2020年初一数学下期末试题(带答案)
2020年七年级数学下册期末试卷(含答案)
2020年七年级数学下册期末试卷(含答案)一、选择题(每题3分,共18分)1、给出下列图形名称:(1)线段(2)直角(3)等腰三角形(4)平行四边形(5)长方形,在这五种图形中是轴对称图形的有( )A 、1个B 、2个C 、3个D 、4个2、下列运算正确的是( )。
A 、1055a a a =+B 、2446a a a =⨯C 、a a a =÷-10D 、044a a a =-3、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( )A 、154 B 、31 C 、51 D 152 4、1纳米相当于1根头发丝直径的六万分之一。
则利用科学记数法来表示,头发丝的半径..是( )A 、6万纳米 B 、6×104纳米 C 、3×10-6米 D 、3×10-5米5、下列条件中,能判定两个直角三角形全等的是( )A 、一锐角对应相等B 、两锐角对应相等C 、一条边对应相等D 、两条直角边对应相等6、如图,下图是汽车行驶速度(千米/时) 和时间(分)的关系图,下列说法其中正确的个数为( )(1)汽车行驶时间为40分钟;(2)AB 表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了.二、填空题(每空3分,共27分)7、单项式313xy -的次数是 .8、一个三角形的三个内角的度数之比为2:3:4,则该三角形按角分应为 三角形.9、在十届全国人大四次会议上谈到解决“三农”问题时说,2006年中央财政用于“三农”的支出将达到33970000万元,这个数据用科学记数法可表示为 万元.10、如图∠AOB=1250,AO ⊥OC ,B0⊥0D 则∠COD= .11、小明同学平时不用功学习,某次数学测验做选择题时,他有1道题不会做,于是随意选了一个答案(每小题4个项),他选对的概率是 .12、若229a ka ++是一个完全平方式,则k 等于 . 13、()32+m (_________)=942-m14、已知:如图,矩形ABCD 的长和宽分别为2和1,以D 为圆心, AD 为半径作AE 弧,再以AB 的中点F 为圆心,FB 长为半径作BE 弧,则阴影部分的面积为 .ODCBA1×2×3×4+1=25=52;2×3×4×5+1=121=112:3×4×5×6+1=361=192;……根据以上结果,猜想析研究 (n+1)(n+2)(n+3)(n+4)+1= 。
2020学年最新七年级下期末数学试卷(含答案解析)
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有项是符合要求的,请把正确选项的字母代号写在下表内)1.25的算术平方根是()A.5 B.±5 C.± D.2.在,,3.14159,,﹣π,0.101001中,无理数有()个.A.2 B.3 C.4 D.53.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.4.下列调查中,适合采用全面调查(普查)方式的是()A.对邕江水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对某班50名同学体重情况的调查D.对我国居民日平均用水量的调查5.下列计算正确的是()A.=±4 B.±=3 C.=﹣3 D.()2=36.如图,用不等式表示数轴上所示的解集,正确的是()A.x>﹣2 B.x≥﹣2 C.x<﹣2 D.x≤﹣27.点N(﹣1,3)可以看作由点M(﹣1,﹣1)()A.向上平移4个单位长度所得到的B.向左平移4个单位长度所得到的C.向下平移4个单位长度所得到的D.向右平移4个单位长度所得到的8.方程2x+y=8的正整数解的个数是()A.4 B.3 C.2 D.19.如图,BE是AB的延长线,下面说法正确的是()A.由∠1=∠2,可得到AB∥CD B.由∠2=∠C,可得到AD∥BCC.由∠1=∠C,可得到AD∥BC D.由∠1=∠C,可得到AB∥CD10.如图,是象棋盘的一部分.若“帅”位于点(1,﹣2)上,“相”位于点(3,﹣2)上,则“炮”位于点()上.A.(﹣1,1) B.(﹣1,2) C.(﹣2,1)D.(﹣2,2)二、填空题(本大题共6个小题,每小题3分,共18分)11.剧院里5排2号可以用(5,2)表示,则(7,4)表示.12.如图,将直线l1沿着AB的方向平移得到直线l2,若∠1=50°,则∠2= .13.﹣5的相反数是.14.用“>”或“<”填空:若﹣2a+1<﹣2b+1,则a b.15.若关于x,y的二元一次方程组的解满足x+y<2,则a的取值范围为.16.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是.三、解答题(共52分)17.计算和求x的值:(1)﹣+|1﹣|(2)x2﹣5=5,求x.18.解方程组:19.解不等式组:并把解集在数轴上表示出来.20.已知:如图,AD∥BE,∠1=∠2,求证:∠A=∠E.21.如图,△ABC在直角坐标系中(1)若把△ABC向上平移2个单位,再向右平移1个单位得到△A′B′C′,写出A'的坐标,并在图中画出平移后图形.(2)求出三角形ABC的面积.22.有大小两种货车,2辆大货车与3辆小货车一次可以运货17吨,5辆大货车与6辆小货车一次可以运货38吨.求一辆大货车和一辆小货车每次分别可以运货多少吨?23.家庭过期药品属于“国家危险废物”,处理不当将污染环境,危害健康.某市药监部门为了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调査.(1)下列选取样本的方法最合理的一种是.(只需填上正确答案的序号)①在市中心某个居民区以家庭为单位随机抽取;②在全市医务工作者中以家庭为单位随机抽取;③在全市常住人口中以家庭为单位随机抽取.(2)本次抽样调査发现,接受调査的家庭都有过期药品,现将有关数据呈现如图:①m= ,n= ;②补全条形统计图;③根据调査数据,你认为该市市民家庭处理过期药品最常见的方式是什么?④家庭过期药品的正确处理方式是送回收点,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收点.24.甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每张椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三张椅子;乙厂家:桌子和椅子全部按原价8折优惠.现某公司要购买3张办公桌和若干张椅子,若购买的椅子数为x张(x≥9).(1)分别用含x的式子表示甲、乙两个厂家购买桌椅所需的金额;(2)购买的椅子至少多少张时,到乙厂家购买更划算?。
2020-2021学年新人教版七年级下期末数学试题(含答案解析)
山东省临沂市兰陵县2020-2021学年七年级下学期期末考试数学试题一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给的4个选项中只有一项是符合题目要求的1.81的算术平方根为()A.9 B.±9 C.3 D.±3【分析】直接根据算术平方根的定义进行解答即可.【点评】本题考查的是算术平方根的定义,即一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.2.将点A(1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为()A.(﹣2,1) B.(﹣2,﹣1) C.(2,1) D.(2,﹣1)【专题】几何图形.【分析】让A点的横坐标减3,纵坐标加2即为点B的坐标.【解答】解:由题中平移规律可知:点B的横坐标为1-3=-2;纵坐标为-1+2=1,∴点B的坐标是(-2,1).故选:A.【点评】本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.3.已知实数a,b,若a>b,则下列结论错误的是()A.a﹣7>b﹣7 B.6+a>b+6 C.D.﹣3a>﹣3b【专题】方程与不等式.【分析】根据不等式的基本性质对各选项进行逐一分析即可.【解答】解:a>b,A、a-7>b-7,故A选项正确;B、6+a>b+6,故B选项正确;D、-3a<-3b,故D选项错误.故选:D.【点评】本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.4.不等式组的解集在数轴上表示正确的是()【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解不等式3-x≥2,得:x≤1,∴不等式组的解集为x<-2,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.已知面积为8的正方形边长是x,则关于x的结论中,正确的是() A.x是有理数B.x不能在数轴上表示C.x是方程4x=8的解D.x是8的算术平方根【专题】实数.【分析】根据算术平方根的意义,无理数的意义,实数与数轴的关系,可得答案.【解答】解:由题意,得A、x是无理数,故A不符合题意;B、x能在数轴上表示处来,故B不符合题意;C、x是x2=8的解,故C不符合题意;D、x是8的算术平方根,故D符合题意;故选:D.【点评】本题考查了实数与数轴,利用算术平方根的意义,无理数的意义,实数与数轴的关系是解题关键.6.在平面直角坐标系内,点P(a,a+3)的位置一定不在()A.第一象限B.第二象限C.第三象限D.第四象限【专题】常规题型.【分析】判断出P的横纵坐标的符号,进而判断出相应象限即可.【解答】解:当a为正数的时候,a+3一定为正数,所以点P可能在第一象限,一定不在第四象限,当a为负数的时候,a+3可能为正数,也可能为负数,所以点P可能在第二象限,也可能在第三象限,故选:D.【点评】此题主要考查了点的坐标,根据a的取值判断出相应的象限是解决本题的关键7.如图,已知AB∥CD,∠1=115°,∠2=65°,则∠C等于()A.40°B.45°C.50°D.60°【分析】根据两直线平行,同位角相等可得∠1=∠EGD=115°,再根据三角形内角与外角的性质可得∠C的度数.【解答】解:∵AB∥CD,∴∠1=∠EGD=115°,∵∠2=65°,∴∠C=115°-65°=50°,故选:C.【点评】此题主要考查了平行线的性质,以及三角形内角与外角的性质,关键是掌握两直线平行,同位角相等.8.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知AB∥CD,∠BAE=87°,∠DCE=121°,则∠E的度数是()A.28°B.34°C.46°D.56°【专题】线段、角、相交线与平行线.【分析】延长DC交AE于F,依据AB∥CD,∠BAE=87°,可得∠CFE=87°,再根据三角形外角性质,即可得到∠E=∠DCE-∠CFE.【解答】解:如图,延长DC交AE于F,∵AB∥CD,∠BAE=87°,∴∠CFE=87°,又∵∠DCE=121°,∴∠E=∠DCE-∠CFE=121°-87°=34°,故选:B.【点评】本题主要考查了平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.9.