初一下数学期末试卷及答案

合集下载

新人教版七年级数学(下册)期末试卷及答案(新版)

新人教版七年级数学(下册)期末试卷及答案(新版)

新人教版七年级数学(下册)期末试卷及答案(新版)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( )A .﹣4B .4C .﹣2D .22.如图,点O 在直线AB 上,射线OC 平分∠DOB .若∠COB =35°,则∠AOD 等于( ).A .35°B .70°C .110°D .145° 3.按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y ==4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到方程组为A .x y 50{x y 180=-+= B .x y 50{x y 180=++= C .x y 50{x y 90=++= D .x y 50{x y 90=-+= 5.已知点C 在线段AB 上,则下列条件中,不能确定点C 是线段AB 中点的是( )A .AC =BCB .AB =2AC C .AC +BC =ABD .12BC AB =6.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( ) A .54573x x -=- B .54573x x +=+ C .45357x x ++= D .45357x x --= 8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=,B .210{3210x y x y --=--=,C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.如图,在△ABC 中,P 为BC 上一点,PR ⊥AB,垂足为R,PS ⊥AC,垂足为S,∠CAP=∠APQ,PR=PS,下面的结论:①AS=AR;②QP ∥AR;③△BRP ≌△CSP.其中正确的是( )A .①②B .②③C .①③D .①②③10.如图,在菱形ABCD 中,AC=62,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A .6B .33C .26D .4.5二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a +1)2+|b +5|=b +5,且|2a -b -1|=1,则ab =___________. 2.如图a 是长方形纸带,∠DEF=25°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是__________°.3.已知有理数a ,b 满足ab <0,a+b >0,7a+2b+1=﹣|b ﹣a|,则()123a b a b ⎛⎫++- ⎪⎝⎭的值为________. 4.若()2320m n -++=,则m+2n 的值是________.5.为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有________种购买方案.6.已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.解方程(1)35(2)2x x --= (2)212134x x +--=2.已知方程组137x y ax y a -=+⎧⎨+=--⎩中x 为非正数,y 为负数.(1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?3.如图,直线AB ∥CD,BC 平分∠ABD,∠1=65°,求∠2的度数.4.如图,已知O 为直线AB 上一点,过点O 向直线AB 上方引三条射线OC 、OD 、OE ,且OC 平分AOD ∠,3BOE DOE ∠=∠,70COE ∠=,求∠BOE 的度数5.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?6.某农产品生产基地收获红薯192吨,准备运给甲、乙两地的承包商进行包销.该基地用大、小两种货车共18辆恰好能一次性运完这批红薯,已知这两种货车的载重量分别为14吨/吨和8吨/辆,运往甲、乙两地的运费如下表:运费车型运往甲地/(元/辆)运往乙地/(元/辆)大货车 720 800小货车 500 650(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,求w关于a的函数关系式;(3)在(2)的条件下,若甲地的承包商包销的红薯不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、C5、C6、C7、B8、D9、A 10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、105°3、0.4、-15、两6、5三、解答题(本大题共6小题,共72分)1、(1)4x =;(2)25x = 2、(1)a 的取值范围是﹣2<a ≤3;(2)当a 为﹣1时,不等式2ax+x >2a+1的解集为x <1. 3、50°.4、∠BOE 的度数为60°5、(1)100;(2)补全图形见解析;(3)36°;(4)估计该校喜欢书法的学生人数为500人.6、(1)大货车用8辆,小货车用10辆;(2)w=70a+11400(0≤a ≤8且为整数);(3)使总运费最少的调配方案是:3辆大货车、7辆小货车前往甲地;5辆大货车、3辆小货车前往乙地.最少运费为11610元.。

(完整版)七年级数学下册期末测试题及答案(共五套)

(完整版)七年级数学下册期末测试题及答案(共五套)

李庄七年级数学下册期末测试题及答案姓名: 学号 班级 一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A 。

16=±4B 。

±16=4 C.327-=-3 D 。

2(4)-=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B ) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50°5.解为12x y =⎧⎨=⎩的方程组是( )A 。

135x y x y -=⎧⎨+=⎩ B.135x y x y -=-⎧⎨+=-⎩ C 。

331x y x y -=⎧⎨-=⎩ D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB,则∠BPC 的大小是( )A .1000B .1100C .1150D .1200PCBA 小刚小军小华(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .18.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( )A .5B .6C .7D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 cm 2C .15 cm 2D .17 cm 210。

人教版七年级下册数学期末复习试卷及答案

人教版七年级下册数学期末复习试卷及答案

人教版七年级下册数学期末复习试卷及答案一、选择题1.下列图形中,1∠与2∠是同旁内角的是( )A .B .C .D .2.在以下现象中,属于平移的是( )①在荡秋千的小朋友的运动;②坐观光电梯上升的过程;③钟面上秒针的运动;④生产过程中传送带上的电视机的移动过程. A .①② B .②④ C .②③ D .③④ 3.已知点P 的坐标为P (3,﹣5),则点P 在第( )象限.A .一B .二C .三D .四4.下列命题:①平面内,垂直于同一条直线的两直线平行;②经过直线外一点,有且只有一条直线与这条直线平行;③垂线段最短;④同旁内角互补.其中,正确命题的个数有( ) A .3个B .2个C .1个D .0个5.把一块直尺与一块含30的直角三角板如图放置,若134∠=︒,则2∠的度数为( )A .114︒B .126︒C .116︒D .124°6.下列说法正确的是( )A .a 2的正平方根是aB .819=±C .﹣1的n 次方根是1D .321a --一定是负数7.如图,已知直线//AB CD ,点F 为直线AB 上一点,G 为射线BD 上一点.若:2:1HDG CDH ∠∠=,:2:1GBE EBF ∠∠=,HD 交BE 于点E ,则E ∠的度数为( )A .45°B .55°C .60°D .75°8.如图,点A (0,1),点A 1(2,0),点A 2(3,2),点A 3(5,1)…,按照这样的规律下去,点A 100的坐标为( )A .(101,100)B .(150,51)C .(150,50)D .(100,53)九、填空题9.已知 325.6≈18.044,那么± 3.256≈___________.十、填空题10.平面直角坐标系中,点(3,2)A -关于x 轴的对称点是__________.十一、填空题11.如图,DB 是ABC 的高,AE 是角平分线,26BAE ∠=,则BFE ∠=______.十二、填空题12.如图,已知直线EF ⊥MN 垂足为F ,且∠1=138°,则当∠2等于__时,AB ∥CD .十三、填空题13.如图,将长方形ABCD 沿DE 折叠,使点C 落在边AB 上的点F 处,若45EFB ∠=︒,则DEC ∠=________°十四、填空题14.如图,在纸面上有一数轴,点A 表示的数为﹣1,点B 表示的数为3,点C 表示的数为3B 为中心折叠,然后再次折叠纸面使点A 和点B 重合,则此时数轴上与点C 重合的点所表示的数是_______.十五、填空题15.()2260a b ++-=,则(),a b 在第_____象限.十六、填空题16.如图,在平面直角坐标系中,点()10,0A ,点()22,1A ,点()34,2A ,点()46,3A ,,按照这样的规律下去,点2021A 的坐标为__________.十七、解答题17.计算:(1)3981++- (2)23427(3)+--- (3)2(23)+ (4)353325-++十八、解答题18.求下列各式中x 的值: (1)(x +1)3﹣27=0 (2)(2x ﹣1)2﹣25=0十九、解答题19.完成下列证明过程,并在括号内填上依据.如图,点E 在AB 上,点F 在CD 上,∠1=∠2,∠B =∠C ,求证AB ∥CD .证明:∵∠1=∠2(已知),∠1=∠4 ∴∠2= (等量代换), ∴ ∥BF ( ),∴∠3=∠ ( ). 又∵∠B =∠C (已知), ∴∠3=∠B ∴AB ∥CD ( ).二十、解答题20.在平面直角坐标系中,△ABC 三个顶点的坐标分别是A (﹣2,2)、B (2,0),C (﹣4,﹣2).(1)在平面直角坐标系中画出△ABC ;(2)若将(1)中的△ABC 平移,使点B 的对应点B ′坐标为(6,2),画出平移后的△A ′B ′C ′;(3)求△A ′B ′C ′的面积.二十一、解答题21.已知23|49|7a b a a -+-+=0,求实数a 、b 的值并求出b 的整数部分和小数部分.二十二、解答题22.如图,用两个面积为2200cm 的小正方形拼成一个大的正方形.(1)则大正方形的边长是 ;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为4:3,且面积为2360cm ?二十三、解答题23.(1)(问题)如图1,若//AB CD ,40AEP ∠=︒,130PFD ∠=︒.求EPF ∠的度数; (2)(问题迁移)如图2,//AB CD ,点P 在AB 的上方,问PEA ∠,PFC ∠,EPF ∠之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知EPFα∠的平分线和∠=,PEA∠的平分线交于点G,用含有α的式子表示GPFC∠的度数.二十四、解答题24.如图,已知AM∥BN,∠A=64°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)①∠ABN的度数是;②∵AM∥BN,∴∠ACB=∠;(2)求∠CBD的度数;(3)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由:若变化,请写出变化规律;(4)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是.二十五、解答题25.如图,△ABC和△ADE有公共顶点A,∠ACB=∠AED=90°,∠BAC=45°,∠DAE=30°.(1)若DE//AB,则∠EAC=;(2)如图1,过AC上一点O作OG⊥AC,分别交A B、A D、AE于点G、H、F.①若AO=2,S△AGH=4,S△AHF=1,求线段OF的长;②如图2,∠AFO的平分线和∠AOF的平分线交于点M,∠FHD的平分线和∠OGB的平分线交于点N,∠N+∠M的度数是否发生变化?若不变,求出其度数;若改变,请说明理由.【参考答案】一、选择题1.A【分析】根据同旁内角的定义去判断【详解】∵A选项中的两个角,符合同旁内角的定义,∴选项A正确;∵B选项中的两个角,不符合同旁内角的定义,∴选项B错误;∵C选项中的两个角,不符合同旁内角的定义,∴选项C错误;∵D选项中的两个角,不符合同旁内角的定义,∴选项D错误;故选A.【点睛】本题考查了同旁内角的定义,结合图形准确判断是解题的关键.2.B【分析】平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫作图形的平移运动,简称平移.平移不改变图形的形状和大小.平移可以不是水平的.据此解答.【详解】解析:B【分析】平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫作图形的平移运动,简称平移.平移不改变图形的形状和大小.平移可以不是水平的.据此解答.【详解】①在荡秋千的小朋友的运动,不是平移;②坐观光电梯上升的过程,是平移;③钟面上秒针的运动,不是平移;④生产过程中传送带上的电视机的移动过程.是平移;故选:B.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选.3.D【分析】直接利用第四象限内的点横坐标大于0,纵坐标小于0解答即可.解:∵点P 的坐标为P (3,﹣5), ∴点P 在第四象限. 故选D . 【点睛】本题主要考查了点的坐标,各象限坐标特点如下:第一象限(+,+),第二象限(-,+)第三象限(-,-)第一象限(+,-). 4.A 【分析】根据垂直的性质、平行公理、垂线段的性质及平行线的性质逐一判断即可得答案. 【详解】平面内,垂直于同一条直线的两直线平行;故①正确, 经过直线外一点,有且只有一条直线与这条直线平行,故②正确 垂线段最短,故③正确,两直线平行,同旁内角互补,故④错误, ∴正确命题有①②③,共3个, 故选:A . 【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理. 5.D 【分析】根据角的和差可先计算出∠AEF ,再根据两直线平行同旁内角互补即可得出∠2的度数. 【详解】解:由题意可知AD//BC ,∠FEG=90°, ∵∠1=34°,∠FEG=90°, ∴∠AEF=90°-∠1=56°, ∵AD//BC ,∴∠2=180°-∠AEF=124°, 故选:D . 【点睛】本题考查平行线的性质.熟练掌握两直线平行,同旁内角互补并能正确识图是解题关键. 6.D 【分析】根据平方根、算术平方根、立方根的定义判断A 、B 、D ,根据乘方运算法则判断C 即可. 【详解】A :a 2的平方根是a ±,当0a ≥时,a 2的正平方根是a ,错误;B 9,错误;C :当n 是偶数时,()1=1n - ;当n 时奇数时,()1=-1n-,错误;D :∵210a --< ,∴【点睛】本题考查平方根、算术平方根、立方根的定义以及乘方运算,掌握相关的定义与运算法则是解题关键. 7.C 【分析】利用180ABG GBF ∠+∠=︒,及平行线的性质,得到180CDG GBF ∠+∠=︒,再借助角之间的比值,求出120BDE GBE ∠+∠=︒,从而得出E ∠的大小. 【详解】 解://AB CD ,ABG CDG ∴∠=∠, 180ABG GBF ∠+∠=︒,180CDG GBF ∴∠+∠=︒,:2:1HDG CDH ∠∠=,:2:1GBE EBF ∠∠=,2222()1801203333HDG GBE CDG GBF CDG GBF ∴∠+∠=∠+∠=∠+∠=⨯︒=︒,BDE HDG ∠=∠,120BDE GBE ∴∠+∠=︒,180()18012060E BDE GBE ∴∠=︒-∠+∠=︒-︒=︒,故选:C . 【点睛】本题考查了平行线的性质的综合应用,涉及的知识点有:平行线的性质、邻补角、三角形的内角和等知识,体现了数学的转化思想、见比设元等思想.8.B 【分析】观察图形得到偶数点的规律为,A2(3,2),A4(6,3),A6(9,4),…,A2n (3n ,n+1),由100是偶数,A100的横坐标应该是100÷2×3,纵坐标应该是100÷2+1解析:B 【分析】观察图形得到偶数点的规律为,A 2(3,2),A 4(6,3),A 6(9,4),…,A 2n (3n ,n +1),由100是偶数,A 100的横坐标应该是100÷2×3,纵坐标应该是100÷2+1,则可求A 100(150,51). 【详解】解:观察图形可得,奇数点:A 1(2,0),A 3(5,1),A 5(8,2),…,A 2n -1(3n -1,n -1),偶数点:A 2(3,2),A 4(6,3),A 6(9,4),…,A 2n (3n ,n +1),∵100是偶数,且100=2n,∴n=50,∴A100(150,51),故选:B.【点睛】本题考查点的坐标规律;熟练掌握平面内点的坐标,能够根据图形的变化得到点的坐标规律是解题的关键.九、填空题9.±1.8044【详解】∵,∴,即.故答案为±1.8044解析:±1.8044【详解】∵,∴,即 1.8044±.故答案为±1.8044十、填空题10.【分析】根据平面直角坐标系中,关于坐标轴对称的点的坐标特征,即可完成解答. 【详解】解:点关于轴的对称点的坐标是(3,2).【点睛】本题考查了根据平面直角坐标系中关于坐标轴对称的点的坐标特3,2解析:()【分析】根据平面直角坐标系中,关于坐标轴对称的点的坐标特征,即可完成解答.【详解】A-关于x轴的对称点的坐标是(3,2).解:点(3,2)【点睛】本题考查了根据平面直角坐标系中关于坐标轴对称的点的坐标特征,即关于x轴对称的点的坐标横坐标不变,纵坐标变为相反数;关于y轴对称的点的坐标纵坐标不变,横坐标变为相反数;十一、填空题 11.【分析】由角平分线的定义可得,∠FAD=∠BAE=26°,而∠AFD 与∠FAD 互余,与∠BFE 是对顶角,故可求得∠BFE 的度数. 【详解】∵AE 是角平分线,∠BAE=26°, ∴∠FAD=∠B 解析:64【分析】由角平分线的定义可得,∠FAD=∠BAE=26°,而∠AFD 与∠FAD 互余,与∠BFE 是对顶角,故可求得∠BFE 的度数. 【详解】∵AE 是角平分线,∠BAE=26°, ∴∠FAD=∠BAE=26°, ∵DB 是△ABC 的高,∴∠AFD=90°−∠FAD=90°−26°=64°, ∴∠BFE=∠AFD=64°. 故答案为64°. 【点睛】本题考查了三角形内角和定理,三角形的角平分线、中线和高,熟练掌握三角形内角和定理是解题的关键.十二、填空题 12.48° 【分析】先假设,求得∠3=∠4,由∠1=138°,根据邻补角求出∠3,再利用即可求出∠2的度数. 【详解】 解:若AB//CD , 则∠3=∠4,又∵∠1+∠3=180°,∠1=138°,解析:48° 【分析】先假设//AB CD ,求得∠3=∠4,由∠1=138°,根据邻补角求出∠3,再利用EF MN 即可求出∠2的度数. 【详解】 解:若AB //CD , 则∠3=∠4,又∵∠1+∠3=180°,∠1=138°,∴∠3=∠4=42°;∵EF⊥MN,∴∠2+∠4=90°,∴∠2=48°;故答案为:48°.【点睛】本题主要考查平行线的性质,两直线垂直,平角定义,解题思维熟知邻补角、垂直的角度关系.十三、填空题13.5【分析】根据翻折的性质,可得到∠DEC=∠FED,∠BEF与∠DEC、∠FED三者相加为180°,求出∠BEF的度数即可.【详解】解:∵△DFE是由△DCE折叠得到的,∴∠DEC=∠FE解析:5【分析】根据翻折的性质,可得到∠DEC=∠FED,∠BEF与∠DE C、∠FED三者相加为180°,求出∠BEF的度数即可.【详解】解:∵△DFE是由△DCE折叠得到的,∴∠DEC=∠FED,又∵∠EFB=45°,∠B=90°,∴∠BEF=45°,∴∠DEC=1(180°-45°)=67.5°.2故答案为:67.5.【点睛】本题考查角的计算,熟练掌握翻折的性质,找到相等的角是解决本题的关键.十四、填空题14.4+或6﹣或2﹣.【分析】先求出第一次折叠与A重合的点表示的数,然后再求两点间的距离即可;同理再求出第二次折叠与C点重合的点表示的数即可.【详解】解:第一次折叠后与A重合的点表示的数是:3+解析:62【分析】先求出第一次折叠与A重合的点表示的数,然后再求两点间的距离即可;同理再求出第二次折叠与C点重合的点表示的数即可.【详解】解:第一次折叠后与A重合的点表示的数是:3+(3+1)=7.与C重合的点表示的数:3+(36第二次折叠,折叠点表示的数为:12(3+7)=5或12(﹣1+3)=1.此时与数轴上的点C重合的点表示的数为:5+(5﹣11)=2故答案为:62【点睛】本题主要考查了数轴上的点和折叠问题,掌握折叠的性质是解答本题的关键.十五、填空题15.二【分析】根据非负数的性质列方程求出a、b的值,再根据各象限内点的坐标特征解答.【详解】解:由题意得,a+2=0,b-6=0,解得a=-2,b=6,所以,点(-2,6)在第二象限;故答解析:二【分析】根据非负数的性质列方程求出a、b的值,再根据各象限内点的坐标特征解答.【详解】解:由题意得,a+2=0,b-6=0,解得a=-2,b=6,所以,点(-2,6)在第二象限;故答案为:二【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).十六、填空题16.【分析】观察点,点,点,点点的横坐标为,纵坐标为,据此即可求得的坐标;【详解】,,,,,故答案为:【点睛】本题考查了坐标系中点的规律,找到规律是解题的关键.解析:(4040,2020)【分析】观察点()10,0A ,点()22,1A ,点()34,2A ,点()46,3A ,,点的横坐标为22n -,纵坐标为1n -,据此即可求得2021A 的坐标;【详解】()10,0A ,()22,1A ,()34,2A ,()46,3A ,,(22,1)n A n n --,∴2021(4040,2020)A故答案为:(4040,2020)【点睛】本题考查了坐标系中点的规律,找到规律是解题的关键.十七、解答题17.(1)6;(2)-4;(3);(4).【分析】(1)利用算术平方根和立方根、绝对值化简,再进一步计算即可;(2)利用算术平方根和立方根化简,再进一步计算即可;(3)类比单项式乘多项式展开计算解析:(1)6;(2)-4;(3)2+;(4)【分析】(1)利用算术平方根和立方根、绝对值化简,再进一步计算即可;(2)利用算术平方根和立方根化简,再进一步计算即可;(3)类比单项式乘多项式展开计算;(4)利用绝对值的性质化简,再进一步合并同类二次根式.【详解】解:(11-=3+2+1=6;(2=2-3-3=-4;(33)=2+;(4+=故答案为(1)6;(2)-4;(3)2+4)【点睛】本题考查立方根和算术平方根,实数的混合运算,先化简,再进一步计算,注意选择合适的方法简算.十八、解答题18.(1)x=2;(2)x=3或x=-2.【分析】(1)根据立方根的定义进行求解即可;(2)根据平方根的定义进行求解,即可得出答案.【详解】解:(1)(x+1)3-27=0,(x+1)3=2解析:(1)x=2;(2)x=3或x=-2.【分析】(1)根据立方根的定义进行求解即可;(2)根据平方根的定义进行求解,即可得出答案.【详解】解:(1)(x+1)3-27=0,(x+1)3=27,x+1=3,x=2;(2)(2x-1)2-25=0,(2x-1)2=25,2x-1=±5,x=3或x=-2.【点睛】本题考查了立方根和平方根,熟练掌握立方根和平方根的定义是解题的关键.十九、解答题19.∠4;CE;同位角相等,两直线平行;C;两直线平行,同位角相等;内错角相等,两直线平行【分析】根据平行线的判定和性质解答.【详解】解∵∠1=∠2(已知),∠1=∠4(对顶角相等),∴∠2=解析:∠4;CE;同位角相等,两直线平行;C;两直线平行,同位角相等;内错角相等,两直线平行【分析】根据平行线的判定和性质解答.【详解】解∵∠1=∠2(已知),∠1=∠4(对顶角相等),∴∠2=∠4(等量代换),∴CE∥BF(同位角相等,两直线平行),∴∠3=∠C(两直线平行,同位角相等).又∵∠B=∠C(已知),∴∠3=∠B(等量代换),∴AB∥CD(内错角相等,两直线平行).故答案为:对顶角相等;CE∥BF;同位角相等,两直线平行;两直线平行,同位角相等;内错角相等,两直线平行.【点睛】此题考查平行线的判定和性质,关键是根据平行线的判定和性质解答.二十、解答题20.(1)见解析;(2)见解析;(3)10【分析】(1)根据点A、B、C的坐标描点,从而可得到△ABC;(2)利用点B和B′的坐标关系可判断△ABC先向右平移4个单位,再向上平移2个单位得到△A′解析:(1)见解析;(2)见解析;(3)10【分析】(1)根据点A、B、C的坐标描点,从而可得到△ABC;(2)利用点B和B′的坐标关系可判断△ABC先向右平移4个单位,再向上平移2个单位得到△A′B′C′,利用此平移规律写出A′、C′的坐标,然后描点即可得到△A′B′C′;(3)用一个矩形的面积分别减去三个三角形的面积去计算△A′B′C′的面积.【详解】解:(1)如图,△ABC为所作;(2)如图,△A′B′C′为所作;(3)△A′B′C′的面积=111 6426244210 222⨯-⨯⨯-⨯⨯-⨯⨯=.【点睛】本题考查了平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.二十一、解答题21.4,【分析】根据分母不等于0,以及非负数的性质列式求出a、b的值,再根据根据被开方数估算无理数的大小即可得解.【详解】解:根据题意得,3a-b=0,a2-49=0且a+7>0,解得a=7,解析:4214【分析】根据分母不等于0,以及非负数的性质列式求出a 、b 的值,再根据根据被开方数估算无理数的大小即可得解.【详解】解:根据题意得,3a -b =0,a 2-49=0且a +7>0,解得a =7,b =21,∵16<21<25, ∴44.【点睛】本题考查了绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.二十二、解答题22.(1);(2)无法裁出这样的长方形.【分析】(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解; (2)设长方形长为cm ,宽为cm ,根据题意列出方程,解方程比较4x 与20的大小解析:(1)20;(2)无法裁出这样的长方形.【分析】(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;(2)设长方形长为4x cm ,宽为3x cm ,根据题意列出方程,解方程比较4x 与20的大小即可.【详解】解:(1)由题意得,大正方形的面积为200+200=400cm 2,∴cm ;()2根据题意设长方形长为4x cm ,宽为3x cm ,由题:43360x x ⋅= 则230x =0xx ∴=∴长为43020>∴无法裁出这样的长方形.【点睛】本题考查了算术平方根,根据题意列出算式(方程)是解决此题的关键.二十三、解答题23.(1)90°;(2)∠PFC=∠PEA+∠P ;(3)∠G=α【分析】(1)根据平行线的性质与判定可求解;(2)过P点作PN∥AB,则PN∥CD,可得∠FPN=∠PEA+∠FPE,进而可得∠PF 解析:(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=12α【分析】(1)根据平行线的性质与判定可求解;(2)过P点作PN∥AB,则PN∥CD,可得∠FPN=∠PEA+∠FPE,进而可得∠PFC=∠PEA+∠FPE,即可求解;(3)令AB与PF交点为O,连接EF,根据三角形的内角和定理可得∠GEF+∠GFE=1 2∠PEA+12∠PFC+∠OEF+∠OFE,由(2)得∠PEA=∠PFC-α,由∠OFE+∠OEF=180°-∠FOE=180°-∠PFC可求解.【详解】解:(1)如图1,过点P作PM∥AB,∴∠1=∠AEP.又∠AEP=40°,∴∠1=40°.∵AB∥CD,∴PM∥CD,∴∠2+∠PFD=180°.∵∠PFD=130°,∴∠2=180°-130°=50°.∴∠1+∠2=40°+50°=90°.即∠EPF=90°.(2)∠PFC=∠PEA+∠P.理由:过P点作PN∥AB,则PN∥CD,∴∠PEA=∠NPE,∵∠FPN=∠NPE+∠FPE,∴∠FPN=∠PEA+∠FPE,∵PN∥CD,∴∠FPN=∠PFC,∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;(3)令AB与PF交点为O,连接EF,如图3.在△GFE中,∠G=180°-(∠GFE+∠GEF),∵∠GEF=12∠PEA+∠OEF,∠GFE=12∠PFC+∠OFE,∴∠GEF+∠GFE=12∠PEA+12∠PFC+∠OEF+∠OFE,∵由(2)知∠PFC=∠PEA+∠P,∴∠PEA=∠PFC-α,∵∠OFE+∠OEF=180°-∠FOE=180°-∠PFC,∴∠GEF+∠GFE=12(∠PFC−α)+12∠PFC+180°−∠PFC=180°−12α,∴∠G=180°−(∠GEF+∠GFE)=180°−180°+12α=12α.【点睛】本题主要考查平行线的性质与判定,灵活运用平行线的性质与判定是解题的关键.二十四、解答题24.(1)① ②;(2);(3)不变,,理由见解析;(4)【分析】(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;(2)由角平分线的解析:(1)①116,︒②CBN;(2)58︒;(3)不变,:2:1APB ADB∠∠=,理由见解析;(4)29.︒【分析】(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;(2)由角平分线的定义可以证明∠CBD=12∠ABN,即可求出结果;(3)不变,∠APB:∠ADB=2:1,证∠APB=∠PBN,∠PBN=2∠DBN,即可推出结论;(4)可先证明∠ABC=∠DBN,由(1)∠ABN=116°,可推出∠CBD=58°,所以∠ABC+∠DBN=58°,则可求出∠ABC的度数.【详解】解:(1)①∵AM//BN,∠A=64°,∴∠ABN=180°﹣∠A=116°,故答案为:116°;②∵AM//BN,∴∠ACB=∠CBN,故答案为:CBN;(2)∵AM//BN,∴∠ABN+∠A=180°,∴∠ABN=180°﹣64°=116°,∴∠ABP+∠PBN=116°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=116°,∴∠CBD=∠CBP+∠DBP=58°;(3)不变,∠APB:∠ADB=2:1,∵AM//BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1;(4)∵AM//BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN∴∠ABC=∠DBN,由(1)∠ABN=116°,∴∠CBD=58°,∴∠ABC+∠DBN=58°,∴∠ABC=29°,故答案为:29°.【点睛】本题考查了角平分线的定义,平行线的性质等,解题关键是能熟练运用平行线的性质并能灵活运用角平分线的定义等.二十五、解答题25.(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行线的性质求解即可.(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.②利用角平分线的定解析:(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行线的性质求解即可.(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.②利用角平分线的定义求出∠M,∠N(用∠FAO表示),可得结论.【详解】解:(1)如图,∵AB∥ED∴∠E=∠EAB=90°(两直线平行,内错角相等),∵∠BAC=45°,∴∠CAE=90°-45°=45°.故答案为:45°.(2)①如图1中,∵OG⊥AC,∴∠AOG=90°,∵∠OAG=45°,∴∠OAG=∠OGA=45°,∴AO=OG=2,∵S△AHG=12•GH•AO=4,S△AHF=12•FH•AO=1,∴GH=4,FH=1,∴OF=GH-HF-OG=4-1-2=1.②结论:∠N+∠M=142.5°,度数不变.理由:如图2中,∵MF,MO分别平分∠AFO,∠AOF,∴∠M=180°-12(∠AFO+∠AOF)=180°-12(180°-∠FAO)=90°+12∠FAO,∵NH,NG分别平分∠DHG,∠BGH,∴∠N=180°-12(∠DHG+∠BGH)=180°-12(∠HAG+∠AGH+∠HAG+∠AHG)=180°-12(180°+∠HAG)=90°-12∠HAG=90°-12(30°+∠FAO+45°)=52.5°-12∠FAO,∴∠M+∠N=142.5°.【点睛】本题考查平行线的性质,角平分线的定义,三角形内角和定理,三角形外角的性质等知识,最后一个问题的解题关键是用∠FAO表示出∠M,∠N.。

