人数约为多少人.22.(8分)如图,DE⊥AC,FG⊥AC,∠1=∠2,∠B=∠3+50°,∠CAB=60°.(1)求证:BC∥AG;(2)求∠C的度数.23.(8分)为鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分技第二阶梯电价收费,如图是涛涛家2021年4月和5月所交电费的收据(度数均取整数).(1)该市规定的第一阶梯电费和第二阶梯电费单价分别为多少?(2)涛涛家6月份家庭支出计划中电费不超过120元,她家最大用电量为多少度?五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)小明同学在数学活动中,将一副三角板按如图1所示的方式放置,其中点B在线段EC上,点D在线段AC上,AB与DE相交于点F,∠C=90°,∠A=30°,∠E=45°.(1)求∠BFD的度数;(2)如图2,当小明将三角板DCE绕点C转动到ED⊥AB时,求∠BCE的度数;(3)小明思考:在转动三角板DCE的过程中,当0°<∠BCE<180°,且点E在直线BC的上方时,是否存在DE与三角板ABC的一条边互相平行?若存在,请你帮小明直接写出∠BCE 所有可能的值;若不存在,请说明理由.25.(10分)如图,在平面直角坐标系中,正方形ABCO的边长为1,边AO,CO分别在坐标轴的正半轴上,连接OB,以点O为圆心,对角线OB为半径画弧交x轴的正半轴于点D.(1)填空:线段OB的长为,点D的坐标为;(2)将线段AD向左平移到A′D′位置,当OA'=AD′时,求点D′的坐标;(3)在(2)的条件下,求点D′到直线OB的距离.参考答案与解析一、选择题1.【解答】解:∵2的平方为4,∴4的算术平方根为2.故选:A.2.【解答】解:A.两个角不存在公共边,故不是邻补角,故A不符合题意;B、两个角不存在公共边,故不是邻补角,故B不符合题意;C、两个角不存在公共边,故不是邻补角,故C不符合题意;D、两个角是邻补角,故D符合题意.故选:D.3.【解答】解:A.是分数,属于有理数,故本选项不合题意;B.是无理数,故本选项符合题意;C.,是整数,属于有理数,故本选项不合题意;D.3.14是有限小数,属于有理数,故本选项不合题意;故选:B.4.【解答】解:A.了解某省中学生的视力情况,适合抽样调查,不符合题意;B.了解某班学生的身高情况,适合采用全面调查,符合题意;C.检测一批节能灯的使用寿命,具有破坏性,适合抽样调查,不符合题意;D.调查一批汽车的抗撞击能力,具有破坏性,适合抽样调查,不符合题意;故选:B.5.【解答】解:因为CD⊥l于点D,根据垂线段最短,所以CD为C点到河岸l的最短路径.故选:C.6.【解答】解:∵第三象限的点P到x轴的距离是5,到y轴的距离是6,∴点P的横坐标是﹣6,纵坐标是﹣5,∴点P的坐标为(﹣6,﹣5).故选:D.7.【解答】解:2﹣=.故选:B.8.【解答】解:A、如果|a|=|b|,那么a=b或a=﹣b,原命题是假命题;B、一个正数的平方不一定大于这个正数,如0.1,原命题是假命题;C、内错角相等,两直线平行,是真命题;D、如果a>b,c<0时那么ac<bc,原命题是假命题;故选:C.9.【解答】解:由a﹣b<0可得a<b,A.∵a<b,∴3a<3b,故本选项不合题意;B.∵a<b,∴﹣2a>﹣2b,故本选项符合题意;C.∵a<b,∴a﹣1<b﹣1,故本选项不合题意;D.∵a<b,∴﹣a>﹣b,∴3﹣a>3﹣b,故本选项不合题意;故选:B.10.【解答】解:解方程组得:,①∵x、y互为相反数,∴x+y=0,∴+=0,解得:a=﹣1,故①正确;②∵x为正数,y为非负数,∴,解得:﹣<a≤,故②正确;③∵x=,y=,∴x+2y=+2×==,即x+2y的值始终不变,故③正确;故选:D.二、填空题11.【解答】解:|﹣|=.故答案为:.12.【解答】解:∵点A(3,m﹣2)在x轴上,∴m﹣2=0,解得:m=2.故答案为:2.13.【解答】解:由表中数据可得:259.21的平方根是:±16.1.故答案为:±16.1.14.【解答】解:∵二元一次方程2x﹣3y﹣5=0的一组解为,∴2a﹣3b﹣5=0,∴2a﹣3b=5,∴2a﹣3b+3=5+3=8,故答案为:815.【解答】解:设应答对x道,则:10x﹣5(20﹣x)>90,解得:x>12,∵x取整数,∴x最小为:13,答:他至少要答对13道题.故答案为:13.16.【解答】解:∵将长方形ABCD沿对角线AC折叠,使点B落在点E处,AE交CD于点F,∴∠E=∠B=90°,∠CAB=∠CAE,∵AB∥CD,∠EFC=70°,∴∠BAE=∠EFC=70°,∠CAB=∠ACF,∴∠CAB=∠BAE=35°,∴∠ACF=∠CAB=35°.故答案为:35.17.【解答】解:设4人小组有x组,5人小组有y组,由题意可得:4x+5y=50,∵x,y为自然数,∴,,,∴有3种分组方案,故答案为:3.三、解答题(一)18.【解答】解:根据题意,得,①﹣②,得4k=2,解得:k=,把k=代入②,得﹣+b=1,解得:b=.19.【解答】解:由2x≥x﹣1,得:x≥﹣1,由x+2>4x﹣1,得:x<1,则不等式组的解集为﹣1≤x<1,将不等式组的解集表示在数轴上如下:20.【解答】解:当线段PQ与x轴平行时,3m﹣1=2,解得:m=1,∴Q点坐标为(2,2),∴PQ=2﹣(﹣5)=2+5=7,即线段PQ的长为7.四、解答题(二)21.【解答】解:(1)因为抽样中喜欢足球的学生有12名,占30%,所以共抽样调查的学生数为:12÷30%=40(名).喜欢羽毛球的2名,占抽样的:2÷40=5%.其对应的圆心角为:360°×5%=18°.故答案为:40,18.(2)∵喜欢篮球的占40%,所以喜欢篮球的学生共有:40×40%=16(名).补全的条形图:(3)∵样本中有5名喜欢跳绳,占抽样的5÷40=12.5%,所以该校喜欢跳绳的学生有2400×12.5%=300(名).答:全校学生中最喜欢跳绳活动的人数约为300名.22.【解答】(1)证明:∵DE⊥AC,FG⊥AC,∴DE∥FG,∴∠2=∠AGF,∵∠1=∠2,∴∠1=∠AGF,∴BC∥AG;(2)解:由(1)得,BC∥AG,∴∠B+∠BAC=180°,即∠B+∠3+∠CAB=180°,∵∠B=∠3+50°,∠CAB=60°,∴∠B+(∠B﹣50°)+60°=180°,∴∠B=85°,∴∠C=180°﹣∠B﹣∠CAB=180°﹣85°﹣60°=35°.23.【解答】解:(1)设该市规定的第一阶梯电费单价为x元,第二阶梯电费单价为y元,依题意,得:,解得:.答:该市规定的第一阶梯电费单价为0.5元,第二阶梯电费单价为0.6元.(2)设涛涛家6月份的用电量为m度,依题意,得:200×0.5+0.6(m﹣200)≤120,解得:m≤233,∵m为正整数,∴m的最大值为233.答:涛涛家6月份最大用电量为233度.五、解答题(三)24.【解答】解:(1)如图1中,∵∠A=30°,∠CDE=45°,∴∠ADF=180°﹣45°=135°,∴∠AFD=180°﹣∠A﹣∠ADF=180°﹣30°﹣135°=15°,∴∠BFD=180°﹣∠AFD=180°﹣15°=165°.(2)如图2中,设AB交CE于J.∵DE⊥AB,∴∠EFJ=90°,∵∠E=45°,∴∠EJF=90°﹣45°=45°,∴∠BJC=∠EJF=45°,∵∠B=60°,∴∠ECB=180°﹣∠B﹣∠BJC=180°﹣60°﹣45°=75°.(3)如图3﹣1中,当DE∥BC时,∠BCE=∠E=45°.如图3﹣2中,当DE∥AC时,∠ACE=∠E=45°,∴∠BCE=∠ACB+∠ACE=90°+45°=135°.如图3﹣3中,当DE∥AB时,延长BC交DE于J.∴∠CJD=∠ABC=60°,∵∠CJD=∠E+∠ECJ,∠E=45°,∴∠ECJ=15°,∴∠BCE=180°﹣∠ECJ=180°﹣15°=165°,综上所述,满足条件的∠BCE的值为45°或135°或165°.25.【解答】解:(1)∵四边形OABC是正方形,且边长为1,∴OA=AB=1,根据勾股定理得,OB=,∴OD=,∴D(,0),故答案为:,(,0);(2)∵线段AD向左平移到A′D′,∴AD=A′D′,∵OA'=AD′,∴OD′=OA'+A′D′=(OA'+A′D′+AD′+AD)=OD=,∴D(,0),(3)设点D′到直线OB的距离为h,则S△OBD′=OB•h=OD′•BA,即h=×1,∴点D′到直线OB的距离为h=.。