如图,∠B=∠C,∠A=∠D,下列结论:①AB∥CD;②AE∥DF;③AE⊥BC;④∠AMC=∠BND,其中正确的结论有()A.①②④B.②③④C.③④D.①②③④【分析】由条件可先证明AB∥CD,再证明AE∥DF,结合平行线的性质及对顶角相等可得到∠AMC=∠BND,可得出答案.【解答】解:∵∠B=∠C,∴AB∥CD,∴∠A=∠AEC,又∵∠A=∠D,∴∠AEC=∠D,∴AE∥DF,∴∠AMC=∠FNM,又∵∠BND=∠FNM,∴∠AMC=∠BND,故①②④正确,由条件不能得出∠AMC=90°,故③不一定正确;故选:A.【点评】本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.10.甲、乙两人从A地出发,沿同一方向练习跑步,如果甲让乙先跑10米,则甲跑5秒就可追上乙,如果甲让乙先跑2秒,那么甲跑4秒就能追上乙,设甲、乙每秒钟分别跑x米和y米,则可列方程组为()A.B.C.D.【专题】方程与不等式.【分析】本题的等量关系:(1)乙先跑10米,甲跑5秒就追上乙;(2)如果让乙先跑2秒,那么甲跑4秒就追上乙,可以列出方程组.【解答】解:设甲、乙每秒分别跑x米,y米,由题意知:故选:D.【点评】本题考查了二元一次方程组的实际应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.11.如图,根据2021﹣2021年某市财政总收入(单位:亿元)统计图所提供的信息,下列判断正确的是()A.2021~2021年财政总收入呈逐年增长B.预计2021年的财政总收入约为253.43亿元C.2021~2021年与2021~2021年的财政总收入下降率相同D.2021~2021年的财政总收入增长率约为6.3%【专题】统计的应用.【分析】根据题意和折线统计图可以判断选项中的说法是否正确【解答】解:根据题意和折线统计图可知,从2020-2021财政收入增长了,2020-2021财政收入下降了,故选项A错误;由折线统计图无法估计2021年的财政收入,故选项B错误;∵2020-2021年的下降率是:(230.68-229.01)÷230.68≈0.72%,2020-2021年的下降率是:(243.12-238.86)÷243.12≈1.75%,故选项C错误;2020-2021年的财政总收入增长率是:(230.68-217)÷217≈6.3%,故选项D正确;故选:D.【点评】本题考查折线统计图、用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件.12.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/分钟0<x≤5 5<x≤10 10<x≤15 15<x≤20频数(通话次数) 20 16 9 5则5月份通话次数中,通话时间不超过15分钟的所占百分比是()A.10% B.40% C.50% D.90%【专题】常规题型;统计的应用.【分析】根据表格可以得到总的频数和通话时间不超过15分钟的频数,从而可以求得通话时间不超过15分钟的百分比.【解答】故选:D.【点评】本题考查频数分布表,解题的关键是明确题意,找出所求问题需要的条件.13.某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格人数如表所示,则下列说法正确的是()年级七年级八年级九年级合格人数270 262 254 A.七年级的合格率最高B.八年级的学生人数为262名C.八年级的合格率高于全校的合格率D.九年级的合格人数最少【分析】分析统计表,可得出各年级合格的人数,然后结合选项进行回答即可.【解答】解:∵七、八、九年级的人数不确定,∴无法求得七、八、九年级的合格率.∴A错误、C错误.由统计表可知八年级合格人数是262人,故B错误.∵270>262>254,∴九年级合格人数最少.故D正确.故选:D.【点评】本题主要考查的是统计表的认识,读懂统计表,能够从统计表中获取有效信息是解题的关键.14.若不等式组的解集为x<2m﹣2,则m的取值范围是() A.m≤2 B.m≥2 C.m>2 D.m<2【专题】计算题.【分析】根据不等式的性质求出不等式的解集,根据不等式和不等式组解集得出m≥2m-2,求出即可.【解答】由①得:x<2m-2,由②得:x<m,∵不等式组的解集为x<2m-2,∴m≥2m-2,∴m≤2.故选:A.【点评】本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据题意得出m≥2m-2是解此题的关键.二、填空题(每小题4分,共202115.(4分)计算:|2﹣|的相反数是.【专题】计算题.16.(4分)若方程x﹣y=﹣1的一个解与方程组的解相同,则k的值为.【专题】计算题;一次方程(组)及应用.【分析】联立不含k的方程组成方程组,求出方程组的解得到x与y的值,即可确定出k的值.【解答】代入方程得:2-6=k,解得:k=-4,故答案为:-4【点评】此题考查了二元一次方程组的解,以及二元一次方程的解,熟练掌握运算法则是解本题的关键.17.(4分)为了解植物园内某种花卉的生长情况,在一片约有3000株此类花卉的园地内,随机抽测了2021的高度作为样本,统计结果整理后列表如下:(每组数据可包括最低值,不包括最高值)高度(cm) 40~45 45~50 50~55 55~60 60~65 65~70 频数33 42 22 24 43 36试估计该园地内此类花卉高度小于55厘米且不小于45厘米的约为株.【专题】常规题型;统计的应用.【分析】用总人数300乘以样本中高度小于55厘米且不小于45厘米的数量占被调查株数的比例.【解答】故答案为:960.【点评】本题考查了统计表以及用样本估计总体的思想,此题主要考查从统计表中获取信息的能力.统计表可以将大量数据的分类结果清晰、一目了然地表达出来.18.(4分)如图,将长方形ABCD折叠,折痕为EF,且∠1=70°,则∠AEF的度数是.【专题】几何图形.【分析】再根据AD∥BC,即可得到∠AEF=180°-∠BFE=125°.【解答】解:∵∠1=70°,∴∠BFB'=110°,又∵AD∥BC,∴∠AEF=180°-∠BFE=125°.故答案为:125°【点评】本题主要考查了折叠问题以及平行线的性质的运用,解题时注意:两直线平行,同旁内角互补.19.(4分)在平面直角坐标系中,如果对任意一点(a,b),规定两种变换:f(a,b)=(﹣a,﹣b),g(a,b)=(b,﹣a),那么g[f(1,﹣2)]=.【专题】常规题型.【分析】首先根据变换方法可得f(1,-2)=(-1,2),再根据变换方法可得g(-1,2)=(2,1),从而可得答案.【解答】解:由题意得:f(1,-2)=(-1,2),g(-1,2)=(2,1),故答案为:(2,1).【点评】此题主要考查了点的坐标,关键是理解题意,掌握变换的方法.三、解答题(共58分)202110分)(1)计算:+﹣|﹣2|(2)解不等式组【专题】数与式;方程与不等式.【分析】(1)根据立方根、算术平方根、绝对值的性质化简计算即可;(2)先求出其中各不等式的解集,再求出这些解集的公共部分即可;【解答】(2)解:由①得,x≤3,由②得,x>0,不等式组的解集为0<x≤3.【点评】本题考查实数的运算、不等式组等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(8分)如图,DE∥BF,∠1与∠2互补.(1)试说明:FG∥AB;(2)若∠CFG=60°,∠2=150°,则DE与AC垂直吗?请说明理由.【专题】线段、角、相交线与平行线.【分析】(1)依据同角的补角相等,可得∠1=∠DBF,即可得到FG∥AB;(2)依据FG∥AB,∠CFG=60°可得∠A=∠CFG=60°,再根据∠2是△ADE的外角,可得∠2=∠A+∠AED,进而得出∠AED=150°-60°=90°,可得DE⊥AC.【解答】解:(1)∵DE∥BF∴∠2+∠DBF=180°∵∠1与∠2互补∴∠1+∠2=180°∴∠1=∠DBF∴FG∥AB(2)DE与AC垂直理由:∵FG∥AB,∠CFG=60°∴∠A=∠CFG=60°∵∠2是△ADE的外角∴∠2=∠A+∠AED∵∠2=150°∴∠AED=150°-60°=90°∴DE⊥AC【点评】本题主要考查了平行线的性质与判断,平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.22.(8分)为了庆祝即将到来的“五四”青年节,某校举行了书法比赛,赛后随机抽查部分参赛同学的成绩,并制作成图表如下:分数段频数频率60≤x<70 30 0.1570≤x<80 m 0.4580≤x<90 60 n90≤x≤100 20 0.1请根据以上图表提供的信息,解答下列问题:(1)这次随机抽查了名学生;表中的数m=,n=;(2)请在图中补全频数分布直方图;(3)若绘制扇形统计图,分数段60≤x<70所对应扇形的圆心角的度数是;(4)全校共有600名学生参加比赛,估计该校成绩80≤x<100范围内的学生有多少人?【专题】常规题型;统计的应用.【分析】(1)根据60≤x<70的频数及其频率求得总人数,进而计算可得m、n的值;(2)根据(1)的结果,可以补全直方图;(3)用360°乘以样本中分数段60≤x<70的频率即可得;(4)总人数乘以样本中成绩80≤x<100范围内的学生人数所占比例.【解答】解:(1)本次调查的总人数为30÷0.15=2021,则m=20210.45=90,n=60÷20210.3,故答案为:202190、0.3;(2)补全频数分布直方图如下:(3)若绘制扇形统计图,分数段60≤x<70所对应扇形的圆心角的度数是360°×0.15=54°,故答案为:54°;答:估计该校成绩80≤x<100范围内的学生有240人.【点评】本题考查条形统计图、图表等知识.结合生活实际,绘制条形统计图或从统计图中获取有用的信息,是近年中考的热点.只要能认真准确读图,并作简单的计算,一般难度不大.23.(8分)在△ABC中,点D在边BA或BA的延长线上,过点D作DE∥BC,交∠ABC 的角平分线于点E.(1)如图1,当点D在边BA上时,点E恰好在边AC上,求证:∠ADE=2∠DEB;(2)如图2,当点D在BA的延长线上时,请直接写出∠ADE与∠DEB之间的数量关系,并说明理由.【专题】线段、角、相交线与平行线;三角形.【分析】(1)根据角平分线的定义可得出∠ABE=∠CBE,由平行线的性质可得出∠CBE=∠DEB、∠ADE=∠ABC,进而可得出∠ABE=∠DEB,再利用三角形外角的性质即可证出∠ADE=2∠DEB;(2)根据角平分线的定义可得出∠ABC=2∠CBE,利用平行线的性质可得出∠DEB=∠CBE,进而可得出∠ABC=2∠DEB,再利用“两直线平行,同旁内角互补”可证出∠ADE+2∠DEB=180°.【解答】证明:(1)∵BE平分∠ABC,∴∠ABE=∠CBE.∵DE∥BC,∴∠CBE=∠DEB,∠ADE=∠ABC,∴∠ABE=∠DEB,∴∠ADE=∠ABE+∠DEB=2∠DEB.(2)∠ADE+2∠DEB=180°.∵BE平分∠ABC,∴∠ABC=2∠CBE.∵DE∥BC,∴∠DEB=∠CBE,∠ADE+∠ABC=180°,∴∠ABC=2∠DEB,∴∠ADE+2∠DEB=180°.【点评】本题考查了三角形内角和定理、角平分线的定义、平行线的性质以及三角形的外角性质,解题的关键是:(1)利用角平分线的定义结合平行线的性质找出∠ABE=∠DEB;(2)利用角平分线的定义结合平行线的性质找出∠ADE+2∠DEB=180°.24.