(人教版)初一数学下册期末测试题及答案

(人教版)初一数学下册期末测试题及答案

(人教版)初一数学下册期末测试题及答案姓名:__________ 班级:__________考号:__________一、选择题(共10题)1、一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是( ).A.106元B.105元C.118元D.108元2、某电视台在黄金时段的2分钟广告时间内,计划插播长度为15秒和30秒的两种广告.15秒的广告每播一次收费0.6万元,30秒的广告每播一次收费1万元.若要求每种广告播放不少于2次,则电视台在播放时收益最大的播放方式是()A. 15秒的广告播放4次,30秒的广告播放2次B. 15秒的广告播放2次,30秒的广告播放4次C. 15秒的广告播放2次,30秒的广告播放3次D.15秒的广告播放3次,30秒的广告播放2次3、张阿姨准备在某商场购买一件衣服、一双鞋和一套化妆品,这三件物品的原价和优惠方式如下表所示:欲购买的商品原价(元)优惠方式一件衣服420 每付现金200元,返购物券200元,且付款时可以使用购物券一双鞋280 每付现金200元,返购物券200元,但付款时不可以使用购物券一套化妆品300 付款时可以使用购物券,但不返购物券请帮张阿姨分析一下,选择一个最省钱的购买方案. 此时,张阿姨购买这三件物品实际所付出的钱的总数为()A. 500元 B. 600元C. 700元 D. 800元4、式子6+与+1的和是31,则的值是( )A.―12 B.12 C.13D.―195、如图所示,两人沿着边长为90m的正方形,按A→B→C→D→A……的方向行走.甲从A 点以65m/min的速度、乙从B点以72m/min的涑度行走.当乙第一次追上甲时。

将在正方形( )A.AB边上 B.DA边上 C.BC边上 D.CD边上6、中国人民银行宣布,从2007年6月5日起,上调人民币存款利率,一年定期存款利率上调到3.06%.某人于2007年6月5日存入定期为1年的人民币5000元(到期后银行将扣除20%的利息税).设到期后银行应向储户支付现金元,则所列方程正确的是( )A.B.C.D.7、李阿姨存入银行2000元,定期一年,到期后扣除20%的利息税后得到本息和为2120元,若该种储蓄的年利率为,那么可得方程( )A. B.C. D.8、下列两个方程的解相同的是()A.方程与方程B.方程与方程C.方程与方程D.方程与9、如果33、27和21分别除以同一个数,余数都是3,那么这个除数最大是()A.4 B.6 C.18 D.3010、今年爸爸比我大30岁,3年前爸爸的年龄是我的4倍,则今年我和爸爸的年龄分别是()A.13,43 B.9,39 C.10,40 D.14,44二、填空题(共10题)1、某商店购进一批商品,每件商品进价为a元,若要获利20%,则每件商品的零售价应定为________元。

2024北京海淀区初一(下)期末数学试题及答案

2024北京海淀区初一(下)期末数学试题及答案

七年级期末练习数学参考答案一、选择题二、填空题 11. B 12. 128 13. 314. ∠1=∠5(答案不唯一) 15. 93,75x y y x −=⎧⎨−=⎩ 16. 2;52a ≥− 说明:第16题第一空2分,第二空1分.三、解答题17. 解:原式3(2)1)=−−+4=18. 解:2⨯−②①得,510y =−.得,2y =−.入②,得1x =. 以原方程组的为1,2.x y =⎧⎨=−⎩19. 解:解不等式①,得52x <.不等式②去分母,得2(2)3(13)x x −≤+. 去括号得2439x x −≤+.解得1x ≥−. 所以原不等式组的解为512x −≤<.20. 解:(1)画出线段11A B 如图.点1B 的坐标为(1,2)−. (2)点M 的坐标为(0,1)或(0,5).21. 解:(1)补全图形如下图.(2)证明:∵DE ⊥AC ,∴∠DEA =90°.∵∠ACB =90°,∴∠DEA =∠ACB .∴DE ∥BC .∴∠ADE =∠B .∵l ∥AB ,∴∠ADE =∠CFE .∴∠B =∠CFE .22.任务一:解:设精包装销售了x 盒,简包装销售了y 盒.2370025358500x y x y +=⎧⎨+=⎩①② 解这个方程组,得100,200.x y =⎧⎨=⎩答:精包装销售了100盒,简包装销售了200盒.任务二:解:设分装时使用精包装m 个,简包装n 个(m ,n 为正整数).依题意可列出下列方程和不等式:7532=+n m , ①.182<+n m ② 由①得.2375n m −= 将2375n m −=带入 ②,得519.n >因为m ,n 为正整数,所以n =21,m =6或n =23,m =3.分装方案1:精包装6个,简包装21个分装方案2:精包装3个,简包装23个 说明:写出任意一个正确的分装方案,同时有合理的理由即可. 23. 解:(1)①如图② 45.注:答44或45均可(2) ① 多; ② >.24. 解:(1) 8(答案不唯一);(2)∵12x =−,123x x +<−,∴21x −<.∵21122x x x ≥=−,,∴24x ≥−∴241x −≤−<.(3)8.25.解:(1)如图1所示,即为所求.图1150MDO ∠=︒.(2)①12m =.理由如下.如图2,过O 作射线AB 的平行线GH ,满足点G 在O 左侧, 点H 在O 右侧.当12m =时, ∵COD m BAC ∠=∠,()1COF m CAE ∠=−∠, ∴12COD BAC ∠=∠,12COF CAE ∠=∠, ∴DOF COD COF ∠=∠+∠ 11221.2BAC CAE BAE =∠+∠=∠ ∵AE AB ⊥,∴90BAE ∠=︒,∴45DOF ∠=︒,∴180135DOG FOH DOF ∠+∠=︒−∠=︒.∵AB MN ∥,B 图 2∴GH MN ∥,∴ 180MDO DOG ∠=︒−∠, 180NFO FOH ∠=︒−∠, ∴180180MDO NFO DOG FOH ∠+∠=︒−∠+︒−∠()360DOG FOH =︒−∠+∠ 225=︒② m 的值为15或47或57. 26. (1)① 7;② (0,6)或(0,4)−.(2)①依题意,(6,0),(4,0)D E ,线段DE 经过t 秒后得到线段D 1E 1. 可知 11(6,0),(4,0)D t E t −−.设点(,0)P x 为线段D 1E 1上的任意一点,得 46t x t −≤≤−.由 F (2,4),得242x x +−=−. 所以2x −的最大值为点F 与线段D 1E 1的特征值h . 由于08t <≤,所以6422t −≤−−<, 4624t −≤−−<.所以,当t =8时,h 取得最大值6.点(,0)P x 为线段D 1E 1上的任意一点,且D 1E 1的长度为2. 所以,当点D 1和点E 1关于(2, 0)对称时,即D 1(3,0),E 1(1,0). 此时h 取得最小值1. 所以点F 与线段D 1E 1的特征值h 的取值范围为:16h ≤≤.② k 1;t 10t ≤。

2022-2023学年黑龙江省鸡西市七年级(下)期末数学试卷(含解析)

2022-2023学年黑龙江省鸡西市七年级(下)期末数学试卷(含解析)

