最新初一数学下学期期末试卷含答案
2024年人教版初一数学下册期末考试卷(附答案)
2024年人教版初一数学下册期末考试卷(附答案)一、选择题(每题1分,共5分)1. 若一个数的立方根是2,则这个数是()A. 2B. 8C. 16D. 42. 在直角坐标系中,点(3,4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 下列哪个数是负数()A. 0B. 3/4C. 5/6D. 24. 若一个数的绝对值是3,则这个数是()A. 3B. 3C. 3或35. 下列哪个图形是平行四边形()A. 矩形B. 正方形C. 梯形D. 菱形二、判断题(每题1分,共5分)1. 两个互质的数的最小公倍数是它们的乘积。
()2. 一个数既是偶数又是奇数。
()3. 任何两个数的和都是正数。
()4. 任何两个数的差都是负数。
()5. 任何两个数的积都是正数。
()三、填空题(每题1分,共5分)1. 5的平方根是______。
2. 下列数中,最大的是______(2,3,0,5)。
3. 两个相邻的自然数之和是______。
4. 下列数中,最小的数是______(3,4,2,1)。
5. 下列数中,既是偶数又是合数的是______(4,5,6,7)。
四、简答题(每题2分,共10分)1. 请简述什么是勾股定理。
2. 请简述什么是绝对值。
3. 请简述什么是分数。
4. 请简述什么是比例。
5. 请简述什么是方程。
五、应用题(每题2分,共10分)1. 若一个数的平方是16,求这个数。
2. 若一个数的三分之一是4,求这个数。
3. 若一个数的二分之一是5,求这个数。
4. 若一个数的四分之一是3,求这个数。
5. 若一个数的五分之一是2,求这个数。
六、分析题(每题5分,共10分)1. 请分析什么是正比例函数,并举例说明。
2. 请分析什么是反比例函数,并举例说明。
七、实践操作题(每题5分,共10分)1. 请用尺规作一个边长为5cm的正方形。
2. 请用尺规作一个半径为3cm的圆。
八、专业设计题(每题2分,共10分)1. 设计一个包含两个变量的线性方程组,并给出一个解法。
2024新人教版七年级数学下册期末试卷及答案
2024新人教版七年级数学下册期末试卷及答案一、选择题(每题4分,共40分)1. 下列数中是无理数的是:A. √2B. 3C. 0.5D. 22. 已知a=5,b=3,则a²+b²的值是:A. 34B. 32C. 29D. 263. 下列等式中正确的是:A. a² = 2abB. a³ = 3a²C. a² = a³D. a³ = 2a²4. 下列哪一个数是九的分之一:A. 1/9B. 9/1C. 9/2D. 2/95. 下列哪一个比例式是正确的:A. 3/4 = 12/18B. 5/7 = 15/21C. 4/9 = 12/24D. 6/8 = 18/246. 已知一个正方形的边长为4,则它的面积是:A. 16B. 8C. 4D. 27. 下列哪一个角的度数是90度:A. 直角B. 锐角C. 钝角D. 平角8. 下列哪一个数是负数:A. -3B. 3C. 0D. 29. 已知一个等边三角形的边长为6,则它的面积是:A. 9B. 6C. 3D. 110. 下列哪一个数是立方根:A. 27B. 3C. 3√27D. 3√3二、填空题(每题4分,共40分)1. 若两个数的和为8,它们的差为3,则这两个数分别是______和______。
2. 已知一个数的平方等于36,则这个数是______或______。
3. 下列各数中,是无理数的是______、______、______。
4. 一个等边三角形的周长为15,则它的边长是______,面积是______。
5. 若一个正方形的边长为a,则它的对角线长度为______,面积为______。
三、解答题(共20分)1. (10分)已知一个数的平方等于25,求这个数。
2. (10分)解方程:2x - 5 = 3x + 1。
3. (10分)已知一个长方形的长为8,宽为3,求它的面积和周长。
2023-2024学年全国初中七年级下数学人教版期末试卷(含答案解析)
20232024学年全国初中七年级下数学人教版期末试卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()。
A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()。
A. 2B. 0.5C. √3D. 3/43. 下列等式中,正确的是()。
A. 2^3 = 8B. 3^2 = 9C. 4^0 = 1D. 5^(1) = 54. 若一个正方形的边长是a,则它的面积是()。
A. 2aB. 4aC. a^2D. a^35. 下列各数中,是正数的是()。
A. 3B. 0C. 1/2D. 5/46. 若一个数的平方是9,则这个数是()。
A. 3B. 3C. 3和3D. 07. 下列各数中,是分数的是()。
A. 2B. 3/4C. 5D. 68. 若一个数的绝对值是5,则这个数是()。
A. 5B. 5C. 5和5D. 09. 下列各数中,是整数的是()。
A. 1/2B. 3/4C. 5D. 610. 若一个数的立方是8,则这个数是()。
A. 2B. 2C. 2和2D. 0二、填空题(每题3分,共30分)11. 一个数的立方根是2,则这个数是__________。
12. 下列各数中,是无理数的是__________。
13. 下列等式中,正确的是__________。
14. 若一个正方形的边长是a,则它的面积是__________。
15. 下列各数中,是负数的是__________。
16. 若一个数的平方是16,则这个数是__________。
17. 下列各数中,是正整数的是__________。
18. 若一个数的绝对值是7,则这个数是__________。
19. 下列各数中,是偶数的是__________。
20. 若一个数的立方是27,则这个数是__________。
三、解答题(每题10分,共50分)21. 已知一个正方形的边长是a,求它的面积。
22. 已知一个数的平方是9,求这个数。
(完整版)七年级数学下册期末测试题及答案(共五套)
李庄七年级数学下册期末测试题及答案姓名: 学号 班级 一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A 。
16=±4B 。
±16=4 C.327-=-3 D 。
2(4)-=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B ) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50°5.解为12x y =⎧⎨=⎩的方程组是( )A 。
135x y x y -=⎧⎨+=⎩ B.135x y x y -=-⎧⎨+=-⎩ C 。
331x y x y -=⎧⎨-=⎩ D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB,则∠BPC 的大小是( )A .1000B .1100C .1150D .1200PCBA 小刚小军小华(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .18.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( )A .5B .6C .7D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 cm 2C .15 cm 2D .17 cm 210。
初一下学期期末考试数学试卷含答案(共5套)
七年级(下册)期末考试数学试卷一、选择题(共12小题,每小题3分,满分40分)1.下列调查中,调查方式选择错误的是()A.为了解全市中学生的课外阅读情况,选择全面调查B.旅客上飞机前的安检,选择全面调查C.为了了解《人民的名义》的收视率,选择抽样调查D.为保证“神舟十一号”载人飞船的成功发射,对其零部件的检查,选择全面调查2.a,b为实数,且a>b,则下列不等式的变形正确的是()A.a﹣x<b﹣x B.﹣a+1>﹣b+1 C.5a>5b D.<3.下列方程组中是二元一次方程组的是()A.B.C.D.4.已知点A(﹣1,﹣5)和点B(2,m),且AB平行于x轴,则B点坐标为()A.(2,﹣5)B.(2,5) C.(2,1) D.(2,﹣1)5.下列式子正确的是()A.=±5 B.=﹣C.±=8 D.=﹣56.如图,点E在BC的延长线上,由下列条件能得到AD∥BC的是()A.∠1=∠2 B.∠3=∠4 C.∠B=∠DCE D.∠D+∠DAB=180°7.关于“”,下面说法不正确的是()A.它是数轴上离原点个单位长度的点表示的数B.它是一个无理数C.若a<<a+1,则整数a为3D.它表示面积为10的正方形的边长8.8个一样大小的长方形恰好拼成一个大的长方形(如图),若大长方形的宽为12cm,则每一个小长方形的面积为()A.12cm2B.16cm2C.24cm2D.27cm29.如图,AB∥CD∥EF,则下列各式中正确的是()A.∠1=180°﹣∠3 B.∠1=∠3﹣∠2C.∠2+∠3=180°﹣∠1 D.∠2+∠3=180°+∠110.把△ABC经过平移后得到△A′B′C′,已知A(4,3),B(3,1),B′(1,﹣1),C′(2,0),则△ABC的面积为()A.B.C.1 D.211.在一次“数学与生活”知识竞赛中,竞赛题共26道,每道题都给出4个答案,其中只有一个答案正确,选对得4分,不选或选错扣2分,得分不低于70分得奖,那么得奖至少应选对()道题.A.22 B.21 C.20 D.1912.在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P伴随点,已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(3,1),则点A2017的坐标为()A.(0,4) B.(﹣3,1)C.(0,﹣2)D.(3,1)二、填空题(共4小题,每小题4分,满分16分)13.某点M(a,a+2)在x轴上,则a=.14.估计与0.5的大小关系是:0.5.(填“>”、“=”、“<”)15.已知关于x的不等式组只有五个整数解,则实数a的取值范围是.16.解方程组时,应该正确地解得,小明由于看错了系数c,得到的解为则a﹣b﹣c=.三、解答题(共6小题,满分64分)17.(1)计算: +++|﹣1|;(2)已知+|b3﹣64|=0,求b﹣a的平方根.18.(1)解方程组(2)解不等式组,并在数轴上画出它的解集.19.在“十三五”规划纲要中,“全民阅读”位列国家八大文化重大工程之一,我县各学校一直积极开展课外阅读活动,我县某初中学校为了解全校学生每周课外阅读的时间量t(单位:小时),采用随机抽样的方法抽取部分学生进行了问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并分别用A、B、C、D表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题(写出规范完整计算步骤):(1)求这次调查的学生总数是多少人,并求出x的值;(2)在统计图①中,t≥4部分所对应的圆心角是多少度?(3)将图②补充完整;④若该校共有学生1200人,试估计每周课外阅读时间量满足2≤t<4的人数.20.已知:如图所示,点E在直线DF上,点B在直线AC上,∠A=50°,∠AGB=∠EHF,∠C=∠D,求∠F的度数.21.某校将周五上午大课间活动项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的三倍少4元,且购买2条长跳绳与购买5条短跳绳的费用相同.(1)两种跳绳的单价各是多少元?(2)若学校准备用不超过1950元的现金购买190条长、短跳绳,且短跳绳的条数不超过长跳绳的5倍,问学校有几种购买方案可供选择?并写出这几种方案.22.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a,b满足|a﹣4|+=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)点B的坐标为,当点P移动3.5秒时,点P的坐标;(2)在移动过程中,当点P到x轴的距离为4个单位长度时,求点P移动的时间;(3)在移动过程中,当△OBP的面积是10时,求点P移动的时间.七年级(下册)期末数学试卷参考答案一、选择题(共12小题,每小题3分,满分40分)1.下列调查中,调查方式选择错误的是()A.为了解全市中学生的课外阅读情况,选择全面调查B.旅客上飞机前的安检,选择全面调查C.为了了解《人民的名义》的收视率,选择抽样调查D.为保证“神舟十一号”载人飞船的成功发射,对其零部件的检查,选择全面调查解:A、为了解全市中学生的课外阅读情况,调查范围广适合抽样调查,故A符合题意;B、旅客上飞机前的安检,是事关重大的调查,选择全面调查,故B不符合题意;C、为了了解《人民的名义》的收视率,调查范围广适合抽样调查,故C不符合题意;D、为保证“神舟十一号”载人飞船的成功发射,对其零部件的检查,是事关重大的调查,选择全面调查,故D不符合题意;故选:A.2.a,b为实数,且a>b,则下列不等式的变形正确的是()A.a﹣x<b﹣x B.﹣a+1>﹣b+1 C.5a>5b D.<解:解:A、不等式的两边都加或都减同一个整式,不等号的方向不变,故A错误;B、不等式的两边都乘或除以同一个负数,不等号的方向改变,故B错误;C、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故C正确;D、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故D错误;故选:C.3.下列方程组中是二元一次方程组的是()A.B.C.D.解:A、该方程组符合二元一次方程组的定义,故本选项正确;B、该方程组中含有3个未知数,不是二元一次方程组,故本选项错误;C、该方程组中的第一个方程不是整式方程,故本选项错误;D、该方程组中的第二个方程属于二元二次方程,故本选项错误;故选:A.4.已知点A(﹣1,﹣5)和点B(2,m),且AB平行于x轴,则B点坐标为()A.(2,﹣5)B.(2,5) C.(2,1) D.(2,﹣1)解:如图所示:∵点A(﹣1,﹣5)和点B(2,m),且AB平行于x轴,∴B点坐标为:(2,﹣5).故选:A.5.下列式子正确的是()A.=±5 B.=﹣C.±=8 D.=﹣5解:A、=5,故A错误;B、=﹣,故B正确;C、±=±8,故C错误;D、==5,故D错误.故选B.6.如图,点E在BC的延长线上,由下列条件能得到AD∥BC的是()A.∠1=∠2 B.∠3=∠4 C.∠B=∠DCE D.∠D+∠DAB=180°解:A.根据∠1=∠2,可得AB∥CD,故A错误;B.根据∠3=∠4,可得AD∥BC,故B正确;C.根据∠B=∠DCE,可得AB∥CD,故C错误;D.根据∠D+∠DAB=180°,可得AB∥CD,故D错误;故选:B.7.关于“”,下面说法不正确的是()A.它是数轴上离原点个单位长度的点表示的数B.它是一个无理数C.若a<<a+1,则整数a为3D.它表示面积为10的正方形的边长解:A、±它是数轴上离原点个单位长度的点表示的数,题干的说法错误,符合题意;B、是一个无理数,题干的说法正确,不符合题意;C、∵3<<3+1,a<<a+1,∴整数a为3,题干的说法正确,不符合题意;D、表示面积为10的正方形的边长,题干的说法正确,不符合题意.故选:A.8.8个一样大小的长方形恰好拼成一个大的长方形(如图),若大长方形的宽为12cm,则每一个小长方形的面积为()A.12cm2B.16cm2C.24cm2D.27cm2解:设每个小长方形的长为xcm,宽为ycm,根据题意得:,解得:.则每一个小长方形的面积为3×9=27(cm2).故选:D.9.如图,AB∥CD∥EF,则下列各式中正确的是()A.∠1=180°﹣∠3 B.∠1=∠3﹣∠2C.∠2+∠3=180°﹣∠1 D.∠2+∠3=180°+∠1解:∵AB∥CD,∴∠2+∠BDC=180°,即∠BDC=180°﹣∠2,∵EF∥CD,∴∠BDC+∠1=∠3,即∠BDC=∠3﹣∠1,∴180°﹣∠2=∠3﹣∠1,即∠2+∠3=180°+∠1,故选:D.10.把△ABC经过平移后得到△A′B′C′,已知A(4,3),B(3,1),B′(1,﹣1),C′(2,0),则△ABC的面积为()A.B.C.1 D.2解:∵把△ABC经过平移后得到△A′B′C′,B(3,1)的对应点是B′(1,﹣1),∴B点向左平移2个单位,再向下平移2个单位,∵A(4,3)的对应点A′的坐标是(4﹣2,3﹣2),即A′(2,1),C′(2,0))的对应点C的坐标是(2+2,0+2),即(4,2),过B作BD⊥AC于D,∵A(4,3),C(4,2),∴AC⊥X轴,∴AC=3﹣2=1,BD=4﹣3=1,∴△ABC的面积是AC×BD=×1×1=.答:△ABC的面积是.11.在一次“数学与生活”知识竞赛中,竞赛题共26道,每道题都给出4个答案,其中只有一个答案正确,选对得4分,不选或选错扣2分,得分不低于70分得奖,那么得奖至少应选对()道题.A.22 B.21 C.20 D.19解:设应选对x道题,则不选或选错的有25﹣x道,依题意得:4x﹣2(26﹣x)≥70,得:x≥21,∵x为正整数,∴x最小为21,即至少应选对21道题.故选B.12.在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P伴随点,已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(3,1),则点A2017的坐标为()A.(0,4) B.(﹣3,1)C.(0,﹣2)D.(3,1)解:∵A1的坐标为(3,1),∴A2(0,4),A3(﹣3,1),A4(0,﹣2),A5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2017÷4=504…1,∴点A2017的坐标与A1的坐标相同,为(3,1).故选:D.二、填空题(共4小题,每小题4分,满分16分)13.某点M(a,a+2)在x轴上,则a=﹣2.解:∵点M(a,a+2)在x轴上,∴a+2=0,解得:a=﹣2.故答案为:﹣2.14.估计与0.5的大小关系是:>0.5.(填“>”、“=”、“<”)解:∵﹣0.5=﹣=,∵﹣2>0,∴>0.答:>0.5.15.已知关于x的不等式组只有五个整数解,则实数a的取值范围是﹣5≤a<﹣4.解:解不等式x﹣a>0,得:x>a,解不等式1﹣2x>﹣3,得:x<2,∵只有五个整数解,∴﹣5≤a<﹣4,故答案为:﹣5≤a<﹣4.16.解方程组时,应该正确地解得,小明由于看错了系数c,得到的解为则a﹣b﹣c=1.解:把与代入得:,解得:,把代入得:3c+14=8,解得:c=﹣2,则a﹣b﹣c=4﹣5+2=1.故答案为:1三、解答题(共6小题,满分64分)17.(1)计算: +++|﹣1|;(2)已知+|b3﹣64|=0,求b﹣a的平方根.解:(1)+++|﹣1|===﹣;(2)∵+|b3﹣64|=0,∴,得,∴,即b﹣a的平方根是.18.(1)解方程组(2)解不等式组,并在数轴上画出它的解集.解:(1)原方程组整理可得:,①+②,得:8x=24,解得:x=3,将x=3代入②,得:15+y=10,解得:y=﹣5,则原方程组的解为;(2)解不等式4x﹣3<3(2x+1),得:x>﹣3,解不等式x﹣1>5﹣x,得:x>3,∴不等式组的解集为x>3,将解集表示在数轴上如下:19.在“十三五”规划纲要中,“全民阅读”位列国家八大文化重大工程之一,我县各学校一直积极开展课外阅读活动,我县某初中学校为了解全校学生每周课外阅读的时间量t(单位:小时),采用随机抽样的方法抽取部分学生进行了问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并分别用A、B、C、D表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题(写出规范完整计算步骤):(1)求这次调查的学生总数是多少人,并求出x的值;(2)在统计图①中,t≥4部分所对应的圆心角是多少度?