人教版初中数学七年级下册5-10章全册考试卷期中期末试题附答案

人教版初中数学七年级下册5-10章全册考试卷期中期末试题附答案

第五章检测卷一、选择题(每题3分,共30分)1.下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()2.【教材P7习题T1变式】下列图中,∠1和∠2是对顶角的是()3.如图,在所标识的角中,下列说法不正确的是()A.∠1和∠2是邻补角B.∠1和∠4是同位角C.∠2和∠4是内错角D.∠2和∠3是对顶角4.下列选项可以用来说明命题“两个锐角的和是钝角”是假命题的是() A.∠A=30°,∠B=40°B.∠A=30°,∠B=80°C.∠A=30°,∠B=90°D.∠A=30°,∠B=100°5.有下列命题:①对顶角相等;②同位角相等;③互补的两个角为邻补角;④若l1⊥l2,l1⊥l3,则l2⊥l3.其中真命题有()A.①B.①②③C.①③D.①②③④6.如图,已知∠1=60°,如果CD∥BE,那么∠B的度数为() A.70°B.100°C.110°D.120°7.P是直线l外一点,A,B,C分别是l上三点,已知PA=1,PB=2,PC=3.若点P到l的距离是h,则()A.h≤1 B.h=1 C.h=2 D.h=3 8.将一张长方形纸片折叠成如图所示的形状,则∠ABC等于() A.73°B.56°C.68°D.146°9.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐弯处的∠A是72°,第二次拐弯处的角是∠B,第三次拐弯处的∠C是153°,这时道路恰好和第一次拐弯之前的道路平行,则∠B等于()A.81°B.99°C.108°D.120°10.如图,两只蚂蚁以相同的速度沿两条不同的路径,同时从A出发爬到B,则()A.乙比甲先到B.甲和乙同时到C.甲比乙先到D.无法确定二、填空题(每题3分,共24分)11.下列语句:①同旁内角相等;②如果a=b,那么a+c=b+c;③对顶角相等吗?④画线段AB;⑤两点确定一条直线.其中是命题的有__________;是真命题的有__________.(只填序号)12.如图,两直线交于点O,若∠1+∠2=76°,则∠1=________.13.如图,直线AB,CD相交于点O,OE⊥AB,O为垂足,如果∠EOD=38°,则∠AOC=________,∠COB=________.14.希望村在落实“脱贫先修路”的计划中需要在家乡河上建一座桥,如图所示的方案中,在________处建桥最合适,理由是________________.15.【教材P36复习题T5改编】如图,小明从A处出发,沿北偏东60°的方向行走至B处,又沿北偏西20°的方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是____________.16.如图,将三角形ABC向右平移5 cm得到三角形DEF,如果三角形ABC的周长是16 cm,那么五边形ABEFD的周长是________cm.17.如图,射线a∥b,∠1=65°,∠2=140°,则∠3的度数是________.18.如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=________.三、解答题(23题12分,24题14分,其余每题10分,共66分)19.【教材P5思考改编】如图是一条河,C是河岸AB外一点.(1)过点C要修一条与河平行的绿化带(用直线表示),请作出正确的示意图;(2)现欲用水管从河岸AB将水引到C处,问:从河岸AB上的何处开口,才能使所用的水管最短?画图表示,并说明设计的理由.20.如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.21.【教材P23习题T7(2)改编】如图,已知∠A+∠ACD+∠D=360°,试说明AB∥DE.22.【教材P31习题T6改编】如图,张三打算在院子里种上蔬菜,已知院子为东西长32 m、南北宽20 m的长方形,为了行走方便,要修筑三条同样宽的道路:东西两条,南北一条,南北道路垂直于东西道路,余下的部分要分别种上西红柿、青椒、黄瓜等蔬菜,若每条道路的宽均为1 m,求蔬菜的总种植面积是多少.23.如图,把一张长方形纸片ABCD沿EF折叠后,点D,C分别落在D′,C′的位置,ED′与BC的交点为G,若∠EFG=55°,求∠1,∠2的度数.24.已知直线MN∥EF,C为两直线之间一点.(1)如图①,∠CAM与∠CBE的平分线相交于点D,若∠ACB=100°,求∠ADB的度数.(2)如图②,若∠CAM与∠CBE的平分线相交于点D,∠ACB与∠ADB有何数量关系?并证明你的结论.(3)如图③,若∠CAM的平分线与∠CBF的平分线所在的直线相交于点D,请写出∠ACB与∠ADB的数量关系,并证明你的结论.答案一、1.B2.C3.C4.A5.A6.D 7.A8.A9.B点拨:如图,过点B作MN∥AD,∴∠ABN=∠A=72°.∵CH∥AD,AD∥MN,∴CH∥MN,∴∠NBC+∠BCH=180°,∴∠NBC=180°-∠BCH=180°-153°=27°.∴∠ABC=∠ABN+∠NBC=72°+27°=99°.10.B二、11.①②⑤;②⑤12.38°13.52°;128°14.MA;垂线段最短15.向右转80°16.2617.105°点拨:反向延长射线b,如图,∵∠2+∠5=180°,∴∠5=180°-∠2=180°-140°=40°.∴∠4=180°-∠1-∠5=180°-65°-40°=75°.又∵射线a∥b,∴∠3=180°-∠4=180°-75°=105°.18.140°三、19.解:(1)如图,过点C画一条平行于AB的直线MN,则MN为绿化带.(2)如图,过点C作CD⊥AB于点D,从河岸AB上的点D处开口,才能使所用的水管最短.设计的理由是垂线段最短.20.解:∵AB∥CD,∴∠ABC=∠1=65°,∠ABD+∠BDC=180°.∵BC平分∠ABD,∴∠ABD=2∠ABC=130°.∴∠BDC=180°-∠ABD=50°.∴∠2=∠BDC=50°.21.解:如图,过点C作∠ACF=∠A,则AB∥CF.∵∠A+∠ACD+∠D=360°,∴∠ACF+∠ACD+∠D=360°.又∵∠ACF+∠ACD+∠FCD=360°,∴∠FCD=∠D,∴CF∥DE,∴AB∥DE.点拨:本题运用了构造法,通过添加辅助线构造平行线,从而利用平行公理的推论进行判定.22.解:经过平移,除去道路后,菜地长32-1=31(m),宽20-2=18(m),所以面积为31×18=558(m2).23.解:∵四边形ABCD是长方形,∴AD ∥BC ,∴∠FED =∠EFG =55°,∠2+∠1=180°. 由折叠的性质得∠FED =∠FEG ,∴∠1=180°-∠FED -∠FEG =180°-2∠FED =70°, ∴∠2=180°-∠1=110°.24.解:(1)如图①,过点C 作CG ∥MN ,过点D 作DH ∥MN ,因为MN ∥EF ,所以MN ∥CG ∥EF ,MN ∥DH ∥EF , 所以∠1=∠ADH ,∠2=∠BDH ,∠MAC =∠ACG , ∠EBC =∠BCG .因为∠MAC 与∠EBC 的平分线相交于点D ,所以∠1=21∠MAC =21∠ACG ,∠2=21∠EBC =21∠BCG ,所以∠ADB =∠ADH +∠BDH =∠1+∠2=21∠ACG +21∠BCG =21(∠ACG +∠BCG )=21∠ACB . 因为∠ACB =100°, 所以∠ADB =50°.(2)∠ADB =180°-21∠ACB .证明:如图②,过点C 作CG ∥MN ,过点D 作DH ∥MN , 因为MN ∥EF ,所以MN ∥CG ∥EF ,MN ∥DH ∥EF ,所以∠1=∠ADH ,∠2=∠BDH ,∠MAC +∠ACG =180°,∠EBC +∠BCG =180°.因为∠MAC 与∠EBC 的平分线相交于点D ,所以∠1=21∠MAC ,∠2=21∠EBC ,所以∠ADB =∠ADH +∠BDH =∠1+∠2=21(∠MAC +∠EBC )=21(180°-∠ACG +180°-∠BCG )=21(360°-∠ACB ), 所以∠ADB =180°-21∠ACB .(3)∠ADB =90°-21∠ACB .证明:如图③,过点C 作CG ∥MN ,过点D 作DH ∥MN , 因为MN ∥EF ,所以MN ∥CG ∥EF ,MN ∥DH ∥EF , 所以∠DBE =∠BDH ,∠NAC =∠ACG ,∠FBC =∠BCG , ∠NAD +∠ADH =180°,∠MAC +∠ACG =180°.因为∠MAC 的平分线与∠FBC 的平分线所在的直线相交于点D , 所以∠CAD =21∠MAC ,∠DBE =21∠CBF , 所以∠ADB =180°-∠CAD -∠CAN -∠BDH=180°-21∠MAC -∠ACG -21∠CBF=180°-21∠MAC -∠ACG -21∠BCG =180°-21(180°-∠ACG )-∠ACG -21∠BCG=180°-90°+21∠ACG -∠ACG -21∠BCG=90°-21∠ACG -21∠BCG =90°-21(∠ACG +∠BCG ) =90°-21∠ACB .解答本题的关键是过“拐点”(折线中两条线段的公共端点)作直线的平行线,利用平行线的判定和性质求角的度数或探究角的数量关系;由于条件类似,因此其解题过程也可以类比完成,所不同的是结论虽类似但也有些变化.第六章达标检测卷一、选择题(每题3分,共30分)1.下列实数中,是无理数的是()A.5 B.0 C.13D.22.4的算术平方根是()A.4 B.-4 C.2 D.±2 3.下列说法正确的是()A.带根号的数都是无理数B.实数都是有理数C.有理数都是实数D.无理数都是开方开不尽的数4.【教材P61复习题T4变式】无理数10在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间5.已知|a-1|+|b-4|=0,则ab的平方根是()A.12B.±12C.±14D.146.某数的两个不同的平方根为2a-1与-a+2,则这个数是() A.-1 B.3 C.-3 D.9 7.实数a,b在数轴上对应点的位置如图所示,则化简(a-1)2-(a-b)2+b的结果是()A.1 B.b+1 C.2a D.1-2a8.有一个数值转换器,原理如图所示,当输入x 为64时,输出y 的值是( )A .4B .34 C . 3 D .329.【教材P 52习题T 6变式】一个正方体木块的体积是343 cm 3,现将它锯成8个同样大小的小正方体木块,则每个小正方体木块的表面积是( ) A .72 cm 2 B .494 cm 2 C .498 cm 2 D .1472 cm 2 10.【教材P 51练习T 3变式】比较4,17和363的大小,正确的是( )A .4<17<363 B .4<363<17 C .363<4<17 D .17<363<4 二、填空题(每题3分,共24分)11.写出满足下列两个条件的一个数:________.①是负数;②是无限不循环小数.12.5-2的相反数是________.13.一个圆的面积变为原来的n 倍,则它的半径是原来半径的________倍. 14.若a 2=9,3b =-2,则a +b =________.15.当x 取________时,代数式2-5-x 取值最大,并求出这个最大值为________. 16.若两个连续整数x ,y 满足x <5+1<y ,则x +y 的值是________. 17.若x ,y 为实数,且满足|x -3|+y +3=0,则⎝ ⎛⎭⎪⎫x y 2 024的值是________.18.现有两个大小不等的正方体茶叶罐,大正方体茶叶罐的体积为1 000 cm 3,小正方体茶叶罐的体积为125 cm 3,将其叠放在一起放在地面上(如图),则这两个茶叶罐的最高点A 到地面的距离是________cm.三、解答题(19题16分,20题18分,21题6分,22题7分,23题9分,24题10分,共66分)19.【教材P61复习题T8变式】计算:(1)(-1)3+|1-2|+3 8;(2)32+52-42;(3)3(3+2)-2(3-2);(4)(-1)2 024+38-3+2×22.20.【教材P61复习题T9拓展】求下列各式中未知数的值:(1)|a-2|=5;(2)4x2=25;(3)(x-0.7)3=0.027.21.已知a,b,c在数轴上对应点的位置如图所示,化简:||a-||a+b+(c-a)2+||b-c.22.若A=6-2ba+3b是a+3b的算术平方根,B=2a-31-a2是1-a2的立方根,求3A+B的值.23.我们知道2是无理数,其整数部分是1,于是小明用2-1来表示2的小数部分.请解答:(1)如果7的小数部分为a,13+2的整数部分为b,求a+b-7的值;(2)已知10+5=x+y,其中x是整数,且0<y<1,求x-y的相反数.24.木工李师傅现有一块面积为4 m2的正方形胶合板,准备做装饰材料用,他设计了如下两种方案:方案一:沿着边的方向裁出一块面积为3 m2的长方形装饰材料.方案二:沿着边的方向裁出一块面积为3 m2的长方形装饰材料,且其长、宽之比为3:2.李师傅设计的两种方案是否可行?若可行,请帮助解决如何裁剪;若不可行,请说明理由.答案一、1.D 2.C3.C 点拨:4是有理数,不是无理数,故A 选项中的说法错误;实数包括有理数和无理数,故B 选项中的说法错误;有理数和无理数统称实数,故C 选项中的说法正确;无理数包括三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,故D 选项中的说法错误.故选C.4.B 5.B 6.D 7.A8.B 点拨:64的立方根是4,4的立方根是34.9.D 点拨:由题意可知,每个小正方体木块的体积为3438 cm 3,则每个小正方体木块的棱长为72 cm ,故每个小正方体木块的表面积为⎝ ⎛⎭⎪⎫722×6=1472(cm 2). 10.C二、11.(答案不唯一)-π 12.2-5 13.n14.-5或-11 点拨:因为a 2=9,3b =-2,所以a =3或-3,b =-8,则a+b =-5或-11.易错警示:本题容易将平方根与算术平方根相混淆,从而导致漏解.15.5;216.7 点拨:∵2<5<3,∴3<5+1<4.∵x <5+1<y ,且x ,y 为两个连续整数,∴x =3,y =4.∴x +y =3+4=7.17.1 点拨:∵|x -3|+y +3=0,∴x =3,y =-3,∴⎝ ⎛⎭⎪⎫x y 2 024=(-1)2 024=1.18.15三、19.解:(1)原式=-1+2-1+2= 2.(2)原式=(3+5-4)2=4 2.(3)原式=33+32-23+22=3+5 2.(4)原式=1+2-3+1=1.技巧点拨:实数的运算顺序:先算乘方、开方,再算乘、除,最后算加、减,如果没有括号,在同一级运算中要从左到右依次运算,有括号的先算括号里的.无论何种运算,都要注意先定符号后再运算.20.解:(1)由|a-2|=5,得a-2=5或a-2=- 5.当a-2=5时,a=5+2;当a-2=-5时,a=-5+2.(2)因为4x2=25,所以x2=254.所以x=±52.(3)因为(x-0.7)3=0.027,所以x-0.7=0.3.所以x=1.21.解:由数轴可知b<a<0<c,所以a+b<0,c-a>0,b-c<0.所以原式=-a-[-(a+b)]+(c-a)+[-(b-c)]=-a+a+b+c-a-b+c=-a+2c.22.解:由题意知6-2b=2,2a-3=3,解得b=2,a=3,∴A=3+3×2=3,B=31-32=-2,∴3A+B=33-2=1.23.解:(1)∵2<7<3,7的小数部分为a,∴a=7-2.∵3<13<4,∴5<13+2<6.∵13+2的整数部分为b,∴b=5,∴a+b-7=7-2+5-7=3;(2)∵2<5<3,10+5=x+y,其中x是整数,0<y<1,∴x=10+2=12,y=10+5-12=5-2,∴x-y=12-(5-2)=14-5,∴x-y的相反数是-14+ 5.24.解:方案一可行.因为正方形胶合板的面积为 4 m2,所以正方形胶合板的边长为4=2(m).如图所示,沿着EF裁剪,因为BC=EF=2 m,所以只要使BE=CF=3÷2=1.5(m)就满足条件.方案二不可行.理由如下:设所裁长方形装饰材料的长为3x m、宽为2x m.则3x·2x=3,即2x2=1,解得x=12(负值已舍去).所以所裁长方形的长为31 2m.因为312>2,所以方案二不可行.点拨:方案一裁剪方法不唯一.第七章达标检测卷一、选择题(每题3分,共30分)1.小明在外地从一个景点回宾馆,在一个岔路口迷了路,问了4个人得到下面四种回答,其中能确定宾馆位置的是( ) A .离这儿还有3 km B .沿南北路一直向南走 C .沿南北路走3 km D .沿南北路一直向南走3 km2.在平面直角坐标系中,点P (-2,-3)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限3.某镇初级中学在镇政府的南偏西60°方向上,且距离镇政府1 500 m ,则如图所示的表示法正确的是( )4.【教材P 75探究变式】如图,在平面直角坐标系xOy 中,点P 的坐标为(1,1).则将点P 向上平移2个单位长度得到的点的坐标是( )A .(1,3)B .(-1,1)C .(3,1)D .(1,2)5.已知AB ∥x 轴,且点A 的坐标为(m ,2m +1),点B 的坐标为(2,4),则点A的坐标为( )A .⎝ ⎛⎭⎪⎫32,4B .(2,5)C .(-2,-4)D .(2,-4)6.如图,将长为3的长方形ABCD放在平面直角坐标系中,若AB∥y轴,点D(6,3),则A点的坐标为()A.(5,3) B.(4,3) C.(4,2) D.(3,3)7.在平面直角坐标系xOy中,若点A的坐标为(-3,3),点B的坐标为(2,0),则三角形ABO的面积是()A.15 B.7.5 C.6 D.38.【教材P79习题T4变式】如图,将三角形ABC先向上平移1个单位长度,再向左平移3个单位长度,则点A的对应点的坐标是()A.(1,1) B.(1,3) C.(7,1) D.(7,3)9.已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是()A.(3,3) B.(3,-3)C.(6,-6) D.(3,3)或(6,-6)10.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2,…,第n次移动到点A n,则点A2 023的坐标是()A.(1 010,0) B.(1 010,1)C.(1 011,0) D.(1 011,1)二、填空题(每题3分,共24分)11.七年级三班座位按7排8列排列,王东的座位是3排4列,简记为(3,4),张三的座位是5排2列,可简记为________.12.在平面直角坐标系中,第三象限内一点P到x轴的距离为2,到y轴的距离为5,那么点P的坐标是________.13.如图,如果所在的位置的坐标为(-1,-2),所在的位置的坐标为(2,-2),那么所在的位置的坐标为________.14.若(a-2)2+|b+3|=0,则P(a,b)在第__________象限.15.若点P(a2-4,a-1)在y轴的正半轴上,则点P的坐标为________.16.【教材P71习题T14变式】如图,点A,B的坐标分别为(2,4),(6,0),点P 是x轴上一点,且三角形ABP的面积为6,则点P的坐标为________.17.在平面直角坐标系中,点A的坐标为(1,1),点B的坐标为(11,1),点C到直线AB的距离为4,三角形ABC是直角三角形且∠C不是直角,则满足条件的点C有________个.18.如图,一束光线从点A(3,3)出发,经过y轴上的点C反射后经过点B(1,0),则光线从点A到点B经过的路径长为________.三、解答题(23题12分,24题14分,其余每题10分,共66分)19.【教材P70习题T7变式】在如图所示的平面直角坐标系中描出下列各组点,并将各组内的点用线段依次连接起来.①(4,5),(0,3),(1,3),(7,3),(8,3),(4,5);②(1,3),(1,0),(7,0),(7,3),(1,3).(1)观察所得的图形,你觉得它像什么?(2)求出这个图形的面积.20.【教材P69习题T4改编】已知点P(2m+4,m-1),请分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P的纵坐标比横坐标大3;(3)点P到y轴的距离是2.21.如图,在平面直角坐标系中,已知点A(-3,3),B(-5,1),C(-2,0),P(a,b)是三角形ABC的边AC上任意一点,三角形ABC经过平移后得到三角形A1B1C1,点P的对应点为P1(a+6,b-2).(1)直接写出点C1的坐标;(2)在图中画出三角形A1B1C1;(3)求三角形AOA1的面积.22.【教材P86复习题T9改编】如图,A,B,C为一个平行四边形的三个顶点,且A,B,C三点的坐标分别为(3,3),(6,4),(4,6).(1)请直接写出这个平行四边形第四个顶点的坐标;(2)求这个平行四边形的面积.23.如图,在平面直角坐标系中,AB ∥CD ∥x 轴,BC ∥DE ∥y 轴,且AB =CD =4,OA =5,DE =2,动点P 从点A 出发,沿A →B →C 的路线运动到点C 停止;动点Q 从点O 出发,沿O →E →D 的路线运动到点D 停止.若P ,Q 两点同时出发,且P ,Q 运动的速度均为每秒钟一个单位长度. (1)直接写出B ,C ,D 三个点的坐标;(2)当P ,Q 两点出发6 s 时,试求三角形POQ 的面积.24.如图,在平面直角坐标系中,已知A (a ,0),B (b ,0),其中a ,b 满足|a +1|+(b -3)2=0.(1)填空:a =________,b =________;(2)如果在第三象限内有一点M (-2,m ),请用含m 的式子表示三角形ABM 的面积;(3)在(2)的条件下,当m =-32时,在y 轴上有一点P ,使得三角形BMP 的面积与三角形ABM 的面积相等,请求出点P 的坐标.