2022-2023学年黑龙江省鸡西市七年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. 甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,能用其中一部分平移得到的是( )A. B. C. D.2. 在−3.14,2,0,π,16,0.101001…中无理数的个数有( )A. 3个B. 2个C. 1个D. 4个3. 16的算术平方根的相反数是( )A. 2B. −2C. 4D. −44. 已知实数a,b,若a>b,则下列结论错误的是( )A. a−7>b−7B. 6+a>b+6C. a5>b5D. −3a>−3b5. 下列调查适合做抽样调查的是( )A. 了解中央电视台“新闻联播”栏目的收视率B. 了解某甲型H1N1确诊病例同机乘客的健康情况C. 了解初一一班每个学生家庭电脑的数量D. 对“神州十六号”载人飞船发射前重要零部件的检查6. 如图,Rt△ABC是一块直角三角板,其中∠C=90°,∠BAC=30°.直尺的一边DE经过顶点A,若DE//CB,则∠DAB的度数为( )A. 100°B. 120°C. 135°D. 150°7. 已知点M(2m−1,1−m)在第四象限,则m的取值范围在数轴上表示正确的是( )A. B.C. D.8. 七年级创新班为了奖励学习进步的学生,准备购买单价为3元的笔记本与单价为5元的钢笔两种奖品,共花了35元,则共有种不同的购买方案.( )A. 4B. 5C. 3D. 29. 已知关于x,y的方程组{2x+y=−a+4,x+2y=3−a,则x−y的值为( )A. −1B. a−1C. 0D. 110. 如图,下列条件:①∠2+∠4=180°;②∠4=∠5;③∠1=∠6;④∠1=∠3;⑤∠6=∠2;其中能判断直线l1//l2的有( )A. 2个B. 3个C. 4个D. 5个二、填空题(本大题共10小题,共30.0分)11. 《中国核能发展报告2021》蓝皮书显示,2020年我国核能发电量为3662.43亿千瓦时,则数据3662.43亿千瓦时用科学记数法表示为______ 千瓦时.12. 当x______ 时,2x−3有意义.13.如图,要使AD//BF,则需要添加的条件是______(写一个即可)14. 如图所示,要在河的两岸搭建一座桥,沿线段PM搭建最短,理由是______ .15.如图是一片枫叶标本,其形状呈“掌状五裂型”,裂片具有少数突出的齿,将其放在平面直角坐标系中,表示叶片“顶部”A,B两点的坐标分别为(−2,2),(−3,0),则叶杆“底部”点C的坐标为______ .16. 一个小区大门的栏杆如图所示,BA垂直地面AE于A,CD平行于地面AE,那么∠ABC+∠BCD=______度.17. 若不等式组{x>ax−2<3有2个整数解,则a的取值范围为______.18.某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯最多可降价______元.19. 如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息可知,买5束鲜花和5个礼盒的总价为______元.20.如图,在平面直角坐标系中,已知点A(1,1),B(−1,1),C(−1,−2),D(1,−2),把一根长为2023个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A……的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是______ .三、计算题(本大题共1小题,共10.0分)21. 为了更好治理流溪河水质,保护环境,市治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如表:A型B型价格(万元/台)a b处理污水量(吨/月)240200经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)求a,b的值.(2)经预算:市治污公司购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案.(3)在(2)问的条件下,若每月要求处理流溪河两岸的污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.四、解答题(本大题共6小题,共50.0分。

2023年人教版七年级数学(下册)期末试卷及答案(真题)

2023年人教版七年级数学(下册)期末试卷及答案(真题)

2023年人教版七年级数学(下册)期末试卷及答案(真题) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a ,b ,c 是三角形的三边,那么代数式a 2-2ab +b 2-c 2的值( )A .大于零B .等于零C .小于零D .不能确定2.已知有理数a 、b 在数轴上对应的点如图所示,则下列式子正确的是( )A .a •b >0B .a+b <0C .|a|<|b|D .a ﹣b >03.如图,∠1=68°,直线a 平移后得到直线b ,则∠2﹣∠3的度数为( )A .78°B .132°C .118°D .112° 494) A .32 B .32- C .32± D .81165.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10116.如图,直线AB ,CD 相交于点O ,射线OM 平分AOC ∠,ON OM ⊥,若30AOM ∠=︒,则CON ∠的度数为( )A .30︒B .40︒C .60︒D .50︒7.如图,在下列条件中,不能证明△ABD ≌△ACD 的是( ).A .BD =DC ,AB =ACB .∠ADB =∠ADC ,BD =DC C .∠B =∠C ,∠BAD =∠CAD D .∠B =∠C ,BD =DC8.如图,已知在四边形ABCD 中,90BCD ∠=︒,BD 平分ABC ∠,6AB =,9BC =,4CD =,则四边形ABCD 的面积是( )A .24B .30C .36D .429.已知2x =3y (y ≠0),则下面结论成立的是( )A .32x y =B .23x y= C .23x y = D .23xy =10.已知a m =3,a n =4,则a m+n 的值为( )A .7B .12C .D .二、填空题(本大题共6小题,每小题3分,共18分)116的平方根是 .23x -在实数范围内有意义,则 x 的取值范围是________.3.如图,给出了直线外一点作已知直线平行线的一种方法,它的依据是_________.4.已知,x y 为实数,且22994y x x --,则x y -=________.5.若关于x 的方程2x m 2x 22x++=--有增根,则m 的值是________. 6.若一个多边形内角和等于1260°,则该多边形边数是________.三、解答题(本大题共6小题,共72分)1.解方程:(1)()1236365x x --=+ (2)0.80.950.30.20.520.3x x x ++-=+2.马虎同学在解方程13123x m m ---=时,不小心把等式左边m 前面的“﹣”当做“+”进行求解,得到的结果为x=1,求代数式m 2﹣2m+1的值.3.问题情境:如图1,AB ∥CD ,∠PAB=130°,∠PCD=120°.求∠APC 度数. 小明的思路是:如图2,过P 作PE ∥AB ,通过平行线性质,可得∠APC=50°+60°=110°.问题迁移:(1)如图3,AD ∥BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD 、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出∠CPD 、∠α、∠β间的数量关系.4.如图,已知∠1,∠2互为补角,且∠3=∠B,(1)求证:∠AFE=∠ACB(2)若CE平分∠ACB,且∠1=80°,∠3=45°,求∠AFE的度数.5.中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对七年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如下所示:(1)统计表中的a=________,b=___________,c=____________;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校七年级共有1200名学生,请你分析该校七年级学生课外阅读7本及以上的人数.6.今年义乌市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、D4、A5、C6、C7、D8、B9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、x≥33、同位角相等,两直线平行4、1-或7-.5、0.6、9三、解答题(本大题共6小题,共72分)1、(1)209-;(2)13x=.2、0.3、(1)CPDαβ∠=∠+∠,理由见解析;(2)当点P在B、O两点之间时,CPDαβ∠=∠-∠;当点P在射线AM上时,CPDβα∠=∠-∠.4、(1)详略;(2)70°.5、(1)a=10,b=0.28,c=50;(2)补图见解析;(3)6.4本;(4)528人.6、(1)温馨提示牌和垃圾箱的单价各是50元和150元;(2)略。

(人教版)初一数学下册期末测试题及答案

(人教版)初一数学下册期末测试题及答案

(人教版)初一数学下册期末测试题及答案姓名:__________ 班级:__________考号:__________一、选择题(共15题)1、已知m,n为常数,代数式2x4y+mx|5-n|y+xy化简之后为单项式,则m n的值共有( ) A.1个 B.2个 C.3个 D.4个2、下列运算正确的是 ( )A.23=6 B.(-y2) 3=y6 C.(m2n) 3=m5n3 D.-2x2+5x2=3x23、萱萱的妈妈下岗了,在国家政策的扶持下开了一家商店,全家每个人都要出一份力,妈妈告诉萱萱说,她第一次进货时以每件元的价格购进了件牛奶;每件元的价格购进了件洗发水,萱萱建议将这两种商品都以元的价格出售,则按萱萱的建议商品卖出后,商店()A.赚钱 B.赔钱C.不嫌不赔 D.无法确定赚与赔4、如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为,,则等于()A.8 B.7 C.6 D.55、已知a2﹣2a﹣1=0,则a4﹣2a3﹣2a+1等于()A.0 B.1 C.2 D.36、 x2+ax﹣y﹣(bx2﹣x+9y+3)的值与x的取值无关,则﹣a+b的值为()A.0 B.﹣1 C.﹣2 D.27、方程去分母正确的是().(A)(B)(C)(D)8、方程|x+1|+|x-3|=4的整数解有( )(A)2个(B)3个(C)5个(D)无穷多个9、若关于x的一元一次不等式组的解集是x a,且关于y的分式方程有非负整数解,则符合条件的所有整数a的和为()A.0 B.1 C.4 D.610、对,下列说法正确的是()A.不是方程 B.是方程,其解为C.是方程,其解为 D.是方程,其解为、11、若不论k取什么实数,关于x的方程(a、b是常数)的解总是x=1,则a+b的值是( )A.﹣0.5 B.0.5 C.﹣1.5 D.1.512、一个正方体锯掉一个角后,顶点的个数是()A、7个B、8个C、9个D、7个或8个或9个或10个13、如图,已知八边形ABCDEFGH, 对角线AE、BF、CG、DH交于点O, △OAB、△OCD、△OEF 和△OGH是四个全等的等边三角形,用这四个三角形围成一个四棱锥的侧面,用其余的四个三角形拼割出这个四棱锥的底面,则下面图形(实线为拼割后的图形)中恰为此四棱锥底面的是()A B C D14、图1是一个底面为正方形的直棱柱,现将图1切割成图2的几何体,则图2的俯视图是()图1 图2 A. B . C . D.15、观察图中正方形四个顶点所标的数字规律,推测数2019应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角二、填空题(共10题)1、在右表中,我们把第i行第j 列的数记为(其中i,j都是不大于5的正整数),对于表中的每个数,规定如下:当时,;当时,。

初一数学下册期末考试试题及答案

初一数学下册期末考试试题及答案

-初一数学下册期末考试试题满分:120分 时间:120分钟一、选一选,比比谁细心(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.—的绝对值的倒数是( ).(A ) (B )— (C )—3 (D ) 32.方程5—3x=8的解是( ).(A )x=1 (B)x=—1 (C )x= (D )x=-3.如果收入15元记作+15元,那么支出20元记作( )元。

(A)+5 (B)+20 (C )-5 (D )—204.有理数,,, ,—(-1),中,其中等于1的个数是( )。

(A)3个 (B )4个 (C )5个 (D)6个5.已知p 与q 互为相反数,且p ≠0,那么下列关系式正确的是( ).(A ) (B ) (C) (D ) p=q6.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长16800m,用科学记数法表示这个数为( )。

(A )1。

68×104m (B )16。

8×103 m (C )0。

168×104m (D )1。

68×103m7.下列变形中, 不正确的是( ).(A) a +b -(-c -d )=a +b +c +d (B ) a +(b +c -d )=a +b +c -d(C ) a -b -(c -d )=a -b -c -d (D )a -(b -c +d )=a -b +c -d8.如图,若数轴上的两点A 、B 表示的数分别为a 、b ,则下列结论正确的是( ).(A) b -a 〉0(B) a -b 〉0(C) ab >0(D ) a +9.按括号内的要求,用四舍五入法,对1022.0099取近似值, 其中错误的是( )。

(A )1022。

01(精确到0.01) (B)1.0×103(保留2个有效数字)(C)1020(精确到十位) (D)1022。

010(精确到千分位)10.“一个数比它的相反数大—14",若设这数是x ,则可列出关于x 的方程为( )。

人教版七年级数学下册期末综合复习试卷(及答案)

人教版七年级数学下册期末综合复习试卷(及答案)