(3)将图②补充完整;④若该校共有学生1200人,试估计每周课外阅读时间量满足2≤t<4的人数.解:(1)抽查的学生总数=90÷45%=200人,∵x%=1﹣15%﹣10%﹣45%=30%,∴x=30,(2)t≥4部分所对应的圆心角=×360°=54°.(3)①B等级的人数=200×30%=60人,C等级的人数=200×10%=20人,如图,②1200×(10%+30%)=480人,所以估计每周课外阅读时间量满足2≤t<4的人数为480人.20.已知:如图所示,点E在直线DF上,点B在直线AC上,∠A=50°,∠AGB=∠EHF,∠C=∠D,求∠F的度数.解:∵∠AGB=∠EHF,∠AGB=∠DGF,∴∠DGF=∠EHF,∴BD∥CE,∴∠C=∠ABD;又∵∠C=∠D,∴∠ABD=∠D,∴AC∥DF,∴∠F=∠A=50°.21.某校将周五上午大课间活动项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的三倍少4元,且购买2条长跳绳与购买5条短跳绳的费用相同.(1)两种跳绳的单价各是多少元?(2)若学校准备用不超过1950元的现金购买190条长、短跳绳,且短跳绳的条数不超过长跳绳的5倍,问学校有几种购买方案可供选择?并写出这几种方案.解:(1)设长跳绳的单价是x元,短跳绳的单价为y元.由题意得:,解得:.答:长跳绳单价是20元,短跳绳的单价是8元.(2)设学校购买a条长跳绳,则购买条短跳绳,由题意得:,解得:≤a≤,∵a为整数,∴a为32、33、34、35,则可供选择的方案有:1、长跳绳32条、短跳绳158条;2、长跳绳33条、短跳绳157条;3、长跳绳34条、短跳绳156条;4、长跳绳35条、短跳绳155条.22.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a,b满足|a﹣4|+=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)点B的坐标为(4,6),当点P移动3.5秒时,点P的坐标(1,2);(2)在移动过程中,当点P到x轴的距离为4个单位长度时,求点P移动的时间;(3)在移动过程中,当△OBP的面积是10时,求点P移动的时间.解::(1)∵a、b满足+|b﹣6|=0,∴a﹣4=0,b﹣6=0,解得a=4,b=6,∴点B的坐标是(4,6),∵点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动,∴2×3.5=7,∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是:7﹣6=1,即当点P移动4秒时,此时点P在线段CB上,离点C的距离是2个单位长度,点P的坐标是(1,6);故答案为(4,6),(1,6).(2)由题意可得,在移动过程中,当点P到x轴的距离为4个单位长度时,存在两种情况,第一种情况,当点P在OC上时,点P移动的时间是:4÷2=2秒,第二种情况,当点P在BA上时.点P移动的时间是:(6+4+2)÷2=6秒,故在移动过程中,当点P到x轴的距离为4个单位长度时,点P移动的时间是2秒或6秒.(3)如图1所示:∵△OBP的面积=10,∴OP•BC=10,即×4×OP=10.解得:OP=5.∴此时t=2.5s如图2所示;∵△OBP的面积=10,∴PB•OC=10,即×6×PB=10.解得:BP=.∴CP=.∴此时t=s,如图3所示:∵△OBP的面积=10,∴BP•BC=10,即×4×PB=10.解得:BP=5.∴此时t=s如图4所示:∵△OBP的面积=10,∴OP•AB=10,即×6×OP=10.解得:OP=.∴此时t=s综上所述,满足条件的时间t的值为2.5s或s或s或s.七年级下学期期末考试数学试卷一、选择题(1-10题每小题3分,11-15题每小题3分,共40分,)1.(3分)下列四个图案是四国冬季奥林匹克运动会会徽图案上的一部份图形,其中不是轴对称图形的是()A.B.C.D.2.(3分)计算2x3•(﹣x2)的结果是()A.2x B.﹣2x5C.2x6D.x53.(3分)某红外线遥控器发出的红外线波长为0.000 000 94m,用科学记数法表示这个数是()A.9.4×10﹣7m B.9.4×107m C.9.4×10﹣8m D.9.4×108m4.(3分)下列长度的三条线段能组成三角形的是()A.1,2,3 B.5,4,2 C.2,2,4 D.4,6,115.(3分)有3张纸牌,分别是红桃2,红桃3,黑桃A,把纸牌洗匀后甲先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张,则两人抽的纸牌均为红桃的概率是()A.B.C.D.6.(3分)如图,已知AB=DC,下列所给条件中不能推出△ABC≌△DCB的是()A.∠ABC=∠DCB B.AC=DBC.∠A=∠D D.BO=CO7.(3分)如图,直线a∥b,直线l与a、b交于A、B两点,过点B作BC⊥AB 交直线a于点C,若∠2=35°,则∠1的度数为()A.25°B.35°C.55°D.115°8.(3分)如图,因为直线AB⊥l于点B,BC⊥l于点B,所以直线AB和BC重合,则其中蕴含的数学原理是()A.平面内,过一点有且只有一条直线与已知直线垂直B.垂线段最短C.过一点只能作一条垂线D.两点确定一条直线9.(3分)如图,边长为a的大正方形剪去一个边长为b的小正方形后,将剩余部分通过割补拼成新的图形.根据图形能验证的等式为()A.a2﹣b2=(a﹣b)2B.a2﹣b2=(a+b)(a﹣b)C.(a﹣b)2=a2﹣2ab+b2D.(a+b)2=a2+2ab+b210.(3分)如图,在△ABC中,∠C=90°,∠B=26°.洋洋按下列步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长的一半为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D,则∠ADC的度数为()A.50°B.52°C.58°D.64°11.(2分)如图,一艘补给船从A点出发沿北偏东65°方向航行,给B点处的船补给物品后,向左进行了90°的转弯,然后沿着BC方向航行,则∠DBC的度数为()A.25°B.35°C.45°D.65°12.(2分)王叔叔花x万元买了二年期年利率为4.89%的国库券,则本息和y(元)与x之间的关系正确的是()A.y=1.0978x B.y=10978x C.y=10489x D.y=978x13.(2分)下列语句:①角的对称轴是角的平分线;②两个成轴对称的图形的对应点一定在对称轴的两侧;③一个轴对称图形不一定只有一条对称轴;④两个能全等的图形一定能关于某条直线对称,其中正确的个数有()A.1 B.2 C.3 D.414.(2分)如图,一个高为12cm的杯子放入一个高度为10cm的空玻璃槽中,并向杯子中匀速注水,则玻璃槽中水面高度y(cm)随注水时间x(s)的变化图象大致是()A.B.C.D.15.(2分)如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是()A.B.C.D.二、填空题(本大题共4个小题,每小题3分,共12分,)16.(3分)一只盒子中有红球m个,白球8个,黑球n个,每个球除颜色外都相同,从中任取一个球,如果取得红球或黑球的概率与取得白球的概率相同,那么m与n的关系是.17.(3分)若4x•32y=8,则2x+5y= .18.(3分)如图,把对边平行的纸带折叠,∠1=62°,则∠2= .19.(3分)李老师从家开车去学校,中途等红绿灯用时1分钟,之后又行驶了4千米到达学校,假设李老师开车速度始终不变,从出发开始计时,李老师离学校的距离为5(千米)与行驶的时间为t(分钟)的关系如图所示,则图中a= .三、解答题(本大题共7个小题,共68分)20.(12分)(1)利用乘法公式计算①1022②(a+2b+1)(a+2b﹣1)(2)先化简,再求值:[(﹣2x+y)(﹣2x﹣y)﹣(3y﹣2x)2]÷(4y),其中6x﹣5y=10.21.(7分)尺规作图(保留作图痕迹,不写作法)如图,C是∠AOB的边OB上一点(1)过C点作直线EF∥OA.(2)请说明作图的依据.22.(8分)在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC和△DEF 关于某直线成轴对称,请在如图给出的图中画出4个这样的△DEF.(每个3×3正方形个点图中限画一种,若两个图形中的对称轴是平行的,则视为一种)23.(9分)如图,在四边形ABCD中,BC⊥AB,AE、CF分别是∠DAB和∠BCD的角平分线,且∠DAB与∠BCD互补,请你判断AE与CF的位置关系,并说明理由.[来源:学科网]24.(10分)如图,已知AB=CD,∠B=∠C,AC和BD相交于点O,E是AD的中点,连接OE.(1)求证:△AOB≌△DOC;(2)求∠AEO的度数.25.(10分)如图是一辆摩托车从家里出发,离家的距离(千米)随行驶时间(分)的变化而变化的情况.(1)摩托车从出发到最后停止共经过了多少时间?离家最远的距离是多少?(2)摩托车在哪一段时间内速度最快?最快速度是多少?(3)请你写出一个适合图象反映的实际情景.26.(12分)观察发现:如图1,OP平分∠MON,在OM,ON上分别取OA,OB,使OA=OB,再在OP上任取一点D,连接AD,BD.请你猜想AD与BD之间的数量关系,并说明理由.拓展应用:如图2,在△ABC中,∠ACB是直角,∠B=60°,AD,CE分别是∠BAC,∠BCA的平分线,A D,CE相交于点F,请你写出FE与FD之间的数量关系,并说明理由.参考答案一、选择题1.D.2.B.3.A.4.B.5.A.6.D.7.C.8.A.9.B.10.C.11.D.12.B.13.A.14.A.15.C.二、填空题16.m+n=8.17.3.18.56°.19.10.三、解答题20.解:(1)①1022=(100+2)2=1002+2×100×2+22=10404;②(a+2b+1)(a+2b﹣1)=(a+2b)2﹣12=a2+4ab+4b2﹣1;(2)[(﹣2x+y)(﹣2x﹣y)﹣(3y﹣2x)2]÷(4y)=[4x2﹣y2﹣9y2+12xy﹣4x2]÷4y=(﹣10y2+12xy)÷4y=﹣y+3x=(6x﹣5y),当6x﹣5y=10时,原式=×10=5.21.解:(1)如图所示,直线EF即为所求.[来源:](2)由作图知∠ECB=∠O,∴EF∥OA.22.解:如图,△DEF即为所求.(答案不唯一)23.解:AE∥CF,理由如下:∵AE、CF分别是∠DAB和∠BCD的角平分线,∴∠EAB=∠DAB,∠BCF=∠DCB,∵∠DAB+∠BCD=180°,∴∠DAB+∠BCD=180°,∴∠EAB+∠BCF=(∠DAB+∠BCD)=90°,∵BC⊥AB,∴∠CBF=90°,∴∠CFB+∠BCF=90°,∴∠EAB=∠CFB,∴AE∥CF.24.(1)证明:在△AOB和△DOC中,,∴△AOB≌△DOC;(2)解:∵△AOB≌△DOC,∴OA=OD,又E是AD的中点,∴OE⊥AD,即∠AEO=90°.25.解:(1)摩托车从出发到最后停止共经过:100分钟,离家最远的距离是:40千米;(2)摩托车在20~50分钟内速度最快,最快速度是:30÷=60(千米/小时);(3)小明父亲早上送小明去40千米外参加夏令营,由于早高峰行驶20分钟走了10千米,过了早高峰后继续行驶30分钟到达目的地,然后父亲立即返回,行驶50分钟回到家里.26.解:(1)AD=BD.理由:∵OP平分∠MON,∴∠DOA=∠DOB,∵OA=OB,OD=OD,∴△OAD≌△OBD,∴AD=DB.(2)FE=FD.理由:如图2,在AC上截取AG=AE,连接FG,∴△AEF≌△AGF,∴∠AFE=∠AFG,FE=FG.∵∠ACB是直角,即∠ACB=90°,[来源:学&科&网Z&X&X&K] 又∵∠B=60°,∴∠BAC=30°,∵AD,CE分别是∠BAC,∠BCA的平分线,[来源:学*科*网] ∴∠FAC+∠FCA=15°+45°=60°=∠AFE,∴∠AFE=∠AFG=∠CFD=60°,∴∠CFG=180°﹣60°﹣60°=60°,∴∠CFG=∠CFD,又FC为公共边,∴△CFG≌△CFD,∴FG=FD,∴FE=FD.初中七年级下学期期末考试数学试卷一、选择题共10小题。
七年级数学下册期末测试题及答案(共五套)
七年级数学下册期末测试题及答案(共五套)七年级数学下册期末测试题及答案姓名。
学号。
班级:一、选择题(共10小题,每小题3分,共30分)1.若m。
-1,则下列各式中错误的是()A。
6m。
-6B。
-5m < -5C。
m+1.0D。
1-m < 22.下列各式中,正确的是()A。
16=±4B。
±16=4C。
3-27=-3D。
(-4)^2=163.已知a。
b。
0,那么下列不等式组中无解的是()A。
{x-a。
x>-b}B。
{x>a。
x<-a。
x<-b}C。
{x>a。
xb}D。
{x-a。
x<b}4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为()A。
先右转50°,后右转40°B。
先右转50°,后左转40°C。
先右转50°,后左转130°D。
先右转50°,后左转50°5.解为{x=1.y=2}的方程组是()A。
{x-y=1.x-y=-1}B。
{x-y=1.3x+y=5}C。
{x-y=3.3x+y=-5}D。
{x-2y=-3.3x+y=5}6.如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是()A。
100°B。
110°C。
115°D。
120°7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是()A。
4B。
3C。
2D。
18.在各个内角都相等的多边形中,一个外角等于一个内角的1/2,则这个多边形的边数是()A。
5B。
6C。
7D。
89.如图,△A'B'C'是由△XXX沿BC方向平移了BC长度的一半得到的,若△ABC的面积为20 cm²,则四边形A'CC'B'的面积为()A。
2024年北京市朝阳区初一(下)数学期末考试试卷及答案
北京市朝阳区2023~2024学年度第二学期期末检测七年级数学试卷(选用) 2024.7(考试时间90分钟满分100分)学校_____________班级_____________姓名_____________考号_____________一、选择题(共24分,每题3分)下面1-8题均有四个选项,其中符合题意的选项只有..一个.1.9的算术平方根为(A)-3 (B)±3 (D)81 (C)32.在平面直角坐标系中,点(-2,3)在(A)第一象限(B)第二象限(C)第三象限(D)第四象限3.如图,以单位长度为边长画一个正方形,以原点为圆心,正方形的对角线长为半径画弧,与数轴交于点A,则点A表示的数是4.如图,三角形ABC中,∠ACB-90°,CD⊥AB于点D.在线段AC,AB,BC,CD中,长度最短的是(A)线段AB (B)线段AC (C)线段BC (D)线段CD5.若m>n,则下列结论正确的是6.一个等腰直角三角尺和一把直尺按如图所示的位置摆放(厚度忽略不计),若∠α=20°,则∠β的度数为(A)45°(B)40°(C)25°(D)20°7.经调查,七年级某班学生上学所用的交通工具中,自行车占30%,公交车占25%,私家车占35%,其他占10%.如果用扇形图描述以上数据,下列说法正确的是(A)“自行车”对应扇形的圆心角为30°(B)“公交车”对应扇形的圆心角为90°(C)“私家车”对应扇形的圆心角为35°(D)“其他”对应扇形的圆心角为18°8.已知2x+y=12,x≥y≥0,M=3x+2y,给出下面3个结论:①当x=y时,M=20;②M的最小值是18;③M的最大值是24.上述结论中,所有正确结论的序号为(A)①②(B)①③(C)②③(D)①②③二、填空题(共24分,每题3分)13.有如下调查:①调查某批次汽车的抗撞击能力;②了解某班学生的视力情况;③选出某班长跑最快的学生参加全校比赛.以上调查,适宜抽样调查的是______.(填写序号)14.图中显示了15名七年级学生国家安全知识竞赛成绩和航天知识竞赛成绩(单位:分).例如:甲同学的国家安全知识竞赛成绩为40分,航天知识竞赛成绩为70分.这15名学生中,国家安全知识竞赛成绩与航天知识竞赛成绩相等的有________人.15.如图,第一象限内有两个点A(x-3,y),B(x,y-2),将线段AB平移,使点A,B 平移后的对应点分别同时落在两条坐标轴上,则点A平移后的对应点的坐标为_______.(写出一个即可)16.某校为提高校园足球质量和水平,让学生在参与校园足球运动中享受乐趣、增强体质、健全人格、锤炼意志,实现德智体美劳全面发展,举办了校园足球联赛.根据赛事安排,每队均需参赛19场,记分办法如下:胜1场得3分,平1场得1分,负1场得0分.(1)在这次足球联赛中,若某队得13分,则该队可能_场;(写出一种情况即可)(2)在这次足球联赛中,若甲、乙两队都得33分,甲队所有比赛都没有踢平,甲、乙两队负场数不同,则乙队最多胜________场.三、解答题(共52分,第17-24题,每题5分,第25-26题,每题6分)20.完成下面的证明.已知:如图,AD//BC,∠D+∠F=180°.求证:DC//EF.证明:∵AD//BC,(已知)∴∠D+____=___.(____)∵∠D+∠F=180°,(已知)∴∠C=___.(同角的补角相等)∴DC//EF.(__)21.如图,在三角形ABO中,点A,B的坐标分别为(2,4),(4,1),将三角形ABO向左平移4个单位长度,再向上平移1个单位长度得到三角形A₁B₁O₁,点A,B,0的对应点分别为A₁,B₁,0₁.(1)画出三角形A₁B₁O₁,并写出点A₁,B₁,0₁的坐标;(2)直接写出三角形A₁B₁O₁的面积.22.某电商销售长征系列画册和红色经典故事两种图书,它们的进价和售价如下表:该电商销售6套长征系列画册和5套红色经典故事,盈利800元;销售10套长征系列画册和15套红色经典故事,盈利1600元.(利润=售价-进价)(1)求表中a,b的值;(2)该电商计划购进长征系列画册和红色经典故事两种图书共300套,据市场销售分析,购进红色经典故事的套数不低于长征系列画册套数的2倍.若电商把300套图书全部售出,则购进长征系列画册多少套能使利润最大?(直接写出即可)23.为了解某校七年级学生的气象知识竞赛成绩(百分制,单位:分),从中随机抽取了60名学生的成绩,该校甲、乙两个数学课外活动小组对数据进行了整理、描述,部分信息如下:a.甲小组将数据分为4组,频数分布表与频数分布直方图如下:b.乙小组将数据分为5组,频数分布表与频数分布直方图如下:(1)写出表1中m的值,表2中n的值;(2)补全图1;(3)如果学校准备根据样本的数据分布情况,对七年级竞赛成绩前20%的学生进行表彰,那么哪个数学课外活动小组对数据的整理、描述更合理,为什么?25.直线AB//CD,∠ABC与∠DCB的角平分线交于点E,BE的延长线交CD于点F,FG⊥BF,交直线BC于点G.(1)如图1,求证:EC//FG;(2)如图2,点M在线段BC上,点N在线段FG上,且∠BEM=∠MEN,连接EG.写出一个∠MEG的度数,使得∠NEG=∠NGE成立,并证明.26.在平面直角坐标系x0y中,已知点P(x,y),若点Q的坐标为(x+2y,y+2x),则称Q是点P的非常变换点.例如:点(2,1)的非常变换点为(4,5).(1)已知点P(x,x-1)的非常变换点为Q,当x=0时,点Q的坐标为________,当x=1时,点Q的坐标为_________;(2)在正方形ABCD中,点A(2,4),B(-4,4),C(-4,-2),D(2,-2),已知点M(x,x+a),N(x+1,x+a+1).①若点M的非常变换点为C,求a的值;②若线段MN上的所有点(含端点)和它们的非常变换点都在正方形ABCD 的边上或内部,直接写出a的最小值及此时x的值.北京市朝阳区2023~2024学年度第二学期期末检测七年级数学试卷参考答案2024.7一、选择题(共24分,每题3分二、填空题(共24分,每题3分)。