(12分)某校计划购买篮球、排球共2021购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.(1)篮球和排球的单价各是多少元?(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.【专题】销售问题.【分析】(1)设篮球每个x元,排球每个y元,根据题意列出二元一次方程组,解方程组即可;(2)根据购买篮球不少于8个,所需费用总额不超过800元列出不等式,解不等式即可.【解答】解:(1)设篮球每个x元,排球每个y元,依题意,得答:篮球每个50元,排球每个30元;(2)设购买篮球m个,则购买排球(2021)个,依题意,得50m+30(2021)≤800.解得m≤10,又∵m≥8,∴8≤m≤10.∵篮球的个数必须为整数,∴m只能取8、9、10,∴满足题意的方案有三种:①购买篮球8个,排球12个;②购买篮球9,排球11个;③购买篮球10个,排球10个,以上三个方案中,方案①最省钱.【点评】本题考查的是二元一次方程组、一元一次不等式的应用,根据题意正确列出方程组、一元一次不等式是解题的关键.25.(12分)甲、乙两商场以同样价格出售同样的商品,并且各自又推出不同的优惠方案:在甲商场累计购物超过2021后,超出2021的部分按90%收费;在乙商场累计购物超过100元后,超出100元的部分按95%收费.设小李在同一商场累计购物x元,其中x>2021(1)当x为何值时,小李在甲、乙两商场的实际花费相同?(2)根据小李购物花费的不同金额,请你确定在哪家商场购物更合算?【专题】方程与不等式.【分析】(1)根据已知得出甲商场2021(x-2021×90%以及乙商场100+(x-100)×95%,相等列等式,进而得出答案;(2)根据2021(x-2021×90%与100+(x-100)×95%大于、小于、等于,列三个式子,从而得出正确结论.【解答】解:(1)依题意,得2021(x-2021×90%=100+(x-100)×95%,…(2分)解得x=300.…(3分)即当x=300时,小李在甲、乙两商场的实际花费相同;…(4分)(2)①当2021(x-2021×90%>100+(x-100)×95%时,解得x<300.…(5分)②当2021(x-2021×90%<100+(x-100)×95%时,解得x>300.…(6分)③当2021(x-2021×90%=100+(x-100)×95%时,解得x=300.…(7分)答:当小李购物花费少于300元时,在乙商场购物合算;当小李购物花费多于300元时,在甲商场购物合算,当小李购物等于300元时,到两家商场花费一样多.…(8分)【点评】此题考查了一元一次不等式和一元一次方程的应用,关键是读懂题意,列出不等式,再根据实际情况进行讨论,不要漏项.。
2020-2021学年七年级下期末数学试卷附答案解析
第 1 页 共 16 页2020-2021学年七年级下学期期末考试数学试卷一.选择题(共10小题,满分30分)1.(3分)点P (a ,b )在第四象限,且|a |>|b |,那么点Q (a +b ,a ﹣b )在( )A .第一象限B .第二象限C .第三象限D .第四象限2.(3分)已知两个不等式的解集在数轴上如图表示,那么这个解集为( )A .x ≥﹣1B .x >1C .﹣3<x ≤﹣1D .x >﹣33.(3分)下列说法中,错误的是( )A .9的算术平方根是3B .√16平方根是±2C .27的平方根是±3D .立方根等于﹣1的实数是﹣14.(3分)下列各组数值是二元一次方程x ﹣3y =4的解的是( )A .{x =1y =−1B .{x =2y =1C .{x =−1y =−2D .{x =4y =−15.(3分)如图所示,下列推理及括号中所注明的推理依据错误的是( )A .∵∠1=∠3,∴AB ∥CD (内错角相等,两直线平行)B .∵AB ∥CD ,∴∠1=∠3(两直线平行,内错角相等)C .∵AD ∥BC ,∴∠BAD +∠ABC =180°(两直线平行,同旁内角互补)D .∵∠DAM =∠CBM ,∴AB ∥CD (两直线平行,同位角相等)6.(3分)若√3的整数部分为x ,小数部分为y ,则√3x ﹣y 的值是( )A .1B .√3C .3√3−3D .37.(3分)为了解某中学七年级560名学生的身高情况,抽查了其中80名学生的身高进行统计分析.下面叙述正确的是( )A .560名学生是总体B .每名学生是总体的一个个体。
2020最新七年级数学下册期末试卷及答案
2019-2020学年下学期期末考试七年级数学试卷一选择题(每小题3分,共30分)1.(3分)在方程:3x﹣y=2,+=0,=1,3x2=2x+6中,一元一次方程的个数为()A.1个B.2个C.3个D.4个【专题】常规题型;一次方程(组)及应用.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:所列方程中一元一次方程为=1故选:A.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.2.(3分)下列各对等式,是根据等式的性质进行变形的,其中错误的是()A.4x﹣1=5x+2→x=﹣3B.﹣=1→2(x+5)﹣3(x﹣3)=6C.+=0.23→x+=23D.﹣=23→﹣=230【专题】常规题型.【分析】根据等式的基本性质逐个判断即可.【解答】解:A、4x-1=5x+2,4x-5x=2+1,-x=3,x=-3,故本选项不符合题意;【点评】本题考查了等式的基本型性质,能熟记等式的性质的内容是解此题的关键.3.(3分)在一个n(n≥3)边形的n个外角中,钝角最多有()A.2个B.3个C.4个D.5个【专题】多边形与平行四边形.【分析】根据n边形的外角和为360°得到外角为钝角的个数最多为3个.【解答】解:∵一个多边形的外角和为360°,∴外角为钝角的个数最多为3个.故选:B.【点评】本题主要考查了多边形的外角和等于360°的性质,外角和与边数无关,任意多边形的外角和都是360°.4.(3分)如图,把周长为10的△ABC沿BC方向平移1个单位得到△DFE,则四边形ABFD的周长为()A.14B.12C.10D.8【分析】根据平移的性质可得DF=AC,CF=AD,然后求出四边形ABFD的周长=△ABC的周长+AD+CF,然后代入数据计算即可得解.【解答】解:∵△ABC沿BC方向平移1个单位得到△DFE,∴DF=AC,CF=AD=1,∴四边形ABFD的周长=AB+BC+CF+DF+AD,=ABBC+AC+AD+CF,=△ABC的周长+AD+CF,=10+1+1,=12.故选:B.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.5.(3分)若a<b<0,则下列式子:①a+1<b+2;②>1;③a+b<ab;④<中,正确的有()A.1个B.2个C.3个D.4个分析】由a<b<0得a+1<b+1<b+2判断①,不等式a<b两边都除以b判断②,由a<b<0得a-1<b-1<-1,进而得(a-1)(b-1)>1即可判断③,a<b两边都除以ab可判断④.【解答】解:∵a<b<0,∴a+1<b+1<b+2,故①正确;ab>1,故②正确;由a<b<0知,a-1<b-1<-1,∴(a-1)(b-1)>1,即ab-a-b+1>1,∴a+b<ab,故③正确;∵ab>0,故选:C.【点评】本题主要考查不等式的基本性质,应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.6.(3分)如图所示,一个正方形水池的四周恰好被4个正n边形地板砖铺满,则n等于()A.4B.6C.8D.10【专题】综合题.《【分析】根据平面镶嵌的条件,先求出正n边形的一个内角的度数,再根据内角和公式求出n的值.【解答】解:正n边形的一个内角=(360°-90°)÷2=135°,则135°n=(n-2)180°,解得n=8.故选:C.【点评】本题考查学生对平面镶嵌知识的掌握情况,体现了学数学用数学的思想,同时考查了多边形的内角和公式.7.(3分)《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是图我们可以表述为(),类似地,图2所示的算筹A.B.C.D.【分析】由图1可得1个竖直的算筹数算1,一个横的算筹数算10,每一横行是一个方程,第一个数是x的系数,第二个数是y的系数,第三个数是相加的结果:前面的表示十位,后面的表示个位,由此可得图2的表达式.【解答】解:第一个方程x的系数为2,y的系数为1,相加的结果为11;第二个方程x的系数为4,y的系数为3,相加的结果为27,所以可列方程组为:【点评】此题主要考查了由实际问题列二元一次方程组;关键是读懂图意,得到所给未知数的系数及相加结果.8.(3分)满足下列条件的三条线段a、b、c能构成三角形的是()A.a:b:c=1:2:3B.a+b=4,a+b+c=9C.a=3,b=4,c=5D.a:b:c=1:1:2【分析】根据三角形中任意两边之和大于第三边,任意两边之差小于第三边进行判断即可.【解答】解:A、设a,b,c分别为1x,2x,3x,则有a+b=c,不符合三角形任意两边大于第三边,故错误;B、当a+b=4时,c=5,4<5,不符合三角形任意两边大于第三边,故该选项错误;C、当a=3,b=4,c=5时,3+4>5,故该选项正确;D、设a,b,c分别为x,x,2x,则有a+b=c,不符合三角形任意两边大于第三边,故错误.故选:C.【点评】本题主要考查了三角形的三边关系,当三条线段成比例时可以设适当的参数来辅助求解.在运用三角形三边关系判定三条线段能否构成三角形时并,不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可.9.(3分)南江县出租车收费标准为:起步价3元(即行驶距离小于或等于3千米时都需要付费3元),超过3千米以后每千米加收1.5元(不足1千米按1千米计),在南江,冉丽一次乘出租车出行时付费9元,那么冉丽所乘路程最多是()千米.A.6B.7C.8D.9【专题】应用题.【分析】设冉丽所乘路程最多为xkm,根据条件的等量关系建立不等式求出其解即可.【解答】解:设冉丽所乘路程最多为xkm,根据题意可得:3+1.5(x-3)≤9,解得:x≤7,故选:B.【点评】本题考查了列一元一次不等式解实际问题的运用,分段计费的方式的运用,解答时抓住数量关系建立不等式是关键.10.(3分)如图,若干全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需()个五边形.A.6B.7C.8D.9【专题】应用题;压轴题.【分析】先根据多边形的内角和公式(n-2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.【解答】解:五边形的内角和为(5-2)•180°=540°,所以正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O,则∠1=360°-108°×3=360°-324°=36°,360°÷36°=10,∵已经有3个五边形,∴10-3=7,即完成这一圆环还需7个五边形.故选:B.