答案一、1.D2.C3.A4.A5.A点拨:平行于x轴(或垂直于y轴)的直线上的点的纵坐标都相等,平行于y轴(或垂直于x轴)的直线上的点的横坐标都相等.6.D点拨:由长方形ABCD的长为3,可知A点的横坐标为6-3=3,纵坐标与D点相同,即A点的坐标为(3,3).故选D.7.D点拨:此题首先运用数形结合思想,在平面直角坐标系中描点连线画出三角形ABO,然后运用转化思想将点的坐标转化为线段的长度,即底BO=2,高为3,所以三角形ABO的面积=12×2×3=3.8.B9.D点拨:因为点P到两坐标轴的距离相等,所以|2-a|=|3a+6|,所以a =-1或a=-4.当a=-1时,点P的坐标为(3,3);当a=-4时,点P的坐标为(6,-6).10.C二、11.(5,2)12.(-5,-2)13.(-3,1)14.四15.(0,1)16.(3,0)或(9,0)点拨:设点P的坐标为(x,0),根据题意,得12×4×|6-x|=6,解得x=3或9,所以点P的坐标为(3,0)或(9,0).17.418.5三、19.解:(1)画图如图所示,它像一座房子.(2)这个图形的面积为6×3+12×8×2=26.20.解:(1)由题意知2m +4=0,解得m =-2, ∴P (0,-3);(2)由题意知m -1=2m +4+3, 解得m =-8, ∴P (-12,-9); (3)由题意知|2m +4|=2, ∴2m +4=±2, 解得m =-1或-3,∴点P 的坐标是(-2,-4)或(2,-2).21.解:(1)C 1(4,-2).(2)三角形A 1B 1C 1如图所示.(3)如图,三角形AOA 1的面积=6×3-12×3×3-12×3×1-12×6×2=18-92-32-6=6.22.解:(1)(7,7)或(1,5)或(5,1).(2)以A ,B ,C 为顶点的三角形的面积为3×3-12×3×1-12×2×2-12×1×3=4.所以这个平行四边形的面积为4×2=8.23.解:(1)B (4,5),C (4,2),D (8,2).(2)当P ,Q 两点出发6 s 时,P 点的坐标为(4,3), Q 点的坐标为(6,0), ∴S 三角形POQ =12×6×3=9.24.解:(1)-1;3(2)如图①,过点M 作MN ⊥x 轴于点N .∵A (-1,0),B (3,0), ∴AB =1+3=4.又∵点M (-2,m )在第三象限, ∴MN =|m |=-m ,∴S 三角形ABM =12AB ·MN =12×4×(-m )=-2m . (3)当m =-32时,点M 的坐标为⎝ ⎛⎭⎪⎫-2,-32,∴S 三角形ABM =-2×⎝ ⎛⎭⎪⎫-32=3.点P 的位置有两种情况:①如图②,当点P 在y 轴的正半轴上时,设点P 的坐标为(0,k ),则S 三角形BMP =5⎝ ⎛⎭⎪⎫32+k -12×2⎝ ⎛⎭⎪⎫32+k -12×5×32-12×3 k =52k +94. ∵S 三角形BMP =S 三角形ABM , ∴52k +94=3,解得k =310, ∴点P 的坐标为⎝ ⎛⎭⎪⎫0,310;②如图③,当点P 在y 轴的负半轴上时,设点P 的坐标为(0,n ),则S 三角形BMP =-5n -12×2⎝ ⎛⎭⎪⎫-n -32-12×5×32-12×3×(-n )=-52n -94.∵S 三角形BMP =S 三角形ABM ,∴-52n -94=3,解得n =-2110,∴点P 的坐标为⎝ ⎛⎭⎪⎫0,-2110.综上所述,点P 的坐标为⎝ ⎛⎭⎪⎫0,310或⎝ ⎛⎭⎪⎫0,-2110.第八章达标检测卷一、选择题(每题3分,共30分)1.【教材P 93练习T 1变式】已知2x -3y =1,用含x 的式子表示y 正确的是( ) A .y =23x -1 B .x =3y +12 C .y =2x -13 D .y =-13-23x 2.下列方程组中,是二元一次方程组的是( )A .⎩⎪⎨⎪⎧x +13=1,y =x 2B .⎩⎨⎧3x -y =5,2y -z =6C .⎩⎪⎨⎪⎧x 5+y 2=1,xy =1D .⎩⎪⎨⎪⎧x 2=3,y -2x =43.用代入法解方程组⎩⎨⎧2y -3x =1,x =y -1,下面的变形正确的是( )A .2y -3y +3=1B .2y -3y -3=1C .2y -3y +1=1D .2y -3y -1=14.已知⎩⎪⎨⎪⎧x =2,y =-3是二元一次方程5x +my +2=0的解,则m 的值为( )A .4B .-4C .83D .-83 5.方程组⎩⎨⎧2x +y =■,x +y =3的解为⎩⎨⎧x =2y =■,则被遮盖的两个数分别为( ) A .1,2 B .5,1 C .2,3 D .2,46.【教材P 109活动1变式】以二元一次方程组⎩⎨⎧x +3y =7,y -x =1的解为坐标的点(x ,y )在平面直角坐标系的( )A .第一象限B .第二象限C .第三象限D .第四象限 7.已知(x -y -3)2+|x +y -1|=0,则yx 的值为( ) A .-1 B .1 C .-2 D .28.如果方程组⎩⎨⎧3x +7y =10,ax +(a -1)y =5的解中x 与y 的值相等,那么a 的值是( )A .1B .2C .3D .49.甲、乙两个工程队各有员工80人、100人,现在从外部调90人充实两队,调配后甲队人数是乙队人数的23,则甲、乙两队分别分到的人数为( ) A .50,40 B .36,54 C .28,62 D .20,70 10.为迎接2022年北京冬奥会,某校开展了以迎冬奥为主题的演讲活动,计划拿出180元钱全部用于购买甲、乙两种奖品(两种奖品都购买),奖励表现突出的学生,已知甲种奖品每件15元,乙种奖品每件10元,则购买方案有( )A .5种B .6种C .7种D .8种二、填空题(每题3分,共24分)11.写一个以⎩⎨⎧x =5,y =7为解的二元一次方程:______________.12.已知(n -1)x |n |-2y m-2024=0是关于x ,y 的二元一次方程,则n m =________.13.方程组⎩⎨⎧x +y =12,y =2的解为________.14. 若⎩⎨⎧x +y =1,2x +y =0的解是方程ax -3y =2的一组解,则a 的值是________.15.已知⎩⎨⎧x =2,y =1是二元一次方程组⎩⎨⎧mx +ny =7,nx -my =1的解,则m +3n 的立方根为________.16.定义运算“*”,规定x *y =ax 2+by ,其中a ,b 为常数,且1*2=5,2*1=6,则2*3=________.17.如图,小强和小红一起搭积木,小强所搭的“小塔”的高度为23 cm ,小红所搭的“小树”的高度为22 cm.设每块A 型积木的高为x cm ,每块B 型积木的高为y cm ,则x =________,y =________.18.【教材P 102习题T 4变式】机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个.已知2个大齿轮与3个小齿轮配成一套,则安排________名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.三、解答题(19题16分,其余每题10分,共66分)19.【教材P 111复习题T 3变式】解方程组:(1)⎩⎨⎧x -2y =3,3x +y =2;(2)⎩⎪⎨⎪⎧x 3-y 2=6,x -y 2=9;(3)⎩⎨⎧3(x +y )-4(x -y )=6,x +y 2-x -y 6=1;(4)⎩⎨⎧x -y +z =0,4x +2y +z =0,25x +5y +z =60.20.【教材P 106习题T 5变式】已知y =x 2+px +q ,当x =1时,y =2;当x=-2时,y =2.求p 和q 的值.21.若关于x ,y 的二元一次方程组⎩⎨⎧x +y =3,mx +ny =8与⎩⎨⎧x -y =1,mx -ny =4有相同的解. (1)求这个相同的解;(2)求m -n 的值.22.某种商品的包装盒是长方体,它的展开图如图所示.如果长方体包装盒的长比宽多4 cm ,求这种商品包装盒的体积.23.某同学在解关于x ,y 的方程组⎩⎨⎧ax +by =2,cx -7y =8时,本应得出解为⎩⎨⎧x =3,y =-2,由于看错了系数c ,而得到⎩⎨⎧x =-2,y =2,求a+b-c的值.24.书法是中华民族的文化瑰宝,是人类文明的宝贵财富,是我国基础教育的重要内容.通过书法教育可以帮助学生提高汉字书写能力、培养审美情趣、陶冶情操,促进其全面发展.某学校准备为学生的书法课购买一批毛笔和宣纸,已知购买40支毛笔和100张宣纸需要280元;购买30支毛笔和200支宣纸需要260元.(1)求毛笔和宣纸的单价;(2)某超市给出以下两种优惠方案:方案A:购买一支毛笔,赠送一张宣纸;方案B:购买200张以上宣纸,超出200张的部分按原价打八折,毛笔不打折.学校准备购买毛笔50支,宣纸若干张(超过200张),选择哪种方案更划算?请说明理由.答案一、1.C 2. D 3.A 4.A 5.B 6.A7.B 点拨:因为(x -y -3)2与|x +y -1|均为非负数,两非负数相加和为0,即每一个加数都为0,据此可构建方程组⎩⎨⎧x -y -3=0,x +y -1=0,解得⎩⎨⎧x =2,y =-1,所以yx =(-1)2=1.故选B. 8.C 9.C10.A二、11.x +y =12(答案不唯一) 12.-113.⎩⎨⎧x =10,y =2 14.-8 15.2 16.10 点拨:根据题中的新定义及已知等式得⎩⎨⎧a +2b =5,4a +b =6.解得⎩⎨⎧a =1,b =2.则2*3=4a +3b =4+6=10.17.4;5 点拨:根据题意得⎩⎨⎧2x +3y =23,3x +2y =22,解得⎩⎨⎧x =4,y =5.18.25 点拨:设安排x 名工人加工大齿轮,y 名工人加工小齿轮,则依题意有⎩⎪⎨⎪⎧x +y =85,16x 2=10y 3,解得⎩⎨⎧x =25,y =60. 三、19.解:(1)⎩⎨⎧x -2y =3,①3x +y =2,②由①,得x =3+2y .③将③代入②,得9+6y +y =2,即y =-1.将y =-1代入③,得x =3-2=1.所以原方程组的解为⎩⎨⎧x =1,y =-1.(2)⎩⎪⎨⎪⎧x 3-y 2=6,①x -y 2=9,②②-①,得23x =3,解得x =92.将x =92代入①,得32-y 2=6,解得y =-9.所以原方程组的解为⎩⎪⎨⎪⎧x =92,y =-9.(3)⎩⎨⎧3(x +y )-4(x -y )=6,①x +y 2-x -y 6=1,②②×6,得3(x +y )-(x -y )=6,③①-③,得-3(x -y )=0,即x =y .将x =y 代入③,得3(x +x )-0=6,即x =1.所以y =1.所以原方程组的解为⎩⎨⎧x =1,y =1.(4)⎩⎨⎧x -y +z =0,①4x +2y +z =0,②25x +5y +z =60,③②-①,得3x +3y =0,④③-①,得24x +6y =60,⑤④和⑤组成方程组⎩⎨⎧3x +3y =0,24x +6y =60, 解得⎩⎪⎨⎪⎧x =103,y =-103.将⎩⎪⎨⎪⎧x =103,y =-103代入①,得z =-203. 所以原方程组的解为⎩⎪⎨⎪⎧x =103,y =-103,z =-203.20.解:根据题意,得⎩⎨⎧1+p +q =2,4-2p +q =2,解得⎩⎨⎧p =1,q =0, ∴p 的值是1,q 的值是0.21.解:(1)根据题意可得,x ,y 满足方程组⎩⎨⎧x +y =3,x -y =1,解得⎩⎨⎧x =2,y =1.故这个相同的解为⎩⎨⎧x =2,y =1. (2)将⎩⎨⎧x =2,y =1代入方程组⎩⎨⎧mx +ny =8,mx -ny =4,可得⎩⎨⎧2m +n =8,2m -n =4,解得⎩⎨⎧m =3,n =2, 所以m -n =3-2=1.22.解:设这种商品包装盒的宽为x cm ,高为y cm ,则长为(x +4)cm.根据题意,得⎩⎨⎧2x +2y =14,x +4+2y =13, 解得⎩⎨⎧x =5,y =2,所以x +4=9,故这种商品包装盒的长为9 cm ,宽为5 cm ,高为2 cm ,所以其体积为9×5×2=90(cm 3).答:这种商品包装盒的体积为90 cm 3.23.解:把⎩⎨⎧x =3,y =-2,⎩⎨⎧x =-2,y =2分别代入ax +by =2,得⎩⎨⎧3a -2b =2,-2a +2b =2,解得⎩⎨⎧a =4,b =5.将⎩⎨⎧x =3,y =-2 代入cx -7y =8,得3c +14=8,解得c =-2.则a +b -c =4+5+2=11.24.解:(1)设毛笔的单价为x 元,宣纸的单价为y 元,根据题意列方程组得⎩⎨⎧40x +100y =280,30x +200y =260,解得⎩⎨⎧x =6,y =0.4. 答:毛笔的单价为6元,宣纸的单价为0.4元.(2)设购买宣纸a (a >200)张,则方案A 的费用为50×6+0.4×(a -50)=0.4a +280(元),方案B 的费用为50×6+200×0.4+0.4×0.8×(a -200)=0.32a +316.当0.4a +280<0.32a +316时,解得a <450,所以当200<a <450时选择方案A 更划算;当0.4a +280=0.32a +316时,解得a =450,所以当a =450时选择方案A 和方案B 所需费用一样;当0.4a +280>0.32a +316时,解得a >450,所以当a >450时选择方案B 更划算.第九章达标检测卷一、选择题(每题3分,共30分)1.下列各式中,是一元一次不等式的是( )A .x 2≥0B .2x -1C .2y ≤8D .1x -3x >02.【教材P 117练习变式】若x >y ,则下列式子中错误的是( )A .x -3>y -3B .x +3>y +3C .-3x >-3yD .x 3>y 33.下列说法中正确的是( )A .y =3是不等式y +4<5的解B .y =3是不等式3y ≤11的解集C .不等式2y <7的解集是y =3D .y =2是不等式3y ≥6的解4.一个关于x 的一元一次不等式组的解集在数轴上表示如图,则该不等式组的解集是( )A .-2<x <1B .-2<x ≤1C .-2≤x <1D .-2≤x ≤15.在平面直角坐标系中,若点P (m -3,m +1)在第二象限,则m 的取值范围是( )A .-1<m <3B .1<m <3C .-3<m <1D .m >-16.【教材P 130习题T 3变式】不等式组⎩⎨⎧2x >3x ,x +4>2的整数解是( ) A .0 B .-1 C .-2 D .17.解不等式2x -12-5x +26-x ≤-1,去分母,得( )A .3(2x -1)-5x +2-6x ≤-6B .3(2x -1)-(5x +2)-6x ≥-6C .3(2x -1)-(5x +2)-6x ≤-6D .3(2x -1)-(5x +2)-x ≤-18. 已知关于x 的不等式组⎩⎨⎧x -a ≥b ,2x -a ≤2b +1的解集是3≤x ≤5,则b a 的值是( ) A .-2 B .-12 C .-4 D .29.某年7月份全国多地出现极端高温天气,网友戏称,三分之一个中国进入了“烧烤”模式,市民出行纷纷撑伞防晒.某商家抓住这一商机,以20元的进价购进一批太阳伞,以30元的标价出售,为了让利给顾客,商家准备打折销售,但要保持利润率不低于5%,则至多打( )A .6折B .7折C .8折D .9折10.若关于x 的不等式组⎩⎨⎧x -a ≥0,2x -b <0的整数解为x =1和x =2,则适合这个不等式组的整数a ,b 组成的有序实数对(a ,b )共有( )A .0对B .1对C .2对D .3对二、填空题(每题3分,共24分)11.【教材P 115练习T 1变式】x 的12与5的差不小于3,用不等式可表示为____________.12.某市某天的最高气温为5 ■,最低气温比最高气温低8 ■,则这天气温t (■)的取值范围是____________.13.不等式2x +3<-1的解集为________.14.使不等式x -5>3x -1成立的x 的值中,最大整数为________.15.已知:[x ]表示不超过x 的最大整数,例:[4.8]=4,[-0.8]=-1.现定义:{x }=x -[x ],例:{1.5}=1.5-[1.5]=0.5,则{3.9}+{-1.8}-{1}=________.16.不等式组-3≤2x -13<5的解集是________.17.不等式组⎩⎨⎧3x +4≥0,12x -24≤1的所有整数解的积为________.18.某校为庆祝“两会”的胜利召开,举行了以“永远跟党走”为主题的党史知识竞赛,共有20道题.答对一道题记10分,答错(或不答)一道题记-5分.小明参加本次竞赛得分要超过100分,他至少要答对________道题.三、解答题(19题6分,20~22题每题8分,其余每题12分,共66分)19.【教材P 119练习T 1变式】解下列不等式,并把它们的解集在数轴上表示出来.(1)5x +15>4x -13;(2)2x -13≤3x -46.20.【教材P 128例1变式】解不等式组⎩⎪⎨⎪⎧2x -3≥-5,①13x +2<x .②并把此不等式组的解集表示在数轴上.21.已知两个有理数:-9和5.(1)计算:(-9)+52; (2)若再添一个负整数m ,且-9,5与m 这三个数的平均数仍小于m ,求m 的值.22.如果关于x 的方程x 6-6m -13=x -5m -12的解不大于1,且m 是一个正整数,试确定m 的值并求出原方程的解.23.已知a 是不等式组⎩⎪⎨⎪⎧5a -1>3(a +1),12a -1<7-32a 的整数解,x ,y 满足方程组⎩⎨⎧ax -2y =-7,2x +3y =4.求(x +y )(x 2-xy +y 2)的值.24.为了举行班级晚会,小张同学准备去商店购买20个乒乓球做道具,并购买一些乒乓球拍做奖品.已知每个乒乓球1.5元,每个乒乓球拍22元.如果购买金额不超过200元,且购买的球拍数量要尽可能多,那么小张同学应该购买多少个球拍?25.为改善城市人居环境,《成都市生活垃圾管理条例》(以下简称《条例》)于2021年3月1日起正式施行.某区域原来每天需要处理生活垃圾920吨,刚好被12个A型和10个B型预处理点位进行初筛、压缩等处理.已知一个A型点位比一个B型点位每天多处理7吨生活垃圾.(1)求每个B型点位每天处理生活垃圾的吨数;(2)由于《条例》的施行,垃圾分类要求提高,在每个点位每天将少处理8吨生活垃圾,同时由于市民环保意识增强,该区域每天需要处理的生活垃圾比原来少10吨.若该区域计划增设A 型、B 型点位共5个,试问至少需要增设几个A 型点位才能当日处理完所有生活垃圾?答案一、1.C 2.C 3.D 4.C5.A 点拨:点P (m -3,m +1)在第二象限,则有⎩⎨⎧m -3<0,m +1>0,解得-1<m<3.6.B 7.C 8.A9.B 点拨:设商家打x 折,由题意可得,30×x10-20≥20×5%,解得x ≥7,即商家至多打7折.10.C 点拨:解关于x 的不等式组⎩⎨⎧x -a ≥0,2x -b <0,可得a ≤x <b 2.因为该不等式组的整数解仅为1,2,所以0<a ≤1,2<b2≤3,解得0<a ≤1,4<b ≤6.因为a ,b 为整数,所以a =1,b =5或6,即整数a ,b 组成的有序实数对(a ,b )有2对,故选C.二、11.12x -5≥312.-3≤t ≤5 13.x <-2 14.-3 15.1.1 16.-4≤x <8 17.0 18.14三、19.解:(1)移项,得5x -4x >-13-15,所以x >-28.不等式的解集在数轴上表示如图.(2)去分母,得2(2x -1)≤3x -4, 去括号、移项,得4x -3x ≤2-4,所以x ≤-2.不等式的解集在数轴上表示如图.20.解:解①得,x ≥-1,解②得,x >3,∴不等式组的解集是x >3,此不等式组的解集表示在数轴上略.21.解:(1)(-9)+52=-42=-2.(2)根据题意,得-9+5+m3<m . 去分母,得-9+5+m <3m . 移项,得m -3m <9-5. 合并同类项,得-2m <4. 系数化为1,得m >-2. ∵m 是负整数,∴m =-1.22.解:解原方程,得x =3m -15.因为原方程的解不大于1,即x ≤1, 所以3m -15≤1,解得m ≤2.因为m 是一个正整数, 所以m =1或m =2. 当m =1时,x =25; 当m =2时,x =1.23.解:解不等式组得2<a <4,∵a 为整数,∴a =3,∴⎩⎨⎧3x -2y =-7,2x +3y =4, 解此方程组得⎩⎨⎧x =-1,y =2.∴(x +y )(x 2-xy +y 2)=(-1+2)×[(-1)2-(-1)×2+22]=7.24.解:设购买x 个球拍,依题意,得1.5×20+22x ≤200, 解得x ≤7811.因为x 是整数,所以x 的最大值为7. 答:小张同学应该购买7个球拍.25.解:(1)设每个B 型点位每天处理生活垃圾x 吨,则每个A 型点位每天处理生活垃圾(x+7)吨,根据题意可得12(x+7)+10x=920,解得x=38.答:每个B型点位每天处理生活垃圾38吨.(2)设需要增设y个A型点位才能当日处理完所有生活垃圾,由(1)可知《条例》施行前,每个A型点位每天处理生活垃圾38+7=45(吨),则《条例》施行后,每个A型点位每天处理生活垃圾45-8=37(吨).《条例》施行前,每个B型点位每天处理生活垃圾38吨,则《条例》施行后,每个B型点位每天处理生活垃圾38-8=30(吨),根据题意可得37(12+y)+30(10+5-y)≥920-10,解得y≥16 7.∵y是正整数,∴符合条件的y的最小值为3.答:至少需要增设3个A型点位才能当日处理完所有生活垃圾.第十章达标检测卷一、选择题(每题3分,共30分)1.【教材P140练习T3变式】下列调查中,适宜采用全面调查方式的是() A.调查春节晚会的收视情况B.调查一批新型节能灯泡的使用寿命C.调查我校某班学生喜欢上数学课的情况D.调查某类烟花爆竹燃放的安全情况2.下列调查选取样本的方法具有随机性的是()A.要调查某市的污染情况,到农村去调查B.电视台需要在本市调查其节目的收视率,对本市大学生进行调查C.到省城一所重点中学调查全省中学生创新能力D.胶卷生产厂为了解胶卷生产质量,在生产流水线每隔50卷选取一卷。