人教版七年级数学下册期末综合复习试卷(及答案)一、选择题1.1.96的算术平方根是()A .0.14B .1.4C .0.14-D .±1.42.下列图中的“笑脸”,由如图平移得到的是( )A .B .C .D . 3.平面直角坐标系中,点M (1,﹣5)在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列四个命题:①4±是64的立方根;②5是25的算术平方根;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④在平面直角坐标系中,与两坐标轴距离都是2的点有且只有2个.其中真命题有( )个A .1B .2C .3D .45.如图,直线AB ∥CD ,AE ⊥CE ,∠1=125°,则∠C 等于( )A .35°B .45°C .50°D .55°6.按如图所示的程序计算,若开始输入的x 的值是64,则输出的y 的值是( )A .2B .3C .2D .37.如图,一条“U ”型水管中AB //CD ,若∠B =75°,则∠C 应该等于( )A .75︒B .95︒C .105︒D .125︒8.如图,在平面直角坐标系中,一动点从原点O 出发,向右平移3个单位长度到达点1A ,再向上平移6个单位长度到达点2A ,再向左平移9个单位长度到达点3A ,再向下平移12个单位长度到达点4A ,再向右平移15个单位长度到达点5A ……按此规律进行下去,该动点到达的点2021A 的坐标是( )A .(3030,3030)--B .(3030,3033)-C .(3033,3030)-D .(3030,3033)九、填空题9.169=___.十、填空题10.在平面直角坐标系中,点(,)M a b 与点(3,1)N -关于x 轴对称,则a b +的值是_____. 十一、填空题11.已知点A (3a+5,a ﹣3)在二、四象限的角平分线上,则a=__________.十二、填空题12.如图,已知a //b ,∠1=50°,∠2=115°,则∠3=______.十三、填空题13.如图,将一张长方形纸条折成如图的形状,若170∠=︒,则2∠的度数为____.十四、填空题14.一列数a 1,a 2,a 3,…,a n ,其中a 1=﹣1,a 2=111a -,a 3=211a -,…,a n =111n a --,则a 2=_____;a 1+a 2+a 3+…+a 2020=_____;a 1×a 2×a 3×…×a 2020=_____.十五、填空题15.如图,点A(1,0),B(2,0),C 是y 轴上一点,且三角形ABC 的面积为2,则点C 的坐标为_____.十六、填空题16.如图:在平面直角坐标系中,已知P 1(﹣1,0),P 2(﹣1,﹣1),P 3(1,﹣1),P 4(1,1),P 5(﹣2,1),P 6(﹣2,﹣2)…,依次扩展下去,则点P 2021的坐标为 _____________.十七、解答题17.计算(131252724-(2)221|十八、解答题18.已知m +n =2,mn =-15,求下列各式的值.(1)223m mn n ++;(2)2()m n -.十九、解答题19.如图,∠1=∠2,∠3=∠C ,∠4=∠5.请说明BF //DE 的理由.(请在括号中填上推理依据)解:∵∠1=∠2(已知)∴CF//BD()∴∠3+∠CAB=180°()∵∠3=∠C(已知)∴∠C+∠CAB=180°(等式的性质)∴AB//CD()∴∠4=∠EGA(两直线平行,同位角相等)∵∠4=∠5(已知)∴∠5=∠EGA(等量代换)∴ED//FB()二十、解答题20.如图,已知ABC在平面直角坐标系中的位置如图所示.(1)写出ABC三个顶点的坐标;(2)求出ABC的面积;'''.(3)在图中画出把ABC先向左平移5个单位,再向上平移2个单位后所得的A B C二十一、解答题21.阅读下面的文字,解答问题: 大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,于是小辉用21-来表示2的小数部分,你同意小辉的表示方法吗? 事实上,小辉的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵479<<,即273<<,∴7的整数部分为2,小数部分为72-.请解答:(1)21的整数部分是______ ,小数部分是______ .(2)如果11的小数部分为a ,17的整数部分为b ,求11a b +-的值. 二十二、解答题22.求下图44⨯的方格中阴影部分正方形面积与边长.二十三、解答题23.点A ,C ,E 在直线l 上,点B 不在直线l 上,把线段AB 沿直线l 向右平移得到线段CD .(1)如图1,若点E 在线段AC 上,求证:∠B +∠D =∠BED ;(2)若点E 不在线段AC 上,试猜想并证明∠B ,∠D ,∠BED 之间的等量关系;(3)在(1)的条件下,如图2所示,过点B 作PB //ED ,在直线BP ,ED 之间有点M ,使得∠ABE =∠EBM ,∠CDE =∠EDM ,同时点F 使得∠ABE =n ∠EBF ,∠CDE =n ∠EDF ,其中n ≥1,设∠BMD =m ,利用(1)中的结论求∠BFD 的度数(用含m ,n 的代数式表示). 二十四、解答题24.[感知]如图①,//40130AB CD AEP PFD ∠=︒∠=︒,,,求EPF ∠的度数.小乐想到了以下方法,请帮忙完成推理过程.解:(1)如图①,过点P 作//PM AB .∴140AEP ∠=∠=︒(_____________),∴//AB CD ,∴//PM ________(平行于同一条直线的两直线平行),∴_____________(两直线平行,同旁内角互补),∴130PFD ∠=︒,∴218013050︒︒∠=-=︒,∴12405090︒∠=+︒+∠=︒,即90EPF ∠=︒.[探究]如图②,//,50,120AB CD AEP PFC ∠=︒∠=︒,求EPF ∠的度数;[应用](1)如图③,在[探究]的条件下,PEA ∠的平分线和PFC ∠的平分线交于点G ,则G ∠的度数是_________º.(2)已知直线//a b ,点A ,B 在直线a 上,点C ,D 在直线b 上(点C 在点D 的左侧),连接AD BC ,,若BE 平分ABC DE ∠,平分ADC ∠,且BE DE ,所在的直线交于点E .设(),ABC ADC αβαβ∠=∠=≠,请直接写出BED ∠的度数(用含,αβ的式子表示). 二十五、解答题25.如果三角形的两个内角α与β满足290αβ+=︒,那么我们称这样的三角形是“准互余三角形”.(1)如图1,在Rt ABC 中,90ACB ∠=︒,BD 是ABC 的角平分线,求证:ABD △是“准互余三角形”;(2)关于“准互余三角形”,有下列说法:①在ABC 中,若100A ∠=︒,70B ∠=︒,10C ∠=︒,则ABC 是“准互余三角形”; ②若ABC 是“准互余三角形”,90C ∠>︒,60A ∠=︒,则20B ∠=︒;③“准互余三角形”一定是钝角三角形.其中正确的结论是___________(填写所有正确说法的序号);(3)如图2,B ,C 为直线l 上两点,点A 在直线l 外,且50ABC ∠=︒.若P 是直线l 上一点,且ABP △是“准互余三角形”,请直接写出APB ∠的度数.【参考答案】一、选择题1.B解析:B【分析】根据算术平方根的定义:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根即可得出答案.【详解】解:∵21.4 1.96=,∴1.96的算术平方根是1.4,故选:B .【点睛】本题考查了算术平方根,掌握算术平方根的定义是解题的关键,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.2.D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A 、B 、C 都是由旋转得到的,D 是由平移得到的.故选:D .【点睛】解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A 、B 、C 都是由旋转得到的,D 是由平移得到的.故选:D .【点睛】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.3.D【分析】根据各个象限点坐标的符号特点进行判断即可得到答案.【详解】解:∵1>0,-5<0,∴点M(1,-5)在第四象限.故选D.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号特征是解决问题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B【分析】根据立方根和算术平方根的定义、平行线的性质、点到直线的距离逐项判断即可.【详解】64的立方根是4,故①是假命题; 25的算数平方根是5,故②是真命题;如果两条直线都与第三条直线平行,那么这两条直线也互相平行,故③是真命题;与两坐标轴距离都是2的点有(2,2)、(2,-2)、(-2,2)、(-2,-2)共4点,故④是假命题.故选:B.【点睛】本题考查命题真、假的判断.正确掌握相关定义、性质与判定是解题关键.5.A【分析】过点E作EF∥AB,则EF∥CD,利用“两直线平行,内错角相等”可得出∠BAE=∠AEF及∠C =∠CEF,结合∠AEF+∠CEF=90°可得出∠BAE+∠C=90°,由邻补角互补可求出∠BAE的度数,进而可求出∠C的度数.【详解】解:过点E作EF∥AB,则EF∥CD,如图所示.∵EF∥AB,∴∠BAE=∠AEF.∵EF∥CD,∴∠C=∠CEF.∵AE⊥CE,∴∠AEC=90°,即∠AEF+∠CEF=90°,∴∠BAE+∠C=90°.∵∠1=125°,∠1+∠BAE=180°,∴∠BAE=180°﹣125°=55°,∴∠C=90°﹣55°=35°.故选:A.【点睛】本题考查了平行线的性质、垂线以及邻补角,牢记“两直线平行,内错角相等”是解题的关键.6.A【分析】根据计算程序图计算即可.【详解】解:∵当x=648=,2是有理数,=2∴当x=2是无理数,∴y故选:A.【点睛】此题考查计算程序的应用,正确理解计算程序图的计算步骤,会正确计算数的算术平方根及立方根,能正确判断有理数及无理数是解题的关键.7.C【分析】直接根据平行线的性质即可得出结论.【详解】解:∵AB∥CD,∠B=75°,∴∠C=180°-∠B=180°-75°=105°.故选:C.【点睛】本题考查的是平行线的性质,熟知两直线平行,同旁内角互补是解答此题的关键.8.C【分析】求出A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,探究规律可得A2021(3033,-3030),从而求解.【详解】解:由题意A1(3,0解析:C【分析】求出A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,探究规律可得A2021(3033,-3030),从而求解.【详解】解:由题意A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,可以看出,9=1532+,15=2732+,21=3932+,得到规律:点A2n+1的横坐标为()32136622n n+++=,其中0n≥的偶数,点A2n+1的纵坐标等于横坐标的相反数+3,2021210101=⨯+,即1010n=,故A2021的横坐标为61010630332⨯+=,A2021的纵坐标为303333030-+=-,∴A2021(3033,-3030),故选:C.【点睛】本题考查了坐标与图形变化-平移,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型.九、填空题9.13【分析】根据求解即可.【详解】解:,故答案为:13.【点睛】题目主要考查算术平方根的计算,熟记常用数的平方及算数平方根的计算法则是解题关键.解析:13【分析】a=求解即可.【详解】1313==,故答案为:13.【点睛】题目主要考查算术平方根的计算,熟记常用数的平方及算数平方根的计算法则是解题关键.十、填空题10.4【分析】根据关于x 轴对称的两点的横坐标相同,纵坐标互为相反数求得a 、b 的值即可求得答案.【详解】点与点关于轴对称,,,则a+b 的值是:,故答案为.【点睛】本题考查了关于x 轴对称的解析:4【分析】根据关于x 轴对称的两点的横坐标相同,纵坐标互为相反数求得a 、b 的值即可求得答案.【详解】点(,)M a b 与点(3,1)M -关于x 轴对称,3a ∴=,1b =,则a+b 的值是:4,故答案为4.【点睛】本题考查了关于x 轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解此类问题的关键.十一、填空题11.﹣【详解】∵点A (3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,∴3a+5+a-3=0,∴a=﹣.故答案是:﹣.解析:﹣12【详解】∵点A (3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,∴3a+5+a-3=0,∴a=﹣12.故答案是:﹣1 2 .十二、填空题12.65°【分析】根据平行线的性质可得∠4的度数,再根据三角形外角的性质,即可求解.【详解】解:如图:∵a//b,∠1=50°,∴∠4=∠1=50°,∵∠2=115°,∠2=∠3+∠4,解析:65°【分析】根据平行线的性质可得∠4的度数,再根据三角形外角的性质,即可求解.【详解】解:如图:∵a//b,∠1=50°,∴∠4=∠1=50°,∵∠2=115°,∠2=∠3+∠4,∴∠3=∠2﹣∠4=115°﹣50°=65°.故答案为:65°.【点睛】此题考查了平行线的性质以及三角形外角的性质,熟练掌握相关基本性质是解题的关键.十三、填空题13.55°【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵∠1=70°,∴∠3+∠4=180°-∠1=110°,又∵折叠,∴∠3=∠4=55°,解析:55°【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵∠1=70°,∴∠3+∠4=180°-∠1=110°,又∵折叠,∴∠3=∠4=55°,∵AB//DE,∴∠2=∠3=55°,故答案为:55°.【点睛】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.十四、填空题14., 1【分析】根据题意,可以写出前几项的值,从而可以发现这列数的变化特点,从而可以求得所求式子的值.【详解】解:由题意可得,当a1=﹣1时,a2===,a3===解析:12,201721【分析】根据题意,可以写出前几项的值,从而可以发现这列数的变化特点,从而可以求得所求式子的值.【详解】解:由题意可得,当a 1=﹣1时,a 2=111a -=11(1)--=12, a 3=211a -=1112-=2, a 4=﹣1,…,∵2020÷3=673…1,∴a 1+a 2+a 3+…+a 2020=(﹣1+12+2)×673+(﹣1) =32×673+(﹣1) =20192﹣22 =20172, a 1×a 2×a 3×…×a 2020 =[(﹣1)×12×2]673×(﹣1)=(﹣1)673×(﹣1)=(﹣1)×(﹣1)=1, 故答案为:12,20172,1. 【点睛】本题考查有理数的运算,熟练掌握运算律及-1的指数幂运算是解题关键. 十五、填空题15.(0,4)或(0,-4).【分析】设△ABC 边AB 上的高为h ,利用三角形的面积列式求出h ,再分点C 在y 轴正半轴与负半轴两种情况解答.【详解】解:设△ABC 边AB 上的高为h ,∵A (1,0),解析:(0,4)或(0,-4).【分析】设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答.【详解】解:设△ABC边AB上的高为h,∵A(1,0),B(2,0),∴AB=2-1=1,∴△ABC的面积=1×1•h=2,2解得h=4,点C在y轴正半轴时,点C为(0,4),点C在y轴负半轴时,点C为(0,-4),所以,点C的坐标为(0,4)或(0,-4).故答案为:(0,4)或(0,-4).【点睛】本题考查了三角形的面积,坐标与图形性质,求出AB边上的高的长度是解题的关键.十六、填空题16.(﹣506,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且解析:(﹣506,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且纵坐标=2020÷4,再根据第二项象限点的规律即可得出结论.【详解】解:∵P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2)…,∴下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在第三象限,被4除余3的点在第四象限,∵2021÷4=505…1,∴点P2021在第二象限,∵点P5(﹣2,1),点P9(﹣3,2),点P13(﹣4,3),∴点P2021(﹣506,505),故答案为:(﹣506,505).【点睛】本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,该位置处点的规律,然后就可以进一步推得点的坐标.十七、解答题17.(1);(2)【分析】(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果.(2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.【详解】(1),,.(解析:(1)72;(21 【分析】(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果. (2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.【详解】(1 3532=-+, 72=.(2)1|,1=,1.【点睛】本题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,要从高级到低级,即先乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外有理数的运算律在实数范围内仍然适用.十八、解答题18.(1)-11;(2)68【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案.【详解】解:(1)====-11;(2)=解析:(1)-11;(2)68【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案.【详解】解:(1)223m mn n ++=222m mn n mn +++=()2m n mn ++=2215-=-11;(2)2()m n -=2()4m n mn +-=()22415-⨯- =464+=68【点睛】此题主要考查了完全平方公式,正确应用完全平方公式是解题关键.十九、解答题19.内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行【分析】运用平行线的性质定理和判定定理可得结论.【详解】解:(已知)(内错角相等,两直线平解析:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行【分析】运用平行线的性质定理和判定定理可得结论.【详解】解:12∠=∠(已知)//CF BD ∴(内错角相等,两直线平行),3180CAB (两直线平行,同旁内角互补),3C ∠=∠(已知),180C CAB ∴∠+∠=︒(等式的性质),//AB CD ∴(同旁内角互补,两直线平行),4EGA (两直线平行,同位角相等),45∠=∠(已知), 5EGA (等量代换), //ED FB ∴(同位角相等,两直线平行).故答案为:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行.【点睛】本题主要考查了平行线的判定定理和性质定理,熟悉相关性质是解答此题的关键. 二十、解答题20.(1);(2);(3)图见解析.【分析】(1)根据点在平面直角坐标系中的位置即可得;(2)利用一个长方形的面积减去三个直角三角形的面积即可得;(3)根据平移作图的方法即可得.【详解】解:解析:(1)()()()4,3,3,1,1,2A B C ;(2)52;(3)图见解析. 【分析】(1)根据点,,A B C 在平面直角坐标系中的位置即可得;(2)利用一个长方形的面积减去三个直角三角形的面积即可得;(3)根据平移作图的方法即可得.【详解】解:(1)由点,,A B C 在平面直角坐标系中的位置:()()()4,3,3,1,1,2A B C ;(2)ABC 的面积为1152312213222⨯-⨯⨯⨯-⨯⨯=; (3)如图所示,A B C '''即为所求.【点睛】本题考查了点坐标、平移作图,熟练掌握平移作图的方法是解题关键.二十一、解答题21.(1)4,;(2)1【分析】(1)根据题意求出所在整数范围,即可求解;(2)求出a,b然后代入代数式即可.【详解】解:(1)∵<<,即4<<5∴的整数部分为4,小数部分为−4.(2),解析:(1)4214;(2)1【分析】(121(2)求出a,b然后代入代数式即可.【详解】解:(1)∵16212521∴214214.(2)3114,∴113a.∵4175<,∴4b=,∴341a b+=+.【点睛】此题主要考查了无理数的估算,实数的运算,熟练掌握相关知识是解题的关键.二十二、解答题22.8;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可.【详解】解:正方形面积=4×4-4××2×2=8;正方形的边解析:8;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可.【详解】解:正方形面积=4×4-4×12×2×2=8;正方形的边长【点睛】本题考查了算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a二十三、解答题23.(1)见解析;(2)当点E在CA的延长线上时,∠BED=∠D-∠B;当点E 在AC的延长线上时,∠BED=∠BET-∠DET=∠B-∠D;(3)【分析】(1)如图1中,过点E作ET∥AB.利用平行解析:(1)见解析;(2)当点E在CA的延长线上时,∠BED=∠D-∠B;当点E在AC的延长线上时,∠BED=∠BET-∠DET=∠B-∠D;(3)()12m nn-【分析】(1)如图1中,过点E作ET∥A B.利用平行线的性质解决问题.(2)分两种情形:如图2-1中,当点E在CA的延长线上时,如图2-2中,当点E在AC的延长线上时,构造平行线,利用平行线的性质求解即可.(3)利用(1)中结论,可得∠BMD=∠ABM+∠CDM,∠BFD=∠ABF+∠CDF,由此解决问题即可.【详解】解:(1)证明:如图1中,过点E作ET∥A B.由平移可得AB∥CD,∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET+∠DET=∠B+∠D.(2)如图2-1中,当点E在CA的延长线上时,过点E作ET∥A B.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠DET-∠BET=∠D-∠B.如图2-2中,当点E在AC的延长线上时,过点E作ET∥A B.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET-∠DET=∠B-∠D.(3)如图,设∠ABE=∠EBM=x,∠CDE=∠EDM=y,∵AB∥CD,∴∠BMD =∠ABM +∠CDM ,∴m =2x +2y ,∴x +y =12m ,∵∠BFD =∠ABF +∠CDF ,∠ABE =n ∠EBF ,∠CDE =n ∠EDF ,∴∠BFD =()111n n n x y x y n n n ---+=+=112n m n -⨯=()12m n n -. 【点睛】本题属于几何变换综合题,考查了平行线的性质,角平分线的定义等知识,解题的关键是学会条件常用辅助线,构造平行线解决问题,属于中考常考题型. 二十四、解答题24.[感知]见解析;[探究]70°;[应用](1)35;(2)或【分析】[感知]过点P 作PM ∥AB ,根据平行线的性质得到∠1=∠AEP ,∠2+∠PFD=180°,求出∠2的度数,结合∠1可得结果;解析:[感知]见解析;[探究]70°;[应用](1)35;(2)2αβ+或2βα-【分析】[感知]过点P 作PM ∥AB ,根据平行线的性质得到∠1=∠AEP ,∠2+∠PFD =180°,求出∠2的度数,结合∠1可得结果;[探究]过点P 作PM ∥AB ,根据AB ∥CD ,PM ∥CD ,进而根据平行线的性质即可求∠EPF 的度数;[应用](1)如图③所示,在[探究]的条件下,根据∠PEA 的平分线和∠PFC 的平分线交于点G ,可得∠G 的度数;(2)画出图形,分点A 在点B 左侧和点A 在点B 右侧,两种情况,分别求解.【详解】解:[感知]如图①,过点P 作PM ∥AB ,∴∠1=∠AEP =40°(两直线平行,内错角相等)∵AB ∥CD ,∴PM ∥CD (平行于同一条直线的两直线平行),∴∠2+∠PFD =180°(两直线平行,同旁内角互补),∴∠PFD =130°(已知),∴∠2=180°-130°=50°,∴∠1+∠2=40°+50°=90°,即∠EPF =90°;[探究]如图②,过点P 作PM ∥AB ,∴∠MPE =∠AEP =50°,∵AB ∥CD ,∴PM ∥CD ,∴∠PFC =∠MPF =120°,∴∠EPF =∠MPF -∠MPE =120°-50°=70°;[应用](1)如图③所示,∵EG 是∠PEA 的平分线,FG 是∠PFC 的平分线,∴∠AEG =12∠AEP =25°,∠GFC =12∠PFC =60°,过点G 作GM ∥AB ,∴∠MGE =∠AEG =25°(两直线平行,内错角相等)∵AB ∥CD (已知),∴GM ∥CD (平行于同一条直线的两直线平行),∴∠GFC =∠MGF =60°(两直线平行,内错角相等).∴∠G =∠MGF -∠MGE =60°-25°=35°.故答案为:35.(2)当点A 在点B 左侧时,如图,故点E 作EF ∥AB ,则EF ∥CD ,∴∠ABE =∠BEF ,∠CDE =∠DEF ,∵BE 平分ABC DE ∠,平分ADC ∠,,ABC ADC αβ∠=∠=, ∴∠ABE =∠BEF =12α,∠CDE =∠DEF =12β, ∴∠BED =∠BEF +∠DEF =2αβ+;当点A 在点B 右侧时,如图,故点E 作EF ∥AB ,则EF ∥CD ,∴∠DEF =∠CDE ,∠ABG =∠BEF ,∵BE 平分ABC DE ∠,平分ADC ∠,,ABC ADC αβ∠=∠=,∴∠DEF =∠CDE =12β,∠ABG =∠BEF =12α, ∴∠BED =∠DEF -∠BEF =2βα-;综上:∠BED 的度数为2αβ+或2βα-.【点睛】 本题考查了平行线的判定与性质、平行公理及推论,角平分线的定义,解决本题的关键是熟练运用平行线的性质.二十五、解答题25.(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由和是的角平分线,证明即可;(2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角解析:(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由90ABC A ∠+∠=︒和BD 是ABC 的角平分线,证明290ABD A ∠+∠=︒即可; (2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角形”的定义,分类讨论:①2∠A +∠ABC =90°;②∠A +2∠APB =90°;③2∠APB +∠ABC =90°;④2∠A +∠APB =90°,由三角形内角和定理和外角的性质结合“准互余三角形”的定义,即可求出答案.【详解】(1)证明:∵在Rt ABC 中,90ACB ∠=︒,∴90ABC A ∠+∠=︒,∵BD 是ABC ∠的角平分线,∴2ABC ABD ∠=∠,∴290ABD A ∠+∠=︒,∴ABD △是“准互余三角形”;(2)①∵70,10B C ∠=︒∠=︒,∴290B C ∠+∠=︒,∴ABC 是“准互余三角形”,故①正确;②∵60A ∠=︒, 20B ∠=︒,∴210090A B ∠+∠=︒≠︒,∴ABC 不是“准互余三角形”,故②错误;③设三角形的三个内角分别为,,αβγ,且αβγ<<,∵三角形是“准互余三角形”,∴290αβ+=︒或290αβ+=︒,∴90αβ+<︒,∴180()90γαβ=︒-+>︒,∴“准互余三角形”一定是钝角三角形,故③正确;综上所述,①③正确,故答案为:①③;(3)∠APB 的度数是10°或20°或40°或110°;如图①,当2∠A +∠ABC =90°时,△ABP 是“准直角三角形”,∵∠ABC =50°,∴∠A =20°,∴∠APB =110°;如图②,当∠A +2∠APB =90°时,△ABP 是“准直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,∴∠APB=40°;如图③,当2∠APB+∠ABC=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠APB=20°;如图④,当2∠A+∠APB=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,所以∠A=40°,所以∠APB=10°;综上,∠APB的度数是10°或20°或40°或110°时,ABP△是“准互余三角形”.【点睛】本题是三角形综合题,考查了三角形内角和定理,三角形的外角的性质,解题关键是理解题意,根据三角形内角和定理和三角形的外角的性质,结合新定义进行求解.。