【点评】本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.二、填空题(每小题3分,共30分)11.(3分)将方程4x+3y=6变形成用x的代数式表示y,则y=.【专题】计算题;一次方程(组)及应用.【分析】把x看做已知数求出y即可.【解答】解:方程4x+3y=6,【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.12.(3分)若x+2y=10,4x+3y=15,则x+y的值是.【专题】计算题.【分析】联立组成方程组,利用加减消元法求出方程组的解得到x与y的值,即可确定出x+y的值.【解答】①×4-②得:5y=25,即y=5,将y=5代入①得:x=0,则x+y=0+5=5,故答案为:5【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13.(3分)已知方程(m+1)x|m|+3=0是关于x的一元一次方程,则m的值是.【专题】计算题.【分析】若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.据此可根据未知数的系数及未知数的指数列出关于m的方程,继而求出m的值.【解答】解得m=1.故填1.【点评】解题的关键是根据一元一次方程的未知数x的次数是1这个条件,此类题目应严格按照定义解答.14.(3分)已知是二元一次方程组的解,则m+3n=.【分析】利用二元一次方程组的解先求出m,n的值,再求m+3n的值.【点评】本题主要考查了二元一次方程组的解,解题的关键是正确求解方程组.15.(3分)若a>b,且c为有理数,则ac2bc2.【分析】根据c2为非负数,利用不等式的基本性质求得ac2≥bc2.【解答】解:∵c2为≥0,由不等式的基本性质3,不等式a>b两边乘以c2得ac2≥bc2.【点评】不等式两边都乘以0,不等式变成等式;不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.16.(3分)若一个多边形的每个外角都等于30°,则这个多边形的边数为.【专题】常规题型.【分析】根据已知和多边形的外角和求出边数即可.【解答】解:∵一个多边形的每个外角都等于30°,又∵多边形的外角和等于360°,故答案为:12.【点评】本题考查了多边形的内角和外角,能熟记多边形的外角和等于360°是解此题的关键.17.(3分)如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若∠MON=40°,则∠GOH=.【分析】连接OP,根据轴对称的性质可得∠GOM=∠MOP,∠PON=∠NOH,然后求出∠GOH=2∠MON,代入数据计算即可得解.【解答】解:如图,连接OP,∵P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,∴∠GOM=∠MOP,∠PON=∠NOH,∴∠GOH=∠GOM+∠MOP+∠PON+∠NOH=2∠MON,∵∠MON=40°,∴∠GOH=2×40°=80°.故答案为:80°.【点评】本题考查了轴对称的性质,熟记性质并确定出相等的角是解题的关键.18.(3分)如图,P是等边△ABC内的一点,若将△PAC绕点A逆时针旋转到△P′AB,则∠PAP′的度数为度.【分析】此题只需根据旋转前后的两个图形全等的性质,进行分析即可.【解答】解:连接PP′.根据旋转的性质,得:∠P′AB=∠PAC.则∠P′AB+∠BAP=∠PAC+∠BAP=∠BAC=60°,即∠PAP′=60°.故答案为:60.【点评】此题主要考查了图形旋转的性质,难度不大.19.(3分)将一个长方形纸条按图折叠一下,若∠1=140°,则∠2=.【分析】根据两直线平行,同旁内角互补求出∠1的同旁内角,再根据翻折的性质以及平角等于180°列式进行计算即可得解.【解答】解:∵纸条的宽度相等,∠1=140°,∴∠3=180°-∠1=180°-140°=40°,则∠2=180°-∠4=180°-70°=110°.故答案为:110°.20.3分)如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、【点评】本题考查了平行线的性质,翻折问题,熟记性质是解题的关键.(△A2B2A△3、A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记为a1,第2个等边三角形的边长记为a2,以此类推.若OA1=1,则a2019=.【专题】三角形.【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及a2=2a1,得出a3=4a1=4,a4=8a1=8,a5=16a1=16,进而得出答案.【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴a2=2a1,a3=4a1=4,a4=8a1=8,a5=16a1=16,以此类推:a2019=22018.故答案为:22018.【点评】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出a3=4a1=4,a4=8a1=8,a5=16…进而发现规律是解题关键.三、解答题(共90分)21.(20分)按要求解方程(组)、不等式(组)(1)(2)+1=x﹣(3)解不等式:﹣1,并把解集表示在数轴上.(4)解不等式组:,并写出整数解.【专题】计算题;一元一次不等式(组)及应用.【分析】(1)根据解一元一次方程的步骤依次计算可得;(2)利用加减消元法求解可得;(3)根据解一元一次不等式的步骤依次计算可得;(4)先分别解两个不等式得到x≤1和x>-2,再根据大于小的小于大的取中间确定不等式组的解集,即可得出答案.【解答】解:(1)2(x+1)+6=6x-3(x-1),2x+2+6=6x-3x+3,2x-6x+3x=3-2-6,-x=-5,x=5;(2)①×5-②×2,得:11x=11,解得:x=1,将x=1代入①,得:3+2y=5,解得:y=1,则方程组的解为(3)4(2x-1)≤3(3x+2)-12,8x-4≤9x+6-12,8x-9x≤6-12+4,-x≤-2,x≥2,将不等式的解集表示在数轴上如下:(4)解不等式①,得:x≤1,解不等式②,得:x>-2,则不等式组的解集为-2<x≤1,所以不等式组的整数解为-1、0、1.【点评】本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.22.(6分)在图的正方形网格中有一个三角形OAB,请你在网格中分别按下列要求画出图形①画出△OAB向左平移3个单位后的三角形;②画出△OAB绕点O旋转180°后的三角形;③画出△OAB沿y轴翻折后的图形.【分析】①利用图形平移的性质得出对应点位置得出即可;②利用旋转的性质得出对应点位置得出即可;③利用轴对称图形的性质得出对应点位置得出即可.( 【 解 答 】 解 : ① 如 图 所 示 : △ A ′ B ′ O ′ 即 为 所 求 ;② 如 图 所 示 : △ A ″ B ″ O 即 为 所 求 ;③ 如 图 所 示 : △ A ″ B ″ ′ O 即 为 所 求 .【点评】此题主要考查了图形的平移和旋转以及轴对称图形的性质等知识,根据题意找出对应点是解题关键.23. 10 分)如图,△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点 O ,∠CAB=50°,∠C=60°,求∠DAE 和∠BOA 的度数.【 分 析 】 先 利 用 三 角 形 内 角 和 定 理 可 求 ∠ ABC , 在 直 角 三 角 形 ACD 中 , 易 求 ∠ DAC ; 再根 据 角 平 分 线 定 义 可 求 ∠ CBF 、∠ EAF ,可 得 ∠ DAE 的 度 数 ;然 后 利 用 三 角 形 外 角 性 质 ,可 先 求 ∠ AFB , 再 次 利 用 三 角 形 外 角 性 质 , 容 易 求 出 ∠ BOA .【 解 答 】 解 : ∵ ∠ CAB=50 °, ∠ C=60 °∴ ∠ ABC=180 ° -50 ° -60 ° =70 °,又 ∵ AD 是 高 ,∴ ∠ ADC=90 °,∴ ∠ DAC=180 ° -90 ° - ∠ C=30 °,∵ AE 、 BF 是 角 平 分 线 ,∴ ∠ CBF= ∠ ABF=35 °, ∠ EAF=25 °,∴ ∠ DAE= ∠ DAC- ∠ EAF=5 °,∠ AFB= ∠ C+ ∠ CBF=60 ° +35 ° =95 °,∴ ∠ BOA= ∠ EAF+ ∠ AFB=25 ° +95 ° =120 °,∴∠DAC=30°,∠BOA=120°.故∠DAE=5°,∠BOA=120°.【点评】本题考查了三角形内角和定理、角平分线定义、三角形外角性质.关键是利用角平分线的性质解出∠EAF、∠CBF,再运用三角形外角性质求出∠AFB.24.(10分)如图所示,求∠A+∠B+∠C+∠D+∠E+∠F.【专题】常规题型;多边形与平行四边形.【分析】连接AD,由三角形内角和外角的关系可知∠E+∠F=∠FAD+∠EDA,由四边形内角和是360°,即可求∠A+∠B+∠C+∠D+∠E+∠F=360°.【解答】解:如图,连接AD.∵∠1=∠E+∠F,∠1=∠FAD+∠EDA,∴∠E+∠F=∠FAD+∠EDA,∴∠A+∠B+∠C+∠D+∠E+∠F=∠BAD+∠ADC+∠B+∠C.又∵∠BAD+∠ADC+∠B+∠C=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.【点评】本题考查的是三角形内角与外角的关系,涉及到四边形及三角形内角和定理,比较简单.25.(10分)已知关于x的不等式组有三个整数解,求实数a的取值范围.【分析】先求出不等式组的解集,根据已知和不等式组的解集得出答案即可.∵原不等式组有三个整数解:-2,-1,0,∴0≤4+a<1,∴-4≤a<-3.【点评】本题考查了解一元一次不等式组,不等式组的整数解等知识点,能根据不等式组的解集和已知得出关于a的不等式组是解此题的关键.26.(10分)甲、乙两人共同解方程组由于甲看错了方程①中的a,得到方程组的解为,乙看错了方程②中的b,得到方程组的解为,试计算a2018+(﹣0.1b)2019的值.【专题】计算题;一次方程(组)及应用.【分析】将代入方程组的第二个方程,x=5,y=4代入方程组的第一个方程,联立求出a与b的值,即可求出所求式子的值.【解答】解:将代入方程组中的4x-by=-2得:-12+b=-2,即b=10;将x=5,y=4代入方程组中的ax+5y=15得:5a+20=15,即a=-1,则a2018+(-0.1b)2019=1-1=0.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.27.(10分)四川光雾山国际红叶节的门票分两种:A种门票600元/张,B种门票120元/张,青年旅行社要为一个旅行团代购门票,在购票费用不超过5000元的情况下,购买A、B两种门票共15张,要求A种门票的数量不少于B种门票的数量的一半若设购买A种门票x张,请解答下列问题:(1)共有几种符合题意的购票方案?写出解答过程.(2)根据计算判断哪种购票方案更省钱.【专题】方程与不等式.【分析】(1)根据题意可以列出相应的不等式组,从而可以解答本题;(2)根据(1)中的结果可以计算出各种方案的花费,然后比较大小即可解答本题.