【多套试卷】最新七年级下册数学期末考试题【含答案】

【多套试卷】最新七年级下册数学期末考试题【含答案】

最新七年级下册数学期末考试题【含答案】一、选择题:(本大题有10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一个选项是正确的,请将正确选项前的字母填在答题卡相应的位置上)1.下列运算中,正确的是( )A .33a a a ⋅=B .632a a a ÷=C .22(2)4a a -=- D .2(3)(2)6a a a a -+=-- 2.若a b >,则下列判断中错误的是( )A .22a b +>+B . 22ac bc <C . 33a b -<-D .44a b > 3.不等式组 24357x x >-⎧⎨-≤⎩的解集在数轴上可以表示为( )4.已知21x y =⎧⎨=-⎩是二元一次方程21x my +=的一个解,则m 的值为( )A .3B .-5C .-3D .55.下列命题中真命题...的是( ) A .同旁内角互补 B .三角形的一个外角等于两个内角的和 C .若22a b =,则a b = D .同角的余角相等6.如图,已知ADB ADC ∠=∠,添加条件后,可得ABD ACD ∆≅∆,则在下列条件中,不能添加的是( )A .BAD CAD ∠=∠B .BC ∠=∠ C . BD CD = D .AB AC = 7.若311393m ⨯=,则m 的值为( )A . 2B . 3C . 4D . 5 8.若2216x mx ++是一个完全平方式,则m 的值为( ) A .±4 B .±2 C . 4 D .-4 9.若一个多边形的内角和等于外角和的2倍,则这个多边形的边数为( ) A . 8 B . 6 C .5 D . 4 10.若(1)(5)M x x =--,(2)(4)N x x =--,则M 与N 的关系为( )A. M N =B. M N >C. M N <D. M 与N 的大小由x 的取值而定 A . 3个 B . 2个 C . 1个 D . 0个二、填空题:(本大题有8小题,每小题2分,共16分.不需要写出解答过程,请把答案直接填写在答题卡对应的横线上)11.肥皂泡的泡壁厚度大约是0.0007mm ,0.0007mm 用科学记数法表示为 mm .12.若4,9n n x y ==,则()nxy = .13.已知25x y -=,若用含x 的代数式表示y ,则y = . 14.若2x y +=,则代数式224x y y -+的值等于 .15.如图,//a b ,将三角尺的直角顶点落在直线a 上,若160∠=︒, 250∠=︒人教版七年级数学下册期中考试试题【答案】一、选择题(每小题3分,共30分)1、点P (﹣3,2)在平面直角坐标系中所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 2、在实数,,0.121221221…,3.1415926,,﹣中,无理数有( )A .2个B .3个C .4个D .5个 3、如图a ∥b ,∠3=108°,则∠1的度数是( )A .72°B .80°C .82°D .108°4、如图,直线AB 与CD 相交于点O ,∠COE=2∠BOE .若∠AOC=120°,则∠DOE 等于( )A .135°B .140°C .145°D .150°5、下列四个命题:①坐标平面内的点与有序数对一一对应;②若a 大于0,b 不大于0,则点P (﹣a ,﹣b )在第三象限;③在x 轴上的点的纵坐标都为0;④当m=0时,点P (m 2,﹣m )在第四象限.其中,是真命题的有( ) A .1个 B .2个 C .3个 D .4个6、下列各式正确的是( ) A .=±4B .±=4C .=﹣4 D .=﹣37、如图的围棋盘放置在某个平面直角坐标系内,白棋②的坐标为(5,2),白棋④的坐标为(6,﹣2)那么黑棋①的坐标应该是( )A .( 9,3 )B .(﹣1,﹣1)C .(﹣1,3)D .( 9,﹣1) 8、如图,在下列给出的条件下,不能判定AB ∥DF 的是( )A.∠A+∠2=180°; B.∠A=∠3 C.∠1=∠4 D.∠1=∠A9、的平方根是()A.﹣4 B.±2 C.±4 D.410、已知:AB∥CD,∠ABE=120°,∠C=25°,则∠α度数为()A.60° B.75° C.85° D.80°二、填空题(每小题3分,共18分)11、垂直于y轴的直线上有A和B两点,若A(2,2),AB的长为,则点B的坐标为________.12、如图,点A,C,F,B在同一直线上,CD平分∠ECB,FG∥CD,若∠ECA的度数为40°,则∠GFB的度数为.13、某数的平方根是2a+3和a﹣15,则这个数为.14、若与|x+2y﹣5|互为相反数,则(x﹣y)2019= .15、如图,直线l1∥l2,∠α=∠β,∠1=50°,则∠2= .16、如图,已知四边形ABCD的顶点为A(1,2),B(﹣1,2),C,(﹣1,﹣2),D(1,﹣2),点M和点N同时从E点出发,沿四边形的边做环绕匀速运动,M点以1单位/s的速度做逆时针运动,N点以2单位/s的速度做顺时针运动,则点M和点N第2019次相遇时的坐标为.三、解答题(共10小题,满分72分) 17、计算:(1)(2)+﹣()2 (3)+﹣2+3.18、求下列各式中的x 的值:(1) x 3-2=0 ; (2)()25122=-x ;19、已知:如图,∠1=∠2,∠C =∠D 。

七年级下学期期末考试数学试卷(附答案)

七年级下学期期末考试数学试卷(附答案)

七年级下学期期末考试数学试卷(附答案)一、选择题(本大题共10小题,每小题4分,满分40分,)1、下列选项中能由如图平移得到的是()A.B.C.D.2、计算m6÷m2的结果是()A.m3B.m4C.m8D.m123、如图,工人师傅在工程施工中,需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC=150°,∠BCD=30°,则()A.AB∥BC B.BC∥CD C.AB∥DC D.AB与CD相交4、若一个三角形的两边长分别为3cm、6cm,则它的第三边的长可能是()A.2cm B.3cm C.6cm D.9cm5、计算:(2x﹣y)2=()A.4x2﹣4xy+y2B.4x2﹣2xy+y2C.4x2﹣y2D.4x2+y26、若a<b,则下列结论中,不正确的是()A.a+2<b+2 B.a﹣2>b﹣2 C.2a<2b D.﹣2a>﹣2b7、学校计划用200元钱购买A、B两种奖品(两种都要买),A种每个15元,B种每个25元,在钱全部用完的情况下,有多少种购买方案()A.2种B.3种C.4种D.5种8、图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空余的部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b29、将一个长为2a,宽为2b的长方形纸片(a>b),用剪刀沿图1中的虛线剪开,分成四块形状和大小都一样的小长方形纸片,然后按图2的方式拼成一个正方形,则中间小正方形的面积为( )A. a2+b2B. a2-b2C. (a+b)2D. (a-b)210、如图,已知AD∥EF∥BC,BD∥GF,且BD平分∠ADC,则图中与∠1相等的角(∠1除外)共有( )A. 4个B. 5个 C. 6个 D. 7个二、填空题(本大题共4小题,每小题5分,满分20分)11.8的立方根是________.12.因式分解:x3y2-x=________13.若分式方程mx−1+31−x=2的解为正数,则m的取值范围是________14.已知:AB∥CD,点C在点D的右侧,BE平分∠ABC,DE平分∠ADC,BE,DE所在直线交于点E,∠ADC=70°。

七年级(下)期末数学试卷(含答案)

七年级(下)期末数学试卷(含答案)