2024北京海淀区初一(下)期末数学试题及答案
七年级期末练习数学参考答案一、选择题二、填空题 11. B 12. 128 13. 314. ∠1=∠5(答案不唯一) 15. 93,75x y y x −=⎧⎨−=⎩ 16. 2;52a ≥− 说明:第16题第一空2分,第二空1分.三、解答题17. 解:原式3(2)1)=−−+4=18. 解:2⨯−②①得,510y =−.得,2y =−.入②,得1x =. 以原方程组的为1,2.x y =⎧⎨=−⎩19. 解:解不等式①,得52x <.不等式②去分母,得2(2)3(13)x x −≤+. 去括号得2439x x −≤+.解得1x ≥−. 所以原不等式组的解为512x −≤<.20. 解:(1)画出线段11A B 如图.点1B 的坐标为(1,2)−. (2)点M 的坐标为(0,1)或(0,5).21. 解:(1)补全图形如下图.(2)证明:∵DE ⊥AC ,∴∠DEA =90°.∵∠ACB =90°,∴∠DEA =∠ACB .∴DE ∥BC .∴∠ADE =∠B .∵l ∥AB ,∴∠ADE =∠CFE .∴∠B =∠CFE .22.任务一:解:设精包装销售了x 盒,简包装销售了y 盒.2370025358500x y x y +=⎧⎨+=⎩①② 解这个方程组,得100,200.x y =⎧⎨=⎩答:精包装销售了100盒,简包装销售了200盒.任务二:解:设分装时使用精包装m 个,简包装n 个(m ,n 为正整数).依题意可列出下列方程和不等式:7532=+n m , ①.182<+n m ② 由①得.2375n m −= 将2375n m −=带入 ②,得519.n >因为m ,n 为正整数,所以n =21,m =6或n =23,m =3.分装方案1:精包装6个,简包装21个分装方案2:精包装3个,简包装23个 说明:写出任意一个正确的分装方案,同时有合理的理由即可. 23. 解:(1)①如图② 45.注:答44或45均可(2) ① 多; ② >.24. 解:(1) 8(答案不唯一);(2)∵12x =−,123x x +<−,∴21x −<.∵21122x x x ≥=−,,∴24x ≥−∴241x −≤−<.(3)8.25.解:(1)如图1所示,即为所求.图1150MDO ∠=︒.(2)①12m =.理由如下.如图2,过O 作射线AB 的平行线GH ,满足点G 在O 左侧, 点H 在O 右侧.当12m =时, ∵COD m BAC ∠=∠,()1COF m CAE ∠=−∠, ∴12COD BAC ∠=∠,12COF CAE ∠=∠, ∴DOF COD COF ∠=∠+∠ 11221.2BAC CAE BAE =∠+∠=∠ ∵AE AB ⊥,∴90BAE ∠=︒,∴45DOF ∠=︒,∴180135DOG FOH DOF ∠+∠=︒−∠=︒.∵AB MN ∥,B 图 2∴GH MN ∥,∴ 180MDO DOG ∠=︒−∠, 180NFO FOH ∠=︒−∠, ∴180180MDO NFO DOG FOH ∠+∠=︒−∠+︒−∠()360DOG FOH =︒−∠+∠ 225=︒② m 的值为15或47或57. 26. (1)① 7;② (0,6)或(0,4)−.(2)①依题意,(6,0),(4,0)D E ,线段DE 经过t 秒后得到线段D 1E 1. 可知 11(6,0),(4,0)D t E t −−.设点(,0)P x 为线段D 1E 1上的任意一点,得 46t x t −≤≤−.由 F (2,4),得242x x +−=−. 所以2x −的最大值为点F 与线段D 1E 1的特征值h . 由于08t <≤,所以6422t −≤−−<, 4624t −≤−−<.所以,当t =8时,h 取得最大值6.点(,0)P x 为线段D 1E 1上的任意一点,且D 1E 1的长度为2. 所以,当点D 1和点E 1关于(2, 0)对称时,即D 1(3,0),E 1(1,0). 此时h 取得最小值1. 所以点F 与线段D 1E 1的特征值h 的取值范围为:16h ≤≤.② k 1;t 10t ≤。
人教版初一下册《数学》期末考试卷及答案【可打印】
一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 2B. 4C. 6D. 82. 下列哪个图形是正方形?A.B.C.D.3. 下列哪个数是分数?A. 3.14B. 2/3C. 5D. 7.894. 下列哪个图形是三角形?A.B.C.D.5. 下列哪个数是偶数?A. 3B. 4C. 5D. 7二、判断题(每题1分,共5分)1. 2的平方是4。
()2. 正方形的对角线相等。
()3. 分数和小数可以互相转换。
()4. 三角形的内角和是180度。
()5. 奇数加偶数等于奇数。
()三、填空题(每题1分,共5分)1. 5的立方是______。
2. 正方形的面积是边长的______。
3. 分数3/4可以写成小数______。
4. 三角形的周长是______。
5. 偶数乘以偶数等于______。
四、简答题(每题2分,共10分)1. 请简述质数和合数的区别。
2. 请简述正方形和长方形的区别。
3. 请简述分数和小数的区别。
4. 请简述三角形和四边形的区别。
5. 请简述奇数和偶数的区别。
五、应用题(每题2分,共10分)1. 一个正方形的边长是5厘米,请计算它的面积。
2. 一个分数是2/3,请将它转换为小数。
3. 一个三角形的底是6厘米,高是4厘米,请计算它的面积。
4. 一个奇数是7,请计算它与相邻的偶数的和。
5. 一个长方形的长是8厘米,宽是4厘米,请计算它的周长。
六、分析题(每题5分,共10分)1. 分析正方形和长方形的性质,并举例说明。
2. 分析三角形和四边形的性质,并举例说明。
七、实践操作题(每题5分,共10分)1. 请用尺子和圆规画一个正方形。
2. 请用尺子和圆规画一个三角形。
八、专业设计题(每题2分,共10分)1. 设计一个包含至少三个质数的数列。
2. 设计一个正方形,使其面积等于24平方厘米。
3. 设计一个分数,使其小于1/2。
4. 设计一个三角形,使其周长等于15厘米。
5. 设计一个偶数,使其能被4整除。
初一数学下期末考试试题及答案
初一数学下期末考试试题及答案一、选择题(每题4分,共40分)1. 下列数中是无理数的是:A. √2B. 3C. 0.333...D. -5答案:A2. 若两个角互为补角,则它们的和为:A. 90°B. 180°C. 270°D. 360°答案:B3. 已知直角三角形的两个直角边分别为6cm和8cm,则斜边长为:A. 10cmB. 12cmC. 15cmD. 20cm答案:A4. 下列函数中,是正比例函数的是:A. y = 2x + 3B. y = x^2C. y = -3xD. y = x^3答案:C5. 若平行四边形ABCD的对角线交于点E,已知BE=4cm,CE=6cm,则BD的长度为:A. 5cmB. 10cmC. 12cmD. 16cm答案:B6. 已知一个圆的半径为5cm,则其直径为:A. 10cmB. 14cmC. 20cmD. 25cm答案:A7. 下列哪个数是立方根:A. 27B. 9C. 6D. 3答案:A8. 若一个数的平方根为3,则这个数为:A. 9B. -9C. 3D. -3答案:A9. 已知一个等腰三角形的底边长为8cm,腰长为5cm,则这个三角形的周长为:A. 16cmB. 18cmC. 20cmD. 22cm答案:C10. 在梯形ABCD中,AB//CD,AB=6cm,CD=10cm,AD=8cm,BC=5cm,则梯形的高为:A. 2cmB. 3cmC. 4cmD. 5cm答案:B二、填空题(每题4分,共40分)1. 若两个角互为补角,它们的和为_______。
答案:180°2. 已知直角三角形的两个直角边分别为6cm和8cm,则斜边长为_______。
答案:10cm3. 下列函数中,是正比例函数的是:y = _______。
答案:-3x4. 若平行四边形ABCD的对角线交于点E,已知BE=4cm,CE=6cm,则BD的长度为_______。
2024北京昌平区初一(下)期末数学试题及答案
2024北京昌平初一(下)期末数 学2024.06本试卷共9页,共100分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后将答题卡交回.一、选择题(本题共8道小题,每小题2分,共16分)1. 2024北京月季文化节正式开启,11个展区共展示超3000个品种的月季.传统月季花粉为单粒花粉,呈长球形或超长球形,大小为~~⨯m μm 17.0225.33μ37.5951.95.其中=m 0.003759cm μ37.59,把0.003759用科学记数法表示为( )A. ⨯−0.3759102B. ⨯0.3759102C. ⨯−3.759103D. ⨯3.759103 2. 不等式x 3x 21的解集在数轴上可以表示为( ) A. B. C. D. 3. 在今年的“五一”假期中,昌平消费市场“花样翻新”,多景区客流“爆棚”,客流量与文旅消费均呈现上升趋势.为了解中学生的假期出游情况,从全校2000名学生记录的假期出游时间(单位:小时)中随机抽取了200名学生的假期出游时间(单位:小时)进行统计,以下说法正确的是( )A. 2000名学生是总体B. 样本容量是2000C. 200名学生的假期出游时间是样本D. 此调查为全面调查 4. 下列计算正确的是( )A. ⋅=a a a 236B. −=a a ()326C. +=a a a 224D. ÷=a a a 824 5. 如果>a b ,那么下列不等关系一定成立的是( )A. a b +<+11B. −>−a b 22C. >ac bcD. >a b 556. 如图,一条街道有两个拐角∠ABC 和∠BCD ,已知∥AB CD ,若∠=︒ABC 150,则∠BCD 的度数是( )A. ︒30B. ︒120C. ︒130D. ︒1507. 若⎩=⎨⎧=y x 12是关于x ,y 的二元一次方程−=ax y 3的一个解,则a 的值为( ) A. −1 B. 1 C. −2 D. 28. 已知a ,b 为有理数,则下列说法正确的是( )①+≥a b ()02;②+≥a b ab 222;③+=−+a b a b ab ()()222A. ①B. ①②C. ①③D. ①②③二、填空题(本题共8道小题,每小题2分,共16分)9. 因式分解:−+=x x 3632______.10. 如果一个角等于︒70,那么这个角的补角是_________°.11. 计算:(6x 2+4x )÷2x =_____.12. 已知命题“同位角相等”,这个命题是_________命题.(填“真”或“假”)13. 计算:(2x +1)(x ﹣2)=_____.14. 若=x 24,=y 216,则+=x y ___________.15. 4月23日为世界读书日,小萱从图书馆借来一本共266页的书,计划在10天内读完(包括第10天).如果前4天每天只读15页,若从第5天起平均每天读x 页才能按计划完成,则根据题意可列不等式为____.16. 如图1的长为a ,宽为b >a b )(的小长方形纸片,按图2的方式不重叠地放在长方形ABCD 内,未被覆盖的部分(两个长方形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足的数量关系为_________.三、解答题(本题共12道小题,第17-22题,每小题5分,第23-26题,每小题6分,第27、28题,每小题7分,共68分)17. 计算:−−+−−−π32(5)31201. 18. 解不等式:+<−x x 2113.19. 解方程组:⎩−=⎨⎧+=x y x y 34127 20. 解不等式组:⎩≤+⎨⎧+≤x x x 25623并把它的解集在数轴上表示出来.21. 已知−=x x 12,求代数式−+−+x x x (1)(3)(3)2的值.22. 补全解答过程:如图,∠1+∠2=180°,∠3=∠A .求证:∠B =∠C .证明:∵∠1+∠2=180°,∴(同旁内角互补,两直线平行).∴∠3=∠D().又∵∠3=∠A,∴.∴AB∥CD().∴∠B=∠C().23. 某校开展数学节活动,活动成果是学生形成对于数学探索的海报,活动以“集市”形式展览个人的作品,并面向同学和老师讲解自己的作品,“小创客”创意市集作品的评价涉及四个维度:创意的真实性、创意的新颖性、创意的科学性和表达的严谨性,并以四个维度总分记为最后得分,满分100分,小明经过抽样调查部分得分数据,具体得分分布在以下四组内:A B C D7580808585909095,并把得分情况绘制成如下统计图:C组得分:87,,,,86,88,86,86,89“小创客”创意市集作品得分条形统计图“小创客”创意市集作品得分扇形统计图(1)本次调查了______名学生,B组扇形统计图的圆心角度数为_______°(2)C组得分的平均数是_______,众数是_________,中位数是__________.(3)若某校有500人参加此次“小创客”创意市集作品展示,请你估计得分超过86分的有多少人?24. 端午节前夕,小明和小华相约一起去超市购买粽子.小明购买A品牌和B品牌的粽子各1袋,共花费55元;小华购买A品牌粽子3袋和B品牌粽子2袋,共花费135元.(1)求A、B两种品牌粽子每袋各是多少元;(2)端午假期,小明一家回老家探亲,小明妈妈想要再买一些粽子送给亲戚,于是拿出500元交给小明,让他去超市购买A、B两种品牌粽子共18袋,且想要尽量多购入B品牌粽子,请问小明最多购买B品牌粽子多少袋?25. 观察个位上的数字是5的两位数的平方(任意一个个位数字为5的两位数n 5可用代数式+n 105来表示,其中≤≤n 19,n 为正整数),会发现一些有趣的规律.请你仔细观察,探索其规律.第1个等式:=⨯⨯+1512100252)(; 第2个等式:=⨯⨯+2523100252)(; 第3个等式:=⨯⨯+3534100252)(; …(1)写出第4个等式:_______;(2)用含n 的等式表示你的猜想并证明;(3)计算:−⨯⨯+11589100252)( =_______. 26. 小明为了方便探究关于x ,y 的二元一次方程+=ax by 9(≠≠a b 0,0)解的规律,把x 和y 的部分值分别填入如下表,(x 的值从左到右依次增大).(1)p 的值为__________(填正确的序号).①17;②3;③−1(2)下列方程中,与+=ax by 9组成方程组,在−<<x 78范围内有解的是__________(填正确的序号).①+=−x y 25;②+=−x y 24;③−=x y 31,(3)已知关于x ,y 的二元一次方程+=cx dy 1(≠≠c d 0,0)的部分解如下表所示:则方程组⎩+=⎨⎧cx dy 1的解为__________(填正确的序号) ①⎩=⎨⎧=−y x 69;②⎩=⎨⎧=−y x 118;③⎩=⎨⎧=−y x 41;④⎩=−⎨⎧=y x 47 27. 已知∠=︒<<︒ααAOB 090)(,点C 是射线OB 上一点,过点C 作OA 的垂线交射线OA 于点P ,过点P 作∥MN OB ,点D 是射线OA 上一点,过点D 作CD 的垂线分别交直线MN ,OB 于点E ,F .(1)如图1,CD 平分∠OCP 时,①根据题意补全图形;②求∠ODF 的度数(用含α式子表示);(2)如图2,当CD 平分∠PCB 时,直接写出∠ODF 的度数(用含α式子表示).28. 已知,x x 12是不等式组解集中的解,若存在一个a ,使+=x x a 212,我们把这样的,x x 12称为该不等式组的“关联解”,a 叫做“关联系数”.(1)当=a 0时,下列不等式组存在“关联解”的是_________.A .⎩>+⎨⎧+>x x x 2412B .⎩⎪>−⎨⎪⎧−+<x x x 21112 C .⎩<−⎨⎧<+x x x x 22321 (2)不等式组⎩+≤++⎪⎨⎪−≥−⎧x a x a x x 22522231的解集上存在“关联解”,若=−x 21,“关联系数a ”的取值范围为_________.(3)不等式组⎩≤+⎨⎧≥−−x x a x a 3221的解集存在关联解,x a 81,若++=a b c 12,且++a b c 1621010是整数,直接写出“关联系数a ”的值_________.参考答案一、选择题(本题共8道小题,每小题2分,共16分)1. 【答案】C【分析】本题考查科学记数法,绝对值小于1的负数也可以利用科学记数法表示,一般形式为⨯−a n 10,其中≤<a 110,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,根据科学记数法的方法进行计算即可.【详解】解:=⨯−0.003759 3.759103,故选:C .2. 【答案】D【分析】本题考查了解一元一次不等式及不等式解集的表示,解题的关键是掌握解一元一次不等式的方法及不等式解集的表示方法.依次移项、合并同类项可得不等式的解集,从而得出答案.【详解】解:移项,得:−<−x x 321,合并同类项,得:<−x 1,把不等式的解集表示在数轴上:故选:D .3. 【答案】C【分析】本题考查了全面调查与抽样调查,总体、个体、样本、样本容量,熟练掌握这些数学概念是解题的关键.根据全面调查与抽样调查,总体、个体、样本、样本容量的意义,逐一判断即可解答.【详解】解:A .2000名学生的假期出游时间是总体,故选项A 不符合题意;B .样本容量是200,故选项B 不符合题意;C .200名学生的假期出游时间是样本,故选项C 符合题意;D .此调查为抽样调查,故选项D 不符合题意;故选:C .4. 【答案】B【分析】本题主要考查了合并同类项,同底数幂相除,幂的乘方,同底数幂相乘,根据合并同类项,同底数幂相除,幂的乘方,同底数幂相乘,逐项判断即可求解.【详解】解:A :⋅=a a a 235,故选项A 错误;B :−=a a ()326,故选项B 正确;C :+=a a a 2222,故选项C 错误;D :÷=a a a 826,故选项D 错误;故选:B .5. 【答案】D【分析】本题考查不等式的基本性质,解答关键是熟知不等式的基本性质①不等式基本性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;②不等式基本性质2:不等式的两边同时乘(或除以)同一个正数,不等号的方向不变; ③不等式基本性质3:不等式的两边同时乘(或除以)同一个负数,不等号的方向变.利用不等式的基本性质逐项判断即可解答.【详解】解:∵>a b ,∴+>+a b 11,故选项A 不符合题意;∵>a b ,∴−<−a b 22,故选项B 不符合题意;∵>a b ,当>c 0,>ac bc ,当<c 0,<ac bc ,故选项C 不符合题意;∵>a b , ∴>a b 55, 故选项D 符合题意;故选:D .6. 【答案】D 【分析】本题考查了平行线的性质:两直线平行,内错角相等,由AB CD ,根据两直线平行,内错角相等,可得∠BCD 的度数,解题的关键是将实际问题转化为数学问题求解. 【详解】∵,∠=︒AB CD ABC 150∴∠=∠=︒BCD ABC 150(两直线平行,内错角相等).故选:D .7. 【答案】D【分析】将这组值代入二元一次方程即可得出答案.【详解】解:将⎩=⎨⎧=y x 12代入−=ax y 3得:a −=213, 解得:=a 2,故D 正确.故选:D .【点睛】本题考查二元一次方程的解,正确理解方程的解是解题的关键.8. 【答案】B【分析】本题考查整式的乘法-公式法,关键是熟练掌握完全平方公式,根据完全平分公式逐一进行检验即可.