【解答】解:(1)共有两种购票方案,理由:由题意可得,,得5≤x≤,∵x为整数,∴x=5或x=6,∴当x=5时,15﹣x=10;当x=6时,15﹣x=9;∴共有两种购票方案;(2)方案一:购买A种门票5张,B种门票10张,花费为:600×5+120×10=4200(元),方案二:购买A种门票6张,B种门票9张,花费为:600×6+120×9=4680(元),∵4200<4680,∴方案一购买A种门票5张,B种门票10张更省钱.【点评】本题考查一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用不等式的性质解答.28.(14分)如图1,∠MON=90°,点A、B分别在OM、ON上运动(不与点O重合).(1)若BC是∠ABN的平分线,BC的反方向延长线与∠BAO的平分线交与点D.①若∠BAO=60°,则∠D=°.②猜想:∠D的度数是否随A,B的移动发生变化?并说明理由.(2)若∠ABC=∠ABN,∠BAD=∠BAO,则∠D=°.(3)若将“∠MON=90°”改为“∠MON=α(0°<α<180°)”,∠ABC=∠ABN,∠BAD=∠BAO,其余条件不变,则∠D=°(用含α、n的代数式表示)【分析】(1)①先求出∠ABN=150°,再根据角平分线得出∠CBA=∠ABN=75°、∠BAD=∠BAO=30°,最后由外角性质可得∠D度数;②设∠BAD=α,利用外角性质和角平分线性质求得∠ABC=45°+α,利用∠D=∠ABC-∠BAD可得答案;(2)设∠BAD=α,得∠BAO=3α,继而求得∠ABN=90°+3α、∠ABC=30°+α,根据∠D=∠ABC-∠BAD可得答案;(3)设∠BAD=β,分别求得∠BAO=nβ、∠ABN=∠AOB+∠BAO=α+nβ解:(1)①∵∠BAO=60°、∠MON=90°,∴∠ABN=150°,∵BC平分∠ABN、AD平分∠BAO,∴∠CBA=∠ABN=75°,∠BAD=∠BAO=30°,∴∠D=∠CBA﹣∠BAD=45°,故答案为:45;②∠D的度数不变.理由是:设∠BAD=α,∵AD平分∠BAO,∴∠BAO=2α,∵∠AOB=90°,∴∠ABN=∠AOB+∠BAO=90°+2α,∵BC平分∠ABN,∴∠ABC=45°+α,∴∠D=∠ABC﹣∠BAD=45°+α﹣α=45°;(2)设∠BAD=α,∵∠BAD=∠BAO,∴∠BAO=3α,∵∠AOB=90°,∴∠ABN=∠AOB+∠BAO=90°+3α,∵∠ABC=∠ABN,∴∠ABC=30°+α,∴∠D=∠ABC﹣∠BAD=30°+α﹣α=30°,故答案为:30;(3)设∠BAD=β,∵∠BAD=∠BAO,∴∠BAO=nβ,∵∠AOB=α°,∴∠ABN=∠AOB+∠BAO=α+nβ,∵∠ABC=∠ABN,∴∠ABC=+β,∴∠D=∠ABC﹣∠BAD=+β﹣β=,故答案为:.【点评】本题主要考查角平分线和外角的性质,熟练掌握三角形的外角性质和角平分线的性质是解题的关键.。
2020最新七年级下期末数学试卷(含答案解析)
一、选择题(本大题共8小题,每小题3分,共24分)1.经过多边形一个顶点共有5条对角线,则这个多边形的边数是()A.5 B.6 C.7 D.8【分析】根据从n边形的一个顶点可以作对角线的条数公式(n ﹣3)求出边数即可得解.【解答】解:∵从一个多边形的一个顶点出发可以引5条对角线,设多边形边数为n,∴n﹣3=5,解得:n=8.故选:D.【点评】本题考查了多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.掌握n边形从一个顶点出发可引出(n﹣3)条对角线是解题的关键.2.如图,直线AB∥CD,∠B=50°,∠C=40°,则∠E等于()A.70°B.80°C.90°D.100°【分析】根据平行线的性质得到∠1=∠B=50°,由三角形的内角和即可得到结论.【解答】解:∵AB∥CD,∴∠1=∠B=50°,∵∠C=40°,∴∠E=180°﹣∠B﹣∠1=90°,故选:C.【点评】本题考查了三角形内角和定理,平行线的性质的应用,注意:两直线平行,同旁内角互补,题目比较好,难度适中.3.下列运算正确的是()A.x6÷x3=x2B.(a+1)0=1 C.2a2﹣3a2=﹣a2D.(a﹣2)2=a2﹣4【分析】直接利用零指数幂的性质以及同底数幂的除法运算法则、完全平方公式分别判断得出答案.【解答】解:A、x6÷x3=x3,故此选项错误;B、(a+1)0=1(a≠﹣1),故此选项错误;C、2a2﹣3a2=﹣a2,正确;D、(a﹣2)2=a2﹣4a+4,故此选项错误;故选:C.【点评】此题主要考查了零指数幂的性质以及同底数幂的除法运算、完全平方公式,正确把握相关性质是解题关键.4.下面每组数分别是三根小木棒的长度,它们能摆成三角形的是()A.1,2,3 B.2,5,2 C.2,3,6 D.7,1,7【分析】根据三角形的三边关系,看哪个选项中两条较小的边的和大于最大的边即可.【解答】解:A、1+2=3,不能构成三角形,故本选项错误;B、2+2<5,不能构成三角形,故本选项错误;C、2+3<6,不能构成三角形,故本选项错误;D、1+7>7,能构成三角形,故本选项正确.故选:D.【点评】本题主要考查了三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边,比较简单.5.若a+b=6,a﹣b=2,则a2+b2的值为()A.40 B.20 C.36 D.12【分析】联立已知两等式求出a与b的值,代入原式计算即可求出值.【解答】解:联立得:解得:则原式=16+4=20,故选:B.【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.6.一辆公共汽车从车站开出,加速行驶一段时间后匀速行驶,过了一段时间,汽车到达下一个车站.乘客上下车后汽车开始加速,一段时间后又开始匀速行驶,下面可以近似地刻画出汽车在这段时间内的速度变化情况的图象是()【分析】横轴表示时间,纵轴表示速度,根据加速、匀速、减速时,速度的变化情况,进行选择.【解答】解:公共汽车经历:加速﹣匀速﹣减速到站﹣加速﹣匀速,加速:速度增加,匀速:速度保持不变,减速:速度下降,到站:速度为0.故选:C.【点评】此题考查的知识点是函数的图象,图象分析题一定要注意图象的横、纵坐标表示的物理量,分析出图象蕴含的物理信息,考查学生的图象分析和归纳能力.7.一枚质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,抛掷这枚骰子一次,则向上的面的数字大于4的概率是()【分析】让向上一面的数字是大于4的情况数除以总情况数6即为所求的概率.【解答】解:正方体骰子,六个面上分别刻有的1,2,3,4,5,6六个数字中,大于4为5,6,则向上一面的数字是大于4的概率为=.故选:C.【点评】此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.8.如图1,在边长为a的正方形中,剪去一个边长为b的小正方形(a>b),将余下的部分剪开后拼成一个平行四边形(如图2),根据两个图形阴影部分面积的关系,可以得到一个关于a,b的恒等式为()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2C.a2﹣b2=(a+b)(a﹣b) D.a2+ab=a(a+b)【分析】分别计算这两个图形阴影部分面积,根据面积相等即可得到.【解答】解:第一个图形的阴影部分的面积=a2﹣b2,第二个图形面积=(a+b)(a﹣b),则a2﹣b2=(a+b)(a﹣b).故选:C.【点评】本题考查了平方差公式的几何背景,正确表示出两个图形中阴影部分的面积是关键.二、填空题(本大题共6小题,每小题3分,共18分)9.已知10a=15,10a﹣b=30,则10b= .【分析】直接利用同底数幂的除法运算法则计算得出答案.【解答】解:∵10a=15,10a﹣b=30,∴10a÷10b=15÷10b=30,则10b=.故答案为:.【点评】此题主要考查了同底数幂的除法运算,正确掌握运算法则是解题关键.10.如图,玲玲在美术课上用丝线绣成了一个“2”,AB∥DE,∠A=30°,∠ACE=110°,则∠E的度数为100°【分析】过C作CQ∥AB,得出AB∥DE∥CQ,根据平行线的性质推出∠A=∠QCA=30°,∠E+∠ECQ=180°,求出∠ECQ,即可求出.【解答】解:过C作CQ∥AB,∵AB∥DE,∴AB∥DE∥CQ,∵∠A=30°,∴∠A=∠QCA=30°,∠E+∠ECQ=180°,∵∠ACE=110°,∴∠ECQ=110°﹣30°=80°,∴∠E=180°﹣80°=100°,故答案为:100°【点评】本题主要考查对平行线的性质,平行公理及推论等知识点的理解和掌握,能正确作辅助线并灵活运用性质进行推理是解此题的关键.11.用两根同样长的铁丝分别围成一个长方形和一个正方形.若长方形的长为xcm、宽为ycm,用含有x、y的代数式表示正方形的面积为.【分析】求出长方形的周长,求出正方形的边长,即可求出答案.【解答】解:∵长方形的周长为2(x+y)cm,【点评】本题考查了列代数式,解决问题的关键是读懂题意,掌握长方形的周长与正方形的周长、面积公式.12.如图所示,A、B、C、D在同一直线上,AB=CD,DE∥AF,若要使△ACF≌△DBE,则还需要补充一个条件:∠E=∠F .【分析】要使△ACF≌△DBE,已知DE∥AF,可以得到∠A=∠D,因为AB=CD,则再添加∠E=∠F,或AF=DE从而利用AAS或SAS判定其全等,也可添加BE∥CF或∠EBD=∠FCA利用AAS 可判定全等.【解答】解:∵AB=CD,DE∥AF∴AC=DB,∠A=∠D∵∠E=∠F∴△ACF≌△DBE(AAS)∴此处添加∠E=∠F.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.13.古人云:“入门须正,立志须高”,人生目标选择非常重要哈佛大学对一群智力、学历相似的人进行的“25年跟踪”发现:有清晰且长期目标的人占3%,大都成了顶尖成功人士;有清晰短期目标的人占10%,大都成了顶尖专业人士:目标模糊者占60%,他们能安稳工作生活,无特别成绩:其余是无目标的人,经常失业,生活动荡.这一结果用扇形统计图表示如图所示:其中无目标的人所对应的扇形的圆心角为97.2°【分析】根据圆心角=360°×百分比计算即可;【解答】解:无目标的人所对应的扇形的圆心角为360°×(1﹣60%﹣3%﹣10%)=97.2°,故答案为97.2°.【点评】本题考查扇形统计图,解题的关键是熟练掌握基本知识,属于中考常考题型.14.规定:十进制数2378记作2378(10),2378(10)=2×103+3×102+7×101+8×100,二进制数1001记作1001(2),1001(2)=1×23+0×22+0×21+1×20;k(k是大于2的整数)进制数132记作132(k),132(k)=k2+3k1+2k0=k2+3k+2.计算2051(k)+30= 2k3+8k+1 (用含k的代数式表示)(k)【分析】根据题意可以写用代数式表示出所求式子,本题得以解决.【解答】解:2051(k)+30(k)=2×k3+0×k2+5k+1×k0+3k+0×k0=2k3+8k+1,故答案为:2k3+8k+1.【点评】本题考查有理数的混合运算,解答本题的关键是明确题意,用相应的代数式表示出所求的式子.