2024北京昌平区初一(下)期末数学试题及答案

2024北京昌平区初一(下)期末数学试题及答案

2024北京昌平初一(下)期末数 学2024.06本试卷共9页,共100分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后将答题卡交回.一、选择题(本题共8道小题,每小题2分,共16分)1. 2024北京月季文化节正式开启,11个展区共展示超3000个品种的月季.传统月季花粉为单粒花粉,呈长球形或超长球形,大小为~~⨯m μm 17.0225.33μ37.5951.95.其中=m 0.003759cm μ37.59,把0.003759用科学记数法表示为( )A. ⨯−0.3759102B. ⨯0.3759102C. ⨯−3.759103D. ⨯3.759103 2. 不等式x 3x 21的解集在数轴上可以表示为( ) A. B. C. D. 3. 在今年的“五一”假期中,昌平消费市场“花样翻新”,多景区客流“爆棚”,客流量与文旅消费均呈现上升趋势.为了解中学生的假期出游情况,从全校2000名学生记录的假期出游时间(单位:小时)中随机抽取了200名学生的假期出游时间(单位:小时)进行统计,以下说法正确的是( )A. 2000名学生是总体B. 样本容量是2000C. 200名学生的假期出游时间是样本D. 此调查为全面调查 4. 下列计算正确的是( )A. ⋅=a a a 236B. −=a a ()326C. +=a a a 224D. ÷=a a a 824 5. 如果>a b ,那么下列不等关系一定成立的是( )A. a b +<+11B. −>−a b 22C. >ac bcD. >a b 556. 如图,一条街道有两个拐角∠ABC 和∠BCD ,已知∥AB CD ,若∠=︒ABC 150,则∠BCD 的度数是( )A. ︒30B. ︒120C. ︒130D. ︒1507. 若⎩=⎨⎧=y x 12是关于x ,y 的二元一次方程−=ax y 3的一个解,则a 的值为( ) A. −1 B. 1 C. −2 D. 28. 已知a ,b 为有理数,则下列说法正确的是( )①+≥a b ()02;②+≥a b ab 222;③+=−+a b a b ab ()()222A. ①B. ①②C. ①③D. ①②③二、填空题(本题共8道小题,每小题2分,共16分)9. 因式分解:−+=x x 3632______.10. 如果一个角等于︒70,那么这个角的补角是_________°.11. 计算:(6x 2+4x )÷2x =_____.12. 已知命题“同位角相等”,这个命题是_________命题.(填“真”或“假”)13. 计算:(2x +1)(x ﹣2)=_____.14. 若=x 24,=y 216,则+=x y ___________.15. 4月23日为世界读书日,小萱从图书馆借来一本共266页的书,计划在10天内读完(包括第10天).如果前4天每天只读15页,若从第5天起平均每天读x 页才能按计划完成,则根据题意可列不等式为____.16. 如图1的长为a ,宽为b >a b )(的小长方形纸片,按图2的方式不重叠地放在长方形ABCD 内,未被覆盖的部分(两个长方形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足的数量关系为_________.三、解答题(本题共12道小题,第17-22题,每小题5分,第23-26题,每小题6分,第27、28题,每小题7分,共68分)17. 计算:−−+−−−π32(5)31201. 18. 解不等式:+<−x x 2113.19. 解方程组:⎩−=⎨⎧+=x y x y 34127 20. 解不等式组:⎩≤+⎨⎧+≤x x x 25623并把它的解集在数轴上表示出来.21. 已知−=x x 12,求代数式−+−+x x x (1)(3)(3)2的值.22. 补全解答过程:如图,∠1+∠2=180°,∠3=∠A .求证:∠B =∠C .证明:∵∠1+∠2=180°,∴(同旁内角互补,两直线平行).∴∠3=∠D().又∵∠3=∠A,∴.∴AB∥CD().∴∠B=∠C().23. 某校开展数学节活动,活动成果是学生形成对于数学探索的海报,活动以“集市”形式展览个人的作品,并面向同学和老师讲解自己的作品,“小创客”创意市集作品的评价涉及四个维度:创意的真实性、创意的新颖性、创意的科学性和表达的严谨性,并以四个维度总分记为最后得分,满分100分,小明经过抽样调查部分得分数据,具体得分分布在以下四组内:A B C D7580808585909095,并把得分情况绘制成如下统计图:C组得分:87,,,,86,88,86,86,89“小创客”创意市集作品得分条形统计图“小创客”创意市集作品得分扇形统计图(1)本次调查了______名学生,B组扇形统计图的圆心角度数为_______°(2)C组得分的平均数是_______,众数是_________,中位数是__________.(3)若某校有500人参加此次“小创客”创意市集作品展示,请你估计得分超过86分的有多少人?24. 端午节前夕,小明和小华相约一起去超市购买粽子.小明购买A品牌和B品牌的粽子各1袋,共花费55元;小华购买A品牌粽子3袋和B品牌粽子2袋,共花费135元.(1)求A、B两种品牌粽子每袋各是多少元;(2)端午假期,小明一家回老家探亲,小明妈妈想要再买一些粽子送给亲戚,于是拿出500元交给小明,让他去超市购买A、B两种品牌粽子共18袋,且想要尽量多购入B品牌粽子,请问小明最多购买B品牌粽子多少袋?25. 观察个位上的数字是5的两位数的平方(任意一个个位数字为5的两位数n 5可用代数式+n 105来表示,其中≤≤n 19,n 为正整数),会发现一些有趣的规律.请你仔细观察,探索其规律.第1个等式:=⨯⨯+1512100252)(; 第2个等式:=⨯⨯+2523100252)(; 第3个等式:=⨯⨯+3534100252)(; …(1)写出第4个等式:_______;(2)用含n 的等式表示你的猜想并证明;(3)计算:−⨯⨯+11589100252)( =_______. 26. 小明为了方便探究关于x ,y 的二元一次方程+=ax by 9(≠≠a b 0,0)解的规律,把x 和y 的部分值分别填入如下表,(x 的值从左到右依次增大).(1)p 的值为__________(填正确的序号).①17;②3;③−1(2)下列方程中,与+=ax by 9组成方程组,在−<<x 78范围内有解的是__________(填正确的序号).①+=−x y 25;②+=−x y 24;③−=x y 31,(3)已知关于x ,y 的二元一次方程+=cx dy 1(≠≠c d 0,0)的部分解如下表所示:则方程组⎩+=⎨⎧cx dy 1的解为__________(填正确的序号) ①⎩=⎨⎧=−y x 69;②⎩=⎨⎧=−y x 118;③⎩=⎨⎧=−y x 41;④⎩=−⎨⎧=y x 47 27. 已知∠=︒<<︒ααAOB 090)(,点C 是射线OB 上一点,过点C 作OA 的垂线交射线OA 于点P ,过点P 作∥MN OB ,点D 是射线OA 上一点,过点D 作CD 的垂线分别交直线MN ,OB 于点E ,F .(1)如图1,CD 平分∠OCP 时,①根据题意补全图形;②求∠ODF 的度数(用含α式子表示);(2)如图2,当CD 平分∠PCB 时,直接写出∠ODF 的度数(用含α式子表示).28. 已知,x x 12是不等式组解集中的解,若存在一个a ,使+=x x a 212,我们把这样的,x x 12称为该不等式组的“关联解”,a 叫做“关联系数”.(1)当=a 0时,下列不等式组存在“关联解”的是_________.A .⎩>+⎨⎧+>x x x 2412B .⎩⎪>−⎨⎪⎧−+<x x x 21112 C .⎩<−⎨⎧<+x x x x 22321 (2)不等式组⎩+≤++⎪⎨⎪−≥−⎧x a x a x x 22522231的解集上存在“关联解”,若=−x 21,“关联系数a ”的取值范围为_________.(3)不等式组⎩≤+⎨⎧≥−−x x a x a 3221的解集存在关联解,x a 81,若++=a b c 12,且++a b c 1621010是整数,直接写出“关联系数a ”的值_________.参考答案一、选择题(本题共8道小题,每小题2分,共16分)1. 【答案】C【分析】本题考查科学记数法,绝对值小于1的负数也可以利用科学记数法表示,一般形式为⨯−a n 10,其中≤<a 110,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,根据科学记数法的方法进行计算即可.【详解】解:=⨯−0.003759 3.759103,故选:C .2. 【答案】D【分析】本题考查了解一元一次不等式及不等式解集的表示,解题的关键是掌握解一元一次不等式的方法及不等式解集的表示方法.依次移项、合并同类项可得不等式的解集,从而得出答案.【详解】解:移项,得:−<−x x 321,合并同类项,得:<−x 1,把不等式的解集表示在数轴上:故选:D .3. 【答案】C【分析】本题考查了全面调查与抽样调查,总体、个体、样本、样本容量,熟练掌握这些数学概念是解题的关键.根据全面调查与抽样调查,总体、个体、样本、样本容量的意义,逐一判断即可解答.【详解】解:A .2000名学生的假期出游时间是总体,故选项A 不符合题意;B .样本容量是200,故选项B 不符合题意;C .200名学生的假期出游时间是样本,故选项C 符合题意;D .此调查为抽样调查,故选项D 不符合题意;故选:C .4. 【答案】B【分析】本题主要考查了合并同类项,同底数幂相除,幂的乘方,同底数幂相乘,根据合并同类项,同底数幂相除,幂的乘方,同底数幂相乘,逐项判断即可求解.【详解】解:A :⋅=a a a 235,故选项A 错误;B :−=a a ()326,故选项B 正确;C :+=a a a 2222,故选项C 错误;D :÷=a a a 826,故选项D 错误;故选:B .5. 【答案】D【分析】本题考查不等式的基本性质,解答关键是熟知不等式的基本性质①不等式基本性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;②不等式基本性质2:不等式的两边同时乘(或除以)同一个正数,不等号的方向不变; ③不等式基本性质3:不等式的两边同时乘(或除以)同一个负数,不等号的方向变.利用不等式的基本性质逐项判断即可解答.【详解】解:∵>a b ,∴+>+a b 11,故选项A 不符合题意;∵>a b ,∴−<−a b 22,故选项B 不符合题意;∵>a b ,当>c 0,>ac bc ,当<c 0,<ac bc ,故选项C 不符合题意;∵>a b , ∴>a b 55, 故选项D 符合题意;故选:D .6. 【答案】D 【分析】本题考查了平行线的性质:两直线平行,内错角相等,由AB CD ,根据两直线平行,内错角相等,可得∠BCD 的度数,解题的关键是将实际问题转化为数学问题求解. 【详解】∵,∠=︒AB CD ABC 150∴∠=∠=︒BCD ABC 150(两直线平行,内错角相等).故选:D .7. 【答案】D【分析】将这组值代入二元一次方程即可得出答案.【详解】解:将⎩=⎨⎧=y x 12代入−=ax y 3得:a −=213, 解得:=a 2,故D 正确.故选:D .【点睛】本题考查二元一次方程的解,正确理解方程的解是解题的关键.8. 【答案】B【分析】本题考查整式的乘法-公式法,关键是熟练掌握完全平方公式,根据完全平分公式逐一进行检验即可.【详解】解:∵+≥a b ()02,故①正确;∵−=−+≥a b a ab b 20222)(,∴+≥a b ab 222,故②正确;∵+=++=−++=−+a b a ab b a ab b ab a b ab ()2244222222)(,故③不正确;故选:B 二、填空题(本题共8道小题,每小题2分,共16分)9. 【答案】−x 312)(##−x 312)(【分析】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解答本题的关键. 原式提取公因式3,再利用完全平方公式分解即可.【详解】解:−+=x x 3632−+=−x x x 3213122)()(, 故答案为:−x 312)(.10. 【答案】110【分析】本题主要考查了补角,解题的关键在于熟知如果两个角的度数之和为︒180,那么这两个角互补,根据补角的定义求解即可.【详解】解:∵一个角等于︒70,∴这个角的补角是︒−︒=︒18070110,故答案为:110.11.【答案】3x +2【分析】直接利用整式的除法运算法则计算得出答案.【详解】解:原式=6x 2÷2x +4x ÷2x=3x +2.故答案为:3x +2.【点睛】本题主要考查了整式的除法运算,正确掌握相关运算法则是解题关键.12. 【答案】假【分析】本题主要考查了平行线的性质及真假命题的判断.正确的命题叫真命题,错误的命题叫假命题.要说明一个命题是真命题,必须一步一步有根有据的证明;要说明一个命题是假命题,只需要举一个反例即可.掌握判断真假命题的方法是解题的关键,根据平行线的性质判断即可.【详解】解:两直线平行时,同位角相等;两直线不平行时,同位角不相等.因此命题“同位角相等”不一定成立,是假命题.故答案为:假.13. 【答案】2x 2﹣3x ﹣2.【分析】根据多项式乘多项式的运算法则进行解答即可得出答案.【详解】(2x +1)(x ﹣2)=2x 2﹣4x +x ﹣2=2x 2﹣3x ﹣2;故答案为:2x 2﹣3x ﹣2.【点睛】此题主要考查多项式乘多项式运算,熟练掌握,即可解题.14. 【答案】6【分析】本题主要考查了有理数的乘方运算,将原式变形求出x 和y 的值即可得到答案.【详解】解:∵=x 24,∴=x 222,∴=x 2,∵=y 224,∴=y 4,∴+=x y 6,故答案为:615. 【答案】+≥x 606266【分析】本题考查列不等式,先计算出前4天读的页数,再列出后6天读的页数的表达式,根据读的页数的总和必须大于或等于书的总页数建立不等式即可.【详解】解:根据题意得,前4天读的页数为⨯=41560页,后6天读的页数为:x 6,根据题意得读的页数的总和需要大于或等于266页,故+≥x 606266,故答案为:+≥x 606266.16. 【答案】=a b 3【分析】本题主要考查了整式的混合运算的应用,表示出左上角与右下角部分的面积,求出之差,根据差与BC 无关即可求出a 与b 的关系式,弄清题意是解本题的关键.【详解】如图,左上角阴影部分的长为AE ,宽为=AF b 3,右下角阴影部分的长为PC ,宽为a ,∵=AD BC ,即+=+AE ED AE a ,=+=+BC BP PC b PC 3,∴+=+AE a b PC 3,即−=−AE PC b a 3,∴阴影部分面积之差=⋅−⋅S AE AF PC PH=−b AE a PC ·3?=+−−b PC b a a PC 33?)(=−+−b a PC b ab 3932)(,∵S 始终保持不变,∴−=b a 30,即=a b 3,故答案为=a b 3.三、解答题(本题共12道小题,第17-22题,每小题5分,第23-26题,每小题6分,第27、28题,每小题7分,共68分)17. 【答案】3【分析】此题主要考查实数的混合运算,根据零次幂、负整数指数幂定义及实数的性质进行化简,即可求解. 【详解】解:−−+−−−π32(5)31201 =−+−334111 =3.18. 【答案】<x 4【分析】本题主要考查了解一元一次不等式,按照移项,合并同类项,系数化为1的步骤解不等式即可.【详解】解:+<−x x 2113移项得:+<−x x 2131,合并同类项得:<x 312,系数化为1得:<x 4.19. 【答案】⎩=⎨⎧=y x 23 【分析】本题考查了解二元一次方程组,利用加减消元法进行计算即可.【详解】解:②①⎩−=⎨⎧+=x y x y 34127 解:将②①⨯+2得=x 515,解得=x 3,将=x 3代入①得+=y 327,解得=y 2,∴方程组的解为:⎩=⎨⎧=y x 23. 20. 【答案】−≤≤x 21,见解析【分析】本题主要考查了解一元一次不等式组,在数轴上表示不等式组的解集,先求出每个不等式的解集,再根据 “同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集,进而在数轴上表示出不等式组的解集即可.【详解】解:②①⎩≤+⎨⎧+≤x x x 25623 解不等式①得:≤x 1,解不等式②得:≥−x 2,∴不等式组的解集为−≤≤x 21,数轴表示如下:21. 【答案】−6【分析】本题考查了整式的混合运算-化简求值,首先通过完全平方公式和平方差公式进行整式的乘法运算,再把−=x x 12代入,即可求解.【详解】解:∵−=x x 12,∴−+−+x x x (1)(3)(3)2=−++−x x x 21922=−−x x 2282=−−x x 282)(=⨯−218=−6.22. 【答案】AD ∥EF ;两直线平行,同位角相等;∠A =∠D ;内错角相等,两直线平行;两直线平行,内错角相等.【分析】依据平行线的判定,即可得到AD ∥EF ,得出∠3=∠D ,进而得出∠A =∠D ,再根据平行线的判定,即可得到AB ∥CD ,最后根据平行线的性质得出结论.【详解】∵∠1+∠2=180°,∴AD ∥EF (同旁内角互补,两直线平行).∴∠3=∠D (两直线平行,同位角相等).又∵∠3=∠A ,∴∠A =∠D .∴AB ∥CD (内错角相等,两直线平行).∴∠B =∠C (两直线平行,内错角相等).故答案为:AD ∥EF ;两直线平行,同位角相等;∠A =∠D ;内错角相等,两直线平行;两直线平行,内错角相等.【点睛】此题主要考查平行线的判定与性质,熟练掌握,即可解题.23. 【答案】(1)30,108(2)87分,86分,86.5分(3)估计得分超过86分的有100人【分析】此题考查的是条形统计图和扇形统计图、平均数、众数、中位数,用样本估计总体;(1)根据A 组的人数除以占比求出学生数,根据B 组的人数的占比乘以︒360即可求解;(2)根据平均数众数中位数定义计算即可求解;(3)用得分超过86分的学生人数的占比乘以500,即可求解.【小问1详解】 解:1240%30人,∴本次调查了30名学生,360140%10%20%108,∴B 组扇形统计图的圆心角度数为︒108;【小问2详解】因为C 组得分按从小到大排列为:86,86, 86,87,88, 89,∴C 组得分的平均数是6878688868689871分, 众数是86分, 中位数是=+286.58687分; 【小问3详解】3050010033人, 则估计得分超过86分的有100人.24. 【答案】(1)A 品牌粽子每袋是25元,B 品牌粽子每袋是30元(2)小明最多购买B 品牌粽子10袋【分析】此题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是理解题意,正确列出方程组和不等式.(1)设A 品牌粽子每袋是x 元,B 品牌粽子每袋是y 元,根据题意建立方程组,解方程组即可得到答案; (2)设购买B 品牌粽子m 袋,则购买A 品牌的粽子为−m 18袋,根据总费用小于等于500建立不等式,解不等式即可得到答案;【小问1详解】解:设A 品牌粽子每袋是x 元,B 品牌粽子每袋是y 元,根据题意得⎩+=⎨⎧+=x y x y 3213555,解方程组得⎩=⎨⎧=y x 3025, 答:A 品牌粽子每袋是25元,B 品牌粽子每袋是30元;【小问2详解】解:设购买B 品牌粽子m 袋,则购买A 品牌的粽子为−m 18袋,总费用为n 元,根据题意得=−+n m m 251830)(,整理得=+n m 5450,∵+≤m 5450500,∴≤m 10,∴小明最多购买B 品牌粽子10袋.25. 【答案】(1)=⨯⨯+4545100252)( (2)+=++n n n 1051001252)()(,证明见解析(3)6000【分析】(1)通过观察可得第4个式子;(2)通过观察可得第n 个式子,根据完全平分公式进行换算即可证明答案;(3)利用规律逆向计算,再利用平方差公式进行计算即可.【小问1详解】解:第4个等式为:=⨯⨯+4545100252)(, 故答案为:=⨯⨯+4545100252)(; 【小问2详解】解:猜想用含n 的等式表示为:+=++n n n 1051001252)()(,证明:+n 1052)( =++n n 100100252=++n n 100252)(=++n n 100125)(,故用含n 的等式表示为:+=++n n n 1051001252)()(;【小问3详解】解:−⨯⨯+11589100252)( =−1158522=+−1158511585)()(=⨯20030=6000,故答案为:6000.【点睛】本题考查数字的变化规律,通过观察所给的式子,找到式子规律是解题的关键.26. 【答案】(1)② (2)③(3)③【分析】本题考查二元一次方程的解和解二元一次方程组,解题的关键是掌握加减消元法和代入消元法. (1)先根据表格中的值,建立关于a 、b 的二元一次方程组,解方程组得到a 、b 的值,即可求出二元一次方程,再将=x 0代入方程即可求得答案;(2)依次将三个选项与原方程组件方程组,求出方程组的解进行判断即可;(3)根据表格的数据,建立关于c 、d 的二元一次方程组,解方程组得到c 、d 的值,即可得到原方程组,再解方程组即可得到答案.【小问1详解】解:当=−x 4,=y 7时,−+=a b 479,当=x 2,=y 1时,+=a b 29,∴⎩+=⎨⎧−+=a b a b 29479 解方程组得⎩=⎨⎧=b a 33, ∴二元一次方程为:+=x y 339,即+=x y 3,当=x 0时,=y 3,故=p 3,故答案为:②;【小问2详解】解:∵+=ax by 9方程为:+=x y 3,∴①当方程为+=−x y 25时,方程组为:⎩+=−⎨⎧+=x y x y 253, 解方程组得:⎩=⎨⎧=−y x 118, ∵=−x 8不在−<<x 78范围内,故①不符合题意;③当方程为−=x y 31时,方程组为:⎩−=⎨⎧+=x y x y 313,解方程组得:⎩=⎨⎧=y x 21, ∵=x 1在−<<x 78范围内,故③符合题意;故答案为:③;【小问3详解】解:二元一次方程+=cx dy 1中,当,=−=−x y 72时,方程为−−=c d 721;当,==x y 813,方程为+=c d 8131;∴⎩+=⎨⎧−−=c d c d 8131721, 解方程组得⎩⎪=⎪⎨⎪⎪=−⎧d c 5151, 则方程+=cx dy 1为−+=x y 55111,即−+=x y 5, ∴方程组⎩+=⎨⎧+=cx dy ax by 19为:⎩−+=⎨⎧+=x y x y 53, 解方程组得⎩=⎨⎧=−y x 41, 故答案为:③.27. 【答案】(1)①见详解;②︒−α290 (2)︒−α2135【分析】本题考查三角形角平分线的性质,三角形的外角等知识点,解题的关键是三角形外角的计算. (1)①根据题意作图;②根据题意可知∠=∠PCD OCD ,进而得到∠=∠=∠ODF EDP DCP ,从而求解;(2)根据题意可得∠=︒+αPCF 90,∠=︒−=︒−︒+ααPDC 22904590,即可得到∠ODF 的度数. 【小问1详解】①根据题意作图如下: ;②∠=αPOC ,∴∠=︒−αPCO 90,∵CD 平分∠OCP ,∴∠=∠=︒−αPCD OCD 290, ⊥EF CD ,⊥CP OP ,∴∠+∠=∠+∠=︒EDP PDC PCD PDC 90,∴∠=∠=∠ODF EDP DCP ,∴∠=∠=︒−αODF PCD 290; 【小问2详解】根据题意画图可得:∠=αAOB ,⊥CP OP ,∴∠=︒+αPCF 90,∵CD 平分∠PCB ,∴∠=∠=︒+αPCD FCD 290, ∴∠=︒−=︒−︒+ααPDC 22904590, ⎝⎭ ⎪∴∠=︒+︒−=︒−⎛⎫ααODF 229045135. 28. 【答案】(1)B (2)a 2.53 (3)3,5,7【分析】本题考查了解一元一次不等式组,理解不等式组的“关联解”定义以及熟练掌握一元一次不等式组的解法是解此题的关键.(1)先求出每个不等式组的解集, 再根据不等式组的“关联解”定义判断即可;(2)先求出不等式组的解集是x a 35,求出x a 222,根据题意得出不等式组并求出即可. (3)先求出不等式组的解集是a x a 12,根据“关联解”定义得出⎩−−≤−≤⎨⎧−−≤−≤a a a a a a 1382182解出a 的范围,结合++a b c 1621010是整数即可求出结论.解:A .②①⎩>+⎨⎧+>x x x 2412, 解不等式①得:>x 1, 解不等式②得:x >4, 当=a 0时,不存在x x a 2012,B .②①⎩⎪>−⎨⎪⎧−+<x x x 21112, 解不等式①得:>−x 1, 解不等式②得:<x 2, 当=a 0,,=-x x 221112时,存在x x a 2012,C .②①⎩<−⎨⎧<+x x x x 22321 解不等式①得:<x 1, 解不等式②得:−x <2, 当存在x x a 2012, 当=a 0时,不存在x x a 2012,故选:B ;【小问2详解】 ②①⎩+≤++⎪⎨⎪−≥−⎧x a x a x x 22522231, 解不等式①得:≥−x 3, 解不等式②得:x a ≤+5, ∴不等式组的解集是x a 35, 若=−x 21,且+=x x a 212, x a 222,x a 352,a a 3225 a a 523, a 2.53,故答案为:−≤≤a 2.53;②①⎩≤+⎨⎧≥−−x x a x a 3221, 解不等式①得:≥−−x a 1, 解不等式②得:≤x a 2, ∴不等式组的解集是a x a 12, 若x a 81,且+=x x a 212,x a 382, ⎩−−≤≤⎨∴⎧−−≤≤a x a a x a 121221, ⎩−−≤−≤⎨∴⎧−−≤−≤a a aa a a 1382182, 解得:a 388,++=a b c 12,b c a 12,∴==++−+−a b c a a a 16162210101521012)(, a b c 1621010是整数,a 388,a 3,5,7. 故答案为:3,5,7.。