【详解】解:∵+≥a b ()02,故①正确;∵−=−+≥a b a ab b 20222)(,∴+≥a b ab 222,故②正确;∵+=++=−++=−+a b a ab b a ab b ab a b ab ()2244222222)(,故③不正确;故选:B 二、填空题(本题共8道小题,每小题2分,共16分)9. 【答案】−x 312)(##−x 312)(【分析】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解答本题的关键. 原式提取公因式3,再利用完全平方公式分解即可.【详解】解:−+=x x 3632−+=−x x x 3213122)()(, 故答案为:−x 312)(.10. 【答案】110【分析】本题主要考查了补角,解题的关键在于熟知如果两个角的度数之和为︒180,那么这两个角互补,根据补角的定义求解即可.【详解】解:∵一个角等于︒70,∴这个角的补角是︒−︒=︒18070110,故答案为:110.11.【答案】3x +2【分析】直接利用整式的除法运算法则计算得出答案.【详解】解:原式=6x 2÷2x +4x ÷2x=3x +2.故答案为:3x +2.【点睛】本题主要考查了整式的除法运算,正确掌握相关运算法则是解题关键.12. 【答案】假【分析】本题主要考查了平行线的性质及真假命题的判断.正确的命题叫真命题,错误的命题叫假命题.要说明一个命题是真命题,必须一步一步有根有据的证明;要说明一个命题是假命题,只需要举一个反例即可.掌握判断真假命题的方法是解题的关键,根据平行线的性质判断即可.【详解】解:两直线平行时,同位角相等;两直线不平行时,同位角不相等.因此命题“同位角相等”不一定成立,是假命题.故答案为:假.13. 【答案】2x 2﹣3x ﹣2.【分析】根据多项式乘多项式的运算法则进行解答即可得出答案.【详解】(2x +1)(x ﹣2)=2x 2﹣4x +x ﹣2=2x 2﹣3x ﹣2;故答案为:2x 2﹣3x ﹣2.【点睛】此题主要考查多项式乘多项式运算,熟练掌握,即可解题.14. 【答案】6【分析】本题主要考查了有理数的乘方运算,将原式变形求出x 和y 的值即可得到答案.【详解】解:∵=x 24,∴=x 222,∴=x 2,∵=y 224,∴=y 4,∴+=x y 6,故答案为:615. 【答案】+≥x 606266【分析】本题考查列不等式,先计算出前4天读的页数,再列出后6天读的页数的表达式,根据读的页数的总和必须大于或等于书的总页数建立不等式即可.【详解】解:根据题意得,前4天读的页数为⨯=41560页,后6天读的页数为:x 6,根据题意得读的页数的总和需要大于或等于266页,故+≥x 606266,故答案为:+≥x 606266.16. 【答案】=a b 3【分析】本题主要考查了整式的混合运算的应用,表示出左上角与右下角部分的面积,求出之差,根据差与BC 无关即可求出a 与b 的关系式,弄清题意是解本题的关键.【详解】如图,左上角阴影部分的长为AE ,宽为=AF b 3,右下角阴影部分的长为PC ,宽为a ,∵=AD BC ,即+=+AE ED AE a ,=+=+BC BP PC b PC 3,∴+=+AE a b PC 3,即−=−AE PC b a 3,∴阴影部分面积之差=⋅−⋅S AE AF PC PH=−b AE a PC ·3?=+−−b PC b a a PC 33?)(=−+−b a PC b ab 3932)(,∵S 始终保持不变,∴−=b a 30,即=a b 3,故答案为=a b 3.三、解答题(本题共12道小题,第17-22题,每小题5分,第23-26题,每小题6分,第27、28题,每小题7分,共68分)17. 【答案】3【分析】此题主要考查实数的混合运算,根据零次幂、负整数指数幂定义及实数的性质进行化简,即可求解. 【详解】解:−−+−−−π32(5)31201 =−+−334111 =3.18. 【答案】<x 4【分析】本题主要考查了解一元一次不等式,按照移项,合并同类项,系数化为1的步骤解不等式即可.【详解】解:+<−x x 2113移项得:+<−x x 2131,合并同类项得:<x 312,系数化为1得:<x 4.19. 【答案】⎩=⎨⎧=y x 23 【分析】本题考查了解二元一次方程组,利用加减消元法进行计算即可.【详解】解:②①⎩−=⎨⎧+=x y x y 34127 解:将②①⨯+2得=x 515,解得=x 3,将=x 3代入①得+=y 327,解得=y 2,∴方程组的解为:⎩=⎨⎧=y x 23. 20. 【答案】−≤≤x 21,见解析【分析】本题主要考查了解一元一次不等式组,在数轴上表示不等式组的解集,先求出每个不等式的解集,再根据 “同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集,进而在数轴上表示出不等式组的解集即可.【详解】解:②①⎩≤+⎨⎧+≤x x x 25623 解不等式①得:≤x 1,解不等式②得:≥−x 2,∴不等式组的解集为−≤≤x 21,数轴表示如下:21. 【答案】−6【分析】本题考查了整式的混合运算-化简求值,首先通过完全平方公式和平方差公式进行整式的乘法运算,再把−=x x 12代入,即可求解.【详解】解:∵−=x x 12,∴−+−+x x x (1)(3)(3)2=−++−x x x 21922=−−x x 2282=−−x x 282)(=⨯−218=−6.22. 【答案】AD ∥EF ;两直线平行,同位角相等;∠A =∠D ;内错角相等,两直线平行;两直线平行,内错角相等.【分析】依据平行线的判定,即可得到AD ∥EF ,得出∠3=∠D ,进而得出∠A =∠D ,再根据平行线的判定,即可得到AB ∥CD ,最后根据平行线的性质得出结论.【详解】∵∠1+∠2=180°,∴AD ∥EF (同旁内角互补,两直线平行).∴∠3=∠D (两直线平行,同位角相等).又∵∠3=∠A ,∴∠A =∠D .∴AB ∥CD (内错角相等,两直线平行).∴∠B =∠C (两直线平行,内错角相等).故答案为:AD ∥EF ;两直线平行,同位角相等;∠A =∠D ;内错角相等,两直线平行;两直线平行,内错角相等.【点睛】此题主要考查平行线的判定与性质,熟练掌握,即可解题.23. 【答案】(1)30,108(2)87分,86分,86.5分(3)估计得分超过86分的有100人【分析】此题考查的是条形统计图和扇形统计图、平均数、众数、中位数,用样本估计总体;(1)根据A 组的人数除以占比求出学生数,根据B 组的人数的占比乘以︒360即可求解;(2)根据平均数众数中位数定义计算即可求解;(3)用得分超过86分的学生人数的占比乘以500,即可求解.【小问1详解】 解:1240%30人,∴本次调查了30名学生,360140%10%20%108,∴B 组扇形统计图的圆心角度数为︒108;【小问2详解】因为C 组得分按从小到大排列为:86,86, 86,87,88, 89,∴C 组得分的平均数是6878688868689871分, 众数是86分, 中位数是=+286.58687分; 【小问3详解】3050010033人, 则估计得分超过86分的有100人.24. 【答案】(1)A 品牌粽子每袋是25元,B 品牌粽子每袋是30元(2)小明最多购买B 品牌粽子10袋【分析】此题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是理解题意,正确列出方程组和不等式.(1)设A 品牌粽子每袋是x 元,B 品牌粽子每袋是y 元,根据题意建立方程组,解方程组即可得到答案; (2)设购买B 品牌粽子m 袋,则购买A 品牌的粽子为−m 18袋,根据总费用小于等于500建立不等式,解不等式即可得到答案;【小问1详解】解:设A 品牌粽子每袋是x 元,B 品牌粽子每袋是y 元,根据题意得⎩+=⎨⎧+=x y x y 3213555,解方程组得⎩=⎨⎧=y x 3025, 答:A 品牌粽子每袋是25元,B 品牌粽子每袋是30元;【小问2详解】解:设购买B 品牌粽子m 袋,则购买A 品牌的粽子为−m 18袋,总费用为n 元,根据题意得=−+n m m 251830)(,整理得=+n m 5450,∵+≤m 5450500,∴≤m 10,∴小明最多购买B 品牌粽子10袋.25. 【答案】(1)=⨯⨯+4545100252)( (2)+=++n n n 1051001252)()(,证明见解析(3)6000【分析】(1)通过观察可得第4个式子;(2)通过观察可得第n 个式子,根据完全平分公式进行换算即可证明答案;(3)利用规律逆向计算,再利用平方差公式进行计算即可.【小问1详解】解:第4个等式为:=⨯⨯+4545100252)(, 故答案为:=⨯⨯+4545100252)(; 【小问2详解】解:猜想用含n 的等式表示为:+=++n n n 1051001252)()(,证明:+n 1052)( =++n n 100100252=++n n 100252)(=++n n 100125)(,故用含n 的等式表示为:+=++n n n 1051001252)()(;【小问3详解】解:−⨯⨯+11589100252)( =−1158522=+−1158511585)()(=⨯20030=6000,故答案为:6000.【点睛】本题考查数字的变化规律,通过观察所给的式子,找到式子规律是解题的关键.26. 【答案】(1)② (2)③(3)③【分析】本题考查二元一次方程的解和解二元一次方程组,解题的关键是掌握加减消元法和代入消元法. (1)先根据表格中的值,建立关于a 、b 的二元一次方程组,解方程组得到a 、b 的值,即可求出二元一次方程,再将=x 0代入方程即可求得答案;(2)依次将三个选项与原方程组件方程组,求出方程组的解进行判断即可;(3)根据表格的数据,建立关于c 、d 的二元一次方程组,解方程组得到c 、d 的值,即可得到原方程组,再解方程组即可得到答案.【小问1详解】解:当=−x 4,=y 7时,−+=a b 479,当=x 2,=y 1时,+=a b 29,∴⎩+=⎨⎧−+=a b a b 29479 解方程组得⎩=⎨⎧=b a 33, ∴二元一次方程为:+=x y 339,即+=x y 3,当=x 0时,=y 3,故=p 3,故答案为:②;【小问2详解】解:∵+=ax by 9方程为:+=x y 3,∴①当方程为+=−x y 25时,方程组为:⎩+=−⎨⎧+=x y x y 253, 解方程组得:⎩=⎨⎧=−y x 118, ∵=−x 8不在−<<x 78范围内,故①不符合题意;③当方程为−=x y 31时,方程组为:⎩−=⎨⎧+=x y x y 313,解方程组得:⎩=⎨⎧=y x 21, ∵=x 1在−<<x 78范围内,故③符合题意;故答案为:③;【小问3详解】解:二元一次方程+=cx dy 1中,当,=−=−x y 72时,方程为−−=c d 721;当,==x y 813,方程为+=c d 8131;∴⎩+=⎨⎧−−=c d c d 8131721, 解方程组得⎩⎪=⎪⎨⎪⎪=−⎧d c 5151, 则方程+=cx dy 1为−+=x y 55111,即−+=x y 5, ∴方程组⎩+=⎨⎧+=cx dy ax by 19为:⎩−+=⎨⎧+=x y x y 53, 解方程组得⎩=⎨⎧=−y x 41, 故答案为:③.27. 【答案】(1)①见详解;②︒−α290 (2)︒−α2135【分析】本题考查三角形角平分线的性质,三角形的外角等知识点,解题的关键是三角形外角的计算. (1)①根据题意作图;②根据题意可知∠=∠PCD OCD ,进而得到∠=∠=∠ODF EDP DCP ,从而求解;(2)根据题意可得∠=︒+αPCF 90,∠=︒−=︒−︒+ααPDC 22904590,即可得到∠ODF 的度数. 【小问1详解】①根据题意作图如下: ;②∠=αPOC ,∴∠=︒−αPCO 90,∵CD 平分∠OCP ,∴∠=∠=︒−αPCD OCD 290, ⊥EF CD ,⊥CP OP ,∴∠+∠=∠+∠=︒EDP PDC PCD PDC 90,∴∠=∠=∠ODF EDP DCP ,∴∠=∠=︒−αODF PCD 290; 【小问2详解】根据题意画图可得:∠=αAOB ,⊥CP OP ,∴∠=︒+αPCF 90,∵CD 平分∠PCB ,∴∠=∠=︒+αPCD FCD 290, ∴∠=︒−=︒−︒+ααPDC 22904590, ⎝⎭ ⎪∴∠=︒+︒−=︒−⎛⎫ααODF 229045135. 28. 【答案】(1)B (2)a 2.53 (3)3,5,7【分析】本题考查了解一元一次不等式组,理解不等式组的“关联解”定义以及熟练掌握一元一次不等式组的解法是解此题的关键.(1)先求出每个不等式组的解集, 再根据不等式组的“关联解”定义判断即可;(2)先求出不等式组的解集是x a 35,求出x a 222,根据题意得出不等式组并求出即可. (3)先求出不等式组的解集是a x a 12,根据“关联解”定义得出⎩−−≤−≤⎨⎧−−≤−≤a a a a a a 1382182解出a 的范围,结合++a b c 1621010是整数即可求出结论.解:A .②①⎩>+⎨⎧+>x x x 2412, 解不等式①得:>x 1, 解不等式②得:x >4, 当=a 0时,不存在x x a 2012,B .②①⎩⎪>−⎨⎪⎧−+<x x x 21112, 解不等式①得:>−x 1, 解不等式②得:<x 2, 当=a 0,,=-x x 221112时,存在x x a 2012,C .②①⎩<−⎨⎧<+x x x x 22321 解不等式①得:<x 1, 解不等式②得:−x <2, 当存在x x a 2012, 当=a 0时,不存在x x a 2012,故选:B ;【小问2详解】 ②①⎩+≤++⎪⎨⎪−≥−⎧x a x a x x 22522231, 解不等式①得:≥−x 3, 解不等式②得:x a ≤+5, ∴不等式组的解集是x a 35, 若=−x 21,且+=x x a 212, x a 222,x a 352,a a 3225 a a 523, a 2.53,故答案为:−≤≤a 2.53;②①⎩≤+⎨⎧≥−−x x a x a 3221, 解不等式①得:≥−−x a 1, 解不等式②得:≤x a 2, ∴不等式组的解集是a x a 12, 若x a 81,且+=x x a 212,x a 382, ⎩−−≤≤⎨∴⎧−−≤≤a x a a x a 121221, ⎩−−≤−≤⎨∴⎧−−≤−≤a a aa a a 1382182, 解得:a 388,++=a b c 12,b c a 12,∴==++−+−a b c a a a 16162210101521012)(, a b c 1621010是整数,a 388,a 3,5,7. 故答案为:3,5,7.。
2024北京大兴区初一(下)期末数学试题及答案
2024北京大兴初一(下)期末数 学2024.07一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.在平面直角坐标系中,点P (﹣3,2)在 (A )第一象限(B )第二象限(C )第三象限(D )第四象限2.下列调查中,适合采用全面调查方式的是(A )了解某班学生的身高情况 (B )了解某批次汽车的抗撞击能力 (C )了解某食品厂生产食品的合格率 (D )了解永定河的水质情况 3. 4的算术平方根是(A )4± (B )4 (C )2± (D )24. 已知12x y =−⎧⎨=⎩是关于x ,y 的方程32mx y +=的解,则m 的值为(A ) 8 (B ) 8− (C ) 4 (D ) 4− 5.不等式组13x +≥的解集在数轴上表示正确的是(A )(B )(C ) (D )6.如图,在三角形ABC 中,点D ,E ,F 分别在AB BC AC ,,上,连接DE DF CD ,,,下列条件中,不能推理出AC DE ∥的是(A )EDC DCF ∠=∠ (B )DEB FCE ∠=∠(C )180DEC FCE ∠+∠=︒ (D )180FDE DEC ∠+∠=︒ 7.下列四个说法: ①若a b >,则a c b c +>+;②若a b >,则ac bc >; ③若a b >,且 c ≠0,则22a b c c>; ④若0a b c <<<,则22a c b c >. 其中说法正确的个数是 (A )1个(B )2个(C )3个(D )4个8.小兰在学习了“如果//b a ,//c a ,那么//b c .”,由此进行联想,提出了下列命题: ①对于任意实数a ,b ,c ,如果a >b ,b >c ,那么a >c ;②对于平面内的任意直线a ,b ,c ,如果a ⊥b ,b ⊥c ,那么a ⊥c ;③对于平面内的任意角α,β,γ,如果α与β互余,β与γ互余,那么α与γ互余;④对于任意图形M ,N ,P (其中图形M ,N ,P 不重合),如果M 可以平移到N ,N 可以平移到P ,那么M 可以平移到P .其中所有真命题的序号是(A )①③ (B )①④ (C )②③ (D ) ①③④ 二、填空题(本题共16分,每小题2分)9.把方程31x y +=改写成用含x 的式子表示y 的形式,则y________________.10.为了解某校学生进行体育活动的情况,从全校 2800名学生中随机抽取了 100名学生,调查他们平均每天进行体育活动的时间,在这次调查中,样本容量是 .11.已知方程()130m m x y +−=是关于x ,y 的二元一次方程,则m =___________.12这三个数中, 是该不等式组的解.13.《孙子算经》是中国古代重要的数学著作.书中记载了这样一个问题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余 4.5尺;将绳子对折再量木条,木条剩余 1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为 .14.已知关于x 的不等式组0213x m x −<⎧⎨+⎩≥有解,则m 的取值范围是 .15.如图,AOB ∠的一边OA 是平面镜,50AOB ∠=︒,点C 是OB 上一点,一束光线从点C 射出,经过平面镜OA 上的点D 反射后沿射线DE 射出,已知ODC ADE =∠∠,要使反射光线DE BO ∥,则DCB ∠= °.16.两个数比较大小,可以通过它们的差来判断,例如:比较m 和n 的大小,我们可以这样判断,当0m n −>时,一定有m >n ;当0m n −=时,一定有m n =;当0m n −<时,一定有m n <.请你根据上述方法判断下列各式. (1)已知42Mab ,33Nab ,当a b >时,一定有M ______N (填“>”,“=” 或“<”);(2)已知11132M a b =−−,1223N b a =−,当M N >时,一定有 a ____b (填“>”,“=” 或“<”).三、解答题(本题共68分,第17-22题,每题5分,第23 -26题6分,第27-28题,每题7分) 解答应写出文字说明、演算步骤或证明过程. 17()202421+−−−.18.解不等式2123x x −≥,并在数轴上表示它的解集.19.解方程组:2310x y x y −=⎧⎨+=⎩,.20.解不等式组:235412x x x x +⎧>⎪⎨⎪−<+⎩,.21.如图,点B 是射线AC 上一点,射线AC 的端点A 在直线DE 上,按要求画图并填空: (1)过点B 做直线l 平行直线DE ;(2)用量角器做BAE ∠的角平分线,交直线l 于点F ; (3)做射线AG ⊥AF ,交直线l 于点G ;(4)若FBC α∠=,则BFA ∠= (用含α的式子表示); (5)请用等式写出BAF DAG ∠∠与的数量关系 .22.我们已经在小学通过剪拼的方法,知道“三角形内角和等于180°”这一结论,但这种实验得到的结论仍需要严格的证明,小明同学利用所学的平行线的相关知识,采用两种方法,通过添加辅助线进行证明,请你选择其中一种方法........完成证明.23.根据《北京市教育委员会关于印发义务教育体育与健康考核评价方案的通知》要求,自2024年起,本市初三年级体育与健康考核评价现场考试内容进行调整,其中运动能力Ⅰ中新增:乒乓球—左推右攻发球、羽毛球—正反手挑球和发高远球两项.