三、解答题(本大题共9小题,共78分)15.(8分)实数a、b在数轴上的对应位置如图所示,化简|2a ﹣b|﹣|b﹣1|+|a+b|.【分析】根据数轴上a,b的值得出a,b的符号,a<﹣2,b>1,以及2a﹣b<0,b﹣1>0,a+b<0,即可化简求值.【解答】解:∵a<﹣2,b>1,∴2a﹣b<0,b﹣1>0,a+b<0,∴|2a﹣b|﹣|b﹣1|+|a+b|,=﹣(2a﹣b)﹣(b﹣1)﹣(a+b),(6分)=﹣2a+b﹣b+1﹣a﹣b,=﹣3a﹣b+1.(8分)【点评】此题主要考查了整式的化简以及实数与数轴,根据数轴得出a,b的符号是解决问题的关键.16.(8分)先化简,再求值:(a2b﹣2ab2﹣b3)÷b﹣(a+b)(a ﹣b),其中a=,b=﹣1.【分析】先算乘法和除法,再合并同类项,最后代入求出即可;【解答】解:(a2b﹣2ab2﹣b3)÷b﹣(a+b)(a﹣b),=a2﹣2ab﹣b2﹣a2+b2,=﹣2ab,当a=,b=﹣1时,原式=﹣2××(﹣1)=1;【点评】本题考查了整式的混合运算和求值的应用,能正确根据整式的运算法则进行化简是解此题的关键.17.(8分)如图,直线AB、CD相交于O,射线OM平分∠AOC,ON⊥OM.试说明射线ON平分∠BOC.【分析】根据垂直定义得出∠NOM=90°,求出∠COM+∠CON=90°,∠AOM+∠BON=90°,根据角平分线定义得出∠AOM=∠COM,即可得出∠CON=∠BON,根据角平分线定义得出即可.【解答】解:∵ON⊥OM,∴∠NOM=90°,∴∠COM+∠CON=90°,∠AOM+∠BON=180°﹣90°=90°,∵OM平分∠AOC,∴∠AOM=∠COM,∴∠CON=∠BON,即射线ON平分∠BOC.【点评】本题考查了角平分线定义和对顶角、邻补角等知识点,能够求出∠COM+∠CON=90°、∠AOM+∠BON=90°、∠AOM=∠COM是解此题的关键.18.(9分)如图,在△ABC中,D是AB上一点,DF交AC于点E,DE=EF,AE=CE.请判断AB与CF是否平行?并说明理由.【分析】由△AED≌△CEF,推出∠A=∠ECF,推出AB∥CF.【解答】解:结论:AB∥CF.理由:在△AED和△△CEF中,,∴△AED≌△CEF.∴∠A=∠ECF,∴AB∥CF.【点评】本题考查全等三角形的判定和性质,解题的关键是准确寻找全等三角形解决问题,属于中考常考题型.19.(10分)如图,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.(1)如果AC=6cm,BC=8cm,试求△ACD的周长;(2)如果∠CAD:∠BAD=1:2,求∠B的度数.【分析】(1)折叠时,对称轴为折痕DE,DE垂直平分线段AB,由垂直平分线的性质得DA=DB,再把△ACD的周长进行线段的转化即可;(2)设∠CAD=x,则∠BAD=2x,根据(1)DA=DB,可证∠B=∠BAD=2x,在Rt△ABC中,利用互余关系求x,再求∠B.【解答】解:(1)由折叠的性质可知,DE垂直平分线段AB,根据垂直平分线的性质可得:DA=DB,所以,DA+DC+AC=DB+DC+AC=BC+AC=14cm;(2)设∠CAD=x,则∠BAD=2x,∵DA=DB,∴∠B=∠BAD=2x,在Rt△ABC中,∠B+∠BAC=90°,即:2x+2x+x=90°,x=18°,∠B=2x=36°.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.20.(9分)一位农民带上若干千克自产的土豆进城出售.为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)求出降价前每千克的土豆价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?【分析】(1)由图象可知,当x=0时,y=5,所以农民自带的零钱是5元.(2)可设降价前每千克土豆价格为k元,则可列出农民手中钱y 与所售土豆千克数x之间的函数关系式,由图象知,当x=30时,y的值,从而求出这个函数式.(3)可设降价后农民手中钱y与所售土豆千克数x之间的函数关系式,因为当x=a时,y=26,当x=30时,y=20,依此列出方程求解.【解答】解:(1)由图象可知,当x=0时,y=5.答:农民自带的零钱是5元.(2)设降价前每千克土豆价格为k元,则农民手中钱y与所售土豆千克数x之间的函数关系式为:y=kx+5,∵当x=30时,y=20,∴20=30k+5,解得k=0.5.答:降价前每千克土豆价格为0.5元.(3)设降价后农民手中钱y与所售土豆千克数x之间的函数关系式为y=0.4x+b.∵当x=30时,y=20,∴b=8,当x=a时,y=26,即0.4a+8=26,解得:a=45.答:农民一共带了45千克土豆.【点评】此类题目的解决需仔细分析函数图象,从中找寻信息,利用待定系数法求出函数解析式,从而解决问题.21.(10分)如图所示的正三角形区域内投针(区域中每个小正三角形除颜色外完全相同),针随机落在某个正三角形内(边线忽略不计)(1)投针一次,针落在图中阴影区域的概率是多少?(2)要使针落在图中阴影区域和空白区域的概率均为,还要涂黑几个小正三角形?请在图中画出.【分析】(1)求出阴影部分的面积与三角形的面积的比值即可解答;(2)利用(1)中求法得出答案即可.【解答】解:(1)因为阴影部分的面积与三角形的面积的比值是=,所以投针一次击中阴影区域的概率等于.(2)如图所示:要使针落在图中阴影区域和空白区域的概率均为,还要涂黑2个小正三角形.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.22.(8分)两个全等的三角形,可以拼出各种不同的图形,下面4个图中已画出其中一个三角形,请你利用尺规作图(不写画法,保留作图痕迹)分别补画出另一个与其全等的三角形,使每个图形分别成为不同的轴对称图形(所画的三角形可与原三角形有重叠的部分)【分析】根据轴对称图形的性质即可解决问题;【解答】解:如图所示.(答案不唯一)【点评】本题考查利用轴对称设计图案,全等三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(8分)“化归与转化的思想”是指在研究解决数学问题时采用某种手段将问题通过变换进行转化,进而使问题得到解决我们知道m2+n2=0可以得到m=0,n=0.如果a2+b2+2a﹣4b+5=0,求a、b的值.【分析】根据题意,可以将题目中的式子化为材料中的形式,从而可以得到a、b的值.【解答】解:由a2+b2+2a﹣4b+5=0,得到:(a2+2a+1)+(b2﹣4b+4)=0,(a+1)2+(b﹣2)2=0,所以有a+1=0,b﹣2=0,解得a=﹣1,b=2.【点评】本题考查配方法的应用、非负数的性质﹣偶次方,解题的关键是明确题目中的材料,可以将问题中方程转化为材料中的形式.。
2020年七年级下学期期末数学试卷含答案解析
一、选择题:每小题3分,共30分1.下列图形中,∠1与∠2不是对顶角的有()A.1个B.2个C.3个D.0个2.9的平方根为()A.3B.﹣3C.±3D.3.在平面直角坐标系中,点(﹣2,3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.下列方程中,二元一次方程是()A.xy=1B.y=3x﹣1C.x+=2D.x2+x﹣3=05.不等式5﹣x>2的解集是()A.x<3B.x>3C.x<﹣7D.x>﹣36.下列事件中最适合使用普查方式收集数据的是()A.为制作校服,了解某班同学的身高情况B.了解全市初三学生的视力情况C.了解一种节能灯的使用寿命D.了解我省农民的年人均收入情况7.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°8.若a、b均为正整数,且,则a+b的最小值是()A.3B.4C.5D.69.在方程组中,若未知数x,y满足x+y>0,则m的取值范围在数轴上的表示应是如图所示的()A.B.C.D.10.若不等式组无解,则a的取值范围是()A.a≥﹣1B.a≤﹣1C.a>﹣1D.a<﹣1二、填空题:每小题3分,共30分11.实数|﹣3|的相反数是.12.若点M(a+3,a﹣2)在y轴上,则点M的坐标是.13.阅读下列语句:①对顶角相等;②同位角相等;③画∠AOB 的平分线OC;④这个角等于30°吗?在这些语句中,属于真命题的是(填写序号)14.已知方程组的解是,则a﹣b的值为.15.3x与9的差是非负数,用不等式表示为.16.在对100个数据进行整理的频率分布表中,各组的频率之和等于.17.如图,AB∥CD,BE⊥DE.则∠B与∠D之间的关系.18.已知a,b是正整数,若+是不大于2的整数,则满足条件的有序数对(a,b)为.19.已知关于x的不等式组的整数解共有6个,则a的取值范围是.20.如图是一组密码的一部分.为了保密,许多情况下可采用不同的密码,请你运用所学知识找到破译的“钥匙”.目前,已破译出“今天考试”的真实意思是“努力发挥”.若“今”所处的位置为(x,y),你找到的密码钥匙是,破译“正做数学”的真实意思是.三、按要求完成下列各题21.计算(1)|﹣|+2(2)(+)22.解不等式(组),并把它们的解集在数轴上表示出来.(1)﹣2>(2).23.解方程组:(1)(2)(用加减法解).四、解答题24.完成下面的证明.如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D,求证:DF∥AC.证明:∵∠1=∠2(已知),∠1=∠3,∠2=∠4 ()∴∠3=∠4(等量代换).∴∥()∴∠C=∠ABD ()∵∠C=∠D ()∴∠D=∠ABD ()∴AC∥DF ()25.如图,△ABC的顶点A在原点,B、C坐标分别为B(3,0),C(2,2),将△ABC向左平移1个单位后再向下平移2单位,可得到△A′B′C′.(1)请画出平移后的△A′B′C′的图形;(2)写出△A′B′C′各个顶点的坐标;(3)求△ABC的面积.26.联合国规定每年的6月5日是“世界环境日”,为配合今年的“世界环境日”宣传活动,某校课外活动小组对全校师生开展了以“爱护环境,从我做起”为主题的问卷调查活动,将调查结果分析整理后,制成了上面的两个统计图.其中:A:能将垃圾放到规定的地方,而且还会考虑垃圾的分类;B:能将垃圾放到规定的地方,但不会考虑垃圾的分类;C:偶尔会将垃圾放到规定的地方;D:随手乱扔垃圾.根据以上信息回答下列问题:(1)该校课外活动小组共调查了多少人?并补全上面的条形统计图;(2)如果该校共有师生2400人,那么随手乱扔垃圾的约有多少人?27.一种蜂王精有大小两种包装,3大盒4小盒共装108瓶,2大盒3小盒共装76瓶,大盒与小盒各装多少瓶?28.已知关于x、y的二元一次方程组(1)求这个方程组的解;(用含有m的代数式表示)(2)若这个方程组的解,x的值是负数,y的值是正数,求m的整数值.29.甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>100.。
2020-2021学年第二学期七年级期末数学试卷及答案
20.(5 分)先阅读材料,然后解方程组. 材料:善于思考的小军在解方程组
时,采用了如下方法:
解:将②变形,得 4x+10y+y=5
即 2(2x+5y)+y=5③
把①代入③,得 2×3+y=5,解得 y=﹣1.