七年级(下)期末数学试卷(解析版)一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.根据下列表述,能确定位置的是()A.东经118°,北纬40°B.江东大桥南C.北偏东30°D.某电影院第2排2.为了了解某校初三年级400名学生的体重情况,从中抽查了50名学生的体重进行统计分析,在这个问题中,总体是()A.400名学生的体重B.被抽取的50名学生C.400名学生D.被抽取的50名学生的体重3.在平面直角坐标系中,点P(3,﹣x2﹣1)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0 B.a<0 C.a>﹣1 D.a<﹣15.若x、y满足方程组,则x﹣y的值等于()A.﹣1 B.1 C.2 D.36.如图:AB∥CD,直线MN与AB交于E,过点E作直线HE⊥MN,∠1=130°,则∠2等于()A.50°B.40°C.30°D.60°7.下列选项中正确的是()A.27的立方根是±3 B.的平方根是±4C.9的算术平方根是3 D.立方根等于平方根的数是18.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%、若设甲、乙两种商品原来的单价分别为x元、y元,则下列方程组正确的是()A.B.C.D.9.如图,木工师傅在一块木板上画两条平行线,方法是:用角尺画木板边缘的两条垂线,这样画的理由有下列4种说法:其中正确的是()①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平面内垂直于同一直线的两条直线平行.A.①②③ B.①②④ C.①③④ D.①③10.若关于x的一元一次不等式组有解,则m的取值范围为()A. B.m≤C.D.m≤二、填空题:本大题共5小题,每小题3分,共15分,把答案填在题中横线上.11.若|x+3|+=0,则x y的值为.12.已知关于x的不等式x﹣a<1的解集如图所示,则a的值为.13.若方程4x m﹣n﹣5y m+n=6是二元一次方程,则m=,n=.14.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=6,BC=9,DH=2,平移距离为3,则阴影部分的面积是.15.在平面直角坐标系中,点A1(1,2),A2(2,5),A3(3,10),A4(4,17),…,用你发现的规律确定点A n的坐标为.三、解答题:本大题共7小题,共55分,解答应写出证明过程或演算步骤.16.(1)解方程组:;(2)解不等式组:.17.如图,已知:AD⊥BC于D,EG⊥BC于G,∠E=∠1.求证:AD平分∠BAC.下面是部分推理过程,请你将其补充完整:∵AD⊥BC于D,EG⊥BC于G (已知)∴∠ADC=∠EGC=90°∴AD∥EG.∴∠1=∠2.=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3.∴AD平分∠BAC.18.甲乙两人解方程组.由于甲看错了方程①中的m的值,得到方程组的解为,乙看错了方程②中的n的值,得到方程组的解为,试求m2+n2+mn 的值.19.某市球类运动协会为了筹备一次大型体育活动,购进了一定数量的体育器材,器材管理员对购买的部分器材进行了统计,图表和图是器材管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:频率分布表器材种类频数频率排球20乒乓球拍50 0.50篮球25 0.25足球合计 1(1)填充频率分布表中的空格.(2)在图中,将表示“排球”和“足球”的部分补充完整.(3)若该协会购买这批体育器材时,篮球和足球一共花去950元,且足球每个的价格比篮球多10元,现根据筹备实际需要,准备再采购篮球和足球这两种球共10个(两种球的个数都不能为0),计划资金不超过320元,试问该协会有哪几种购买方案?20.某中学计划从办公用品公司购买A,B两种型号的小黑板.经洽谈,购买一块A型小黑板比购买一块B型小黑板多用20元,且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需多少元.(2)根据该中学实际情况,需从公司购买A,B两种型号的小黑板共60块,要求购买A,B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量不小于购买B型小黑板数量的.则该中学从公司购买A,B两种型号的小黑板有哪几种方案?哪种方案的总费用最低?21.我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3;用<a>表示大于a的最小整数,例如:<2.5>=3,<4>=5,<﹣1.5>=﹣1.解决下列问题:(1)[﹣4.5]=,<3.5>=.(2)若[x]=2,则x的取值范围是;若<y>=﹣1,则y的取值范围是.(3)已知x,y满足方程组,求x,y的取值范围.22.如图,已知直线AC∥BD,直线AB、CD不平行,点P在直线AB上,且和点A、B 不重合.(1)如图①,当点P在线段AB上时,若∠PAC=20°,∠PDB=30°,求∠CPD的度数;(2)当点P在A、B两点之间运动时,∠PCA、∠PDB、∠CPD之间满足什么样的等量关系?(直接写出答案)(3)如图②,当点P在线段AB延长线运动时,∠PCA、∠PDB、∠CPD之间满足什么样的等量关系?并说明理由.参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.根据下列表述,能确定位置的是()A.东经118°,北纬40°B.江东大桥南C.北偏东30°D.某电影院第2排【分析】根据在平面内,要有两个有序数据才能清楚地表示出一个点的位置,即可得答案.【解答】解:在平面内,点的位置是由一对有序实数确定的,只有A能确定一个位置,故选A.【点评】本题考查了在平面内,如何表示一个点的位置的知识点.2.为了了解某校初三年级400名学生的体重情况,从中抽查了50名学生的体重进行统计分析,在这个问题中,总体是()A.400名学生的体重B.被抽取的50名学生C.400名学生D.被抽取的50名学生的体重【分析】本题考查的是确定总体.解此类题需要注意“考查对象实际应是表示事物某一特征的数据,而非考查的事物.”.我们在区分总体、个体、样本、样本容量这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本.【解答】解:本题考查的对象是某校初三年级400名学生的体重情况,故总体是400名学生的体重.故选:A.【点评】解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.3.在平面直角坐标系中,点P(3,﹣x2﹣1)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】根据非负数的性质判断出点P的纵坐标是负数,再根据各象限内点的坐标特征解答.【解答】解:∵﹣x2﹣1≤﹣1,∴点P(3,﹣x2﹣1)所在的象限是第四象限.故选D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0 B.a<0 C.a>﹣1 D.a<﹣1【分析】本题可对a>﹣1,与a<﹣1的情况进行讨论.不等式两边同时除以一个正数不等号方向不变,同时除以一个负数不等号方向改变,据此可解本题.【解答】解:(1)当a>﹣1时,原不等式变形为:x>1;(2)当a<﹣1时,原不等式变形为:x<1.故选:D.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意同除a+1时是否要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式,不等号的方向不变.在不等式的两边同时乘以或除以同一个正数,不等号的方向不变;在不等式的两边同时乘以或除以同一个负数,不等号的方向改变.5.若x、y满足方程组,则x﹣y的值等于()A.﹣1 B.1 C.2 D.3【分析】方程组两方程相减即可求出x﹣y的值.【解答】解:,②﹣①得:2x﹣2y=﹣2,则x﹣y=﹣1,故选:A.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.6.如图:AB∥CD,直线MN与AB交于E,过点E作直线HE⊥MN,∠1=130°,则∠2等于()A.50°B.40°C.30°D.60°【分析】先根据平行线的性质及对顶角相等求出∠AEM的度数,再根据垂直的性质求出∠2的度数即可.【解答】解:∵∠1=130°,∴∠3=∠1=130°,∵AB∥CD,∴∠3=∠AEM,∵HE⊥MN,∴∠HEM=90°,∴∠2=∠3﹣∠HEM=130°﹣90°=40°.故选B.【点评】本题涉及到的知识点为:(1)对顶角相等;(2)两直线平行,同位角相等;(3)垂线的定义.7.下列选项中正确的是()A.27的立方根是±3 B.的平方根是±4C.9的算术平方根是3 D.立方根等于平方根的数是1【分析】A、根据立方根的即可判定;B、根据算术平方根、平方根的定义即可判定;C、根据算术平方根的定义即可判定;D、根据平方根、立方根的定义求解即可判定.【解答】解:A、27的立方根是3,故选项错误;B、的平方根是±2,故选项错误;C、9的算术平方根是3,故选项正确;D、立方根等于平方根的数是1和0,故选项错误.故选C.【点评】本题主要考查了平方根和立方根的性质,并利用此性质解题.平方根的被开数不能是负数,开方的结果必须是非负数;立方根的符号与被开立方的数的符号相同.要注意一个正数的平方根有两个,它们互为相反数.8.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%、若设甲、乙两种商品原来的单价分别为x元、y元,则下列方程组正确的是()A.B.C.D.【分析】如果设甲商品原来的单价是x元,乙商品原来的单价是y元,那么根据“甲、乙两种商品原来的单价和为100元”可得出方程为x+y=100;根据“甲商品降价10%,乙商品提价40%,调价后,两种商品的单价之和比原来的单价之和提高了20%”,可得出方程为x(1﹣10%)+y(1+40%)=100(1+20%).【解答】解:设甲商品原来的单价是x元,乙商品原来的单价是y元.根据题意列方程组:.故选:C.【点评】找到两个等量关系是解决本题的关键,还需注意相对应的原价及相应的百分比得到的新价格.9.如图,木工师傅在一块木板上画两条平行线,方法是:用角尺画木板边缘的两条垂线,这样画的理由有下列4种说法:其中正确的是()①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平面内垂直于同一直线的两条直线平行.A.①②③ B.①②④ C.①③④ D.①③【分析】利用同位角相等(都等于90°),同旁内角互补,两条直线平行,或同一平面内,垂直于同一条直线的两条直线平行作答.【解答】解:由图可知,用角尺画木板边缘的两条垂线,这样画的理由:①同位角相等,两直线平行;③同旁内角互补,两直线平行;④平面内垂直于同一直线的两条直线平行.故选C.【点评】本题考查平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;两条直线都和第三条直线平行,那么这两条直线平行;在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行.10.若关于x的一元一次不等式组有解,则m的取值范围为()A. B.m≤C.D.m≤【分析】先求出两个不等式的解集,再根据有解列出不等式组求解即可.【解答】解:,解不等式①得,x<2m,解不等式②得,x>2﹣m,∵不等式组有解,∴2m>2﹣m,∴m>.故选C.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).二、填空题:本大题共5小题,每小题3分,共15分,把答案填在题中横线上.11.若|x+3|+=0,则x y的值为9.【分析】直接利用非负数的性质得出x,y的值,进而利用有理数的乘方运算法则求出答案.【解答】解:∵|x+3|+=0,∴x=﹣3,y=2,则x y=(﹣3)2=9.故答案为:9.【点评】此题主要考查了非负数的性质,正确得出x,y的值是解题关键.12.已知关于x的不等式x﹣a<1的解集如图所示,则a的值为1.【分析】根据在数轴上表示不等式解集的方法得出不等式的解集,再用a表示出不等式的解集,进而可得出a的值.【解答】解:由题意可知,x<2,∵解不等式x﹣a<1得,x<1+a,∴1+a=2,解得a=1.故答案为:1.【点评】本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键.13.若方程4x m﹣n﹣5y m+n=6是二元一次方程,则m=1,n=0.【分析】根据二元一次方程的定义,可得x和y的指数分别都为1,列关于m、n的方程组,再求出m和n的值,最后代入可得到m n的值.【解答】解:根据二元一次方程的定义,得,解得,故答案为:1,0.【点评】考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.14.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=6,BC=9,DH=2,平移距离为3,则阴影部分的面积是15.【分析】根据平移的性质,判断出△HEC∽△ABC,再根据相似三角形的性质列出比例式解答.【解答】14.15解:由平移的性质知,BE=3,DE=AB=6,∴HE=DE﹣DH=6﹣2=4,∴S四边形HDFC =S梯形ABEH=(AB+EH)BE=(6+4)×3=15.故答案为:15.【点评】本题主要利用了平行线截线段对应成比例和平移的基本性质求解,找出阴影部分和三角形面积之间的关系是关键.15.在平面直角坐标系中,点A1(1,2),A2(2,5),A3(3,10),A4(4,17),…,用你发现的规律确定点A n的坐标为(n,n2+1).【分析】首先观察各点坐标,找出一般规律,然后根据规律确定点A n的坐标.【解答】解:设A n(x,y).∵当n=1时,A1(1,1),即x=1,y=12+1,当n=2时,A2(2,5),即x=2,y=22+1;当n=3时,A3(3,10),即x=3,y=32+1;当n=4时,A1(4,17),即x=4,y=42+1;…∴当n=n时,x=n,y=n2+1,故答案为:(n,n2+1).【点评】此题主要考查了点的坐标规律,解决本题的关键在于总结规律.对于寻找规律的题,应通过观察,发现哪些部分没有变化,哪些部分发生了变化,变化的规律是什么.三、解答题:本大题共7小题,共55分,解答应写出证明过程或演算步骤.16.(1)解方程组:;(2)解不等式组:.【分析】(1)先用加减消元法求出x的值,再用代入消元法求出y的值即可;(2)分别求出各不等式的解集,再求出其公共解集即可.【解答】解:(1),①+②×3得,10x=50,解得x=5,把x=5代入②得,10+y=13,解得y=3.故方程组的解为;(2),由①得,x<3,由②得,x≥﹣2,故方程组的解为:﹣2≤x<3.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17.如图,已知:AD⊥BC于D,EG⊥BC于G,∠E=∠1.求证:AD平分∠BAC.下面是部分推理过程,请你将其补充完整:∵AD⊥BC于D,EG⊥BC于G (已知)∴∠ADC=∠EGC=90°∴AD∥EG同位角相等,两直线平行.∴∠1=∠2两直线平行,内错角相等.∠E=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3等量代换.∴AD平分∠BAC角平分线的定义.【分析】根据平行线的判定与性质进行解答即可.【解答】解:∵AD⊥BC于D,EG⊥BC于G (已知)∴∠ADC=∠EGC=90°∴AD∥EG,(同位角相等,两直线平行).∴∠1=∠2,(两直线平行,内错角相等).∠E=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3,(等量代换).∴AD平分∠BAC.(角平分线的定义)故答案为:同位角相等,两直线平行;两直线平行,内错角相等;∠E;等量代换;角平分线的定义.【点评】本题考查的是平行线的判定与性质,用到的知识点为:同位角相等,两直线平行;两直线平行,内错角相等,同位角相等.18.甲乙两人解方程组.由于甲看错了方程①中的m的值,得到方程组的解为,乙看错了方程②中的n的值,得到方程组的解为,试求m2+n2+mn的值.【分析】根据甲看错了方程①中的m,②没有看错,代入②得到一个方程求出n的值,乙看错了方程②中的n,①没有看错,代入①求出m的值,然后再把m、n的值代入代数式计算即可求解【解答】解:根据题意得,4×(﹣3)﹣b(﹣1)=﹣2,5a+5×4=15,解得m=﹣1,n=10,把m=﹣1,n=10代入代数式,可得:原式=91.【点评】本题考查了二元一次方程的解,根据题意列出方程式解题的关键.19.某市球类运动协会为了筹备一次大型体育活动,购进了一定数量的体育器材,器材管理员对购买的部分器材进行了统计,图表和图是器材管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:频率分布表器材种类频数频率排球20乒乓球拍50 0.50篮球25 0.25足球合计 1(1)填充频率分布表中的空格.(2)在图中,将表示“排球”和“足球”的部分补充完整.(3)若该协会购买这批体育器材时,篮球和足球一共花去950元,且足球每个的价格比篮球多10元,现根据筹备实际需要,准备再采购篮球和足球这两种球共10个(两种球的个数都不能为0),计划资金不超过320元,试问该协会有哪几种购买方案?【分析】(1)根据乒乓球的总数为50,频数为0.50,求出体育器材总数,然后减去乒乓球、排球、篮球数目,即可得到足球频数、频率及合计数.(2)根据统计表中的数据,将统计图补充完整即可.(3)列方程求出篮球和足球的单价,再根据单价列出不等式,推知购买方案.【解答】解:(1)50÷0.50=100个;则足球有100﹣20﹣50﹣25=5个;足球频率=0.05;排球频率=0.2;合计为100.故答案为:0.2;5,0.05;100.(2)如图:.(3)设篮球每个x元,足球每个(x+10)元,列方程得,25x+5(x+10)=950,解得x=30,则篮球每个30元,足球每个40元.设再买y个篮球,列不等式得,30y+40(10﹣y)≤320,解得y≥8,由于篮球足球共10个,则篮球8个,足球2个;或篮球9个,足球1个.【点评】本题考查了频数分布表、频数分布直方图及一元一次方程的应用,从图中得到相关信息是解题的关键.20.某中学计划从办公用品公司购买A,B两种型号的小黑板.经洽谈,购买一块A型小黑板比购买一块B型小黑板多用20元,且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需多少元.(2)根据该中学实际情况,需从公司购买A,B两种型号的小黑板共60块,要求购买A,B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量不小于购买B型小黑板数量的.则该中学从公司购买A,B两种型号的小黑板有哪几种方案?哪种方案的总费用最低?【分析】(1)设购买一块A型小黑板需要x元,一块B型为y元,根据等量关系:购买一块A型小黑板比买一块B型小黑板多用20元;购买5块A型小黑板和4块B型小黑板共需820元;可列方程组求解.(2)设购买A型小黑板m块,则购买B型小黑板(60﹣m)块,根据需从公司购买A、B 两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量不小于购买B型小黑板数量的,可列不等式组求解.【解答】解:(1)设一块A型小黑板x元,一块B型小黑板y元.则,解得.答:一块A型小黑板100元,一块B型小黑板80元.(2)设购买A型小黑板m块,则购买B型小黑板(60﹣m)块则,解得20≤m≤22,又∵m为正整数∴m=20,21,22则相应的60﹣m=40,39,38∴共有三种购买方案,分别是方案一:购买A型小黑板20块,购买B型小黑板40块;方案二:购买A型小黑板21块,购买B型小黑板39块;方案三:购买A型小黑板22块,购买B型小黑板38块.方案一费用为100×20+80×40=5200元;方案二费用为100×21+80×39=5220元;方案三费用为100×22+80×38=5240元.∴方案一的总费用最低,即购买A型小黑板20块,购买B型小黑板40块总费用最低,为5200元.【点评】本题考查理解题意的能力,关键根据购买黑板块数不同钱数的不同求出购买黑板的钱数,然后要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量不小于购买B型小黑板数量的,列出不等式组求解.21.我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3;用<a>表示大于a的最小整数,例如:<2.5>=3,<4>=5,<﹣1.5>=﹣1.解决下列问题:(1)[﹣4.5]=﹣5,<3.5>=4.(2)若[x]=2,则x的取值范围是2≤x<3;若<y>=﹣1,则y的取值范围是﹣2≤y<﹣1.(3)已知x,y满足方程组,求x,y的取值范围.【分析】(1)根据题目所给信息求解;(2)根据[2.5]=2,[3]=3,[﹣2.5]=﹣3,可得[x]=2中的2≤x<3,根据<a>表示大于a 的最小整数,可得<y>=﹣1中,﹣2≤y<﹣1;(3)先求出[x]和<y>的值,然后求出x和y的取值范围.【解答】解:(1)由题意得,[﹣4.5]=﹣5,<3.5>=4;(2)∵[x]=2,∴x的取值范围是2≤x<3;∵<y>=﹣1,∴y的取值范围是﹣2≤y<﹣1;(3)解方程组得:,∴x,y的取值范围分别为﹣1≤x<0,2≤y<3.【点评】本题考查了一元一次不等式组的应用,解答本题的关键是读懂题意,根据题目所给的信息进行解答.22.如图,已知直线AC∥BD,直线AB、CD不平行,点P在直线AB上,且和点A、B 不重合.(1)如图①,当点P在线段AB上时,若∠PAC=20°,∠PDB=30°,求∠CPD的度数;(2)当点P在A、B两点之间运动时,∠PCA、∠PDB、∠CPD之间满足什么样的等量关系?(直接写出答案)(3)如图②,当点P在线段AB延长线运动时,∠PCA、∠PDB、∠CPD之间满足什么样的等量关系?并说明理由.【分析】(1)如图①,过P点作PE∥AC交CD于E点,由于AC∥BD,则PE∥BD,根据平行线的性质得∠CPE=∠PCA=20°,∠DPE=∠PDB=30°,所以∠CPD=50°;(2)证明方法与(1)一样;(3)如图②,过P点作PF∥BD交CD于F点,由于AC∥BD,则PF∥AC,根据平行线的性质得∠CPF=∠PCA,∠DPF=∠PDB,所以∠CPD=∠PCA﹣∠PDB.【解答】解:(1)如图①,过P点作PE∥AC交CD于E点,∵AC∥BD∴PE∥BD,∴∠CPE=∠PCA=20°,∠DPE=∠PDB=30°,∴∠CPD=∠CPE+∠DPE=50°;(2)∠CPD=∠PCA+∠PDB(证明方法与(1)一样;(3)∠CPD=∠PCA﹣∠PDB.理由如下:如图②,过P点作PF∥BD交CD于F点,∵AC∥BD,∴PF∥AC,∴∠CPF=∠PCA,∠DPF=∠PDB,∴∠CPD=∠CPF﹣∠DPF=∠PCA﹣∠PDB;【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.合理添加平行线是解决此题的关键.。

郑州初一七年级下期期末考试数学试卷及参考答案

郑州初一七年级下期期末考试数学试卷及参考答案

郑州七年级下期期末考试数学试卷及参考答案考试时同90分,满分100分时光飞逝,转题间乐乐七年级学习生活即将结束,在这一年中,乐乐收获满满,我们一起来分享一下吧!一、选择题(每小题3分,共30分)1乐乐看到妈妈手机上有好多图标,在下列图标中可看作轴对称图形的是()2.乐乐所在的四人小组做了下列运算,其中正确的是()A.(-3)-2=-9 B.(-2a3)2=4a6 C.a6÷a2=a3 D.2a2·3a3=6a63.乐乐很喜欢清代诗人靠枚的诗《苔》:“白日不到处,青春恰自来,苔花如米小,也学牡丹开。