某学校为此在体育大课间中专门开设乒乓球和羽毛球课程,需要购买相应的体育器材上课使用,其中羽毛球拍25套,乒乓球拍50套,共花费4500元,已知一套羽毛球拍的单价比一套乒乓球拍的单价高30元.(1)求羽毛球拍和乒乓球拍一套的单价各是多少元?(2)根据需要,学校决定再次购进乒乓球拍和羽毛球拍共50套,恰逢体育用品商店搞“优惠促销”活动,羽毛球拍一套单价打8折,乒乓球拍一套单价优惠4元.若此次学校购买两种球拍的总费用不超过2750元,且购买羽毛球拍数量不少于23套,请通过计算,设计一种符合购买要求且节约资金的购买方案.24.某校组织全体学生参加“网络安全知识”竞赛,为了解学生们在本次竞赛中的成绩,调查小组从中选取若干名学生的竞赛成绩(百分制,成绩取整数)作为样本,进行了抽样调查,下面是对样本数据进行了整理和描述后得到的部分信息:a.抽取的学生成绩的频数分布表:c .抽取的学生成绩的扇形统计图:根据以上信息,回答下列问题:(1)写出频数分布表中的数值a =______,b = _______; (2)补全频数分布直方图;(3)扇形统计图中,竞赛成绩为C :7080x ≤<的扇形的圆心角是 °; (4)如果该校共有学生400人,估计成绩在7080x ≤<之间的学生有 人. 25.如图,点E ,G 在线段AB 上,点F 在线段CD 上,EF DG ∥,1=2∠∠. (1)判断AB 与CD 的位置关系,并证明;(2)若=80A ∠︒,BC 平分ACD ∠,1∠与BCF ∠互余,求2∠的度数.26.如图,网格中标有面积为2的长方形ABCD .(1)通过裁剪、拼接长方形ABCD ,可以拼出一个面积为2的正方形,请以点D 为顶点,在图中画出一个满足条件的正方形,则此正方形的边长为 ;(2)请在图中建立适当的平面直角坐标系xOy ,使点C 位于(0,1)−,线段AB 的中点E 位于(1,0)−. ①请选用合适的工具,在平面直角坐标系xOy中描出点(01F ,;②若点G 的纵坐标为1−,连接EC ,三角形ECG 的面积是1,直接写出点G 的坐标.27.如图,已知AB //CD ,∠BGH =∠EFC ,点P 为直线CD 上一动点.(1)求证:EF//GH ;(2)作射线HM 交直线CD 于点M ,交直线EF 于点N ,且GHM PHM ∠=∠.①当点P 运动到如图1所示的位置时,用等式表示∠1,∠2与∠3之间的数量关系,并证明;②当点P 运动到如图2所示的位置时,补全图形,直接用等式写出∠HPD 、∠MFE 与∠ENM 之间的数量关系.28.在平面直角坐标系xOy 中,对于图形M 与图形N 给出如下定义:点P 为图形M 上任意一点,点P 与图形N 上的所有点的距离的最小值为k ,将点P 延x 轴正方向平移2k 个单位长度得到点'P ,称点'P 是点P 关于图形N 的“关联点”,图形M 上所有点的“关联点”组成的新图形记为'M ,称'M 是图形M 关于图形N 的“相关图形”.(1)已知(20)A −,,(01)B ,,(0)C t ,,其中1t ≠. ①若0t <,点A 关于线段BC 的“关联点”'A 的坐标是 ;②若1t >,请用尺规在图中画出点A 关于线段BC 的“关联点”'A (保留作图痕迹);Cy(2)如图,线段DE关于图形N的“相关图形”如图所示(D'F'为曲线且除F'外,其余点的横坐标大于6),如果图形N上的点都在同一条直线上,请在图中画出图形N.D'F'大兴区2023~2024学年度第二学期期末检测初一数学参考答案及评分标准一、选择题(本题共16分,每小题2分) 题号 1 2 3 4 5 6 7 8 答案 BDACDDCB二、填空题(本题共16分,每小题2分) 9.13y x =- 10. 10011. 112.513. 4.5112x y x y -=-⎧⎪⎨-=⎪⎩ 14.32m <-15. 10016.(1) > (2) >三、解答题(本题共68分,第17-22题,每题5分,第23-26题,每题6分,第27-28题,每题7分)17.解:()2024316+281-+---()4221=++--……………………………………………………………………………………4分 =3……………………………………………………………………………………………………5分18.解:2123x x -≥()3221x x -≥……………………………………………………………………………………1分 342x x -≥………………………………………………………………………………………2分 2x -≥- …………………………………………………………………………………………3分 2x ≤.…………………………………………………………………………………………4分–1–2–3–4–512345……………………………………………5分19.解:2310x y x y -=⎧⎨+=⎩①②由①+②得:412x =3x =………………………………………………………………………………………2分 把3x =代入①中得:1y =………………………………………………………………………………4分∴31x y =⎧⎨=⎩是原方程组的解. ……………………………………………………………………………5分20.解:235412x x x x +⎧⎪⎨⎪-+⎩>①<② 由①得:1x > ……………………………………………………………………………………………2分 由②得:4x < ……………………………………………………………………………………………4分 ∴14x <<是不等式组的解集.…………………………………………………………………………5分 21.解:lG FBA D EC(1)—(3) ……………………………………………………………………………………………3分 (4)12α;………………………………………………………………………………………………4分(5)∠BAF +∠DAG=90°………………………………………………………………………………5分22.答:选择方法一. 证明:DE BC ∥, DAB B ∴∠=∠,EAC C ∠=∠.……………………………………………………………………………………………3分 180DAB BAC EAC ∠+∠+∠=︒,180BAC B C ∴∠+∠+∠=︒.……………………………………………………………………………5分选择方法二. 证明:AB CD ∥,A ACD ∴∠=∠,B DCE ∠=∠.…………………………………………………………………………………………3分 180ACB ACD DCE ∠+∠+∠=︒,180A B ACB ∴∠+∠+∠=︒.……………………………………………………………………………5分23.解:(1)设羽毛球拍一套价格为x 元,乒乓球拍一套价格为y 元.∴3025504500x y x y -=⎧⎨+=⎩解得:8050x y =⎧⎨=⎩.∴羽毛球拍一套80元,乒乓球拍一套50元. …………………………………………………………3分 (2)设购买羽毛球拍m 套,则购买乒乓球拍()50m -套. ()()8080%+50-450-2750m m ⨯≤25m ≤∵羽毛球拍数量不少于23套, ∴2325m ≤≤.方案一:当23m =时,羽毛球23套,乒乓球27套; 方案二:当24m =时,羽毛球24套,乒乓球26套;方案三:当25m =时, 羽毛球25套,乒乓球25套. ………………………………………………6分24.(1)m =4,n =16;……………………………………………………………………………… 2分 (2)………………………………………………………… 4分(3)108;……………………………………………………………………………………………… 5分 (4)120.……………………………………………………………………………………………… 6分25.(1)答:AB CD ∥. ………………………………………1分 证明:EF DG ∥, 2D ∴∠=∠. 12∠=∠, 1D ∴∠=∠.AB CD ∴∥.………………………………………………………………………………………………3分(2)解:AB CD ∥,180A ACD ∴∠+∠=︒. 80A ∠=︒, 100ACD ∴∠=︒.CB ACD ∠平分, 50ACB FCB ∴∠=∠=︒.1BCF ∠∠与互余, 190BCF ∴∠+∠=︒. 140∴∠=︒.240∴∠=︒.……………………………………………………………………………………………6分21G FBCADE26.解:(1)如图,正方形的边长为2;DB A C答案不唯一.……………………………………………………………………………………………2分 (2)①如图,xyFD BA CO② (2,1)(2,1)G ---或.…………………………………………………………………………………6分27.(1)α;……………………………………………………………………………………………2分 (2)①2123∠=∠+∠;………………………………………………………………………………3分 证明:过点H 作HK //AB ,交EF 于点K . AB CD ∥,2GEF ∴∠=∠. EF GH ∥,BGH GEF ∴∠=∠. 2BGH ∴∠=∠.AB HK ∥, BGH GHK ∴∠=∠. AB CD ∥,321KN MAEFGH P BDCCD HK ∴∥. 3KHP ∴∠=∠. 3GHP BGH ∴∠=∠+∠. EF GH ∥, 1GHM ∴∠=∠. GHM PHM ∠=∠, 21GHP ∴∠=∠.2123∴∠=∠+∠.…………………………………………………………………………………………5分②2180ENM HPD MFE ∠+∠-∠=︒. …………………………………………………………………7分28.(1)①点A ’(2,0) ;.………………………………………………………………………………1分 ②xy–1–2–3–4–512345–1–2–3123456A'AO.………………………………………………………4分(2)x y –1–2–3–4–5–6–7123456789–1–2–3123456G'H'F'G E'ED'FH OD. ………………………………………7分。
2024北京延庆区初一(下)期末数学试题及答案
2024北京延庆初一(下)期末数 学2024.07考生须知 1.本试卷共6页,共三道大题,28道小题,满分100分,考试时间120分钟. 2.在试卷和答题卡上正确填写学校名称、姓名和考号. 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色签字笔作答.一、选择题:(共16分,每小题2分)第1--8题均有四个选项,符合题意的选项只有一个.1.碳纳米管是一维纳米材料,六边形结构连接完美,具有许多特殊的力学、电学和化学性能.中国科学院的科学家成功地研制出直径0.5纳米的碳纳米管,0.5纳米相当于0.0000005毫米,将0.0000005用科学记数法可以表示为(A) 5×10-6 (B) 5×10-7 (C) 0.5×10-6 (D) 0.5×10-7 2.不等式x -1≥0的解集在数轴上表示为(A) (B) (C) (D)3.以下四个有关调查的说法中,正确的是(A)为了解妫河的水质情况,选择抽样调查; (B)为了解某班学生身高情况,选择抽样调查;(C)为了解某种型号的图形计算器的使用寿命,选择全面调查; (D)为了解某种奶制品中蛋白质的含量,选择全面调查. 4.若m >n ,则下列结论正确的是 (A) m +3>n +3 (B) m -4<n -4 (C)-5m >-5n(D) 6m <6n5.下列式子从左到右变形是因式分解的是 (A) x 2+x +1=x (x +1)+1 (B) (x +5)(x -5)=x 2-25 (C) x 2-9=(x -3)(x +3) (D) (x +4)2=x 2+8x +16 6. 下列命题中是假命题的是(A) 对顶角相等; (B) 平行于同一条直线的两条直线互相平行;(C) 同旁内角互补; (D) 过直线外一点有且只有一条直线与这条直线平行. 7.下列运算正确的是(A) a 2+a 3=a 5 (B) a 2 • a 3=a5 (C) (a 2)3=a 5 (D) (-2a )3=2a 3010101018.如图,AB ∥DC ,AD ∥BC ,AC ,BD 相交于点O ,下列结论:①∠DAC =∠BCA ; ②∠DAC =∠DBC ; ③∠AOB =∠COD ; ④∠ABC +∠BCD =180°. 其中正确的个数有(A) 1个 (B) 2个(C) 3个 (D) 4个二、填空题 (共16分,每小题2分) 9.计算:23-= .10.因式分解:x 2-4x +4= .11.如图,直线AB ,CD 相交于点O ,OE ⊥AB 于点O ,如果∠COE =40°,那么∠BOD 的度数是 °.12.如果=12x y -⎧⎨=⎩是关于x ,y 的二元一次方程3x +ay =5的解,那么a 的值为 .13.如果关于x 的方程3x -m =4的解为负数,那么m 的取值范围是 .14.已知二元一次方程组2124x y x y -=-⎧⎨-=⎩,那么x -y 的值为 .15.下表是关于x ,y 的二元一次方程y=kx+b 的部分解,那么关于x 的不等式kx+b >0的解集为 . 16.下表是某面包店的价目表: 面包品种 全麦面包 芒果面包 手撕面包 切片面包 奶香面包 单 价5元6元8元11元12元小明原本拿了4个面包去结账,结账时收银员告诉小明,店内有优惠活动,优惠方式为每买5个面包,其中1个价格最低的面包就免费.因此,小明又去拿了一个面包,这次,小明选择了一个手撕面包.(1)如果小明买的5个面包均不相同,那么小明需要支付 元;(2)如果小明原本的结账金额为n 元,那么小明后来的结账金额为 元.(用含n 的式子表示) 三、解答题(共68分,17-18题,每小题6分;19题10分;20-22题,每小题5分;23-24题,每小题4分;25-26题,每小题5分;27题7分;28题6分) 17.因式分解:(1)3a 2x -6axy +3a ;(2)2x 2-32.18.计算:(1)(2m )2+ m (2m -1)+ (m +2)(m -3);(2)(28a 3b 4+21a 2b 3-14ab 2)÷7ab 2.x … -10 1 2 … y=kx+by…42-2…E OD CBAODCBA19.解方程组:(1)(2)123 2.x y x y -=⎧⎨+=⎩,20.解不等式:2(3x -1)≤x +3,并把它的解集在数轴上表示出来.21.解不等式组:并写出它的所有整数解.22.已知x 2-2x -5=0,求代数式(x -1)2+x (x -4)+ (x +2)(x -2)的值.23.完成下面的证明.已知:如图,OC 是∠AOB 的角平分线,点D 在射线OA 上,点E 在射线OC 上,且∠AOC =∠DEO . 求证: DE ∥OB .证明:∵OC 是∠AOB 的角平分线,∴∠AOC= ① ( ② ).∵∠AOC =∠DEO , ∴∠BOC = ③ .∴DE ∥OB ( ④ ).24.已知:如图,点D ,点E 分别在三角形ABC 的边AB ,AC 上,连接DE ,∠CBD +∠BDE =180°,直线MN 经过点A ,且∠AED =∠EAN . 求证:MN ∥BC .25.学校和博物馆相距20千米,小明与小强分别从学校和博物馆出发,相向而行.如果小明比小强早出发30分钟,那么在小强出发后2小时,他们相遇;如果他们同时出发,那么1小时后两人还相距11千米.求小明、小强每小时各走多少千米.26.在国际数学日到来之际,某校举办了“数学节”活动.通过数学素养竞赛、数学创意展示等活动,展现数学魅力、传播数学文化.为了解学生数学素养竞赛的答题情况,现从七年级随机抽取了20名学生成⎩⎨⎧=+-=.,542y x x y ⎪⎩⎪⎨⎧-<-+<-.,312153x x x x NMEDCBAOEDCBA绩(单位:分),并对数据进行整理、描述和分析.过程如下: a .20名学生的数学素养竞赛分数: 66 70 71 78 71 78 75 78 58 80 63 90 80 85 80 89 85 86 80 87 b .整理、描述数据:分数 50≤x <6060≤x <7070≤x <8080≤x <9090≤x <100人数12m91c .20名学生的数学素养竞赛分数扇形统计图:d .20名学生的数学素养竞赛分数的平均数、中位数和众数:平均数 中位数 众数 77.5nt请根据所给信息,解答下列问题: (1)m = ,n = ,t = ;(2)在扇形统计图中,“60≤x <70”所在的扇形的圆心角等于 度;(3)若该校七年级共有200名学生参加了数学素养竞赛,且成绩不低于80分的学生可获得“数学之星”的称号,请你估计该校七年级获得“数学之星”称号的学生 有多少人?27.如图,点F 在∠ABC 的内部,点D 在射线BA 上,点E 在射线BC 上,连接DF ,EF ,∠ADF =∠FEC ,∠FEC =∠B .(1)求证:DF ∥BC ;(2)过点D 作DM ⊥AB 交射线BC 于点M ,连接MF ,请你依题意在图2中补全图形,用等式表示∠DMF与∠MFE 的数量关系,并证明.图1 图2FEDCBAFEDCBA50≤x <6060≤x <7070≤x <8080≤x <9090≤x <10045%35%28.我们把关于x,y的二元一次方程ax+by=1,叫作数对P(a,b)的“伴随方程”;若x cy d=⎧⎨=⎩是关于x,y的二元一次方程ax+by=1的一个解,则称数对Q(c,d)是数对P(a,b)的“伴随数对”.(1)已知数对A(2,3),在数对B(1,1),C(2,1),D(-4,3),E(2,-1)中,是数对A(2,3)的“伴随数对”的是;(2)若数对F(4,-1)是数对M(a,b+2)和数对N(a-1,3b)的“伴随数对”,求数对G(a,b)的“伴随方程”;(3)若T1,T2,T3,…,T n是n个不同的数对,满足前一个数对是后面所有数对的“伴随数对”,且n的最大值是t,如果关于x的不等式组2(5)101x mx t-+≤⎧⎨->⎩恰好有2024个整数解,直接写出m的取值范围.参考答案一、选择题:(共8个小题,每小题2分,共16分)BBAA CCBC二、填空题:(共8个小题,每小题2分,共16分) 9.1910.(x -2)2 11.50 12.413.m <-414.115. x <116. 37, n 或 (n+2)或(n+3)三、解答题17. (本小题满分6分)解:(1)原式=3a (ax -2xy +1);(2)原式=2(x 2-16)=2(x +4)(x -4).18. (本小题满分6分)解:(1)原式=4m 2+2m 2-m+m 2-m -6=7m 2-2m -6;(2)原式=4a 2b 2+3ab -2. 19. (本小题满分10分) (1)解:把①代入②,得x +2x -4 =5. 3x =9. x =3. 把x =3代入①,得y =2 .所以原方程组的解为(2)123 2.x y x y -=⎧⎨+=⎩,①②解:①×3,得3x -3y =3. ③②+③,得 5x =5, x =1.把x =1代入①,y=0. 所以方程组的解为10.x y =⎧⎨=⎩,20. (本小题满分5分)⎩⎨⎧=+-=②①542y x x y ⎩⎨⎧==.,23y x ……………………6分……………………6分……………………5分……………………5分解:.. . ..∴原不等式的解集为.21. (本小题满分5分) 解:由①得,.. .由②得,.... ∴不等式组的解集是:. ∴不等式组的整数解是: ,,. 22. (本小题满分5分)解:(x -1)2+x (x -4)+ (x +2)(x -2) =x 2-2x +1+ x 2-4x +x 2-4 =3x 2-6x -3. ∵x 2-2x -5=0, ∴x 2-2x =5. ∴3x 2-6x =15. ∴原式=15-3=12. 23. (本小题满分4分) ① ∠BOC ; ② 角平分线定义; ③ ∠DEO ;④ 内错角相等,两直线平行. 24. (本小题满分4分)3)13(2+≤-x x 326+≤-x x 326+≤-x x 55≤x 1≤x 1≤x 315+<-x x 44<-x 1->x 163-<-x x 163-<-x x 52<x 25<x 251<<-x 012……………………5分……………………4分……………………5分……………………5分证明:∵∠CBD+∠BDE=180°,∴DE∥BC .∵∠AED=∠EAN.∴DE∥MN.∴MN∥BC.25. (本小题满分5分)解:设小明每小时走x千米,小强每小时走y千米,根据题意列方程组,得2.5220 20()11x yx y+=⎧⎨-+=⎩解这个方程组,得45 xy=⎧⎨=⎩答:小明每小时走4千米,小强每小时走5千米.26. (本小题满分5分)(1)m=7,n=79,t=80;(2)36度;(3)100人.27. (本小题满分7分)(1)证明:∵∠ADF=∠FEC,∠FEC=∠B,∴∠ADF=∠B.∴DF∥BC.(2)依题意补全图形.数量关系:∠DMF=∠MFE+90°.证明:过点M作MN∥AB交DF于点N.∴∠DMN=∠BDM.∵DM⊥AB,∴∠BDM=90°.∴∠DMN=90°.∵∠FEC=∠B,∴EF∥AB.∴MN∥EF.∴∠MFE=∠FMN.∴∠DMF=∠MFE+90°.28. (本小题满分6分)(1)D(-4,3),E(2,-1);(2)由题意得:……………………5分……………………3分NMEDCBA……………………5分……………………7分……………………2分NMFEDCBA……………………4分4(2)14(1)31a b a b -+=⎧⎨--=⎩解方程组得:121a b ⎧=⎪⎨⎪=-⎩ 所以数对G (a ,b )的“伴随方程”是12x -y =1. (3)-4038<m ≤-4036.……………………4分……………………6分。