把 y=﹣1 代入①,得 2x+5×(﹣1)=3,解得 x=4.
∴原方程组的解为
.
这种方法称为“整体代入法”.请用这种方法解方程组:
D.0
A. =±5
B.
=4
C.( )2=4 D.± =2
3.(3 分)若 a<b,则下列不等式中正确的是( )
A.a﹣3<b﹣3
B.a﹣b>0
C.
b
D.﹣2a<﹣2b
4.(3 分)下列说法正确的是( ) A.调查全国初中生每天体育锻炼所用时间的情况,适合采用全面调查 B.调查黄河某段的水质情况,适合采用抽样调查 C.为了了解神舟飞船的设备零件的质量情况,选择抽样调查 D.为了了解一批袋装食品是否含有防腐剂,选择全面调查
D.
,故本选项不合题意.
故选:C.
3.(3 分)若 a<b,则下列不等式中正确的是( )
A.a﹣3<b﹣3
B.a﹣b>0
C.
b
D.﹣2a<﹣2b
【分析】根据不等式的性质 1,可判断 A、B;根据不等式的性质 2,可判断 C;根据不 等式的性质 3,可判断 D. 【解答】解:A、不等式的两边都减 3,不等式的方向不变,故 A 正确; B、不等式的两边都减 b,不等号的方向不变,故 B 错误; C、不等式的两边都乘以 ,不等号的方向不变,故 C 错误;
个大长方形的面积为
cm2.
三、解答题(本大题共 7 个小题,共 55 分.解答应写出文字说明,证明过程或演算步骤) 16.(8 分)(1)计算: +| ﹣3|﹣ + ;
2020年七年级下期末数学试卷含答案解析
2020七年级(下)期末数学试卷一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请在括号内填上正确选项的字母,每小题3分,共30分.1.计算(﹣3a)2的结果是()A.6a2B.﹣9a2C.9a2D.﹣6a22.下列交通安全标识图形中是轴对称图形的是()A.B.C. D.3.人体内一种细胞的直径约为1.56μm,相当于1.56×10﹣6m,则1.56×10﹣6m用小数把它表示出来是()A.0.000156m B.0.0000156m C.0.00000156m D.0.000000156m4.如图,已知∠1=∠2,则下列结论正确的是()A.c∥d B.a∥b C.∠3=∠1 D.∠2=∠45.如图,一只蚂蚁以均匀的速度沿台阶A1⇒A2⇒A3⇒A4⇒A5爬行,那么蚂蚁爬行的高度h随时间t变化的图象大致是()A.B.C.D.6.小颖用长度为奇数的三根木棒搭一个三角形,其中两根木棒的长度分别为9cm和3cm,则第三根木棒的长度是()A.5cm B.9cm C.10cm D.13cm7.若(x﹣6)2=x2+mx+36,则m的值是()A.﹣6 B.6 C.﹣12 D.128.如图,是工人师傅用同一种材料制成的金属框架,已知∠B=∠E,AB=DE,BF=EC,其中△ABC的周长为24cm,CF=3cm,则制成整个金属框架所需这种材料的总长度为()A.45cm B.48cm C.51cm D.54cm9.如图,在△ABC中,∠A=60°,∠C=50°,BD是∠ABC的角平分线,点E在AB上,且ED∥BC,则∠1的度数是()A.35°B.30°C.25°D.60°10.如图,题中图形是用棋子按照一定规律摆成的,按照这种摆法,第n个图形中共有棋子()A.2n枚B.(n2+1)枚C.(n2﹣n)枚D.(n2+n)枚二、填空题:每小题4分,共20分.11.若m﹣n=2,则10m÷10n= .12.等腰三角形的一边长是8cm,另一边长是5cm,则它的周长是.13.为进一步加强小学生的安全意识,贵阳市某中学组织全校师生进行“安全知识”网络竞赛答题,共20道题,彬彬同学答对题目的概率是,则彬彬答对的题目数量是.14.如图,AB∥DC,∠A=120°,∠C=10°,则∠1= °.15.如图,是4×4正方形网格,其中已有3个小正方形涂成了黑色,现在从剩余的13个白色小正方形中选出一个涂成黑色,使涂成黑色的四个小正方形所构成的图形是轴对称图形,则这样的白色小正方形有个.三、解答题16.(1)计算:x2﹣(x+3)(x﹣3);(2)先化简,再求值:x(x﹣y)﹣(x+1)2+2x,其中x=﹣,y=2016.17.如图,在∠A中,B是AC边上一点.(1)以B为顶点,BC为一边,利用尺规作图作∠EBC,使∠EBC=∠A;(保留作图痕迹,不写作法)(2)在(1)的条件下,EB与AD平行吗?说明理由.18.贵阳市某中学初一年级的学生参加军训,在一次野外生存训练中,教官将一包食品随意埋在如图所示的区域中(图中每个三角形的大小、形状完全相同).(1)食品埋藏在A区域的概率是多少?(2)假如你去寻找食品,你认为在哪个区域找到食品的可能性大?说明理由.19.贵州省清镇体育训练基地,有一块边长为(2m+3n)米的正方形土地(如图所示),现准备在这块正方形土地上修建一个长为(2m+2n)米,宽为(m+n)米的长方形游泳池,剩余部分(图中阴影部分)修建成休息区域.(1)试用含m,n的式子表示休息区域的面积;(结果要化简)(2)若m=15米,n=10米,求休息区域的面积.20.如图,AC∥FE,点F、C在BD上,AC=DF,BC=EF,试说明:AB=DE.21.低碳生活、保护环境、人人有责.“低碳生活”是指人们生活中尽量减少所耗能量,从而降低碳(特别是指二氧化碳)的排放量的一种生活方式,如下是排碳计算公式:排碳计算公式家具用电的二氧化碳排放量(kg)=耗电量(kW•h)×0.785开私家车的二氧化碳排放量(kg)=耗油量(L)×2.7家用天然气二氧化碳排放量(kg)=天然气使用量(m3)×0.19 家用自来水二氧化碳排放量(kg)=自来水使用量(t)×0.91 (1)如果用y表示开私家车的二氧化碳排放量,x表示耗油量,写出开私家车的二氧化碳排放量y与耗油量x之间的关系式;(2)小菁同学家今年3月份用电大约180(kW•h),天然气18m3,开私家车耗油130L,用自来水5t,请计算他家3月份这几项的二氧化碳排放总量.22.如图,在四边形ABCD中,∠BAE=∠ACD=90°,BC=CE.(1)∠BAC与∠D相等吗?为什么?(2)E点在AD边上,若∠BCE=90°,试判断△ACD的形状,并说明理由.参考答案与试题解析一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请在括号内填上正确选项的字母,每小题3分,共30分.1.计算(﹣3a)2的结果是()A.6a2B.﹣9a2C.9a2D.﹣6a2【考点】幂的乘方与积的乘方.【分析】根据积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算.【解答】解:(﹣3a)2=9a2,故选:C.【点评】此题主要考查了积的乘方,关键是掌握计算法则.2.下列交通安全标识图形中是轴对称图形的是()A.B.C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解即可.【解答】解:A、是轴对称图形,本选项正确;B、不是轴对称图形,本选项错误;C、不是轴对称图形,本选项错误;D、不是轴对称图形,本选项错误.故选A.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.人体内一种细胞的直径约为1.56μm,相当于1.56×10﹣6m,则1.56×10﹣6m用小数把它表示出来是()A.0.000156m B.0.0000156m C.0.00000156m D.0.000000156m【考点】科学记数法—原数.【分析】把1.56×10﹣6还原成一般的数,就是把1.56的小数点向左移动6位.【解答】解:1.56×10﹣6m用小数把它表示出来是0.00000156m.故选:C.【点评】此题主要考查了科学记数法﹣原数,用科学记数法表示的数还原成原数时,n<0时,n是几,小数点就向前移几位.4.如图,已知∠1=∠2,则下列结论正确的是()。
2020-2021初一数学下期末试题(及答案)
2020-2021初一数学下期末试题(及答案) 2020-2021初一数学下期末试题(及答案)一、选择题1.已知实数a,b,若a>b,则下列结论错误的是A。
a-7>b-7B。
6+a>b+6C。
a/5>b/5D。
-3a>-3b2.计算2-5+3-5的值是()A。
-1B。
1C。
-20D。
203.估计10+1的值应在()A。
3和4之间B。
4和5之间C。
5和6之间D。
6和7之间4.XXX对九(1)、九(2)班(人数都为50人)参加“阳光体育”的情况进行了调查,统计结果如图所示。
下列说法中正确的是()A。
喜欢乒乓球的人数(1)班比(2)班多B。
喜欢足球的人数(1)班比(2)班多C。
喜欢羽毛球的人数(1)班比(2)班多D。
喜欢篮球的人数(2)班比(1)班多5.黄金分割数是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算5-1/2的值()A。
在1.1和1.2之间B。
在1.2和1.3之间C。
在1.3和1.4之间D。
在1.4和1.5之间6.已知关于x,y的二元一次方程组2ax+by=3ax-by=1y=-1的解为,则a-2b的值是()A。
-2B。
2C。
3D。
-37.在平面直角坐标系内,线段CD是由线段AB平移得到的,点A(-2,3)的对应点为C(2,5),则点B(-4,-1)的对应点D的坐标为()A。
(-8,-3)B。
(4,2)C。
(0,1)D。
(1,8)8.已知两个不等式的解集在数轴上如右图表示,那么这个解集为()A。
≥-1B。
1C。
-3< x ≤-1D。
-39.将点A(1,-1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B到达点D,使得点A到达点C(4,2),点B到达点D,则点D的坐标是()A。
(7,3)B。
(6,4)C。
(7,4)D。
(8,4)10.在平面直角坐标系中,点A的坐标为(0,1),点B 的坐标为(3,3),将线段AB平移,使得A到达点C(1,1),B到达点D,则点D的坐标为()A。
【人教版】数学七年级下册《期末考试题》(带答案)
22.某校在“弘扬传统文化,打造书香校园”活动中,学校计划开展四项活动:
“A--国学诵读”、“B--演讲”、“C--书法”、“D---课本剧”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意愿,随机调查了部分学生,结果统计如下:
12 如果 ,则x-y=_______.