“其实苔御植物属于孢子植物,不开花,袁枚看到的“苔花”,很可能是苔类的孢子体的苞某种苔藓的苞商的直径约为0.7毫米,则0.7毫米用科学记数法可表示为()A.0.7×10-4米B.7×10-3米C.7×10-4米D.7×10-5米4.如图,乐乐将△ABC沿DE,EF分别翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=139°,∠C 为()A.38°B.39°C.40°D.41°5.在一个不透明的布袋中,红色、那色,白色的小球共有50个,除颜色外其他完全相同乐乐通过多次摸球试验后发现,摸到红色球,黑色球的频率分别稳定在27%和43%,则口袋中白色球的个数很可能是()A.20B.15C.10D.56.乐乐和科学小组的同学们在网上获取了声音在空气中传播的速度与空气温度之间关系的一些数据(如下表)下列说法中错误的是()A.在这个变化过程中,当温度为10℃时,声速是336m/sB温度越高,声速越快C.当空气温度为20℃时,声音5s可以传播1740mD.当温度每升高10℃,声速增加6m/s7.乐乐观察“抖空竹“时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB∥CD,∠BAE=92°,∠DCE=115°,则∠E的度数是()A.32°B.28°C.26°D.23°8.如图,乐乐用边长为1的正方形做了一副七巧板,并将这副七巧板拼成一只小猫,则阴影都分的面积为()A. 14 B.12 C.25 D.239.乐乐发现等腰三角形一腰上的高与另一腰的夹角为40°,则这个等腰三角形底角的度数为()A.50°B.65°C.65°或25°D.50°或40°10.如图是乐乐的五子棋棋盘的一部分(5×5的正方形网格) 以点D,E为两个顶点作位置不同的格点三角形,使所作的格点三角形与△ABC全等,这样的格点三角形最多可以画出()A.2个B.4个C.6个D.8个二、填空题(每小题3分,共1511.乐乐在作业上写到(a+b)2=a2+b2,同学英树认为不对,并且他利用下面的图形做出了直观的解释,根据这个图形的总面积可以得到正确的完全平方公式(a+b)2=12.乐乐同学有两根长度为4cm,7cm的木棒,母亲节时他想自已动手给妈妈钉一个角形相框,桌上有五根木棒,从中任选一根,使三根木棒首尾顺次相连,则能钉成三角形相框的概率是13.如图,△ABC 的边BC 长12cm,乐乐观察到当顶点A 沿着BC 边上的高AD 所线向上运动时,三角形的面积发生变化.在这个变化过程中,如果三角形的高为x(cm),那么△ABC 的面积y(cm2)与x(cm)的关系式是14.乐乐发现三个大小相同的球可以恰好放在一个圆柱形盒子里(底和盖的厚度均忽略不计),如图所示,则三个球的体积之和占整个盒子容积的 (球的体积计算公式为V=43πr 2)15.在研究“数字黑洞”这节课中,乐乐任意写下了一个四位数(四数字完全相同的除外).重新排列各位数字,使其组成一个最大的数和一个最小的数,然后用最大的数减去最小的数,得到差;重复这个过程,……,乐乐发现最后将变成一个固定的数,则这个固定的数是三、解答题(本大题共7个小题,共55分)16.(6分)乐乐对化简求值题掌握良好,请你也来试试吧!先化简,再求值:[(ab+4)(ab-4)-5a 2b 2+16]÷(ab),其中a=10,b=- 1517.(6分)乐乐觉得轴对称图形很有意思.如图是4个完全相同的小正方形组成的L 形图,请你用三种方法分别在图中添画一个小正方形,使添画后的图形成为轴对称图形18.(8分)乐乐家附近的商场为了吸引顾客,设立了一个可以自由转动的转盘,AB为转盘直径,如图所示,并规定:顾客消费50元(含50元)以上,就能获得一次转盘的机会,如果转盘停止后,指针正好对准9折、8折、7折区域,顾客就可以获得相应的优惠(1)某顾客消费40元,是否可以获得转盘的机会?(2)某顾客正好消费66元,他转一次转盘,获得三种打折优惠的概率分别是多少?19.(8分)尺规作图是理论上接近完美的作图方式,乐乐很喜欢用尺规画出要求的图形.在下面的△ABC中,请你也按要求用尺规作出下列图形(不写作法,但要保留作图痕迹)并填空(1)作出∠BAC的平分线交BC边于点D;(2)作出AC边上的垂直平分线l交AD于点G;(3)连接GC,若∠B=55°,∠BCA=60°,则∠AGC的度数为20.(8分)如图是乐乐设计的暂力拼图玩具的一部分,现在乐乐遇到了两个问题,请你帮助解决:已知:如图,AB∥CD,(1)若∠APC=60°,∠A=40°,求∠C的度数请填空解:(1)过点P作直线PE∥AB(如图所示)因为AB∥CD(已知)所以EP∥CD(平行于同一条直线的两条直线平行)因为∠A=∠APE=40∠C=∠CPE()又因为∠APC=∠APE+∠CPE=∠A+ =60°(等量代换)所以∠C= °(等式性质)2)直接写出∠B、∠D与∠BFD之间的数量关系21.(9分)人的大脑所能记忆的内容是有限的,随着时间的推移,记忆的东四会逐渐被遗忘,教乐乐数学的马老师调查了自己班学生的学习遗忘规律,并根据调查数据描绘了一条曲线(如图所示),其中纵轴表示学习中的记忆保持量,横轴表示时间,观察图象并回答下列(1)观察图象,1h后,记忆保持量约为;8h后,记忆保持量约为(2)图中的A点表示的意义是什么?A点表示的意义是在以下哪个时间段内遗忘的速度最快?填序号①0-2h ②2-4h;③4-6h ④6-8h(3)马老师每节课结束时都会对本节课进行总结回顾,并要求学生每天晚上临睡前对当课堂上所记的课盒笔记进行复习,据调查这样一天后记忆量能保持98%如果学生一天不复习,结果又会怎样?由此,你能根据上述曲线规律制定出两条今年暑假的学习计划吗?22.(10分)乐乐和数学小组的同学们研究了如下问题,请你也来试一下吧点C是直线l1上一点,在同一平面内,乐乐他们把一个等直角三角板ABC任意放,其中直角顶点C与点C重合,过点A 作直线l2⊥l1,垂足为点M,过点B作l3⊥l1, 垂足为点N(1)当直线l2,l3位于点C的异侧时,如图1,线段BN,AM与MN之间的数量关系(不必说明理由)2)当直线l2,l3位于点C的右侧时,如图2,判断线段BN,AM与MN之间的数量系,并说明理由3)当直线l2,l3位于点C的左侧时,如图3,请你补全图形,并直接写出线段BN,A MN之间的数量关系期末考试七年级 数学 参考答案(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分)1. A 2. B 3. C 4. D 5. B6. C 7. D 8. A 9. C 10. B二、填空题(每小题3分,共15分)11.a 2+2ab+b 2 12. 0.4(52或) 13. y =6x 14.32 15. 6174 三、解答题(本大题共7个小题,共55分)16.(6分) 解:)(]165)4)(4[(22ab b a ab ab ÷+--+=)(]16516[(2222ab b a b a ÷+--…………………………(2分)=)()4(22ab b a ÷-=ab 4-…………………………………………………(4分) 当51,10-==b a 时,原式=)51(104-⨯⨯-=8……………………(6分)17.(6分) 解: 如图.……………………(6分)18.(8分)解:(1)根据规定消费50元(含50元)以上才能获得一次转盘的机会,而40元小于50元,故不能获得转盘的机会; ………………(2分)(2)某顾客正好消费66元,超过50元,可以获得转盘的的机会.若获得9折优惠,则概率;………………………(4分) 若获得8折优惠,则概率;………………………(6分) 若获得7折优惠,则概率.………………………(8分)19.(8分)解:(1)图略(可以不下结论);……………………(3分)(2)图略(可以不下结论);……………………(6分)(3)115°. ……………………(8分)20.(8分)解:(1)两直线平行,内错角相等;……………………(2分)∠C ;…………………………………………………………(4分)20;…………………………………………………………(6分)(2)∠B +∠D +∠BFD =360°. ………………………………(8分)21.(9分)解:(1)50%(50%3±%均算正确);30%(30%3±%均算正确);……(4分)(2)点A 表示2h 大约记忆量保持了40%;…………………………(6分)①;…………………(7分)(3)如果一天不复习,记忆量只能保持不到30%(答案不唯一);暑假的学习计划两条略(合理即可)………(9分)22. 解:(1)MN = AM +BN ;………………(2分)(2)MN = BN -AM ;………………………………(4分)理由如下:如图 2.4136090)9(==折P 6136060)8(==折P 12136030)7(==折P因为l 2⊥l 1,l 3⊥l 1.所以∠BNC =∠CMA =90°.所以∠ACM +∠CAM =90°.因为∠ACB =90°,所以∠ACM +∠BCN =90°.所以∠CAM =∠BCN .在△CBN 和△ACM 中,{∠BNC =∠CMA∠CAM =∠BCN BC =AC所以△CBN ≌△ACM (AAS ).所以BN =CM ,NC =AM .所以MN =CM ﹣CN =BN ﹣AM .…………………………(8分)(3)补全图形,如图3.………(9分)结论:MN =AM ﹣BN .………(10分)l 1。

新七年级(下)数学期末考试题(含答案)

新七年级(下)数学期末考试题(含答案)

新七年级(下)数学期末考试题(含答案)一、填空题(本大题共6个小题,每小题3分,共18分) .1.2的相反数是_____________.2.6的算术平方根是_____________.3.不等式组1 1120xx+<⎧⎨->⎩的解集是_____________.4.如图1,将块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果∠1=30°,那么∠2的度数为______________.图15.已知直线AB//x轴,A点的坐标为(1,2),并且线段AB=3,则点B的坐标为_____________.6.如图,用黑白两色正方形瓷砖按一定的规律铺设地面,第n个图案中白色瓷砖有_____________.块(用含n的式子表示) .二、选择题(本大题共8个小题,每小题4分,共32分) .7. 2019年一季度,曲靖市经济保持了较快增长,全市生产总值437.74亿元,同比增长10.1%,实现“开门红”. 437.74亿元用科学记数法表示为( )A. 437.74×109元B. 4.3774×1010元C. 0. 43774×1011元D. 4. 3774×1011元8.下面的调查中,不适合抽样调查的是( )A. 一批炮弹的杀伤力的情况B.了解一批灯泡的使用寿命C.全面人口普查D.全市学生每天参加体育锻炼的时间9.下列图形中,不能通过其中一个四边形平移得到的是( )10.若点P(x,y)在第四象限,且|x|=2,|y|=3,则x+y= ( )A. ─1B.1C. 5D. ─511.不等式组31 2840x x ->⎧⎨-≤⎩的解集在数轴上表示正确的是( )A. B.C. D.12.如图2所示,点E 在AC 的延长线上,下列条件中能判断AB//CD 的是( )A.∠3=∠4B.∠1=∠2C.∠D=∠DCED. ∠D+∠ACD=180°图213.小颖家离学校1200米,其中有一段为上坡路, 另一段为下坡路,她去学校共用了16分钟,上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时,设小颖上坡用了x 分钟,下坡用了y 分钟,据题意可列方程组为( )A.351200 16 x y x y +=⎧⎨+=⎩B.35 1.2 606016 x y x y ⎧+=⎪⎨⎪+=⎩ C.35 1.2 16 x y x y +=⎧⎨+=⎩ D.351200 606016 x y x y ⎧+=⎪⎨⎪+=⎩ 14.如图3,△ABC 中,AH ⊥BC ,BF 平分∠ABC ,BE ⊥BF ,EF//BC ,以下四个结论①AH ⊥EF , ②∠ABF=∠EFB ,③AC // BE ,④∠E= ∠ABE.其中正确的有( ) A.①②③④ B.①② C.①③④ D.①②④图3三、解答题(本大题共9个小题,共70分) 15. (5分)2|1+-16. (6 分)解方程组29 32 1 x yx y+=⎧⎨-=-⎩①②17.(6分)解不等式组5(1)312151132x xx x-<+⎧⎪-+⎨-≤⎪⎩并将解集在数轴上表示出来.18.(7 分)完成推理填空:如图4,在△ABC中,已知∠1+∠2=180°,∠3=∠B,试说明∠AED=∠C.解:∵∠1+ 6 EFD=180°(邻补角定义) ,∠1+∠2=180° (已知)∴_________________________(同角的补角相等) ①∴_________________________(内错角相等,两直线平行) ②∴∠ADE=∠3( ) ③∵∠3=∠B( ) ④∴______________=___________( 等量代换) ⑤∴DE//BC ( ) ⑥图4 ∴∠AED=∠C( ) ⑦19. (8分) 已知2m+3和4m+9是x的平方根,求x的值.20. (8 分)在读书月活动中,学校准备购买─批课外读物. 为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类) ,如图5是根据调查结果绘制的两幅不完整的统计图.条形统计图扇形统计图图5请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了____________名同学;(2)条形统计图中,m________,n=_______(3)扇形统计图中,艺术类读物所在扇形的圆心角是__________度;(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买“其他”类读物多少册比较合理?21. (8分)如图6,已知AB// DE,∠B=60°,AE⊥BC,垂足为点E.(1)求∠AED的度数:(2)当∠EDC满足什么条件时,AE// DC ?证明你的结论。

七年级(下)期末数学试卷(解析版试卷)

七年级(下)期末数学试卷(解析版试卷)

七年级(下)期末数学试卷(解析版)一、填空题(每小题3分,共18分)1.如图,点D,B,C点在同一条直线上,∠A=60°,∠C=50°,∠D=25°,则∠1=45度.【考点】K8:三角形的外角性质;K7:三角形内角和定理.【分析】根据三角形的外角的性质及三角形的内角和定理可求得.【解答】解:∵∠ABD是△ABC的外角,∴∠ABD=∠A+∠C=60°+50°=110°,∴∠1=180°﹣∠ABD﹣∠D=180°﹣110°﹣25°=45°.【点评】本题考查三角形外角的性质及三角形的内角和定理,比较简单.2.若方程组,则3(x+y)(3x﹣5y)的值是﹣63.【考点】98:解二元一次方程组.【分析】将x+y=7与3x﹣5y=﹣3代入原式即可求出答案.【解答】解:由题意可知:x+y=7与3x﹣5y=﹣3∴原式=3×7×(﹣3)=﹣63故答案为:﹣63【点评】本题考查二元一次方程组,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.3.将点(1,2)向左平移1个单位,再向下平移2个单位后得到对应点的坐标是(0,0).【考点】Q3:坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:原来点的横坐标是1,纵坐标是2,向左平移1个单位,再向下平移2个单位得到新点的横坐标是1﹣1=0,纵坐标为2﹣2=0.即对应点的坐标是(0,0).故答案填:(0,0).【点评】解题关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.4.为了了解全校学生的视力情况,小明、小华、小李三个同学分别设计了三个方案.①小明:检查全班每个同学的视力,以此推算出全校学生的视力情况.②小华:在校医室找到2000年全校的体检表,由此了解全校学生视力情况.③小李:抽取全校学号为5的倍数的同学,检查视力,从而估计全校学生视力情况.以上的调查方案最合适的是③(填写序号).【考点】V4:抽样调查的可靠性.【分析】根据抽样调查和全面调查的意义分别分析得出即可.【解答】解:①小明:检查全班每个同学的视力,以此推算出全校学生的视力情况,样本具有片面性,不能作为样本,故此选项错误;②小华:在校医室找到2000年全校的体检表,由此了解全校学生视力情况,人数较多不易全面调查,故此选项错误;③小李:抽取全校学号为5的倍数的同学,检查视力,从而估计全校学生视力情况,此选项正确;故选;③.【点评】此题主要考查了抽样调查的可靠性,利用抽样调查和全面调查的定义得出是解题关键.5.不等式1﹣2x<6的负整数解是﹣2,﹣1.【考点】C7:一元一次不等式的整数解;C2:不等式的性质;C6:解一元一次不等式.【分析】根据不等式的性质求出不等式的解集,找出不等式的整数解即可.【解答】解:1﹣2x<6,移项得:﹣2x<6﹣1,合并同类项得:﹣2x<5,不等式的两边都除以﹣2得:x>﹣,∴不等式的负整数解是﹣2,﹣1,故答案为:﹣2,﹣1.【点评】本题主要考查对解一元一次不等式,一元一次不等式的整数解,不等式的性质等知识点的理解和掌握,能根据不等式的性质求出不等式的解集是解此题的关键.6.如图所示,围棋盘放置在某个平面直角坐标系中,白棋②的坐标为(﹣7,﹣4),黑棋④的坐标为(﹣6,﹣8),那么黑棋①的坐标应该是(﹣3,﹣7).【考点】D3:坐标确定位置.【分析】根据点的平移规律,可得答案.【解答】解:黑棋④的坐标为(﹣6,﹣8),右移3个单位,再上移1个单位,得黑棋①的坐标(﹣3,﹣7),故答案为:(﹣3,﹣7).【点评】本题考查了坐标确定位置,利用点的平移规律:右加左减,上加下减是解题关键.二、选择题(每小题4分,共32分)7.4的平方根是()A.2 B.4 C.±2 D.±4【考点】21:平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a 的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8.在平面直角坐标系中,点P的横坐标是﹣3,且点P到x轴的距离为5,则点P的坐标是()A.(5,﹣3)或(﹣5,﹣3)B.(﹣3,5)或(﹣3,﹣5)C.(﹣3,5)D.(﹣3,﹣5)【考点】D1:点的坐标.【分析】根据点到x轴的距离是点的纵坐标的绝对值,可得答案.【解答】解:在平面直角坐标系中,点P的横坐标是﹣3,且点P到x轴的距离为5,则点P 的坐标是(﹣3,5)或(﹣3,﹣5),故选:B.【点评】本题考查了点的坐标,利用了点到x轴的距离是点的纵坐标的绝对值确定点的纵坐标是解题关键.9.方程组的解是()A.B.C.D.【考点】98:解二元一次方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:3x=6,解得:x=2,把x=2代入①得:y=1,则方程组的解为,故选B【点评】此题考查了解二元一次方程组,利用消元的思想,消元的方法有:代入消元法与加减消元法.10.在△ABC中,三边长为9、10、x,则x的取值范围是()A.1≤x<19 B.1<x≤19 C.1<x<19 D.1≤x≤19【考点】K6:三角形三边关系.【分析】根据三角形的三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边可得10﹣9<x<10+9,再解即可.【解答】解:由题意得:10﹣9<x<10+9,解得:1<x<19,故选:C.【点评】此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.11.不等式的解集在数轴上表示正确的是()A. B.C.D.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】求出第一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x+4≤6,得:x≤1,∴不等式组的解集为﹣3<x≤1,故选:A【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12.下列说法正确的是()A.抽样调查选取样本时,所选样本可按自己的爱好抽取B.某工厂质量检查员检测某批灯泡的使用寿命采用普查法C.想准确了解某班学生某次数学测验成绩,采用抽样调查,但需抽取的样本容量较大D.检测某城市的空气质量,采用抽样调查【考点】V2:全面调查与抽样调查.【分析】根据全面调查和抽样调查的特点即可作出判断.【解答】解:A、选样本时,样本必须有代表性及普遍性,A错误;B、应用抽样调查方式,错误;C、要得到准确的成绩,应用全面调查,错误,所以,故选D.【点评】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.13.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x,女生人数为y,则下列方程组中,能正确计算出x、y的是()A.B.C.D.【考点】99:由实际问题抽象出二元一次方程组.【分析】此题中的等量关系有:①该班一男生请假后,男生人数恰为女生人数的一半;②男生人数+女生人数=49.【解答】解:根据该班一男生请假后,男生人数恰为女生人数的一半,得x﹣1=y,即y=2(x﹣1);根据某班共有学生49人,得x+y=49.列方程组为.故选:D.【点评】列方程组解应用题的关键是找准等量关系,同时能够根据等式的性质对方程进行整理变形,从而找到正确答案.14.一个多边形的每一个外角都是45°,那么这个多边形是()A.八边形B.九边形C.十边形D.十二边形【考点】L3:多边形内角与外角.【分析】任意多边形的外角和为360°,用360°除以45°即为多边形的边数.【解答】解:360°÷45°=8.故选:A.【点评】本题主要考查的是多边形的外角和的应用,明确正多边形的每个外角的数×边数=360°是解题的关键.三、解答题(本大题共9小题,满分70分)15.(6分)如图所示,已知AB∥CD,∠C=75°,∠A=25°,求∠E的度数.【考点】JA:平行线的性质.【分析】先根据平行线的性质得∠BFE=∠C=105°,然后根据三角形外角性质求∠E的度数.【解答】解:∵AB∥CD,∴∠BFE=∠C=75°,∵∠BFE=∠A+∠E,∴∠E=75°﹣25°=50°.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了三角形外角性质.16.(6分)计算:+(﹣)【考点】2C:实数的运算.【分析】首先计算开方、乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:+(﹣)=3+(﹣2﹣)=3﹣﹣=﹣【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.17.(5分)如图所示,已知∠A=∠F,∠C=∠D,按图填空,并在括号内注明理由.∵∠A=∠F(已知)∴DF∥AC(内错角相等,两直线平行)∴∠D=∠ABD(两直线平行,内错角相等)又∵∠D=∠C(已知)∴∠C=∠ABD(等量代换)∴BD∥EC(同位角相等,两直线平行)【考点】JB:平行线的判定与性质.【分析】根据平行线的判定推出DF∥AC,根据平行线的性质得出∠D=∠ABD,求出∠C=∠ABD,根据平行线的判定得出即可.【解答】解:∵∠A=∠F(已知),∴DF∥AC(内错角相等,两直线平行),∴∠D=∠ABD(两直线平行,内错角相等),∵∠D=∠C(已知),∴∠C=∠ABD(等量代换),∴BD∥EC(同位角相等,两直线平行),故答案为:已知,DF,AC,内错角相等,两直线平行,两直线平行,内错角相等,已知,等量代换,BD,EC,同位角相等,两直线平行.【点评】本题考查了平行线的性质和判定定理,能灵活运用平行线的判定和性质定理进行推理是解此题的关键.18.(7分)在平面直角坐标系中,△ABC的三个顶点的位置如图所示,点A′的坐标是(﹣1,1),现将△ABC平移,使点A变换为A′,点B′、C′分别是B、C的对应点,请画出平移后的△A′B′C′,并直接写出点B′、C′的坐标:B′(﹣3,0)、C′(0,﹣1).【考点】Q4:作图﹣平移变换.【分析】直接利用平移的性质得出对应点位置进而得出答案.【解答】解:如图所示:△A′B′C′即为所求,B′(﹣3,0)、C′(0,﹣1).故答案为:(﹣3,0);(0,﹣1).【点评】此题主要考查了平移变换,正确得出对应点位置是解题关键.19.(7分)如图,已知BD是∠ABC的角平分线,且∠C=∠DBC,∠BDA=72°,求△ABC各内角度数.【考点】K7:三角形内角和定理.【分析】由∠C=∠DBC、∠BDA=72°结合三角形外角的性质,即可得出∠C=∠DBC=36°,由BD是∠ABC的角平分线可求出∠ABC=2∠DBC=72°,再利用三角形内角和定理即可求出∠A 的度数.【解答】解:∵∠C=∠DBC,∠BDA=∠C+∠DBC=72°,∴∠C=∠DBC=36°.∵BD是∠ABC的角平分线,∴∠ABC=2∠DBC=72°,∴∠A=180°﹣∠ABC﹣∠C=72°.【点评】本题考查了三角形内角和定理、角平分线以及三角形外角的性质,牢记“三角形内角和是180°”是解题的关键.20.(8分)(1)解方程组(2)解不等式组并把解集在数轴上表示出来.【考点】CB:解一元一次不等式组;98:解二元一次方程组;C4:在数轴上表示不等式的解集.【分析】(1)整理原方程组为一般式,再利用加减消元法求解可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)原方程组整理可得:,①+②,得:6x=10,解得:x=,②﹣①,得:4y=﹣6,解得:y=﹣,则方程组的解为;(2),解不等式①,得:x>﹣2,解不等式②,得:x≤1,∴不等式组的解集为﹣2<x≤1,将解集表示在数轴上如下:【点评】本题考查的是解二元一次方程组和一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(9分)商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元,乙种商品每件进价35元,售价45元,若该商场同时购进甲、乙两种商品共100件,恰好用去2700元,求能购进甲、乙两种商品各多少件.【考点】9A:二元一次方程组的应用;8A:一元一次方程的应用.【分析】设商场购买甲种商品m件,购买乙种商品n件,根据该商场同时购进甲、乙两种商品共100件,恰好用去2700元列方程组求解即可.【解答】解:设商场购买甲种商品m件,购买乙种商品n件,由题意得:,解得:.答:该商场能购进甲种商品40件,乙种商品60件.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程组.22.(10分)某校九年级所有学生参加2011年初中毕业英语口语、听力自动化考试,我们从中随机抽取了部分学生的考试成绩,将他们的成绩进行统计后分为A、B、C、D四等,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:25分~30分;B级:20分~24分;C级:15分~19分;D级:15分以下)(1)请把条形统计图补充完整;(2)扇形统计图中D级所占的百分比是10%;(3)扇形统计图中A级所在的扇形的圆心角度数是72°;(4)若该校九年级有850名学生,请你估计全年级A级和B级的学生人数共约为561人.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)抽查人数可由B等所占的比例为46%,根据总数=某等人数÷比例来计算,然后可由总数减去A、B、C的人数求得D等的人数,再画直方图;(2)根据总比例为1计算出D等的比例.(3)由总比例为1计算出A等的比例,对应的圆心角=360°×比例.(4)用九年级学生数乘以这次考试中A级和B级的学生所占百分比即可.【解答】解:(1)抽查的人数为:23÷46%=50,∴D等的人数所占的比例为:1﹣46%﹣24%﹣20%=10%;D等的人数为:50×10%=5,(2)扇形统计图中D级所占的百分比是1﹣46%﹣24%﹣20%=10%;(3)扇形统计图中A级所在的扇形的圆心角度数是:20%×360°=72°.(4)估计达到A级和B级的学生数=(A等人数+B等人数)÷50×850=(10+23)÷50×850=561人.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23.(12分)园林部门用3600盆甲种花卉和2900盆乙种花卉搭配A、B两种园艺造型共50个,挂放在迎宾大道两侧,搭配每个造型所要花盆数如表,综合上述信息,解答下列问题.造型甲乙A 90盆30盆B 40盆100盆(1)符合题意的搭配方案有哪几种?(2)若搭配一个A种造型的成本为1000元,搭配一个乙种造型的成本为1200元,选(1)中那种方案的成本最低?【考点】CE:一元一次不等式组的应用.【分析】(1)设需要搭配x个A种造型,则需要搭配B种造型(50﹣x)个,根据“3600盆甲种花卉”“2900盆乙种花卉”列不等式求解,取整数值即可.(2)总成本为:1000x+1200(50﹣x)=60000﹣2x.利用一次函数的性质进行解答即可.【解答】解:(1)设需要搭配x个A种造型,则需要搭配B种造型(50﹣x)个,则有,解得30≤x≤32,所以x=30或31或32.第一方案:A种造型32个,B种造型18个;第二种方案:A种造型31个,B种造型19个;第三种方案:A种造型30个,B种造型20个.(2)总成本为:1000x+1200(50﹣x)=60000﹣2x.显然当x取最大值32时成本最低,为60000﹣2×32=53600答:第一种方案成本最低,最低成本是53600【点评】此题考查了一元一次不等式组的应用,也是一道实际问题,有一定的开放性,(1)利用所用花卉数量不超过甲、乙两种花卉的最高数量列不等式组解答;(2)为最优化问题,根据(1)的结果直接计算即可.。