2023-2024学年重庆市渝中区巴蜀中学七年级(下)期末数学试卷及答案解析.

2023-2024学年重庆市渝中区巴蜀中学七年级(下)期末数学试卷及答案解析.

2023-2024学年重庆市渝中区巴蜀中学七年级(下)期末数学试卷一、选择题(本大题12个小题,每小题4分,共48分)1.(4分)下列四个数中,最小的数是()A.B.0C.﹣0.5D.﹣π2.(4分)下列调查中,适合采用抽样调查的是()A.旅客上飞机前的安检B.对“长征五号”遥八运载火箭零部件的检查C.调查我校初一某班的身高情况D.日光灯管厂要检测一批护眼灯管的使用寿命3.(4分)如图,△ABC沿射线BC方向平移到△DEF,若BC=7,CE=3,则平移的距离为()A.2B.8C.4D.54.(4分)已知a<b,则下列结论正确的是()A.﹣3a>﹣3b B.a+3>b+3C.a+2>b+2D.5.(4分)如图,数学课上老师布置了“测量酸奶瓶内部底面的内径”的探究任务,小熙想到了以下方案:如图,用图钉将两根吸管AD,BC的中点O固定,只要测得C,D之间的距离,就可知道内径AB的长度.此方案依据的数学定理或基本事实是()A.边边边B.全等三角形的对应角相等C.边角边D.三角形的稳定性6.(4分)估算的值()A.在0到1之间B.在1到2之间C.在2到3之间D.在3到4之间7.(4分)如图,长方形的两个顶点在正五边形的边上,若∠1=42°,则∠2的大小为()A.12°B.24°C.42°D.48°8.(4分)下列命题是真命题的是()A.两直线平行,同旁内角相等B.两边和一角相等的两个三角形全等C.三角形三条角平分线的交点到三角形三个顶点的距离相等D.两条平行线被第三条直线所截,同位角的平分线互相平行9.(4分)如图,在△ABC中,点D在AC上,△ABD沿BD翻折到△EBD,且DE∥BC,若∠C=70°,则∠DBC的度数为()A.70°B.65°C.55°D.50°10.(4分)我国古典数学文献《算法统宗》中有一个“听客分银”的问题:“隔墙听得客分银,不知人数不知银,七两分之多4两,九两分之少半斤”其大意为:隔着墙听见客人在分银子,按每人7两分银子,余下4两;按每人9两分银子,又缺8两(这里半斤等于8两),设有客x人,银有y两,根据题意列方程组为()A.B.C.D.11.(4分)在Rt△ABC中,∠B=90°,点D是AB上,点E在BC上,CE=DE,∠C+∠ADE=180°,若BD=3,AC=8,则AD的长为()A.B.2C.D.312.(4分)对于两个多项式,若,满足下列两种情形之一:(1)a1≠0,a2=0;(2)a1=a2,b1>b2;则称多项式P为“较大”多项式,多项式Q为“较小”多项式.对于两个多项式和,若将A1和A2中“较大”多项式和“较小”多项式的差记作A3,则称这样的操作为一次“优选作差”操作;再对A2和A3进行“优选作差”操作得到A4,……,以此类推,经过n次操作后得到的序列A1,A2,A3,…A n称为“优选作差”序列{A n}.现对,进行n次“优选作差”操作得到“优选作差”序列{A n},则下列说法:①A2025=x+1;②;③当n=2025时,“优选作差”序列{A n}中满足A k﹣A k+1=A k+2的正整数k有1348个.其中正确的个数是()A.0B.1C.2D.3二、填空题(本大题8个小题,每小题4分,共32分)13.(4分)4的平方根是.14.(4分)在平面直角坐标系中,已知点P的坐标为(2﹣m,5),点Q的坐标为(8,2﹣3m),且PQ∥x轴,则PQ=.15.(4分)已知一个等腰三角形的两边a,b满足|6﹣b|+(3a+b﹣12)2=0,则此三角形周长为.16.(4分)已知方程组的解x,y满足y﹣3x=3,则m=.17.(4分)在图,在△ABC中,点D为BC中点,连接AD.点E为AB上一点,连接CE交AD于F.若CF=3EF,S△AEF=2,则S△ABC=.18.(4分)若关于x的不等式组有且只有2个奇数解,且关于y的方程解为整数.则符合条件的所有整数a的和为.19.(4分)如图,点D是△ABC外一点,DB=DC,连接DA,∠BDC=∠BAC,过点D作DE⊥AB于E,AB=10,AC=4,则AE=.20.(4分)如果A与B均为两位自然数,A的十位数字比B的十位数字大1,A与B的个位数字之和为6,记A×B=M,则称M为A与B的“六顺数”,例如32与24,32的十位数字比24的十位数字大1,个位数字之和为6,32×24=768,故三位自然数768是32与24的“六顺数”.已知2268为A与B的“六顺数”,则A﹣B=,若M为A与B的“六顺数”,规定:P(M)=A+B,Q(M)=A﹣2B,,已知G(M)能被7整除,则符合条件的M为.三、解答题(本大题7个小题,共70分)21.(10分)解二元一次方程组.(1);(2).22.(10分)(1)解不等式:2x﹣1<3x+2,并将解集表示在下列数轴上.(2)解不等式组:.23.(10分)6月2日,中国航天又创造了一个新的历史时刻——嫦娥六号探测器成功着陆在月球背面的神秘领域,并采集两公斤珍贵的月壤样品.这一壮举不仅是中国航天事业的重大突破,也将为人类对月球奥秘的探索带来全新的启示.学校准备调查七年级学生对“嫦娥探月工程”有关知识的了解程度.设定“非常了解/A”“比较了解/B”,“了解一点/C”,“不了解/D”四个了解程度项进行调查.(1)在确定调查方案时,小明同学设计了三种方案:方案一:调查七年级的部分女生;方案二:调查七年级的部分男生;方案三:到七年级每个班去随机调查一定数量的学生.请问其中最有代表性的一个方案是.(2)小明采用了最有代表性的方案,用收集到的数据绘制出两幅不完整的统计图,请你根据图中信息,完成下列任务:①补全条形统计图;②求扇形统计图中m,n的值;(3)学校七年级共有2300人,求“比较了解”的学生大约有多少人?24.(10分)在四边形ABCD中,AB∥CD,BD为对角线.(1)尺规作图:在线段BD上找一点E,使得∠DCE=∠ADB;(保留作图痕迹,不写作法)(2)在(1)条件下,若BD=CD,求证:AD=CE.25.(10分)今年1月份,我校初一年级举行了“巧手匠心,数我最行”制作新年礼物盒的活动,某班用若干张完全相同的正方形纸板进行裁剪,已知每张正方形纸板可裁剪为如图1中两种样式中的一种(样式一、二裁剪的小长方形与小正方形是完全相同的)用裁剪下来的小长方形与小正方形做成如图2所示的横式与竖式的无盖新年礼物盒,图3分别是两类新年礼物盒的一种展开图.(1)该班甲组同学们计划制作横式与竖式的新年礼物盒各12个,甲组同学需要按照样式一和样式二各裁剪多少张正方形纸板才能恰好完成计划;(2)该班乙组同学们计划制作横式与竖式的新年礼物盒共33个,现同学们已经将20张正方形纸板按样式一裁剪,5张正方形纸板按样式二裁剪,根据已裁剪的材料乙组同学有多少种制作方案.26.(10分)如图,在平面直角坐标系中,点A(a,0),B(0,b),且满足,AB=5.(1)如图1,将线段AB平移至A1B1,点A的对应点为A1(﹣6,4),连接AA1、AB1.①点B1的坐标为;②求△AA1B1面积是多少?(2)如图2,点,MN⊥y轴于N,点P以每秒个单位长度的速度从B出发向A运动,同时另一动点Q以每秒1个单位长度的速度从M出发,在射线MA上运动,当点P运动到A时两点都=3S△AQN时,求运动时间t的值(单位:秒).停止运动,当S△BPO27.(10分)如图1,在△ABC中,点D、E在BC边上,连接AD、AE,满足AD=BD=CE,且∠ABD=∠BAD=45°,点F在AB上,连接EF交AD于点G.(1)若EF平分∠AEB,∠DEA=4∠DAE,求∠AGF的度数;(2)如图2,若EF∥AC,连接DF,证明:∠AFE=∠BFD;(3)在(2)的条件下,如图3,BQ⊥DF于点Q,点M、N在边AC上,且AM=CN,连接DM、DN,已知AD=10,DQ=6,BQ=8,,直接写出DM+DN的最小值.2023-2024学年重庆市渝中区巴蜀中学七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题12个小题,每小题4分,共48分)1.【分析】根据正数大于0,0大于负数,两个负数相比较,绝对值大的反而小进行比较,即可得出结果.【解答】解:∵|﹣0.5|=0.5,|﹣π|=π,又∵正数大于0,0大于负数,两个负数相比较,绝对值大的反而小,∴四个数中最小的数是﹣π,故选:D.【点评】本题考查了实数的大小比较,掌握“正数大于0,0大于负数,两个负数相比较,绝对值大的反而小”是解决问题的关键.2.【分析】选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【解答】解:A、对乘坐某班次飞机的乘客进行安检,是事关重大的调查往,适合普查,故A不符合题意;B、保证载人航天器成功发射,对其零部件进行检查,精确度要求高,适合普查,故B不符合题意;C、调查我校初一某班的身高情况,适合普查,故C不符合题意;D、调查日光灯管厂要检测一批护眼灯管的使用寿命,调查具有破坏性,适合抽样调查,故D符合题意;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.【分析】根据对应点B、E之间的距离即为平移距离解答.【解答】解:∵△ABC沿BC方向平移得到△DEF,∴平移的距离为BE的长度是7﹣3=4.故选:C.【点评】本题考查了平移的性质,熟记性质并理解平移距离的表示是解题的关键.4.【分析】根据不等式的性质解答即可.【解答】解:A、不等式a<b的两边都乘﹣3,不等号的方向改变,原变形正确,故此选项符合题意;B、不等式a<b的两边都加上3,不等号的方向不变,原变形错误,故此选项不符合题意;C、不等式a<b的两边都加上2,不等号的方向不变,原变形错误,故此选项不符合题意;D、不等式a<b的两边都除以5,不等号的方向不变,原变形错误,故此选项不符合题意;故选:A.【点评】此题考查了不等式的性质.解题的关键是掌握不等式的性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.5.【分析】根据SAS公理解答即可.【解答】解:在△AOB和△DOC中,,∴△AOB≌△DOC(SAS),∴AB=CD,∴此方案依据判断三角形全等的SAS公理,故选:C.【点评】本题考查的是全等三角形的判定和性质,掌握SAS公理是解题的关键.6.【分析】根据算术平方根的定义估算无理数的大小,进而估算4﹣的大小即可.【解答】解:∵22=4,32=9,而4<5<9,∴2<<3,∴1<4﹣<2,故选:B.【点评】本题考查估算无理数的大小,掌握算术平方根的定义是正确解答的前提.7.【分析】由正五边形的内角的性质可得∠E=108°,由矩形的性质可得∠BAD=90°,即可求解.【解答】解:如图,∵∠E是正五边形的内角,∴∠E=108°,∵四边形ABCD是矩形,∴∠BAD=90°,∵∠1+∠BAD+∠BAE=∠BAE+∠2+∠E,∴42°+90°=∠2+108°,∴∠2=24°,故选:B.【点评】本题考查了矩形的性质,正多边形的性质,掌握矩形的性质是解题的关键.8.【分析】根据平行线的性质、全等三角形的判定、角平分线的性质、线段垂直平分线的性质判断即可.【解答】解:A、两直线平行,同旁内角互补,不一定相等,故本选项命题是假命题,不符合题意;B、两边及其夹角相等的两个三角形全等,故本选项命题是假命题,不符合题意;C、三角形三条角平分线的交点到三角形三边的距离相等,故本选项命题是假命题,不符合题意;D、两条平行线被第三条直线所截,同位角的平分线互相平行,是真命题,符合题意;故选:D.【点评】本题主要考查命题与定理,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.【分析】由折叠的性质得到∠E=∠A,∠ABD=∠EBD,由平行线的性质推出∠E=∠CBE,由三角形外角的性质得到∠CDB=∠A+∠ABD,而∠CBD=∠CBE+∠EBD,因此∠CDB=∠CBD,由三角形内角和定理即可求出∠DBC的度数.【解答】解:由折叠的性质得到∠E=∠A,∠ABD=∠EBD,∵DE∥BC,∴∠E=∠CBE,∴∠CBE=∠A,∵∠CDB=∠A+∠ABD,∠CBD=∠CBE+∠EBD,∴∠CDB=∠CBD,∵∠C=70°,∴∠DBC=×(180°﹣70°)=55°.故选:C.【点评】本题考查平行线的性质,折叠的性质,三角形内角和定理,三角形外角的性质,关键是由折叠的性质得到∠E=∠A,∠ABD=∠EBD,由平行线的性质推出∠E=∠CBE,判定∠CDB=∠CBD.10.【分析】根据“如果每人7两分银子,余下4两;按每人9两分银子,又缺8两”,即可列出关于x,y 的二元一次方程组,此题得解.【解答】解:∵如果每人分七两,则剩余四两,∴y=7x+4;∵如果每人分九两,则还缺八两,∴y=9x﹣8.∴根据题意可列出方程组.故选:B.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.11.【分析】过点E作EF⊥AC,连接AE,先证明△DBE≌△CFE,得到CF=BD,求出AF的长,再证明△AFE≌△ABE,得到AF=AB,进而求出AD的长即可.【解答】解:过点E作EF⊥AC,连接AE,则:∠CFE=∠AFE=90°∵∠C+∠ADE=180°,∠ADE+∠EDB=180°,∴∠C=∠EDB,在△DBE和△CFE中,,∴△DBE≌△CFE(AAS),∴CF=BD=3,EF=BE,∴AF=AC﹣CF=5,在Rt△AFE和Rt△ABE中,,∴△AFE≌△ABE(HL),∴AB=AF=5,∴AD=AB﹣BD=2;故选:B.【点评】本题考查全等三角形的判定和性质,解题的关键是掌握全等三角形的判定和性质.12.【分析】根据题意列出A1到A10的值,找出值为x+1的规律,即可判断①,计算A1+A2+••••••+A10=7x2﹣6x﹣13,即可判断②,找出A k﹣A k+1≠A k+2的k的值,根据规律计算k的个数,即可判断③.