2023-2024学年全国初一下数学人教版期末试卷(含答案解析)
专业课原理概述部分一、选择题:5道(每题1分,共5分)1. 下列哪个选项是正确的?A. 数学是研究现实世界的数量关系和空间形式的科学。
B. 数学是研究人类思维的学科。
C. 数学是研究艺术的学科。
D. 数学是研究语言的学科。
2. 下列哪个选项是错误的?A. 数学起源于古埃及和古巴比伦。
B. 数学的发展经历了几个阶段。
C. 数学在现代社会中没有任何应用。
D. 数学是一门不断发展的学科。
3. 下列哪个选项是正确的?A. 数学的原理和方法是固定的,不会改变。
B. 数学的原理和方法是不断变化的。
C. 数学的原理和方法只适用于数学领域。
D. 数学的原理和方法只适用于科学研究。
4. 下列哪个选项是错误的?A. 数学是一门抽象的学科。
B. 数学是一门具体的学科。
C. 数学是一门理论性强的学科。
D. 数学是一门实践性强的学科。
5. 下列哪个选项是正确的?A. 数学在解决实际问题时没有作用。
B. 数学在解决实际问题时起着重要作用。
C. 数学在解决实际问题时只能起到辅助作用。
D. 数学在解决实际问题时没有实际应用。
二、判断题:5道(每题1分,共5分)1. 数学是一门研究数量关系和空间形式的科学。
(√)2. 数学的发展经历了几个阶段,包括古埃及数学、古希腊数学等。
(√)3. 数学的原理和方法是固定的,不会改变。
(×)4. 数学在现代社会中没有任何应用。
(×)5. 数学是一门不断发展的学科,新的数学理论和方法不断涌现。
(√)三、填空题:5道(每题1分,共5分)1. 数学起源于______和______。
2. 数学的发展经历了几个阶段,包括______、______等。
3. 数学的原理和方法是______的,不会改变。
4. 数学在现代社会中有着广泛的______。
5. 数学是一门______的学科,新的数学理论和方法不断涌现。
四、简答题:5道(每题2分,共10分)1. 简述数学的起源和发展过程。
2. 简述数学在现代社会中的应用。
2024年全新七年级数学下册期末试卷及答案(仁爱版)
2024年全新七年级数学下册期末试卷及答案(仁爱版)一、选择题(每题1分,共5分)1. 若一个数的立方根是3,则这个数是()A. 9B. 27C. 81D. 2432. 下列哪个数是负数?()A. 2B. 0C. 1/2D. 23. 若一个等腰三角形的底边长为8cm,腰长为5cm,则这个三角形的周长是()A. 16cmB. 18cmC. 20cmD. 22cm4. 若一个圆的半径是5cm,则这个圆的面积是()A. 25πcm²B. 50πcm²C. 100πcm²D. 200πcm²5. 若一个长方体的长、宽、高分别为4cm、3cm、2cm,则这个长方体的体积是()A. 24cm³B. 36cm³C. 48cm³D. 64cm³二、判断题(每题1分,共5分)1. 任何数的平方都是正数。
()2. 若两个数的和为正数,则这两个数中必有一个是正数。
()3. 一个等腰三角形的底边长等于腰长。
()4. 一个圆的直径等于半径的两倍。
()5. 一个长方体的体积等于长、宽、高的乘积。
()三、填空题(每题1分,共5分)1. 一个数的立方根是2,则这个数是______。
2. 若一个数的平方根是5,则这个数是______。
3. 若一个等腰三角形的底边长为10cm,腰长为6cm,则这个三角形的周长是______cm。
4. 若一个圆的半径是6cm,则这个圆的面积是______cm²。
5. 若一个长方体的长、宽、高分别为6cm、4cm、3cm,则这个长方体的体积是______cm³。
四、简答题(每题2分,共10分)1. 简述有理数的加法法则。
2. 简述等腰三角形的性质。
3. 简述圆的面积公式。
4. 简述长方体的体积公式。
5. 简述因式分解的概念。
五、应用题(每题2分,共10分)1. 若一个数的立方根是3,求这个数的平方根。
2. 若一个等腰三角形的底边长为8cm,腰长为5cm,求这个三角形的面积。
2024年最新人教版七年级数学(下册)期末考卷及答案(各版本)
2024年最新人教版七年级数学(下册)期末考卷及答案(各版本)一、选择题:每题1分,共5分1. 一个等差数列的前三项分别是2,5,8,那么第10项是______。
A. 29B. 30C. 31D. 322. 如果一个三角形的两边分别是8和15,那么第三边的长度可能是______。
A. 6B. 7C. 17D. 233. 下列哪一个数是有理数______?A. √2B. √3C. √5D. √94. 下列哪一个比例是正确的______?A. 3 : 4 = 6 : 8B. 4 : 5 = 8 : 9C. 5 : 6 = 10 : 12D.6 :7 = 12 : 145. 下列哪一个图形是平行四边形______?A. 矩形B. 正方形C. 梯形D.菱形二、判断题:每题1分,共5分1. 任何两个奇数之和都是偶数。
()2. 任何两个有理数相乘都是无理数。
()3. 一个等边三角形的三个角都是60度。
()4. 两个锐角之和一定大于90度。
()5. 任何两个等腰三角形的底角相等。
()三、填空题:每题1分,共5分1. 一个等差数列的第5项是15,第10项是______。
2. 如果一个三角形的两边分别是5和12,那么第三边的长度可能是______。
3. 下列哪一个数是无理数______。
4. 如果一个比例是3 : 4 = 6 : 8,那么比例的外项是______。
5. 下列哪一个图形是矩形______。
四、简答题:每题2分,共10分1. 简述等差数列的定义和通项公式。
2. 简述勾股定理及其应用。
3. 简述有理数的定义和性质。
4. 简述平行四边形的性质和判定。
5. 简述等边三角形的性质和判定。
五、应用题:每题2分,共10分1. 一个等差数列的前三项分别是2,5,8,求第10项。
2. 如果一个三角形的两边分别是8和15,那么第三边的长度可能是多少?3. 下列哪一个数是有理数?4. 下列哪一个比例是正确的?5. 下列哪一个图形是平行四边形?六、分析题:每题5分,共10分1. 分析并证明等差数列的前n项和公式。
七年级(下)期末数学试卷(含答案)
七年级(下)期末数学试卷(解析版)一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.根据下列表述,能确定位置的是()A.东经118°,北纬40°B.江东大桥南C.北偏东30°D.某电影院第2排2.为了了解某校初三年级400名学生的体重情况,从中抽查了50名学生的体重进行统计分析,在这个问题中,总体是()A.400名学生的体重B.被抽取的50名学生C.400名学生D.被抽取的50名学生的体重3.在平面直角坐标系中,点P(3,﹣x2﹣1)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0 B.a<0 C.a>﹣1 D.a<﹣15.若x、y满足方程组,则x﹣y的值等于()A.﹣1 B.1 C.2 D.36.如图:AB∥CD,直线MN与AB交于E,过点E作直线HE⊥MN,∠1=130°,则∠2等于()A.50°B.40°C.30°D.60°7.下列选项中正确的是()A.27的立方根是±3 B.的平方根是±4C.9的算术平方根是3 D.立方根等于平方根的数是18.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%、若设甲、乙两种商品原来的单价分别为x元、y元,则下列方程组正确的是()A.B.C.D.9.如图,木工师傅在一块木板上画两条平行线,方法是:用角尺画木板边缘的两条垂线,这样画的理由有下列4种说法:其中正确的是()①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平面内垂直于同一直线的两条直线平行.A.①②③ B.①②④ C.①③④ D.①③10.若关于x的一元一次不等式组有解,则m的取值范围为()A. B.m≤C.D.m≤二、填空题:本大题共5小题,每小题3分,共15分,把答案填在题中横线上.11.若|x+3|+=0,则x y的值为.12.已知关于x的不等式x﹣a<1的解集如图所示,则a的值为.13.若方程4x m﹣n﹣5y m+n=6是二元一次方程,则m=,n=.14.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=6,BC=9,DH=2,平移距离为3,则阴影部分的面积是.15.在平面直角坐标系中,点A1(1,2),A2(2,5),A3(3,10),A4(4,17),…,用你发现的规律确定点A n的坐标为.三、解答题:本大题共7小题,共55分,解答应写出证明过程或演算步骤.16.(1)解方程组:;(2)解不等式组:.17.如图,已知:AD⊥BC于D,EG⊥BC于G,∠E=∠1.求证:AD平分∠BAC.下面是部分推理过程,请你将其补充完整:∵AD⊥BC于D,EG⊥BC于G (已知)∴∠ADC=∠EGC=90°∴AD∥EG.∴∠1=∠2.=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3.∴AD平分∠BAC.18.甲乙两人解方程组.由于甲看错了方程①中的m的值,得到方程组的解为,乙看错了方程②中的n的值,得到方程组的解为,试求m2+n2+mn 的值.19.某市球类运动协会为了筹备一次大型体育活动,购进了一定数量的体育器材,器材管理员对购买的部分器材进行了统计,图表和图是器材管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:频率分布表器材种类频数频率排球20乒乓球拍50 0.50篮球25 0.25足球合计 1(1)填充频率分布表中的空格.(2)在图中,将表示“排球”和“足球”的部分补充完整.(3)若该协会购买这批体育器材时,篮球和足球一共花去950元,且足球每个的价格比篮球多10元,现根据筹备实际需要,准备再采购篮球和足球这两种球共10个(两种球的个数都不能为0),计划资金不超过320元,试问该协会有哪几种购买方案?20.某中学计划从办公用品公司购买A,B两种型号的小黑板.经洽谈,购买一块A型小黑板比购买一块B型小黑板多用20元,且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需多少元.(2)根据该中学实际情况,需从公司购买A,B两种型号的小黑板共60块,要求购买A,B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量不小于购买B型小黑板数量的.则该中学从公司购买A,B两种型号的小黑板有哪几种方案?哪种方案的总费用最低?21.我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3;用<a>表示大于a的最小整数,例如:<2.5>=3,<4>=5,<﹣1.5>=﹣1.解决下列问题:(1)[﹣4.5]=,<3.5>=.(2)若[x]=2,则x的取值范围是;若<y>=﹣1,则y的取值范围是.(3)已知x,y满足方程组,求x,y的取值范围.22.如图,已知直线AC∥BD,直线AB、CD不平行,点P在直线AB上,且和点A、B 不重合.(1)如图①,当点P在线段AB上时,若∠PAC=20°,∠PDB=30°,求∠CPD的度数;(2)当点P在A、B两点之间运动时,∠PCA、∠PDB、∠CPD之间满足什么样的等量关系?(直接写出答案)(3)如图②,当点P在线段AB延长线运动时,∠PCA、∠PDB、∠CPD之间满足什么样的等量关系?并说明理由.参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.根据下列表述,能确定位置的是()A.东经118°,北纬40°B.江东大桥南C.北偏东30°D.某电影院第2排【分析】根据在平面内,要有两个有序数据才能清楚地表示出一个点的位置,即可得答案.【解答】解:在平面内,点的位置是由一对有序实数确定的,只有A能确定一个位置,故选A.【点评】本题考查了在平面内,如何表示一个点的位置的知识点.2.为了了解某校初三年级400名学生的体重情况,从中抽查了50名学生的体重进行统计分析,在这个问题中,总体是()A.400名学生的体重B.被抽取的50名学生C.400名学生D.被抽取的50名学生的体重【分析】本题考查的是确定总体.解此类题需要注意“考查对象实际应是表示事物某一特征的数据,而非考查的事物.”.我们在区分总体、个体、样本、样本容量这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本.【解答】解:本题考查的对象是某校初三年级400名学生的体重情况,故总体是400名学生的体重.故选:A.【点评】解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.3.在平面直角坐标系中,点P(3,﹣x2﹣1)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】根据非负数的性质判断出点P的纵坐标是负数,再根据各象限内点的坐标特征解答.【解答】解:∵﹣x2﹣1≤﹣1,∴点P(3,﹣x2﹣1)所在的象限是第四象限.故选D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0 B.a<0 C.a>﹣1 D.a<﹣1【分析】本题可对a>﹣1,与a<﹣1的情况进行讨论.不等式两边同时除以一个正数不等号方向不变,同时除以一个负数不等号方向改变,据此可解本题.【解答】解:(1)当a>﹣1时,原不等式变形为:x>1;(2)当a<﹣1时,原不等式变形为:x<1.故选:D.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意同除a+1时是否要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式,不等号的方向不变.在不等式的两边同时乘以或除以同一个正数,不等号的方向不变;在不等式的两边同时乘以或除以同一个负数,不等号的方向改变.5.若x、y满足方程组,则x﹣y的值等于()A.﹣1 B.1 C.2 D.3【分析】方程组两方程相减即可求出x﹣y的值.【解答】解:,②﹣①得:2x﹣2y=﹣2,则x﹣y=﹣1,故选:A.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.6.如图:AB∥CD,直线MN与AB交于E,过点E作直线HE⊥MN,∠1=130°,则∠2等于()A.50°B.40°C.30°D.60°【分析】先根据平行线的性质及对顶角相等求出∠AEM的度数,再根据垂直的性质求出∠2的度数即可.【解答】解:∵∠1=130°,∴∠3=∠1=130°,∵AB∥CD,∴∠3=∠AEM,∵HE⊥MN,∴∠HEM=90°,∴∠2=∠3﹣∠HEM=130°﹣90°=40°.故选B.【点评】本题涉及到的知识点为:(1)对顶角相等;(2)两直线平行,同位角相等;(3)垂线的定义.7.下列选项中正确的是()A.27的立方根是±3 B.的平方根是±4C.9的算术平方根是3 D.立方根等于平方根的数是1【分析】A、根据立方根的即可判定;B、根据算术平方根、平方根的定义即可判定;C、根据算术平方根的定义即可判定;D、根据平方根、立方根的定义求解即可判定.【解答】解:A、27的立方根是3,故选项错误;B、的平方根是±2,故选项错误;C、9的算术平方根是3,故选项正确;D、立方根等于平方根的数是1和0,故选项错误.故选C.【点评】本题主要考查了平方根和立方根的性质,并利用此性质解题.平方根的被开数不能是负数,开方的结果必须是非负数;立方根的符号与被开立方的数的符号相同.要注意一个正数的平方根有两个,它们互为相反数.8.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%、若设甲、乙两种商品原来的单价分别为x元、y元,则下列方程组正确的是()A.B.C.D.【分析】如果设甲商品原来的单价是x元,乙商品原来的单价是y元,那么根据“甲、乙两种商品原来的单价和为100元”可得出方程为x+y=100;根据“甲商品降价10%,乙商品提价40%,调价后,两种商品的单价之和比原来的单价之和提高了20%”,可得出方程为x(1﹣10%)+y(1+40%)=100(1+20%).【解答】解:设甲商品原来的单价是x元,乙商品原来的单价是y元.根据题意列方程组:.故选:C.【点评】找到两个等量关系是解决本题的关键,还需注意相对应的原价及相应的百分比得到的新价格.9.如图,木工师傅在一块木板上画两条平行线,方法是:用角尺画木板边缘的两条垂线,这样画的理由有下列4种说法:其中正确的是()①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平面内垂直于同一直线的两条直线平行.A.①②③ B.①②④ C.①③④ D.①③【分析】利用同位角相等(都等于90°),同旁内角互补,两条直线平行,或同一平面内,垂直于同一条直线的两条直线平行作答.【解答】解:由图可知,用角尺画木板边缘的两条垂线,这样画的理由:①同位角相等,两直线平行;③同旁内角互补,两直线平行;④平面内垂直于同一直线的两条直线平行.故选C.【点评】本题考查平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;两条直线都和第三条直线平行,那么这两条直线平行;在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行.10.若关于x的一元一次不等式组有解,则m的取值范围为()A. B.m≤C.D.m≤【分析】先求出两个不等式的解集,再根据有解列出不等式组求解即可.【解答】解:,解不等式①得,x<2m,解不等式②得,x>2﹣m,∵不等式组有解,∴2m>2﹣m,∴m>.故选C.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).二、填空题:本大题共5小题,每小题3分,共15分,把答案填在题中横线上.11.若|x+3|+=0,则x y的值为9.【分析】直接利用非负数的性质得出x,y的值,进而利用有理数的乘方运算法则求出答案.【解答】解:∵|x+3|+=0,∴x=﹣3,y=2,则x y=(﹣3)2=9.故答案为:9.【点评】此题主要考查了非负数的性质,正确得出x,y的值是解题关键.12.已知关于x的不等式x﹣a<1的解集如图所示,则a的值为1.