七年级(下)期末数学试卷(答案版)

七年级(下)期末数学试卷(答案版)

七年级(下)期末数学试卷(答案版)一、选择题(本大题共10小题,每小题3分,共30分)1.在实数,﹣,3.14,0中,无理数是()A.B.﹣C.3.14 D.0【考点】26:无理数.菁优网版权所有【分析】根据无理数、有理数的定义即可判定选择项.【解答】解:是无理数,﹣,3.14,0是有理数,故选:A.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.若点P(2a﹣8,2﹣a)在第三象限内,且a为整数,则a的值是()A.1 B.2 C.3 D.4【考点】CC:一元一次不等式组的整数解;D1:点的坐标.菁优网版权所有【分析】点在第三象限内,那么横坐标小于0,纵坐标小于0,可得到一个关于a的不等式组,求解即可.【解答】解:∵点P(2a﹣8,2﹣a)在第三象限内,∴,解得:2<a<4,∵a为整数,∴a的值为:3.故选:C.【点评】本题考查了点的坐标和一元一次不等式组的整数解.坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求a的取值.3.若(x+y﹣5)2+|2x﹣3y﹣10|=0,则代数式xy的值是()A.6 B.﹣6 C.0 D.5【考点】1F:非负数的性质:偶次方;16:非负数的性质:绝对值.菁优网版权所有【分析】根据任何数的平方,以及绝对值都是非负数,两个非负数的和是0,每个非负数都等于0,即可求得x,y的值,进而就可求得xy的值.【解答】解:根据题意得:,解得:.则xy=0.故选C.【点评】本题主要考查了非负数的性质,初中范围内常见的非负数有:任何数的平方,任何数的绝对值,以及二次根式.4.将直尺和直角三角板按如图方式摆放,已知∠1=30°,则∠2的大小是()A.30°B.45°C.60°D.65°【考点】JA:平行线的性质.菁优网版权所有【分析】先根据两角互余的性质求出∠3的度数,再由平行线的性质即可得出结论.【解答】解:∵∠1+∠3=90°,∠1=30°,∴∠3=60°.∵直尺的两边互相平行,∴∠2=∠3=60°.故选C.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.5.已知关于x,y的方程组的解满足x>y,则p的取值范围是()A.p>﹣6 B.p<﹣6C.﹣6<p<5 D.p的值无法确定【考点】C6:解一元一次不等式;97:二元一次方程组的解.菁优网版权所有【分析】解关于x、y的方程组得,将其代入x>y得到关于p的不等式,解之即可得p的范围.【解答】解:解方程组得,∵x>y,∴p+5>﹣p﹣7,解得:p>﹣6,故选:A.【点评】本题主要考查解二元一次方程组和一元一次不等式,熟练掌握解二元一次方程组和一元一次不等式的能力是解题的关键.6.线段CD是由线段AB平移得到的.点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为()A.(2,9)B.(5,3)C.(1,2)D.(﹣9,﹣4)【考点】Q3:坐标与图形变化﹣平移.菁优网版权所有【分析】直接利用平移中点的变化规律求解即可.【解答】解:平移中,对应点的对应坐标的差相等,设D的坐标为(x,y);根据题意:有4﹣(﹣1)=x﹣(﹣4);7﹣4=y﹣(﹣1),解可得:x=1,y=2;故D的坐标为(1,2).故选:C.【点评】本题考查点坐标的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变.平移中,对应点的对应坐标的差相等.7.若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.3﹣x>3﹣y C.x+3>y+2 D.【考点】C2:不等式的性质.菁优网版权所有【分析】看各不等式是加(减)什么数,或乘(除以)哪个数得到的,用不用变号.【解答】解:A、不等式两边都减3,不等号的方向不变,正确;B、减去一个大数小于减去一个小数,错误;C、大数加大数依然大,正确;D、不等式两边都除以3,不等号的方向不变,正确.故选B.【点评】主要考查不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.8.不等式组无解,则()A.a<2 B.a≤2 C.a>1 D.a≥1【考点】CB:解一元一次不等式组.菁优网版权所有【分析】根据比大的大,比小的小时无解,则有2a﹣1≤3,解不等式即可.【解答】解:由题可知:2a﹣1≤3,∴a≤2.故选B.【点评】根据比大的大比小的小无解的原则列不等式解则可.9.为了了解某校七年级学生的视力,从中抽取60名学生进行视力检查,在这次调查中,总体是()A.每名学生的视力B.60名学生的视力C.60名学生 D.该校七年级学生的视力【考点】V3:总体、个体、样本、样本容量.菁优网版权所有【分析】根据总体、个体、样本、样本容量的定义进行选择即可.【解答】解:为了了解某校七年级学生的视力,从中抽取60名学生进行视力检查,在这次调查中,总体是某校七年级学生的视力,故选D.【点评】本题考查了总体、个体、样本、样本容量,掌握总体、个体、样本、样本容量的定义是解题的关键.10.下列命题中是真命题的是()A.如果m是实数,那么m是有理数B.﹣5没有立方根C.互补的角一定的邻补角D.正数不全是有理数【考点】O1:命题与定理.菁优网版权所有【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、如果m是实数,那么m不一定是有理数,如m=π是实数,但π不是有理数,故本选项不是真命题;B、﹣5的立方根是,故本选项不是真命题;C、互补的角不一定是邻补角,如两直线平行时,一对同旁内角互补,但是它们不是邻补角,故本选项不是真命题;D、正数不全是有理数,是真命题.因为正数包括正有理数和正无理数.故选D.【点评】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)若一个正数的两个平方根分别是2a+1和﹣a+2,则这个正数是25.【考点】21:平方根.菁优网版权所有【分析】根据正数的两个平方根互为相反数,可求得a的值,即可解题.【解答】解:∵是2a+1和﹣a+2是一个正数的两个平方根,∴2a+1=﹣(﹣a+2)解得:a=﹣3,∴﹣a+2=5,∴这个正数是52=25,故答案为25.【点评】本题考查了平方根的定义,考查了正数的两个平方根互为相反数的性质.12.(4分)把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若∠EFG=55°,则∠2=110°.【考点】PB:翻折变换(折叠问题).菁优网版权所有【分析】由折叠的性质可得:∠DEF=∠GEF,根据平行线的性质:两直线平行,内错角相等可得:∠DEF=∠EFG=55°,从而得到∠GEF=55°,根据平角的定义即可求得∠1,再由平行线的性质求得∠2.【解答】解:∵AD∥BC,∠EFG=55°,∴∠DEF=∠EFG=55°(两直线平行,内错角相等),∠1+∠2=180°(两直线平行,同旁内角互补),由折叠的性质可得:∠GEF=∠DEF=55°,∴∠1=180°﹣∠GEF﹣∠DEF=180°﹣55°﹣55°=70°,∴∠2=180°﹣∠1=110°.故答案为:110°.【点评】此题主要考查折叠的性质,平行线的性质和平角的定义,解决问题的关键是根据折叠的方法找准对应角,求出∠GEF的度数.13.(4分)已知两个单项式7x m+n y m﹣1与﹣5x7﹣m y1+n能合并为一个单项式,则m=3,n=1.【考点】34:同类项;98:解二元一次方程组.菁优网版权所有【分析】两个单项式可以合并为一个单项式,说明两个单项式为同类项,根据同类项的定义,列方程组:,解方程组即可求得m,n的值.【解答】解:∵两个单项式可以合并,∴,解得.【点评】本题是对同类项定义的考查,同类项的定义是所含有的字母相同,并且相同字母的指数也相同的项叫同类项,所以只要判断所含有的字母是否相同,相同字母的指数是否相同即可.14.(4分)已知点P的坐标为(2﹣a,3a+6),且点P到两坐标轴的距离相等,则a=﹣1或﹣4.【考点】D1:点的坐标.菁优网版权所有【分析】由于点P的坐标为(2﹣a,3a+6)到两坐标轴的距离相等,则|2﹣a|=|3a+6|,然后去绝对值得到关于a的两个一次方程,再解方程即可.【解答】解:根据题意得|2﹣a|=|3a+6|,所以2﹣a=3a+6或2﹣a=﹣(3a+6),解得a=﹣1或a=﹣4.故答案为﹣1或﹣4.【点评】本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点.15.(4分)定义运算“@”的运算法则为:x@y=,则(2@6)@8=6.【考点】79:二次根式的混合运算.菁优网版权所有【分析】认真观察新运算法则的特点,找出其中的规律,再计算.【解答】解:∵x@y=,∴(2@6)@8=@8=4@8==6,故答案为:6.【点评】解答此类题目的关键是认真观察新运算法则的特点,找出其中的规律,再计算.16.(4分)已知1<m<2,则化简+=1.【考点】73:二次根式的性质与化简.菁优网版权所有【分析】根据m的取值范围,将原式化简,然后合并同类项即可.【解答】解:∵1<m<2,∴原式=|m﹣1|+|m﹣2|=m﹣1+(2﹣m)=1,故答案为:1.【点评】本题考查了二次根式的性质的应用,关键是注意:当a<0时,=﹣a,当a≥0时,=a.三、解答题(本大题共3小题,每小题6分,共18分)17.(6分)计算:++|2﹣|+|1﹣|【考点】2C:实数的运算.菁优网版权所有【分析】首先化简二次根式以及化简立方根和去绝对值,进而求出答案.【解答】解:++|2﹣|+|1﹣|=9﹣4+2﹣+﹣1=6.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6分)实数a,b,c是数轴上三点A,B,C所对应的数,如图,化简:+|a﹣b|+﹣|b﹣c|【考点】29:实数与数轴.菁优网版权所有【分析】首先根据=|a|,再根据a、b、c在数轴上的位置可得a﹣b>0,b﹣c<0,然后去掉绝对值的符号,再合并同类项即可.【解答】解:原式=|a|+|a﹣b|+a+b﹣|b﹣c|=﹣a+a﹣b+a+b﹣c+b=a+b﹣c.【点评】此题主要考查了实数与数轴,以及绝对值的性质,关键是正确判断出a﹣b>0,b ﹣c<0.19.(6分)解不等式,并把解集表示在数轴上.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.菁优网版权所有【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式(x+4)<2,得:x<0,解不等式x﹣3(x﹣1)>5,得:x<﹣1,则不等式组的解集为x<﹣1,将解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.四、解答题(本大题共3小题,每小题7分,共21分)20.(7分)在如图所示的方格图中,我们称每个小正方形和的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”,根据图形,回答下列问题:(1)图中格点三角形A′B′C′是由格点三角形ABC通过向右平移7个单位长度变换得到的?(2)如果以直线a、b为坐标轴建立平面直角坐标系后,点A的坐标为(﹣3,4),则D 的坐标为(0,﹣2),E的坐标为(﹣4,﹣4),F的坐标为(3,﹣3);(3)格点三角形DEF的面积为5.【考点】D5:坐标与图形性质.菁优网版权所有【分析】(1)直接根据图形平移的性质得到△A′B′C′即可;(2)根据△DEF所在的格点位置写出其坐标;(3)连接GF,再根据三角形的面积公式求解.【解答】解:(1)图中格点△A′B′C′是由格点△ABC向右平移7个单位长度得到的;(2)如果以直线a、b为坐标轴建立平面直角坐标系后,点A的坐标为(﹣3,4),则格点△DEF各顶点的坐标分别为D(0,﹣2),E(﹣4,﹣4),F(3,﹣3),(3)S△DEF=S△DGF+S△GEF=×5×1+×5×1=5.故答案为:向右平移7个单位长度;(0,﹣2);(﹣4,﹣4);(3,﹣3);5【点评】本题考查的是作图﹣平移变换及三角形的面积,熟知图形平移的性质是解答此题的关键.21.(7分)如图,已知∠EFG+∠BDG=180°,∠DEF=∠B,求证:∠AED=∠C.【考点】JB:平行线的判定与性质.菁优网版权所有【分析】先根据平角的定义得出∠EFD+∠EFG=180°,再由同角的补角相等及内错角相等,两直线平行可判断出BD∥EF,再根据两直线平行,同旁内角互补可得到∠BDE+∠DEF=180°,进而可判断出DE∥BC,由平行线的性质即可得出答案.【解答】证明:∵∠EFD+∠EFG=180°,∠BDG+∠EFG=180°,∴∠BDG=∠EFD,∴BD∥EF,∴∠BDE+∠DEF=180°,又∵∠DEF=∠B,∴∠BDE+∠B=180°,∴DE∥BC,∴∠AED=∠C.【点评】本题主要考查了平行线的判定与性质,熟知平行线的判定与性质的区别是解答此题的关键,即性质与判定的已知和结论正好相反,都是角的关系与平行线相关.22.(7分)小明做拼图游戏时发现:8个完全相同的小长方形恰好可以拼成一个大长方形,如图(1)所示,小丽看见后,也想试一试,结果拼成了如图(2)所示的正方形,不过中间有一处空白,空白处恰好是边长为2cm的小正方形,请求出每个小长方形的长和宽.【考点】9A:二元一次方程组的应用.菁优网版权所有【分析】要求每个长方形的面积,就要先求出它们的长和宽,再利用面积公式计算.所以首先要设每个长方形的长为xcm,宽为ycm,根据题中的等量关系:①5个长方形的宽=3个长方形的长,②2个宽、一个长=2个长+2,列方程求解.【解答】解:设每个长方形的长为xcm,宽为ycm,那么可列出方程组为:,解得:.答:每个长方形的长为10cm,宽为6cm.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,注意图片给出的等量关系,列出方程组.五、解答题(本大题共3小题,每小题9分,共27分)23.(9分)为了进一步了解义务教育阶段学生的体质健康状况,教育部对我市某中学九年级的部分学生进行了体质抽测,体质抽测的结果分为四个等级:优秀、良好、合格、不合格,根据调查结果绘制了下列两幅不完整的统计图,请你根据统计图提供的信息回答以下问题:(1)在扇形统计图中,“合格”的百分比为40%;(2)本次体质抽测中,抽测结果为“不合格”等级的学生有16人;(3)若该校九年级有400名学生,估计该校九年级体质为“不合格”等级的学生约有128人.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.菁优网版权所有【分析】(1)用1减去其它各组的百分比,据此即可求解;(2)根据优秀的人数是8,所占的百分比是16%即可求得调查的总人数,利用总人数乘以对应的百分比即可求解;(3)利用总人数400乘以对应的百分比即可求解.【解答】解:(1)“合格”的百分比为1﹣12%﹣16%﹣32%=40%,故答案是:40%;(2)抽测的总人数是:8÷16%=50(人),则抽测结果为“不合格”等级的学生有:50×32%=16(人).故答案是:16;(3)该校九年级体质为“不合格”等级的学生约有400×32%=128(人).故答案是:128.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(9分)某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示A B进价(万元/套) 1.5 1.2售价(万元/套) 1.65 1.4该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.菁优网版权所有【分析】(1)首先设该商场计划购进A,B两种品牌的教学设备分别为x套,y套,根据题意即可列方程组,解此方程组即可求得答案;(2)首先设A种设备购进数量减少a套,则B种设备购进数量增加1.5a套,根据题意即可列不等式1.5(20﹣a)+1.2(30+1.5a)≤69,解此不等式组即可求得答案.【解答】解:(1)设该商场计划购进A,B两种品牌的教学设备分别为x套,y套,,解得:,答:该商场计划购进A,B两种品牌的教学设备分别为20套,30套;(2)设A种设备购进数量减少a套,则B种设备购进数量增加1.5a套,1.5(20﹣a)+1.2(30+1.5a)≤69,解得:a≤10,答:A种设备购进数量至多减少10套.【点评】此题考查了一元一次不等式与二元一次方程组的应用.注意根据题意找到等量关系是关键.25.(9分)如图,AB∥CD,P为定点,E,F分别是AB,CD上的动点.(1)如图1,求证:∠P=∠BEP+∠PFD;(2)如图2,若M为CD上一点,∠FMN=∠BEP,且MN交PF于点N,请判断∠EPF与∠PNM的关系,并证明你的结论;(3)如图3,移动E、F使得∠EPF=90°,作∠PEG=∠BEP,则∠AEG与∠PFD有什么数量关系,并说明理由.【考点】JA:平行线的性质.菁优网版权所有【分析】(1)如图1,过点P作PG∥AB,根据平行线的性质进行证明;(2)利用(1)中的结果和三角形外角的性质可以推知∠EPF=∠PNM;(3)利用(1)中的结论得到∠1+∠2=90°,结合已知条件∠PEG=∠BEP,即∠1=∠3得到∠4=180°﹣2∠1,易求∠AEG与∠PFD度数的数量关系.【解答】解:(1)如图1,过点P作PG∥AB,则∠1=∠BEP.又∵AB∥CD,∴PG∥CD,∴∠2=∠PFD,∴∠EPF=∠1+∠2=∠BEP+∠PFD,即∠EPF=∠BEP+∠PFD;(2)∠EPF=∠PNM.理由如下:由(1)知,∠EPF=∠BEP+∠PFD.如图2,∵∠FMN=∠BEP,∴∠EPF=∠FMN+∠PFD.又∵∠PNM=∠FMN+∠PFD.∴∠EPF=∠PNM;(3)∠AEG=2∠PFD.理由如下:如图3,∵由(1)知∠1+∠2=90°.∴∠1=90°﹣∠2.又∵∠1=∠3,∴∠4=180°﹣2∠1=180°﹣2(90°﹣∠2)=2∠2,即∠AEG=2∠PFD.【点评】本题考查了平行线的性质,三角形外角性质以及平角定义的运用,熟练掌握平行线的性质是解本题的关键.。