【解答】解:∵,,∴A3=A2﹣A1=x+1,,,A6=A4﹣A5=x+1,,,A9=A7﹣A8=x+1,,∴得A3,A6,A9的多项式为x+1,∴A3m=x+1(m=1,2,3,……),①∵2025÷3=675,∴当A2025=x+1,故①正确;②∵A1+A2+…+A10=x2﹣1+x2+x+x+1+x2﹣1+x2﹣x﹣2+x+1+x2﹣2x﹣3+x2﹣3x﹣4+x+1+x2﹣4x﹣5=7x2﹣6x﹣13,故②正确;③当k=1时,=x2﹣1﹣x2﹣x=﹣1﹣x≠A3;当k=2时,+x﹣x﹣1=x2﹣1=A4;当k=3时,=﹣x2+x+2≠A5;当k=4时,(x2﹣x﹣2)=x2﹣1﹣x2+x+2=x+1=A6;当k=5时,=x2﹣2x﹣3=A7;当k=6时,=x+1﹣x2+2x+3=﹣x2+3x+4≠A8;当k=7时,A7﹣A8=x2﹣2x﹣3﹣(x2﹣3x﹣4)=x2﹣2x﹣3﹣x2+3x+4=x+1=A9;当k=8时,=x2﹣3x﹣4﹣x﹣1=x2﹣4x﹣5=A10;当k=9时,=x+1﹣x2+4x+5=﹣x2+5x+6≠A11,∴当k=1时,A1﹣A2≠A3,当k=3,6,9,……时,A k﹣A k+1≠A k+2,当k+2=2025时,k=2023,∵2023÷3=674……1,∴674+1=675,∴在序列{A n}中,共有675个k的值使得A k﹣A k+1≠A k+2,∴在序列{A n}中,有2023﹣675=1348(个)k值,使得A k﹣A k+1=A k+2.故③正确,综上所述,正确的个数有①②③三个.故选:D.【点评】本题考查了整式的加减,新定义,数字的规律探索,解题的关键是找到满足条件的规律.二、填空题(本大题8个小题,每小题4分,共32分)13.【分析】根据平方根的知识得出结论即可.【解答】解:4的平方根是±2.故答案为:±2.【点评】本题主要考查平方根的计算,熟练掌握平方根的计算方法是解题的关键.14.【分析】根据平行于x轴的直线上点的坐标特征即可解决问题.【解答】解:因为点P的坐标为(2﹣m,5),点Q的坐标为(8,2﹣3m),且PQ∥x轴,所以2﹣3m=5,解得m=﹣1,所以2﹣m=2﹣(﹣1)=3,则点P的坐标为(3,5),点Q的坐标为(8,5),所以PQ=8﹣3=5.故答案为:5.【点评】本题主要考查了坐标与图形性质,熟知平行于x轴的直线上点的坐标特征是解题的关键.15.【分析】绝对值和偶次方相加为0,那么绝对值里面的数和被平方的数就为0,从而得到关于a,b的方程组,从而可求出a,b的值.【解答】解:∵|6﹣b|+(3a+b﹣12)2=0,∴,∴,当a=2为底时,腰长为6,6,能组成三角形,当b=6为底时,腰长为2,2,不满足三角形构造条件,舍去.故周长为:6+6+2=14,故答案为:14.【点评】本题考查了等腰三角形的性质,三角形三边关系,非负数的性质,解二元一次方程组,熟练掌握以上知识点是解题的关键.16.【分析】直接利用已知将两方程相加,进而得出等式求出答案.【解答】解:,则①﹣②得:y﹣3x=m﹣1,∵y﹣3x=3,∴m﹣1=3,解得:m=8.故答案为:8.【点评】此题主要考查了二元一次方程组的解,正确将原式变形是解题关键.17.【分析】根据△AEF和△ACF等高,得出△ACF的面积=6,S△DEF=x,则S△DCF=3x,得出S△BDE=S =4x,S△ABD=S△ACD,再根据S△ABD=S△AEF+S△DEF+S△BDE=2+x+4x=2+5x,S△ACD=S△ACF+S△DCF △CDE=6+3x,得出x=2,从而得出△ABC的面积.【解答】解:连接DE,=2,∵CF=3EF,S△AEF=6,∴S△ACF=x,则S△DCF=3x,设S△DEF=4x,∴S△CDE∵点D为BC中点,=S△CDE=4x,S△ABD=S△ACD,∴S△BDE=S△AEF+S△DEF+S△BDE=2+x+4x=2+5x,S△ACD=S△ACF+S△DCF=6+3x,∵S△ABD∴2+5x=6+3x,∴x=2,=S△ABD+S△ACD=2+5x+6+3x=8x+8=24,∴S△ABC故答案为:24.【点评】本题考查了三角形的面积,掌握两个三角形的高相等,面积之比等于底之比是解题的关键.18.【分析】先求出不等式组的解集,根据一元一次不等式组的整数解得出关于a的范围,求出a的值,再求出方程的解,根据方程的解为整数得出答案即可.【解答】解:解关于x的不等式组得:,∴<x<,∵关于x的不等式组有且只有2个奇数解,1,3,∴﹣1≤<1,解得:﹣4≤a<2,解关于y的方程得:y=方程的解为整数,∴11﹣3a是2的倍数,当a=﹣3时,y=2;当a=﹣1时,y=7;当a=1时,y=4.符合条件的整数a的和为﹣3.故答案为:﹣3.【点评】本题考查了解一元一次不等式组和解一元一次方程,能求出a的范围是解此题的关键.19.【分析】作DF⊥AC于F,先得△EBD≌△FCD(AAS),再得△AED≌△AFD(HL),得AE=AF,得10﹣4=AB﹣AC=(BE+AE)﹣(CF﹣AF)=AE+AF=2AE,即可得AE=3.【解答】解:作DF⊥AC于F,∵∠BDC=∠BAC,∠BOD=∠AOC,∴∠EBD=∠FCD,∵DB=DC,DE⊥AB,∴△EBD≌△FCD(AAS),∴DE=DF,∵∠AED=∠AFD,DA=DA,∴△AED≌△AFD(HL),∴AE=AF,∴10﹣4=AB﹣AC=(BE+AE)﹣(CF﹣AF)=AE+AF=2AE,∴AE=3.故答案为:3.【点评】本题主要考查了全等三角形的判定与性质,解题关键是正确作出辅助线.20.【分析】根据“六顺数”的定义,结合2268=54×42,得到A=54,B=42,相减后即可得出结果;设B=10x+y,则A=10(x+1)+6﹣y=10x﹣y+16,分别表述出P(M),Q(M),根据G(M)=能被7整除,求出满足条件的x,y的值,即可得出结果.【解答】解:∵268=54×42,∴A=54,B=42,∴A﹣B=54﹣42=12;设B=10x+y,则A=10(x+1)+6﹣y=10x﹣y+16(1≤x≤8,0≤y≤6,且x,y为整数),∴P(M)=A+B=20x+16,Q(M)=A﹣2B=10x﹣y+16﹣20x﹣2y=﹣10x﹣3y+16,∴G(M)==,∵G(M)能被7整除,∴=7k(k为整数),∴20x+16=14x+14+6x+2能被7整除,∴6x+2能被7整除,∴x=2或x=9,当x=2时,﹣10x﹣3y+16=﹣3y﹣4,∴,∴k(3y+4)=8,∴3y+4=1,2,4,8,∴整数y=0;∴A=36,B=20,∴M=36×20=720,当x=9时,﹣10x﹣3y+16=﹣3y﹣74,∴=7k,不满足题意舍去.故答案为:12,720.【点评】本题考查整式的加减运算与列代数式,理解“六顺数”的定义是解题的关键.三、解答题(本大题7个小题,共70分)21.【分析】(1)利用加减法解答即可求解;(2)先化简方程组,再利用加减法解答即可求解;本题考查了解二元一次方程组,掌握解二元一次方程组的方法是解题的关键.【解答】解:(1),①×2+②得,7x=21,∴x=3,把x=3代入①得,6﹣y=8,∴y=﹣2,∴方程组的解为;(2)解:方程组化简得,,①+②×7得,27x=﹣27,∴x=﹣1,把x=﹣1代入②得,﹣3+y=﹣5,∴y=﹣2,∴方程组的解为.【点评】本题考查了解二元一次方程组,掌握解二元一次方程组的方法是解题的关键.22.【分析】(1)先按照移项,合并同类项,系数化为1的步骤解不等式,再在数轴上表示出不等式的解集即可;(2)先求出每个不等式的解集,再根据“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可.【解答】解:(1)2x﹣1<3x+2移项得:2x﹣3x<2+1,合并同类项得:﹣x<3,系数化为1得:x>﹣3,数轴表示如下所示:(2),解不等式①得:x≤1,解不等式②得:x<﹣2,不等式组的解集为x<﹣2.【点评】本题主要考查了解一元一次不等式组,解一元一次不等式,在数轴上表示不等式的解集熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.【分析】(1)根据样本的代表性、普遍性进行判断即可;(2)①根据各组的频数即可补全条形统计图;②求出样本中“了解程度为A”,“了解程度为A“”的学生所占的百分比即可;(3)求出样本中“比较了解”的学生所占的百分比,估计总体中“比较了解”的学生所占的百分比,由频率=进行计算即可.【解答】解:(1)根据样本的代表性、普遍性可知,方案三符合题意,故答案为:方案三;(2)①补全条形统计图如图所示:②样本中“了解程度为A”的学生所占的百分比为8÷(8+12+16+4)×100%=20%,即n=20,样本中“了解程度为B”的学生所占的百分比为12÷(8+12+16+4)×100%=30%,即m=30,答:m=30,n=20;(3)2300×30%=690(人),答:学校七年级2300名学生中“比较了解”的学生大约有690人.【点评】本题考查条形统计图,扇形统计图以及样本估计总体,掌握频率=是正确解答的关键.24.【分析】(1)作∠DCE=∠ADB,交BD于点E,即点E为所求图形;(2)由“ASA”可证△ABD≌△EDC,可得AD=CE.【解答】(1)解:如图所示:点E为所求图形;(2)证明:∵AB∥CD,∴∠ABD=∠CDB,又∵∠ADB=∠DCE,BD=CD,∴△ABD≌△EDC(ASA),∴AD=CE.【点评】本题考查了作图﹣复杂作图,全等三角形的判定和性质,平行线的性质,灵活运用这些性质解决问题是解题的关键.25.【分析】(1)设甲组同学需要按照样式一裁剪x张正方形纸板,按照样式二裁剪y张正方形纸板,根据题意列出二元一次方程组求解即可;(2)设该班乙组同学们计划制作横式的新年礼物盒m个,则制作竖式的新年礼物盒(33﹣m)个,根据题意列出一元一次不等式组求解即可.【解答】解:(1)设甲组同学需要按照样式一裁剪x张正方形纸板,按照样式二裁剪y张正方形纸板,根据题意得,,解得,∴甲组同学需要按照样式一裁剪15张正方形纸板,按照样式二裁剪3张正方形纸板;(2)设该班乙组同学们计划制作横式的新年礼物盒m个,则制作竖式的新年礼物盒(33﹣m)个,根据题意得,,解得17≤m≤22,∵m是正整数m=17,18,19,20,21,22,乙组同学有6种制作方案.【点评】此题考查了剪纸问题,二元一次方程组和一元一次不等式组的应用,几何体的展开图,解题的关键是掌握相关知识的灵活运用.26.【分析】(1)根据算术平方根、绝对值的非负性求出a、b的值,确定点A,点B的坐标,再根据平移的规律得到点A1,点B1的坐标,由坐标得到线段的长,根据各个部分面积之间的关系进行计算即可;=3S△AQN,列方程求解(2)用含有t的代数式表示PF,AQ,再根据三角形面积的计算方法以及S△BPO 即可.【解答】解:(1)①∵+|3﹣b|=0,且≥0,|3﹣b|≥0,∴a+4=0,3﹣b=0,解得a=﹣4,b=3,∴点A(﹣4,0),点B(0,3),∵将点A(﹣4,0)先向左平移2个单位,再向上平移4个单位得到A1(﹣6,4),∴点B(0,3)也先向左平移2个单位,再向上平移4个单位得到B1(﹣2,7),故答案为:(﹣2,7);②如图1,过点A1作A1D⊥x轴于点D,过点B1作B1E⊥x轴于点E,则A1D=4,B1E=7,DE=|﹣2﹣(﹣6)|=4,∴△AA1B1面积S=(4+7)×4﹣×2×4﹣×2×7=22﹣4﹣7=11,答:△AA1B1面积是11;(2)如图2,过点P作PF⊥y轴于点F,则BP=t,∵△BPF∽△BAO,∴==,即==,∴PF=BP=t,∴S△BOP由题意可得MQ=t,∴AQ=|t﹣|,=×4×|t﹣|=2|t﹣|,∴S△AOQ=3S△AQN,∵S△BPO∴t=6|t﹣|,解得t=或t=.【点评】本题考查算术平方根,绝对值的非负性,平移的性质,掌握平移的性质,理解算术平方根、绝对值的非负性是正确解答的关键.27.【分析】(1)由∠ABD=∠BAD=45°,根据三角形内角和定理,得到∠BDA=90°,由∠DEA=4∠DAE,在△ADE中,根据三角形内角和定理,求出∠DAE=18°,∠DEA=72°,由EF平分∠AEB,在△GDE中,根据三角形内角和定理,即可求解,(2)EG∥AB,由EF∥AC,EG∥AB,根据平行线的性质,得到∠FEA=∠GAE,∠FAE=∠GEA,结合AE=EA,得到△FEA≌△GAE(ASA),FA=GE,结合∠GEC=∠BAD,AD=EC,得到△FAD≌△GEC(SAS),∠FDA=∠C,在△FBD和△FBE根据三角形内角和定理,得到∠BFD=45°+∠C,∠AFE=45°+∠C,即可求解,(3)作AC′⊥AD,AC′=DC,作AH⊥DF,由∠QBD+∠BDQ=90°,∠GDA+∠BDQ=90°,得到∠QBD=∠HDA,结合∠BQD=∠DHA=90°,BD=DA,得到△QBD≌△HDA(AAS),DQ=AH =S△FBD+S△FDA,,,,得到,=6,根据S△ABD由(2)得,,,由△∠C′AD≌△CDA(SAS),得到,由△∠C′AM≌△DCN(SAS),得到C′M=DN,在△DMC′中,根据三边关系得到DM+C′M≥DC′,即可求解,【解答】解:(1)∵∠ABD=∠BAD=45°,∠ABD+∠BAD+∠BDA=180°,∴∠ADE=180°﹣90°=90°,∵∠DEA=4∠DAE,∴设∠DAE=α,则∠DEA=4∠DAE=4α,∴即:90°+α+4α=180°,解得:α=18°,∴∠DAE=α=18°,∠DEA=4α=4×18°=72°,∵EF平分∠AEB,∴,∴∠AGF=∠DGE=180°﹣∠CDE﹣∠DEC=180°﹣90°﹣36°=54°,故答案为:54°,(2)作EG∥AB,交AC于点G,∵EF∥AC,EG∥AB,∴∠FEA=∠GAE,∠FAE=∠GEA,又∵AE=EA,∴△FEA≌△GAE(ASA),∴FA=GE,FE=AG,∵EG∥AB,∴∠GEC=∠ABD=∠BAD=45°,又∵AD=EC,∴△FAD≌△GEC(SAS),∴∠FDA=∠C,FD=GC,∵∠BFD+∠ABD+∠BDF=∠BFD+45°+90°﹣∠FDA=∠BFD+45°+90°﹣∠C=180°,∴∠BFD=45°+∠C,∵EF∥AC,∴∠FEB=∠C,∴∠AFE=45°+∠C,∴∠AFE=∠BFD,(3)作AC′⊥AD,AC′=DC,连接MC′,作AH⊥DF交DF延长线于点H,∵BQ⊥DF,∠BDA=90°,∴∠QBD+∠BDQ=90°,∠GDA+∠BDQ=90°,∴∠QBD=∠HDA,又∵∠BQD=∠DHA=90°,BD=DA,∴△QBD≌△HDA(AAS),∴DQ=AH=6,=S△FBD+S△FDA,,,∵S△ABD,∴50=4FD+3FD,解得:,由(2)得,,∴,∵AC′=DC,∠C′AD=∠CDA=90°,AD=DA,∴△∠C′AD≌△CDA(SAS),∴,∵AC′∥DC,∴∠C′AC=∠ACD,又∵AC′=DC,AM=CN,∴△∠C′AM≌△DCN(SAS),∴C′M=DN,∵DM+C′M≥DC′,∴,故答案为:.【点评】本题考查了角平分线,三角形内角和定理,平行线的性质,全等三角形的性质与判定,三角形三边关系,解题的关键是:连接辅助线,构造全等三角形。