【分析】根据在数轴上表示不等式解集的方法得出不等式的解集,再用a表示出不等式的解集,进而可得出a的值.【解答】解:由题意可知,x<2,∵解不等式x﹣a<1得,x<1+a,∴1+a=2,解得a=1.故答案为:1.【点评】本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键.13.若方程4x m﹣n﹣5y m+n=6是二元一次方程,则m=1,n=0.【分析】根据二元一次方程的定义,可得x和y的指数分别都为1,列关于m、n的方程组,再求出m和n的值,最后代入可得到m n的值.【解答】解:根据二元一次方程的定义,得,解得,故答案为:1,0.【点评】考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.14.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=6,BC=9,DH=2,平移距离为3,则阴影部分的面积是15.【分析】根据平移的性质,判断出△HEC∽△ABC,再根据相似三角形的性质列出比例式解答.【解答】14.15解:由平移的性质知,BE=3,DE=AB=6,∴HE=DE﹣DH=6﹣2=4,∴S四边形HDFC =S梯形ABEH=(AB+EH)BE=(6+4)×3=15.故答案为:15.【点评】本题主要利用了平行线截线段对应成比例和平移的基本性质求解,找出阴影部分和三角形面积之间的关系是关键.15.在平面直角坐标系中,点A1(1,2),A2(2,5),A3(3,10),A4(4,17),…,用你发现的规律确定点A n的坐标为(n,n2+1).【分析】首先观察各点坐标,找出一般规律,然后根据规律确定点A n的坐标.【解答】解:设A n(x,y).∵当n=1时,A1(1,1),即x=1,y=12+1,当n=2时,A2(2,5),即x=2,y=22+1;当n=3时,A3(3,10),即x=3,y=32+1;当n=4时,A1(4,17),即x=4,y=42+1;…∴当n=n时,x=n,y=n2+1,故答案为:(n,n2+1).【点评】此题主要考查了点的坐标规律,解决本题的关键在于总结规律.对于寻找规律的题,应通过观察,发现哪些部分没有变化,哪些部分发生了变化,变化的规律是什么.三、解答题:本大题共7小题,共55分,解答应写出证明过程或演算步骤.16.(1)解方程组:;(2)解不等式组:.【分析】(1)先用加减消元法求出x的值,再用代入消元法求出y的值即可;(2)分别求出各不等式的解集,再求出其公共解集即可.【解答】解:(1),①+②×3得,10x=50,解得x=5,把x=5代入②得,10+y=13,解得y=3.故方程组的解为;(2),由①得,x<3,由②得,x≥﹣2,故方程组的解为:﹣2≤x<3.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17.如图,已知:AD⊥BC于D,EG⊥BC于G,∠E=∠1.求证:AD平分∠BAC.下面是部分推理过程,请你将其补充完整:∵AD⊥BC于D,EG⊥BC于G (已知)∴∠ADC=∠EGC=90°∴AD∥EG同位角相等,两直线平行.∴∠1=∠2两直线平行,内错角相等.∠E=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3等量代换.∴AD平分∠BAC角平分线的定义.【分析】根据平行线的判定与性质进行解答即可.【解答】解:∵AD⊥BC于D,EG⊥BC于G (已知)∴∠ADC=∠EGC=90°∴AD∥EG,(同位角相等,两直线平行).∴∠1=∠2,(两直线平行,内错角相等).∠E=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3,(等量代换).∴AD平分∠BAC.(角平分线的定义)故答案为:同位角相等,两直线平行;两直线平行,内错角相等;∠E;等量代换;角平分线的定义.【点评】本题考查的是平行线的判定与性质,用到的知识点为:同位角相等,两直线平行;两直线平行,内错角相等,同位角相等.18.甲乙两人解方程组.由于甲看错了方程①中的m的值,得到方程组的解为,乙看错了方程②中的n的值,得到方程组的解为,试求m2+n2+mn的值.【分析】根据甲看错了方程①中的m,②没有看错,代入②得到一个方程求出n的值,乙看错了方程②中的n,①没有看错,代入①求出m的值,然后再把m、n的值代入代数式计算即可求解【解答】解:根据题意得,4×(﹣3)﹣b(﹣1)=﹣2,5a+5×4=15,解得m=﹣1,n=10,把m=﹣1,n=10代入代数式,可得:原式=91.【点评】本题考查了二元一次方程的解,根据题意列出方程式解题的关键.19.某市球类运动协会为了筹备一次大型体育活动,购进了一定数量的体育器材,器材管理员对购买的部分器材进行了统计,图表和图是器材管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:频率分布表器材种类频数频率排球20乒乓球拍50 0.50篮球25 0.25足球合计 1(1)填充频率分布表中的空格.(2)在图中,将表示“排球”和“足球”的部分补充完整.(3)若该协会购买这批体育器材时,篮球和足球一共花去950元,且足球每个的价格比篮球多10元,现根据筹备实际需要,准备再采购篮球和足球这两种球共10个(两种球的个数都不能为0),计划资金不超过320元,试问该协会有哪几种购买方案?【分析】(1)根据乒乓球的总数为50,频数为0.50,求出体育器材总数,然后减去乒乓球、排球、篮球数目,即可得到足球频数、频率及合计数.(2)根据统计表中的数据,将统计图补充完整即可.(3)列方程求出篮球和足球的单价,再根据单价列出不等式,推知购买方案.【解答】解:(1)50÷0.50=100个;则足球有100﹣20﹣50﹣25=5个;足球频率=0.05;排球频率=0.2;合计为100.故答案为:0.2;5,0.05;100.(2)如图:.(3)设篮球每个x元,足球每个(x+10)元,列方程得,25x+5(x+10)=950,解得x=30,则篮球每个30元,足球每个40元.设再买y个篮球,列不等式得,30y+40(10﹣y)≤320,解得y≥8,由于篮球足球共10个,则篮球8个,足球2个;或篮球9个,足球1个.【点评】本题考查了频数分布表、频数分布直方图及一元一次方程的应用,从图中得到相关信息是解题的关键.20.某中学计划从办公用品公司购买A,B两种型号的小黑板.经洽谈,购买一块A型小黑板比购买一块B型小黑板多用20元,且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需多少元.(2)根据该中学实际情况,需从公司购买A,B两种型号的小黑板共60块,要求购买A,B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量不小于购买B型小黑板数量的.则该中学从公司购买A,B两种型号的小黑板有哪几种方案?哪种方案的总费用最低?【分析】(1)设购买一块A型小黑板需要x元,一块B型为y元,根据等量关系:购买一块A型小黑板比买一块B型小黑板多用20元;购买5块A型小黑板和4块B型小黑板共需820元;可列方程组求解.(2)设购买A型小黑板m块,则购买B型小黑板(60﹣m)块,根据需从公司购买A、B 两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量不小于购买B型小黑板数量的,可列不等式组求解.【解答】解:(1)设一块A型小黑板x元,一块B型小黑板y元.则,解得.答:一块A型小黑板100元,一块B型小黑板80元.(2)设购买A型小黑板m块,则购买B型小黑板(60﹣m)块则,解得20≤m≤22,又∵m为正整数∴m=20,21,22则相应的60﹣m=40,39,38∴共有三种购买方案,分别是方案一:购买A型小黑板20块,购买B型小黑板40块;方案二:购买A型小黑板21块,购买B型小黑板39块;方案三:购买A型小黑板22块,购买B型小黑板38块.方案一费用为100×20+80×40=5200元;方案二费用为100×21+80×39=5220元;方案三费用为100×22+80×38=5240元.∴方案一的总费用最低,即购买A型小黑板20块,购买B型小黑板40块总费用最低,为5200元.【点评】本题考查理解题意的能力,关键根据购买黑板块数不同钱数的不同求出购买黑板的钱数,然后要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量不小于购买B型小黑板数量的,列出不等式组求解.21.我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3;用<a>表示大于a的最小整数,例如:<2.5>=3,<4>=5,<﹣1.5>=﹣1.解决下列问题:(1)[﹣4.5]=﹣5,<3.5>=4.(2)若[x]=2,则x的取值范围是2≤x<3;若<y>=﹣1,则y的取值范围是﹣2≤y<﹣1.(3)已知x,y满足方程组,求x,y的取值范围.【分析】(1)根据题目所给信息求解;(2)根据[2.5]=2,[3]=3,[﹣2.5]=﹣3,可得[x]=2中的2≤x<3,根据<a>表示大于a 的最小整数,可得<y>=﹣1中,﹣2≤y<﹣1;(3)先求出[x]和<y>的值,然后求出x和y的取值范围.【解答】解:(1)由题意得,[﹣4.5]=﹣5,<3.5>=4;(2)∵[x]=2,∴x的取值范围是2≤x<3;∵<y>=﹣1,∴y的取值范围是﹣2≤y<﹣1;(3)解方程组得:,∴x,y的取值范围分别为﹣1≤x<0,2≤y<3.【点评】本题考查了一元一次不等式组的应用,解答本题的关键是读懂题意,根据题目所给的信息进行解答.22.如图,已知直线AC∥BD,直线AB、CD不平行,点P在直线AB上,且和点A、B 不重合.(1)如图①,当点P在线段AB上时,若∠PAC=20°,∠PDB=30°,求∠CPD的度数;(2)当点P在A、B两点之间运动时,∠PCA、∠PDB、∠CPD之间满足什么样的等量关系?(直接写出答案)(3)如图②,当点P在线段AB延长线运动时,∠PCA、∠PDB、∠CPD之间满足什么样的等量关系?并说明理由.【分析】(1)如图①,过P点作PE∥AC交CD于E点,由于AC∥BD,则PE∥BD,根据平行线的性质得∠CPE=∠PCA=20°,∠DPE=∠PDB=30°,所以∠CPD=50°;(2)证明方法与(1)一样;(3)如图②,过P点作PF∥BD交CD于F点,由于AC∥BD,则PF∥AC,根据平行线的性质得∠CPF=∠PCA,∠DPF=∠PDB,所以∠CPD=∠PCA﹣∠PDB.【解答】解:(1)如图①,过P点作PE∥AC交CD于E点,∵AC∥BD∴PE∥BD,∴∠CPE=∠PCA=20°,∠DPE=∠PDB=30°,∴∠CPD=∠CPE+∠DPE=50°;(2)∠CPD=∠PCA+∠PDB(证明方法与(1)一样;(3)∠CPD=∠PCA﹣∠PDB.理由如下:如图②,过P点作PF∥BD交CD于F点,∵AC∥BD,∴PF∥AC,∴∠CPF=∠PCA,∠DPF=∠PDB,∴∠CPD=∠CPF﹣∠DPF=∠PCA﹣∠PDB;【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.合理添加平行线是解决此题的关键.。
2024年最新人教版初一数学(下册)期末试卷及答案(各版本)
2024年最新人教版初一数学(下册)期末试卷及答案(各版本)一、选择题(每题5分,共20分)1. 下列哪个选项是正确的?A. 1/2 + 1/4 = 3/4B. 1/2 + 1/4 = 5/8C. 1/2 + 1/4 = 3/8D. 1/2 + 1/4 = 7/82. 下列哪个选项是正确的?A. 2^3 = 6B. 2^3 = 8C. 2^3 = 10D. 2^3 = 123. 下列哪个选项是正确的?A. 5^0 = 0B. 5^0 = 1C. 5^0 = 5D. 5^0 = 104. 下列哪个选项是正确的?A. 3^2 = 9B. 3^2 = 6C. 3^2 = 3D. 3^2 = 12二、填空题(每题5分,共20分)1. 2^3 = _______2. 5^0 = _______3. 1/2 + 1/4 = _______4. 3^2 = _______三、解答题(每题10分,共40分)1. 解答:求解方程 2x + 3 = 7。
2. 解答:求解方程 5y 2 = 3y + 4。
3. 解答:求解方程 3z 4 = 2z + 5。
4. 解答:求解方程 4x + 2 = 3x 1。
四、应用题(每题10分,共20分)1. 应用题:小明有5个苹果,小华有3个苹果,他们把苹果放在一起,总共有多少个苹果?2. 应用题:一个正方形的边长是4厘米,求它的面积。
五、证明题(每题10分,共20分)1. 证明题:证明 2^3 = 8。
2. 证明题:证明 5^0 = 1。
六、解答题(每题10分,共20分)1. 解答:求解方程组 2x + 3y = 8 和 3x 2y = 1。
2. 解答:求解方程组 4x + 5y = 10 和 5x 3y = 2。
七、解答题(每题10分,共20分)1. 解答:求解不等式 2x + 3 > 7。
2. 解答:求解不等式 5y 2 < 3y + 4。
八、解答题(每题10分,共20分)1. 解答:求解不等式组 2x + 3 > 7 和 3x 2y < 1。
新人教版七年级数学下册期末考试及完整答案
新人教版七年级数学下册期末考试及完整答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .22.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124°3.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D .44.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到方程组为A .x y 50{x y 180=-+=B .x y 50{x y 180=++=C .x y 50{x y 90=++=D .x y 50{x y 90=-+= 5.若数a 使关于x 的不等式组232x a x a ->⎧⎨-<-⎩无解,且使关于x 的分式方程5355ax x x-=---有正整数解,则满足条件的整数a 的值之积为( ) A .28 B .﹣4 C .4D .﹣26.实数a,b在数轴上对应点的位置如图所示,化简|a|+2()a b+的结果是( )A.﹣2a-b B.2a﹣b C.﹣b D.b7.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.8.比较2,5,37的大小,正确的是()A.3257<<B.3275<<C.3725<<D.3752<<9.若|abc|=-abc,且abc≠0,则||||ba ca b c++=()A.1或-3 B.-1或-3 C.±1或±3 D.无法判断10.已知2,1=⎧⎨=⎩xy是二元一次方程组7,{1ax byax by+=-=的解,则a b-的值为A.-1 B.1 C.2 D.3二、填空题(本大题共6小题,每小题3分,共18分)1.81的平方根是________.2.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b++=________.3.已知AB//y轴,A点的坐标为(3,2),并且AB=5,则B的坐标为________.4.若()2320m n -++=,则m+2n 的值是________.5.对于任意实数a 、b ,定义一种运算:a ※b=ab ﹣a+b ﹣2.例如,2※5=2×5﹣2+5﹣2=ll .请根据上述的定义解决问题:若不等式3※x <2,则不等式的正整数解是________.6.已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是________. 三、解答题(本大题共6小题,共72分)1.解分式方程:33122x x x-+=--.2.已知A =3x 2+x+2,B =﹣3x 2+9x+6. (1)求2A ﹣13B ; (2)若2A ﹣13B 与32C -互为相反数,求C 的表达式; (3)在(2)的条件下,若x =2是C =2x+7a 的解,求a 的值.3.如图,正比例函数y =2x 的图象与一次函数y =kx +b 的图象交于点A (m ,2),一次函数图象经过点B (﹣2,﹣1),与y 轴的交点为C ,与x 轴的交点为D .(1)求一次函数解析式;(2)求C 点的坐标;(3)求△AOD 的面积.4.如图,已知∠ACD=70°,∠ACB=60°,∠ABC=50°.试说明:AB∥CD.5.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?6.某检修小组乘一辆汽车沿东西方向检修路,约定向东走为正,某天从A地出发到收工时行走记录(单位:km):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6,求:(1)收工时检修小组在A地的哪一边,距A地多远?(2)若汽车耗油3升/每千米,开工时储存180升汽油,用到收工时中途是否需要加油,若加油最少加多少升?若不需要加油到收工时,还剩多少升汽油?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、C5、B6、A7、B8、C9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、±32、()()2a b a b++.3、(3,7)或(3,-3)4、-15、16、5三、解答题(本大题共6小题,共72分)1、x=1.2、(1)7x2﹣x+2;(2)﹣14x2+2x﹣1;(3)﹣5773、(1)y=x+1;(2)C(0,1);(3)14、证明略5、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.6、(1)收工时在A地的正东方向,距A地39km;(2)需加15升.。
七年级(下)期末数学试卷(解析版试卷)