七年级数学下册期末调研试题10

七年级数学下册期末调研试题10

苏期末考试试卷( )班 学号 姓名 成绩 一、选择题:(每题3分,共30分) ( )1、在代数式2x ,1()3x y +,3x π-,5a x -,()x x y x +,)2)(1(3-++x x x 中, 分式有 A 、2个 B 、3个 C 、4个 D 、 5个( )2、能使分式3222+---x x x x 的值为零的所有x 的值是A 、 2=xB 、1-=xC 、2=x 或1-=xD 、2=x 或1=x( )3、下列各命题中是真命题的是A 、两个位似图形一定在位似中心的同侧B =-,那么30x -<<C 、如果关于x 的一元二次方程2430kx x --=有实根,那么k ≥43-。

D 、有一个角是0100的两个等腰三角形相似。

( )4、不解方程,判别方程2730x x +-=的根的情况A 、有两个相等的实数根。

B 、有两个不相等的实数根。

C 、有一个实数根。

D 、无实数根( )5、反比例函数12my x-=(m 为常数)当0x <时,y 随x 的增大而增大,则m 的取值范围是 A 、0m < B 、12m < C 、12m > D 、m ≥12( )6、最简二次根式32+a 与35-a 是同类二次根式,则a 为A 、6a =B 、 2a =C 、 3a =或2a =D 、1a =( )7、如图,已知关于x 的函数y =k (x -1)和y =-kx(k ≠ 0),它们在同一坐标系内的图象大致是( )8、如图所示,在房子外的屋檐E 处安有一台监视器,房子前有一面落地的广告牌,那么监视器的盲区在A 、△ACEB 、△ABDC 、四边形BCED D 、△BDF( )9、四边形ABCD 和四边形ACED 都是平行四边形,点R 为DE 的中点,BR 分别交AC 、CD 于点P 、O .则:CP ACA 、 1︰3B 、 1︰4C 、 2︰3D 、 3︰4( )10、如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小圆内部的概率为 A 、8π B 、 12 C 、2π D 、14(第8题)(第9题) 二、填空题(每题2分,共20分) 11x 的取值范围为 。

人教版七年级数学下册期末考试及答案【真题】

人教版七年级数学下册期末考试及答案【真题】

人教版七年级数学下册期末考试及答案【真题】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分) 1.若a ≠0,b ≠0,则代数式||||||a b ab a b ab ++的取值共有( ) A .2个 B .3个 C .4个 D .5个2.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠=,CFD 40∠=,则E ∠为( )A .102B .112C .122D .923.①如图1,AB ∥CD,则∠A +∠E +∠C=180°;②如图2,AB ∥CD,则∠E =∠A +∠C;③如图3,AB ∥CD,则∠A +∠E -∠1=180° ; ④如图4,AB ∥CD,则∠A=∠C +∠P.以上结论正确的个数是( )A .、1个B .2个C .3个D .4个4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到方程组为A .x y 50{x y 180=-+=B .x y 50{x y 180=++=C .x y 50{x y 90=++=D .x y 50{x y 90=-+= 5.如图,点E 在CD 的延长线上,下列条件中不能判定AB ∥CD 的是( )A .∠1=∠2B .∠3=∠4C .∠5=∠BD .∠B +∠BDC =180°6.下列图形中,不能通过其中一个四边形平移得到的是( )A .B .C .D .7.如图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG ,动点P 从点A 出发,沿A →D →E →F →G →B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B ),则△ABP 的面积S 随着时间t 变化的函数图象大致是( )A .B .C .D .8.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折9.已知3,5a b x x ==,则32a b x -=( )A .2725B .910C .35D .5210.将9.52变形正确的是( )A .9.52=92+0.52B .9.52=(10+0.5)(10﹣0.5)C .9.52=102﹣2×10×0.5+0.52D .9.52=92+9×0.5+0.52二、填空题(本大题共6小题,每小题3分,共18分)1.若1m +与2-互为相反数,则m 的值为_______.2.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是________元.3.已知AB//y 轴,A 点的坐标为(3,2),并且AB=5,则B 的坐标为________.4.将命题“同角的余角相等”,改写成“如果…,那么…”的形式_____.5.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t 时后两车相距50千米,则t 的值为____________.5.若x 的相反数是3,y =5,则x y +的值为_________.三、解答题(本大题共6小题,共72分)1.解方程:(1)()1236365x x --=+ (2)0.80.950.30.20.520.3x x x ++-=+2.已知A =3x 2+x+2,B =﹣3x 2+9x+6.(1)求2A ﹣13B ; (2)若2A ﹣13B 与32C -互为相反数,求C 的表达式; (3)在(2)的条件下,若x =2是C =2x+7a 的解,求a 的值.3.如图1,在ABC ∆中,90ACB ∠=,AC BC =,直线MN 经过点C ,且AD MN ⊥于点D ,BE MN ⊥于点E .易得DE AD BE =+(不需要证明).(1)当直线MN绕点C旋转到图2的位置时,其余条件不变,你认为上述结论、、之间是否成立?若成立,写出证明过程;若不成立,请写出此时DE AD BE的数量关系,并说明理由;(2)当直线MN绕点C旋转到图3的位置时,其余条件不变,请直接写出此时DE AD BE、、之间的数量关系(不需要证明).4.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E,(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.5.为了了解本校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,课题小组随机选取该校部分学生进行了问卷调查(问卷调查表如图1所示),并根据调查结果绘制了图2、图3两幅统计图(均不完整),请根据统计图解答下列问题.(1)本次接受问卷调查的学生有________名.(2)补全条形统计图.(3)扇形统计图中B类节目对应扇形的圆心角的度数为________.(4)该校共有2000名学生,根据调查结果估计该校最喜爱新闻节目的学生人数.6.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、C5、A6、D7、B8、B9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)11、1.12、2000,13、(3,7)或(3,-3)14、如果两个角是同一个角的余角,那么这两个角相等15、2或2.516、2或-8三、解答题(本大题共6小题,共72分)17、(1)209-;(2)13x=.18、(1)7x2﹣x+2;(2)﹣14x2+2x﹣1;(3)﹣57719、(1) 不成立,DE=AD-BE,理由见解析;(2) DE=BE-AD20、(1)65°(2)证明略21、(1)100;(2)见解析;(3)72︒;(4)160人.22、(1)3;(2)第5个台阶上的数x是﹣5;应用:从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k﹣1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下期数学期末试卷
考试时间:120分钟试卷满分:100分
姓名 ____________ 学号 ________ 得分: _________
一、选择题:(每题3分,计30分) 题号
1
2
3
4
5
6
7
8
9
10
答案
1.
下列方程中,是二元一次方程的是( )
A. 3x-2y = 4z
B. 6xy + 9 = 0 2. 下列说法错误的是()
A.内错角相等,两直线平行.
B. 两直线平行,同旁内角互补.
3. 已知:如图,Z1=Z2,则有() A. AB/7CD
B. AE/7DF
C. AB 〃CD RAE 〃DF
D.以上都不对
4. 如图,直线AB 与CD 交于点0,0E 丄AB 于0,则Z1与Z2的关系是( ) A.对顶角 B.互余

E /D
C.互补
D 相等
5. 下列图中Z1和Z2是同位角的是()
C.相等的角是对顶角.
D.等角的补角相等.
A / B
A. (1)、(2)、(3),
B. (2)、(3)、(4),
A.第一象限
B.第二象限
C.第三象限
D.第四象限
7.—个三角形的三个内角中,至少有()
A. 一个锐角
B.两个锐角
C. 一个钝角
D. 一个直角
8.若一个多边形的内角和等于720。

,则这个多边形的边数是()
A. 5
B. 6
C. 7
D. 8
9.如图,直线AB与CD相交于点0, 0B平分ZD0E.若ZD0E=60°,
则ZA0E的度数是()、/E
A. 90°
B. 150°
C. 180°
D.不能确定\ /
10.方程组严F = i,的解是()
1兀+尸9; 笫9题
A.严氏严c.厂D. ? = 1 [y = 4 [y = o [y = 1 [y = _i
二、填空题(每题3分,共15分)
13、如图①,如果Z = Z ,可得AD〃BC, 你的根据是。

2、如图2,直线AB与CD交于点O,指出
图中的一对对顶角_____________________ ,如果
ZAOC=40°那么ZB0D= _________
3、在二元一次方程2x-3y = 4中,当x = 5时,y= _________________
4、一个三角形的三边a,b,c的长度之比为2: 3: 4,周长为36cm,则此三角形的边
三、判断题(每题3分,共15分)
()1、xy =1是二元一次方程。

()
()2、过直线外一点有无数条直线与已知直线平行。

()3、a, b, c 是直线,且a//b, b//c,则a//c。

()4、三角形的一个外角大于与它不相邻的任何一个内角。

()5、点M (x, y)的坐标满足xy = 0,那么M 点在原点上。

四、解答题(共40分)
(1) 、解二元一次方程组(每小题5分,共20分)
3(兀_1) = y + 5, 5(y-l) = 3(x + 5)
2(兀一 y)兀+y 二
4、
3 4 _,
6(x + y) - 4(2 兀一刃=16;
(2) 、(8分)完成推理填空:如图:直线AB 、CD 被EF 所截,若已知AB//CD,求证: Z1 = Z2 o
请你认真完成下面填空。

证明:J AB//CD (已知),

\E
・・・Z1 = Z _____ (两直线平行,
)A 1\
£ 乂 VZ2 = Z3,(
~D
2、
3 J0.6x-0.4x = 1.1,
10.2x-0.4y = 2.3;
(3) 、如图所示,在AABC 中,已知AD 是角平分线,ZB = 60° , ZC =50°。

(12
分)
① 求ZADB 和ZADC 的度数;
② 若DE 丄AC 于点E,求ZADE 的度数。

AZ1 Z2 (
)o
A。

相关文档
最新文档