七年级下册数学期末试卷及答案

七年级下册数学期末试卷及答案

一、细心填一填〔每题2分,共计20〕1. 计算:32x x ⋅ = ;2ab b 4a 2÷= .2.如果1kx x 2++是一个完全平方法,那么k 的值是 .3.如图,两直线a 、b 被第三条直线c 所截,假设∠1=50°,∠2=130°,则直线a 、b 的位置关系是 . 4. 温家宝总理在十届全国人大四次会议上谈到解决“三农〞问题时说,202X 年中央财政用于“三农〞的支出将到达33970000万元,这个数据用科学记数法可表示为 万元. 5. 一只蝴蝶在空中飞行,然后随意落在如下图的某一方格中〔每个方格除颜色外完全相同〕,则蝴蝶停止在白色方格中的概率是 .6. 等腰三角形一边长是10㎝,一边长是6㎝,则它的周长是 .7. 如图,已知∠BAC=∠DAE=90°,AB=AD ,要使△ABC ≌△ADE ,还需要添加的条件是 .8.现在规定两种新的运算“﹡〞和“◎〞:a ﹡b=22b a +;a ◎b=2ab,如〔2﹡3〕〔2◎3〕= 〔22+32〕〔2×2×3〕=156,则[2﹡〔-1〕][2◎〔-1〕]= .9.某物体运动的路程s 〔千米〕与运动的时间t 〔小时〕关系如下图,则当t=3小时时,物体运动所经过的路程为 千米.10.某公路急转弯处设立了一面大镜子,从镜子中看到汽车的车辆的号码如图 所示, 则该汽车的号码是 .二、信任你的选择〔每题只有一个正确的选项,每题3分,共计30分〕11.以下图形中不是..正方体的展开图的是〔 〕A B C D 12. 以下运算正确的选项是......〔 〕 A .1055a a a =+ B .2446a a a =⨯ C .a a a =÷-10 D .044a a a =-13. 以下结论中,正确的选项是......〔 〕 A .假设22b a ,b a ≠≠则 B .假设22b a , b a >>则 C .假设b a ,b a 22±==则 D .假设b1a 1,b a >>则第5题 32 1cb a 第3题 E D C B A第7题t 〔小时〕 2 O 30 S 〔千米〕 第9题 第14题E DCB A14. 如图,在△ABC 中,D 、E 分别是AC 、BC 上的点,假设△ADB ≌△EDB ≌△EDC ,则∠C 的度数是( ) A .15° B .20° C .25° D .30° 15. 由四舍五入得到近似数3.00万〔 〕A .精确到万位,有1个有效数字B . 精确到个位,有1个有效数字C .精确到百分位,有3个有效数字D . 精确到百位,有3个有效数字 16. 观察一串数:0,2,4,6,….第n 个数应为〔 〕A .2〔n -1〕B .2n -1C .2〔n +1〕D .2n +1 17.以下关系式中,正确的选项是......〔 〕 A .()222b a b a -=- B.()()22b a b a b a -=-+C .()222b a b a +=+ D.()222b 2ab a b a +-=+18. 如图表示某加工厂今年前5的关系,则对这种产品来说,该厂〔 〕 A .1月至3月每月产量逐月增加,4、5两月产量逐月 减小B .1月至3月每月产量逐月增加,4、5两月产量与3 持平C .1月至3月每月产量逐月增加,4、5生产D . 1月至3月每月产量不变,4、5两月均停止生产 19.以下图形中,不肯定...是轴对称图形的是〔 〕 A .等腰三角形 B .线段 C .钝角 D .直角三角形20. 长度分别为3cm ,5cm ,7cm ,9cm 的四根木棒,能搭成〔首尾连结〕三角形的个数为〔 〕A .1B .2C . 3D .4三、精心算一算〔21题3分,22题5分,共计8分〕21.()()3426y y 2-;22.先化简()()()()1x 5x 13x 13x 12x 2-+-+--,再选取一个你喜欢的数替代x ,并求原代数式的值.四、认真画一画〔23题4分,24题4分,共计8分〕23.如图,某村庄方案把河中的水引到水池M 中,怎样开的渠最短,为什么?〔保存作图痕迹,不写作法和证明〕理由是: .24.两个全等的三角形,可以拼出各种不同的图形,如下图中已画出其中一个三角形,请你分别补画出另一个与其全等的三角形,使每个图形分别成为不同的轴对称图形〔所画三角形可与原三角形有重叠的局部〕,你最多可以设计出几种?〔至少设计四种〕25.在“五·在只有一个名额.小丽想出了一个方法,她将一个转盘〔均质的〕均分成6份,如下图.游戏规定:随意转动转盘,假设指针指到3,则小丽去;假设指针指到2,则小芳去.假设你是小芳,会同意这个方法吗?为什么?26. 一个长方形的养鸡场的长边靠墙,墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米,你认为谁的设计符合实际? 按照他的设计,鸡场的面积是多少?六、生活中的数学(第27小题4分,第28小题5分,共计9分) 27. 下面是我县某养鸡场202X ~202X 年的养鸡统计图:〔1〕从图中你能得到什么信息.〔2〕各年养鸡多少万只?〔3〕所得〔2〕的数据都是精确数吗? 〔4〕这张图与条形统计图比拟,有什么优点?28.某种产品的商标如下图,O 是线段AC 、BD 的交点,并且AC图中的两个三角形全等,他的思考过程是: 在△ABO 和△DCO 中⎪⎩⎪⎨⎧=∆≅∆−→−∠=∠=CD AB DCO ABO DOC AOB BD AC你认为小明的思考过程正确吗?如果正确,他用的是判定三 角形全等的哪个条件?如果不正确,请你增加一个条件,并 说明你的思考过程.七、探究拓展与应用〔第29小题4分,第30小题7分,共计11分〕29.如下图,要想推断AB 是否与CD说明理由.30.乘法公式的探究及应用.〔1〕如左图,可以求出阴影局部的面积是〔写成两数平方差的形式〕;〔2〕如右图,假设将阴影局部裁剪下来,重新拼成一个长方形,它的宽是 ,长是 ,面积是 〔写成多项式乘法的形式〕〔3〕比拟左、右两图的阴影局部面积,可以得到乘法公式 〔用式子表达〕. 〔4〕运用你所得到的公式,计算以下各题:①7.93.10⨯ ② )2)(2(p n m p n m +--+八、信息阅读题〔6分〕31.一农民朋友带了假设干千克的土豆进城出售,为了方便,他带了一些零钱备用.按市场售出一些后,又降价出售.售出土豆千克数x 与他手中持有的钱数y 〔含备用零钱〕的关系如下图,结合图像答复以下问题: 〔1〕农民自带的零钱是多少?〔2〕降价前他每千克土豆出售的价格是多少?〔3〕降价后他按每千克0.4元将剩余的土豆售完,这时他手中的钱〔含备用的钱〕是26元,问他一共带了多少千克的土豆?一、细心填一填〔每题2分,共计20〕1. 5x ;2a .2.±×1075.83 6.26或22㎝7. AC=AE 〔或BC=DE ,∠E=∠C ,∠B=∠D 〕 8.-20 9. 45 10.B6395二、信任你的选择〔每题只有一个正确的选项,每题3分,共计30分〕21.解:=1212y 2y- =12y ……3分22.解:=5x 5x 19x 14x 4x 222-++-+-=29x +- (3)分当x=0时,原式四、认真画一画〔23题4分,24题423.解:理由是: 垂线段最短. ……2分 作图……2分24.解每作对一个给1分五、请你做裁判!〔第25题小4分,第26小题6分,共计10分〕25.解:不会同意. ……2分 因为转盘中有两个3,一个2,这说明小丽去的可能性是3162=,而小丽去的可能性是61,所以游戏不公平. ……2分 26.解:依据小王的设计可以设宽为x 米,长为〔x +5〕米,依据题意得2x +〔x +5〕=35 解得x=10.因此小王设计的长为x +际的. ……2分依据小赵的设计可以设宽为x 米,长为〔x +2〕米,依据题意得2x +〔x +2〕=35 解得x=11.因此小王设计的长为x +2=11+2=13〔米〕,而墙的长度只有14米,显然小赵的设计符合要求,此时鸡场的面积为11×13=143〔平方米〕. ……2分六、生活中的数学(第27小题4分,第28小题5分,共计9分) 27.解:〔1〕202X 年该养鸡场养了2万只鸡.〔答案不唯一〕〔2〕202X 年养了2万只;202X 年养了3万只;202X 年养了4万只;202X 年养了3万只;202X 年养了4万只;202X 年养了6万只.〔3〕近似数.〔4〕比条形统计图更形象、生动.〔能符合即可〕 ………〔每题1分〕 28.解:小明的思考过程不正确. …1分添加的条件为:∠B=∠C 〔或∠A=∠D 、或符合即可〕…3分在△ABO 和△DCO 中DCO ABO CD AB DOC AOB C B ∆≅∆⇒⎪⎩⎪⎨⎧=∠=∠∠=∠ …… 5分〔答案不唯一〕 七、探究拓展与应用〔第29小题4分,第30小题7分,共计11分〕29. 〔1〕∠EAB=∠C ;同位角相等,两直线平行.〔2〕∠BAD=∠D ;内错角相等,两直线平行〔3〕∠BAC +∠C=180°;同旁内角互补两直线平行.……对1个给1分,全对给4分. 30.〔1〕22b a -.〔2〕()b a -,()b a + ,()()b a b a -+ . 〔3〕()()b a b a -+=22b a -.〔4〕: 评分标准:每空1分,〔4〕小题各1分八、信息阅读题〔6分〕31.〔1〕解:由图象可以看出农民自带的零钱为5元;〔2〕()元5.030520=- 〔3〕()()千克,千克453015154.02026=+=-…各2分 答:农民自带的零钱为5元;降价前他每千克土豆出售的价格是0.5元;他一共带了45千克的土豆. …… 第〔1〕问和答各1分,〔2〕、〔3〕各2分.。

(人教版)初一数学下册期末测试题及答案

(人教版)初一数学下册期末测试题及答案

(人教版)初一数学下册期末测试题及答案姓名:__________ 班级:__________考号:__________一、选择题(共10题)1、水文观测中,常遇到水位上升或下降的问题.我们规定:水位上升为正,水位下降为负;几天后为正,几天前为负.如果水位每天上升3cm,今天的水位为0cm,那么2天前的水位用算式表示正确的是()A.(+3)×(+2) B.(+3)×(﹣2) C.(﹣3)×(+2) D.(﹣3)×(﹣2)2、若,则以下四个结论中,正确的是()A .一定是正数B .可能是负数C .一定是正数D .一定是正数3、下表是淮河某河段今年雨季一周内水位变化情况,(其中 0 表示警戒水位)那么水位最高是()星期一二三四五六日水位变化/米+0.03 +0.41 +0.25 +0.10 0 -0.13 -0.2A .周一B .周二C .周三D .周五4、将 7 张扑克牌,全部背面朝上,每次翻三张且必须翻三张,最少翻多少次可翻成全部背面朝下()A . 3B . 4C . 5D . 65、计算-2+3的结果是A.1 B.-1 C.-5 D.-6 6、在、、、这四个数中比小的数是()A.B.C. D.7、 -5的相反数是()A. -5 B. 5 C.D.8、 5的相反数是()A、-5B、5C、D、9、的倒数为()A.-2 B.2 C.D.10、已知,则下列四个式子中一定正确的是( ).A. B. C. D.二、填空题(共10题)1、设有理数、、满足及,若,,则的值为__________.2、若|m|=1,|n|=2,且|m+n|=m+n,则=________.3、若,则______.4、已知:,则_________.5、湛江市某天的最高气温是℃,最低气温是℃,那么当天的温差是℃.6、如果水位上升1.2米,记作+1.2米,那么水位下降0.8米记作______米。

7、计算:的结果是___________.8、-2的绝对值等于___________9、经验证明,在一定范围内,高出地面的高度每增加l00m,气温就降低大约0.6℃,现在地面的温度是25℃,则在高出地面5000m高空的温度是_________.10、若实数a、b满足,则=__________。

宁波市江北区浙教版七年级下册期末数学试题及答案

宁波市江北区浙教版七年级下册期末数学试题及答案

宁波市江北区浙教版七年级下册期末数学试题及答案江北区初一数学期末试卷选择题:1.下列哪些是分式?A。

3x + 2B。

5y - 1/2C。

2z/3D。

4w + 72.下列哪些计算是正确的?A。

3/4 + 1/2 = 5/6B。

2/3 × 4/5 = 8/15C。

1/2 - 1/3 = 1/6D。

5/6 ÷ 2/3 = 5/43.下列哪些数对是方程2x - 3y = 1的解?A。

x = 1.y = 1B。

x = 2.y = 3C。

x = -1.y = -1D。

x = 0.y = -1/34.下列长度的三条木棒能够组成三角形:A。

25.48.80B。

3.4.5C。

15.47.62D。

1.2.35.下列哪些多项式可以因式分解?A。

3x^2 + 6xB。

2y^3 - 8y^2 + 6yC。

4z^2 + 12z + 9D。

5w^3 + 25w^2 + 30w6.下列事件中,可能性最大的是:A。

从标有1~5共5个号码的5张纸片中,任取两张,它们的和恰好为10;B。

任意选择电视的频道,正好播放动画片;C。

早晨太阳从东方升起;D。

100件产品中有2件次品,从中任意取一件,取到次品。

7.如果分式中的a、b都扩大到原来的2倍,分式的值会:A。

扩大到原来的2倍B。

扩大到原来的4倍C。

缩小到原来的1/2D。

不变8.下列关于平移的特征叙述中,正确的是:A。

平移后的图形与原来的图形的对应线段必定互相平行;B。

平移后对应点连线段必定互相平行;C。

平移前线段的中点经过平移之后可能不是线段的中点;D。

平移前后图形的形状与大小都没有发生变化。

9.如图所示,△ABC≌△AEF,AB=AE,∠B=∠E。

下列结论不正确的是:A。

∠XXX∠FACB。

BC=EFC。

∠BAC=∠CAFDD。

∠AFE=∠XXX10.如图,把△XXX纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,这个规律是:A。

七年级下学期期末数学试卷(含答案)

七年级下学期期末数学试卷(含答案)

七年级下学期期末数学试卷(时间:120分钟 满分:120分)亲爱的同学,这份试卷将再次记录你的自信、沉着、智慧和收获. 请认真审题,看清要求,仔细答题,要相信我能行。

一、认真填一填:(每题3分,共30分)1、剧院里5排2号可以用(5,2)表示,则(7,4)表示 。

2、不等式-4x ≥-12的正整数解为 .3、要使4 x 有意义,则x 的取值范围是_______________。

4、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是_______________________.5、如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD= 。

6、等腰三角形一边等于5,另一边等于8,则周长是_________ .7、如图所示,请你添加一个条件....使得AD ∥BC , 。

8、若一个数的立方根就是它本身,则这个数是 。

9、点P (-2,1)向上平移2个单位后的点的坐标为 。

10、某校去年有学生1000名,今年比去年增加4.4%,其中寄宿学生增加了6%,走读学生减少了2%。

问该校去年有寄宿学生与走读学生各多少名?设去年有寄宿学生x 名,走读学生y 名,则可列出方程组为 。

二、细心选一选:(每题3分,共30分) 11、下列说法正确的是( )A 、同位角相等;B 、在同一平面内,如果a ⊥b ,b ⊥c ,则a ⊥c 。

C 、相等的角是对顶角;D 、在同一平面内,如果a ∥b,b ∥c ,则a ∥c 。

12、观察下面图案,在A 、B 、C 、D 四幅图案中,能通过图案(1)的平移得到的是( )12.长为9,6,5,3的四根木条,选其中三根组成三角形,共有( )种选法.A .4B .3C .2D .113、有下列说法:(1) A B C DE C DBA C BA(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数; (3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

园区2009~20 10学年第二学期期末调研试卷
初一数学
题号一二三得分结分人复核人21-23 24-26 27-28 29 30 31
得分
一、选择题(本大题共10小题,每小题2分,共20分,每小题只有一个选项是正确的,
把正确选项前的字母填入下表中)
题号 1 2 3 4 5 6 7 8 9 10 得分结分人复核人答案
1.下列四幅图中,∠1和∠2是同位角的是
A.(1)、(2) B.(3)、(4) C.(1)、(2)、(3) D.(2)、(3)、(4) 2.下列计算中,正确的是
A.a3·a4=a12 B.a3+a3=2a6C.a3÷a3=0 D.-a2·a2=-a4 3.下列是因式分解的是
A.4a2-4a+l=4a(a-1)+1 B.a2-4b2=(a+4b)(a-4b)
C.x2+2xy+4y2=(x+2y) 2D.(xy) 2-1=(xy+1)(xy-1)
4.观察下面图案在A、B、C、D四幅图案中,能通过图案(1)平移得到的是
5.火车站和汽车站都为旅客提供打包服务,如果长、宽、高分别
为x、y、z的箱子按如图所示的方式打包,则打包带的长至少为
A.4x+4y+10z B.x+2y+3z
C.2x+4y+6z D.6x+8y+6z
6.用操作计算器的方法计算(205) 2,第4个按键是
7.下列条件中,不能
..判定三角形全等的是
A.三条边对应相等B.两边和一角对应相等
C.两角和其中一角的对边对应相等D.两角和它们的夹边对应相等
8.课间活动在各校蓬勃开展.某班课间活动抽查了20名学生每分钟跳绳次数,获得如下数据(单位:次):50,63,77,83,87,88,89,91,93,100,102,111,117,121,130,133,146,158,177,188.则跳绳次数在90~110这一组的频率是
A.0.1 B.0.2 C.0.3 D.0.7
9.如图,与左边正方形图案属于全等的图案是
10.2010年南非世界杯比赛中,A、B、C、D四个队分在同一个小组进行单循环赛(每两个队之间赛一场),争夺出线权,比赛规定:胜一场得3分,平一场得1分,负一场0分,小组得分在前的两个队出线,相同分再参考其他情况定夺.小组比赛结束后,A 队得6分,则关于A队的出线权问题,下列说法正确的是
A.随机事件B.必然事件C.不可能事件D.以上均有可能
二、填空题(本大题共10小题,每小题2分,共20分)请把最后结果填在题中横线上.11.如图,D是BC延长线上的一点,∠B=30°,∠A=25°,则∠ACD=_________.12.用科学记数法表示:0.002009=____________.
13.93=3m,则m=_________.
14.如图,AB∥ED,则∠A+∠C+∠D=_________________.
15.已知x+y=-5,xy=3,则(x-y) 2=_________.
16.已知∠1与∠2互补,∠1与∠3互余,若∠2=130°,则∠3=__________.
17.若a x=2,a y=3,则a2-y=___________.
18.在锐角△ABC中,CD、BE分别是AB、AC边上的高,且CD、BE交于点P,若∠A=50°,则∠BPC=________________.
19.若关于x ,y 的一元二次方程组2
10x y mx y -=⎧⎨+=⎩
的解均为正整数,m 也是正整数,则满
足条件的所有m 值的和为_____________.
20.如图△BAE ≌△BCE ;△BA E ≌△DCE ,则∠D=_________.
三、解答题(本大题共11小题,共60分,解答应写出必要的计算过程、推演步骤或文字
说明)
21.(本小题5分)计算:()()()3
020*********.1102-⎛⎫
-+-+-⨯ ⎪⎝⎭
22.(本小题5分)解方程组:342
21x y x y -=⎧⎨+=⎩
23.(本小题5分)分解因式:
(1)4x 2-16 (2)4ab 2-4a 2b -b 3
24.(本小题5分)先化简,再求值.
(2a+b)(2a -b)+3(2a -b) 2+(-3a)(4a -3b),其中a=-1,b=2
25.(本小题5分)如图,已知:AB=AC ,BD=CD ,E 为AD 上一点,求证:∠BED=∠CED .
26.(本小题5分)如图,已知AB ∥DE ,BF 、EF 分别平分∠ABC 与∠CED ,若∠BCE=140°,
求∠BFE的度数.
27.(本小题5分)某商场按定价销售某种电器时,每台可获利50元,按定价的90%销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等.求该电器每台的进价、定价各是多少元?
28.(本小题6分)为了帮助贫困失学儿童,某市团委发起“爱心储蓄”活动,鼓励学生将自己的压岁钱和零花钱存入银行,定期一年,到期后取回本金,而把利息捐赠给贫困失学儿童.某中学共有学生1200人,图(1)是该校各年级学生人数比例分布的扇形统计图,图(2)是该校学生人均存款情况的条形统计图.
(1)求该学校的人均存款数;
(2)已知银行一年定期存款的年利率是2.25%(“爱心储蓄”免收利息税),且每35 1
元能提供给1位失学儿童一年的基本费用,那么该学校一学年能够帮助多少位失学儿童?
29.(本小题6分)小明与小王分别要把两块边长都为60cm的正方形薄钢片要制作成两个无盖的长方体盒子(不计粘合部分).
(1)小明先在薄钢片四个角截去边长为10cm的四个相同的小正方形(图一),然后把四
边折合粘在一起,便得到甲种盒子,请你帮忙求出该种盒子底面边长;
(2)小王如图(二)截去两角后,沿虚线折合粘在一起,便得到乙种盒子,已知乙种盒子
底面的长AB是宽BC的2倍,求乙种盒子底面的长与宽分别是多少?
(3)若把乙种盒子装满水后,倒入甲种盒子内,问是否可以装满甲种盒子,若能装满甲
种盒子,那么乙种盒子里的水面有多高?若不能装满甲种盒子,求出此甲种盒子的水面的高度.
30.(本小题6分)动手操作,探究:
如图(1),△ABC是一个三角形的纸片,点D、E分别是△ABC边上的两点,
研究(1):若沿直线DE折叠,则∠BDA′与∠A的关系是____________________.研究(2):若折成图2的形状,猜想∠BDA′、∠CE A′和∠A关系,并说明理由.研究(3):若折成图3的形状,猜想∠BDA′、∠CE A′和∠A的关系,并说明理由.(第(1)问1分、第(2)问2分、第(3)问3分))
综合与实践活动
31.(本小题7分)为了组织一个50人的旅游团开展“乡间民俗”游,旅游团住村民家,住宿客房有三人间、二人间、单人间三种,收费标准是三人间每人每晚20元,二人间每人每晚30元,单人间每人每晚50元,旅游团共住20间客房,旅游团如何安排住宿才能够使得住宿费最低,并说明理由.。

相关文档
最新文档