七年级(下)期末数学试卷(解析版)一、填空题(每小题3分,共18分)1.如图,点D,B,C点在同一条直线上,∠A=60°,∠C=50°,∠D=25°,则∠1=45度.【考点】K8:三角形的外角性质;K7:三角形内角和定理.【分析】根据三角形的外角的性质及三角形的内角和定理可求得.【解答】解:∵∠ABD是△ABC的外角,∴∠ABD=∠A+∠C=60°+50°=110°,∴∠1=180°﹣∠ABD﹣∠D=180°﹣110°﹣25°=45°.【点评】本题考查三角形外角的性质及三角形的内角和定理,比较简单.2.若方程组,则3(x+y)(3x﹣5y)的值是﹣63.【考点】98:解二元一次方程组.【分析】将x+y=7与3x﹣5y=﹣3代入原式即可求出答案.【解答】解:由题意可知:x+y=7与3x﹣5y=﹣3∴原式=3×7×(﹣3)=﹣63故答案为:﹣63【点评】本题考查二元一次方程组,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.3.将点(1,2)向左平移1个单位,再向下平移2个单位后得到对应点的坐标是(0,0).【考点】Q3:坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:原来点的横坐标是1,纵坐标是2,向左平移1个单位,再向下平移2个单位得到新点的横坐标是1﹣1=0,纵坐标为2﹣2=0.即对应点的坐标是(0,0).故答案填:(0,0).【点评】解题关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.4.为了了解全校学生的视力情况,小明、小华、小李三个同学分别设计了三个方案.①小明:检查全班每个同学的视力,以此推算出全校学生的视力情况.②小华:在校医室找到2000年全校的体检表,由此了解全校学生视力情况.③小李:抽取全校学号为5的倍数的同学,检查视力,从而估计全校学生视力情况.以上的调查方案最合适的是③(填写序号).【考点】V4:抽样调查的可靠性.【分析】根据抽样调查和全面调查的意义分别分析得出即可.【解答】解:①小明:检查全班每个同学的视力,以此推算出全校学生的视力情况,样本具有片面性,不能作为样本,故此选项错误;②小华:在校医室找到2000年全校的体检表,由此了解全校学生视力情况,人数较多不易全面调查,故此选项错误;③小李:抽取全校学号为5的倍数的同学,检查视力,从而估计全校学生视力情况,此选项正确;故选;③.【点评】此题主要考查了抽样调查的可靠性,利用抽样调查和全面调查的定义得出是解题关键.5.不等式1﹣2x<6的负整数解是﹣2,﹣1.【考点】C7:一元一次不等式的整数解;C2:不等式的性质;C6:解一元一次不等式.【分析】根据不等式的性质求出不等式的解集,找出不等式的整数解即可.【解答】解:1﹣2x<6,移项得:﹣2x<6﹣1,合并同类项得:﹣2x<5,不等式的两边都除以﹣2得:x>﹣,∴不等式的负整数解是﹣2,﹣1,故答案为:﹣2,﹣1.【点评】本题主要考查对解一元一次不等式,一元一次不等式的整数解,不等式的性质等知识点的理解和掌握,能根据不等式的性质求出不等式的解集是解此题的关键.6.如图所示,围棋盘放置在某个平面直角坐标系中,白棋②的坐标为(﹣7,﹣4),黑棋④的坐标为(﹣6,﹣8),那么黑棋①的坐标应该是(﹣3,﹣7).【考点】D3:坐标确定位置.【分析】根据点的平移规律,可得答案.【解答】解:黑棋④的坐标为(﹣6,﹣8),右移3个单位,再上移1个单位,得黑棋①的坐标(﹣3,﹣7),故答案为:(﹣3,﹣7).【点评】本题考查了坐标确定位置,利用点的平移规律:右加左减,上加下减是解题关键.二、选择题(每小题4分,共32分)7.4的平方根是()A.2 B.4 C.±2 D.±4【考点】21:平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a 的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8.在平面直角坐标系中,点P的横坐标是﹣3,且点P到x轴的距离为5,则点P的坐标是()A.(5,﹣3)或(﹣5,﹣3)B.(﹣3,5)或(﹣3,﹣5)C.(﹣3,5)D.(﹣3,﹣5)【考点】D1:点的坐标.【分析】根据点到x轴的距离是点的纵坐标的绝对值,可得答案.【解答】解:在平面直角坐标系中,点P的横坐标是﹣3,且点P到x轴的距离为5,则点P 的坐标是(﹣3,5)或(﹣3,﹣5),故选:B.【点评】本题考查了点的坐标,利用了点到x轴的距离是点的纵坐标的绝对值确定点的纵坐标是解题关键.9.方程组的解是()A.B.C.D.【考点】98:解二元一次方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:3x=6,解得:x=2,把x=2代入①得:y=1,则方程组的解为,故选B【点评】此题考查了解二元一次方程组,利用消元的思想,消元的方法有:代入消元法与加减消元法.10.在△ABC中,三边长为9、10、x,则x的取值范围是()A.1≤x<19 B.1<x≤19 C.1<x<19 D.1≤x≤19【考点】K6:三角形三边关系.【分析】根据三角形的三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边可得10﹣9<x<10+9,再解即可.【解答】解:由题意得:10﹣9<x<10+9,解得:1<x<19,故选:C.【点评】此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.11.不等式的解集在数轴上表示正确的是()A. B.C.D.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】求出第一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x+4≤6,得:x≤1,∴不等式组的解集为﹣3<x≤1,故选:A【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12.下列说法正确的是()A.抽样调查选取样本时,所选样本可按自己的爱好抽取B.某工厂质量检查员检测某批灯泡的使用寿命采用普查法C.想准确了解某班学生某次数学测验成绩,采用抽样调查,但需抽取的样本容量较大D.检测某城市的空气质量,采用抽样调查【考点】V2:全面调查与抽样调查.【分析】根据全面调查和抽样调查的特点即可作出判断.【解答】解:A、选样本时,样本必须有代表性及普遍性,A错误;B、应用抽样调查方式,错误;C、要得到准确的成绩,应用全面调查,错误,所以,故选D.【点评】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.13.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x,女生人数为y,则下列方程组中,能正确计算出x、y的是()A.B.C.D.【考点】99:由实际问题抽象出二元一次方程组.【分析】此题中的等量关系有:①该班一男生请假后,男生人数恰为女生人数的一半;②男生人数+女生人数=49.【解答】解:根据该班一男生请假后,男生人数恰为女生人数的一半,得x﹣1=y,即y=2(x﹣1);根据某班共有学生49人,得x+y=49.列方程组为.故选:D.【点评】列方程组解应用题的关键是找准等量关系,同时能够根据等式的性质对方程进行整理变形,从而找到正确答案.14.一个多边形的每一个外角都是45°,那么这个多边形是()A.八边形B.九边形C.十边形D.十二边形【考点】L3:多边形内角与外角.【分析】任意多边形的外角和为360°,用360°除以45°即为多边形的边数.【解答】解:360°÷45°=8.故选:A.【点评】本题主要考查的是多边形的外角和的应用,明确正多边形的每个外角的数×边数=360°是解题的关键.三、解答题(本大题共9小题,满分70分)15.(6分)如图所示,已知AB∥CD,∠C=75°,∠A=25°,求∠E的度数.【考点】JA:平行线的性质.【分析】先根据平行线的性质得∠BFE=∠C=105°,然后根据三角形外角性质求∠E的度数.【解答】解:∵AB∥CD,∴∠BFE=∠C=75°,∵∠BFE=∠A+∠E,∴∠E=75°﹣25°=50°.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了三角形外角性质.16.(6分)计算:+(﹣)【考点】2C:实数的运算.【分析】首先计算开方、乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:+(﹣)=3+(﹣2﹣)=3﹣﹣=﹣【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.17.(5分)如图所示,已知∠A=∠F,∠C=∠D,按图填空,并在括号内注明理由.∵∠A=∠F(已知)∴DF∥AC(内错角相等,两直线平行)∴∠D=∠ABD(两直线平行,内错角相等)又∵∠D=∠C(已知)∴∠C=∠ABD(等量代换)∴BD∥EC(同位角相等,两直线平行)【考点】JB:平行线的判定与性质.【分析】根据平行线的判定推出DF∥AC,根据平行线的性质得出∠D=∠ABD,求出∠C=∠ABD,根据平行线的判定得出即可.【解答】解:∵∠A=∠F(已知),∴DF∥AC(内错角相等,两直线平行),∴∠D=∠ABD(两直线平行,内错角相等),∵∠D=∠C(已知),∴∠C=∠ABD(等量代换),∴BD∥EC(同位角相等,两直线平行),故答案为:已知,DF,AC,内错角相等,两直线平行,两直线平行,内错角相等,已知,等量代换,BD,EC,同位角相等,两直线平行.【点评】本题考查了平行线的性质和判定定理,能灵活运用平行线的判定和性质定理进行推理是解此题的关键.18.(7分)在平面直角坐标系中,△ABC的三个顶点的位置如图所示,点A′的坐标是(﹣1,1),现将△ABC平移,使点A变换为A′,点B′、C′分别是B、C的对应点,请画出平移后的△A′B′C′,并直接写出点B′、C′的坐标:B′(﹣3,0)、C′(0,﹣1).【考点】Q4:作图﹣平移变换.【分析】直接利用平移的性质得出对应点位置进而得出答案.【解答】解:如图所示:△A′B′C′即为所求,B′(﹣3,0)、C′(0,﹣1).故答案为:(﹣3,0);(0,﹣1).【点评】此题主要考查了平移变换,正确得出对应点位置是解题关键.19.(7分)如图,已知BD是∠ABC的角平分线,且∠C=∠DBC,∠BDA=72°,求△ABC各内角度数.【考点】K7:三角形内角和定理.【分析】由∠C=∠DBC、∠BDA=72°结合三角形外角的性质,即可得出∠C=∠DBC=36°,由BD是∠ABC的角平分线可求出∠ABC=2∠DBC=72°,再利用三角形内角和定理即可求出∠A 的度数.【解答】解:∵∠C=∠DBC,∠BDA=∠C+∠DBC=72°,∴∠C=∠DBC=36°.∵BD是∠ABC的角平分线,∴∠ABC=2∠DBC=72°,∴∠A=180°﹣∠ABC﹣∠C=72°.【点评】本题考查了三角形内角和定理、角平分线以及三角形外角的性质,牢记“三角形内角和是180°”是解题的关键.20.(8分)(1)解方程组(2)解不等式组并把解集在数轴上表示出来.【考点】CB:解一元一次不等式组;98:解二元一次方程组;C4:在数轴上表示不等式的解集.【分析】(1)整理原方程组为一般式,再利用加减消元法求解可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)原方程组整理可得:,①+②,得:6x=10,解得:x=,②﹣①,得:4y=﹣6,解得:y=﹣,则方程组的解为;(2),解不等式①,得:x>﹣2,解不等式②,得:x≤1,∴不等式组的解集为﹣2<x≤1,将解集表示在数轴上如下:【点评】本题考查的是解二元一次方程组和一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(9分)商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元,乙种商品每件进价35元,售价45元,若该商场同时购进甲、乙两种商品共100件,恰好用去2700元,求能购进甲、乙两种商品各多少件.【考点】9A:二元一次方程组的应用;8A:一元一次方程的应用.【分析】设商场购买甲种商品m件,购买乙种商品n件,根据该商场同时购进甲、乙两种商品共100件,恰好用去2700元列方程组求解即可.【解答】解:设商场购买甲种商品m件,购买乙种商品n件,由题意得:,解得:.答:该商场能购进甲种商品40件,乙种商品60件.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程组.22.(10分)某校九年级所有学生参加2011年初中毕业英语口语、听力自动化考试,我们从中随机抽取了部分学生的考试成绩,将他们的成绩进行统计后分为A、B、C、D四等,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:25分~30分;B级:20分~24分;C级:15分~19分;D级:15分以下)(1)请把条形统计图补充完整;(2)扇形统计图中D级所占的百分比是10%;(3)扇形统计图中A级所在的扇形的圆心角度数是72°;(4)若该校九年级有850名学生,请你估计全年级A级和B级的学生人数共约为561人.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)抽查人数可由B等所占的比例为46%,根据总数=某等人数÷比例来计算,然后可由总数减去A、B、C的人数求得D等的人数,再画直方图;(2)根据总比例为1计算出D等的比例.(3)由总比例为1计算出A等的比例,对应的圆心角=360°×比例.(4)用九年级学生数乘以这次考试中A级和B级的学生所占百分比即可.【解答】解:(1)抽查的人数为:23÷46%=50,∴D等的人数所占的比例为:1﹣46%﹣24%﹣20%=10%;D等的人数为:50×10%=5,(2)扇形统计图中D级所占的百分比是1﹣46%﹣24%﹣20%=10%;(3)扇形统计图中A级所在的扇形的圆心角度数是:20%×360°=72°.(4)估计达到A级和B级的学生数=(A等人数+B等人数)÷50×850=(10+23)÷50×850=561人.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23.(12分)园林部门用3600盆甲种花卉和2900盆乙种花卉搭配A、B两种园艺造型共50个,挂放在迎宾大道两侧,搭配每个造型所要花盆数如表,综合上述信息,解答下列问题.造型甲乙A 90盆30盆B 40盆100盆(1)符合题意的搭配方案有哪几种?(2)若搭配一个A种造型的成本为1000元,搭配一个乙种造型的成本为1200元,选(1)中那种方案的成本最低?【考点】CE:一元一次不等式组的应用.【分析】(1)设需要搭配x个A种造型,则需要搭配B种造型(50﹣x)个,根据“3600盆甲种花卉”“2900盆乙种花卉”列不等式求解,取整数值即可.(2)总成本为:1000x+1200(50﹣x)=60000﹣2x.利用一次函数的性质进行解答即可.【解答】解:(1)设需要搭配x个A种造型,则需要搭配B种造型(50﹣x)个,则有,解得30≤x≤32,所以x=30或31或32.第一方案:A种造型32个,B种造型18个;第二种方案:A种造型31个,B种造型19个;第三种方案:A种造型30个,B种造型20个.(2)总成本为:1000x+1200(50﹣x)=60000﹣2x.显然当x取最大值32时成本最低,为60000﹣2×32=53600答:第一种方案成本最低,最低成本是53600【点评】此题考查了一元一次不等式组的应用,也是一道实际问题,有一定的开放性,(1)利用所用花卉数量不超过甲、乙两种花卉的最高数量列不等式组解答;(2)为最优化问题,根据(1)的结果直接计算即可.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品文档
分满分:120 完卷时间:90分钟检测范围:下册
分)324分,共一、填空题。
(每小题
_______。
、写出一个在第二象限的点的坐标:1
________。
1)向右平移5个单位长度得到的点的坐标是2、将点(-2,
________。
与c的位置关系是,则⊥b,c⊥ba3、a、b、c是直线,且a
a °,b,∠1=704、如图,已知a∥1
度。
则∠2=______2 b
,则第三边的长是________cm。
4cm5、一个等腰三角形的两边长是和10cm
x =5
________ 。
为解的二元一次方程组:、写出一个以6y=-3
____________的解集是7、不等式2-x>1。
8、在对25个数据进行整理的频数分布表中,各组频数之和等于_________。
二、选择题。
(每小题5分,共40分)
9、一个长方形在平面直角坐标系中,三个顶点的坐标为(-2,-1)、(-2,3)、(4,-1),则第四个顶点的坐标是()
A、(3,2)
B、(4,2)
C、(3,3)
D、(4,3)
10、如图,已知∠1 =∠2,则AB∥CD的根据是()
A、内错角相等,两直线平行AB
B、同位角相等,两直线平行
1=1-=1-C、同旁内角相等,两直线平行2=1-x D、两直线平行,内错
角相等DC=1-=1-=1-精品文档.
精品文档)B= (ABC中,∠A=80°,∠B=∠C,则∠11、Δ
40°D、50°B、60°C、A、80°
正六正五边形;(4)正方形;(2)长方形;(3)12、商店出售下列形状的地砖:(1) )(边形;若只选购其中一种地砖镶嵌地面,则可供选择的地砖共有
种D、4 种C、3种A、1种B、2
A E分别在ABC中,∠A=50°,点D、13、如图,Δ
()AB、AC上,则∠1+∠2的大小为E=1-D =1-21=1-230°D、
310°、°A、130 B、180°C B=1- C=1- =1-
=1-=1x+y )的解是(、方程组14 =53x+2y=1-x
=1-x x=1x=1xx=-1=3A、
B、C、D、=1y=-2y=-4y=0y=-2=1-x =1-x =1-x =1-x =1-x
=1-x =1-x =1-x 3x-2≥4)(的解集是5、不等式组
152x+3<
=1-x
A、x<1
B、x≥2
C、1< x≤2
D、无解
16、下列调查:(1)为了检测一批电视机的使用寿命;(2)为了调查全国平均几人拥有一部手机;(3)为了解本班学生的平均上网时间;(4) 为了解中央电视台春节联欢晚会的收视率。
其中适合用抽样调查的个数有()
A、1个
B、2个
C、3个
D、4个
解答题。
(共48分)三、2x-3>-x
17、解不等式组,并把解集在数轴上表示出来。
(5分)1 x< 3 2
精品文档.
精品文档
1,-1),求点B的坐标为(A的坐轴,18、线段AB平行于yAB的长为1,点2标。
(8分)
19、如图,已知AC、DF分别与MN相交于B、E,∠1=75°,∠2=105°,
求证:AC∥DF。
(6分)
M
1 C
A B 2
F D E
N
,试D的角平分线,BD、CD相交于点ABC BD20、如图,、CD分别是∠和∠ACB (12分)与∠探索∠AD之间的数量关系,并证明你的结论。
A
D
B C
精品文档.
精品文档
21、某商场购进商品后,均加价40%后作为销售价。
现商场搞优惠促销活动,决定由顾客抽奖确定折扣,某顾客购买甲、乙两种商品,分别抽到7折和9折,共付款399元。
已知这两种商品原销售价之和为490元,问甲、乙两种商品的进价分别是多少元?(10分)
22、某市实行中考改革,需要根据该市中学生体能的实际情况重新制定中考体育标准。
为此,抽取了50名初中毕业的女学生进行“一分钟仰卧起坐”次数测试,
(2)根据这一样本数据的特点,你认为该市中考女生“一分钟仰卧起坐”项目测试的合格标准应定为多少次较为合适?请简要说明理由;
(3)根据(2)中你认为合格的标准,试估计该市中考女生“一分钟仰卧起坐”项目测试的合格率是多少?
精品文档.
精品文档
七年级数学参考答案
一、填空题(每小题4分,共32分)
1、(-1,1)等
2、(3,1)
3、平行(或a∥b)
4、110°
5、10
x+y=21
、7、6x<18、25
x-y=8
二、选择题(每小题5分,共40分)
9、D 10、C 11、C 12、C 13、C 14、D 15、D 16、C
三、解答题(共48分)
17、解:解不等式(1)得x,解不等式(2)得x<6,>1
∴不等式组的解集是1<x<6。
(图略)
1118、解:∵AB∥y轴,而点B的坐标为(,-1),∴设点A的坐标为(,y),22又AB的长为1,∴∣y-(-1)∣=1,∴∣y+1∣=1,∴y=0,或y=-2,∴点A的坐11标为(,0)或(,-2)。
22
19、证明:∵∠1 =75°,∴∠ABN=∠1 =75°,又∠2=105°,
∴∠ABN+∠2 = 180°,∴AC∥DF。
120、解:∠D=90°+∠A。
2证明:BD、CD分别是∠ABC和∠ACB的平分线,11∴∠DBC+∠DCB=(180°-∠A)=90°-∠A,22精品文档.
精品文档
11∠A)=90°+∠A。
∴∠D =180°-(∠DBC+∠DCB)=180°-(90°-22 元,则x21、解:设甲、乙两种商品的进价分别为元、y
x=150 4(x+y)=490.1 200 答:甲种商品150元,乙种元。
解得y=200
1.4y=399
1.4x+0.9×0.7×
6?1?12?1???36?2=20.5,众数是18,中位数是18。
22、解:(1)平均数=
50次较为18 2)该市中考女生“一分钟仰卧起坐”项目测试的合格标准应定为(人,确次以上的人数有41人中达到合适,因为众数和中位数均为18,且5018 次能保证大多数人达标;定18“一分钟仰卧起)的标准,估计该市中考女生280%50413()∵÷≈,∴根据(坐”项目测试的合格率为80%。
精品文档.。