15.《孙子算经》是中国古代重要的数学著作之一,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的 ,那么乙也共有钱48文,甲、乙两人原来各有多少钱.设甲原有x文钱,乙原有y文钱,可列方程组是________.
16.如图,把一块含有30°角的直角三角板的直角顶点放在相互平行的两条直线的其中一条上,如果∠1=38°,那么∠2的度数是______________.
【答案】C
【解析】
分析:根据无理数是无限不循环小数,判断出 , ,0.123112233111222333…, ,- ,这些数中,无理数有多少个即可.
详解: , ,0.123112233111222333…, ,- ,其中无理数有3个: ,0.123112233111222333…,- .
故选C.
点睛:此题主要考查了无理数的含义和求法,要熟练掌握,解答此题的关键是要明确:无理数是实数中不能精确地表示为两个整数之比的数,即无限不循环小数.
17.对于非负实数x “四舍五入”到个位的值记为 ,即当m为非负整数时,若 ,则 .如: , ,……根据以上材料,若 ,则x应满足的条件是_______________________.
三、解答题(18小题5分,19(1)小题6分,19(2)小题7分,20小题7分,满分25分)
2020人教版数学七年级下册《期末检测卷》(带答案)
人教版数学七年级下册期末测试卷学校________ 班级________ 姓名________ 成绩________ 一、选择题(每小题3分,共24分)1.如果21xy=-⎧⎨=⎩是二元一次方程mx+y=3的一个解,则m的值是()A. -2B. 2C. -1D. 12.9的平方根是()A. ﹣3B. ±3C. 3D. ±1 33. 在平面直角坐标系中,点A(3,﹣5)所在象限为()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=15°,那么∠2 的度数是()A. 15°B. 25°C. 30°D. 35°5.不等式101103xx+>⎧⎪⎨->⎪⎩的解集在数轴上表示正确的是( )A.(A)B. (B)C. (C)D. (D)6.下列调查中,适宜采用全面调查方式的是()A. 调查市场上矿泉水的质量情况B. 了解全国中学生的身高情况C. 调查某批次电视机的使用寿命D. 调查乘坐动车的旅客是否携带了违禁物品7.如图,下列条件中不能使a∥b是()A. ∠1=∠3B. ∠2=∠3C. ∠4=∠5D. ∠2+∠4=180°8.已知点P 的坐标为(a,b)(a>0),点Q的坐标为(c,3),且|a﹣c|+7b-=0,将线段PQ向右平移a个单位长度,其扫过的面积为20,那么a+b+c的值为()A. 12B. 15C. 17D. 20二、填空题(每小题3分,共24分)9.在实数﹣7,5,π,﹣327中,无理数的个数是_____.10.在平面直角坐标系中,若点P在x轴的下方,y轴的右方,到y轴的距离都是3,到x轴的距离都是5,则点P的坐标为_____.11.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生700人,则据此估计步行的有人.12.不等式﹣3≤5﹣2x≤3的正整数解是_____.13.如图,AB∥CD∥EF,若∠ABC=50°,∠CEF=150°,则∠BCE=_______.14.若54413273193218x y zx y zx y z-+=⎧⎪+-=⎨⎪+-=⎩则5x﹣y﹣z﹣1的立方根是_____.15.实数a、b在数轴上对应点的位置如图所示,化简:22()aa b a b++--=_____.16.如图,动点P在平面直角坐标系中按图中箭头所示的方向运动,第1次从原点运动到(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过2017次运动后,动点P 的坐标为_____.三、解答题(共72分)17.(10.00分)解下列二元一次方程组或不等式组:(1)131222 x yx y⎧-=⎪⎨⎪+=⎩(2)43(2) 2113x xxx-<-⎧⎪+⎨+>⎪⎩18.如图,这是某市部分简图,请建立适当的平面直角坐标系,分别写出各地的坐标.19.某兴趣小组进行活动,每个男生都头戴蓝色帽子,每个女生都头戴红色帽子.帽子戴好后,每个男生都看见戴红色帽子人数比戴蓝色帽子的人数的2倍少1,而每个女生都看见戴蓝色帽子的人数是戴红色帽子的人数的35.问该兴趣小组男生、女生各有多少人?20.某城市出租车的收费标准是:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米,每增加1千米,加收2元(不足1千米按1千米).某人乘这种出租车从甲地到乙地共付车费19元,那么他乘此出租车从甲地到乙地行驶的距离不超过多少千米?21.2013年6月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生?(2)请把折线统计图(图1)补充完整;(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.22.如图,已知∠A=∠AGE,∠D=∠DGC(1)求证:AB∥CD;(2)若∠2+∠1=180°,且∠BEC=2∠B+30°,求∠C的度数.23.在“五•一”期间,某公司组织318名员工到雷山西江千户苗寨旅游,旅行社承诺每辆车安排有一名随团导游,并为此次旅行安排8名导游,现打算同时租甲、乙两种客车,其中甲种客车每辆载客45人,乙种客车每辆载客30人.(1)请帮助旅行社设计租车方案.(2)若甲种客车租金为800元/辆,乙种客车租金为600元/辆,旅行社按哪种方案租车最省钱?此时租金是多少?(3)旅行前,旅行社的一名导游由于有特殊情况,旅行社只能安排7名导游随团导游,为保证所租的每辆车安排有一名导游,租车方案调整为:同时租65座、45座和30座的大小三种客车,出发时,所租的三种客车的座位恰好坐满,请问旅行社的租车方案如何安排?24.已知,平面直角坐标系内,点A(a,0),B(b,2),C(0,2),且a、b是方程组213211a ba b+=⎧⎨+=⎩的解,求:(1)a、b的值.(2)过点E(6,0)作PE∥y轴,点Q(6,m)是直线PE上一动点,连QA、QB,试用含有m的式子表示△ABQ 的面积.(3)在(2)的条件下.当△ABQ的面积是梯形OABC面积一半时,求Q点坐标答案与解析一、选择题(每小题3分,共24分)1.如果21xy=-⎧⎨=⎩是二元一次方程mx+y=3的一个解,则m的值是()A. -2B. 2C. -1D. 1 【答案】C【解析】根据方程的解的定义,易得C.2.9的平方根是()A. ﹣3B. ±3C. 3D. ±1 3【答案】B【解析】【分析】根据平方根的含义和求法,求出9的平方根是多少即可.【详解】9的平方根是:9±=±3.故选B.【点睛】此题主要考查了平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.3. 在平面直角坐标系中,点A(3,﹣5)所在象限为()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】根据各象限的坐标特征,易得D.4.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=15°,那么∠2 的度数是()A. 15°B. 25°C. 30°D. 35°【答案】C【解析】【分析】直接利用平行线的性质结合等腰直角三角形的性质得出答案.【详解】解:如图所示:由题意可得:∠1=∠3=15°,则∠2=45°-∠3=30°.故选:C .【点睛】本题主要考查了两直线平行,内错角相等的性质,需要注意隐含条件,直尺的对边平行,等腰直角三角板的锐角是45°的利用.5.不等式101103x x +>⎧⎪⎨->⎪⎩的解集在数轴上表示正确的是( )A. (A )B. (B )C. (C )D. (D )【答案】A【解析】 101103x x +>⎧⎪⎨->⎪⎩①② 解①得1x >-;解②得3x <;∴不等式组的解集是13x -<<.故选A.点睛:本题考查了不等式组的解法及解集的数轴表示法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解. 在数轴上,空心圈表示不包含该点,实心点表示包含该点.6.下列调查中,适宜采用全面调查方式的是()A. 调查市场上矿泉水的质量情况B. 了解全国中学生的身高情况C. 调查某批次电视机的使用寿命D. 调查乘坐动车的旅客是否携带了违禁物品【答案】D【解析】【分析】根据普查和全面调查的意义分析即可.【详解】A. 调查市场上矿泉水的质量情况具有破坏性,宜采用抽样调查;B. 了解全国中学生的身高情况工作量比较大,,宜采用抽样调查;C. 调查某批次电视机的使用寿命具有破坏性,宜采用抽样调查;D. 调查乘坐动车的旅客是否携带了违禁物品这一事件比较重要,宜采用全面调查.故选D.【点睛】本题考查了抽样调查和全面调查的选择,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.如图,下列条件中不能使a∥b的是()A. ∠1=∠3B. ∠2=∠3C. ∠4=∠5D. ∠2+∠4=180°【答案】C【解析】根据平行线的判定方法即可判断.【详解】A. ∠1=∠3,同位角相等,可判定a∥b;B. ∠2=∠3,内错角相等,可判定a∥b;C. ∠4=∠5,互为邻补角,不能判定a∥b;D. ∠2+∠4=180°,同旁内角互补,可判定a∥b;故选C.【点睛】此题主要考查平行线的判定方法,解题的关键是熟知平行线的判定定理.8.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,3),且|a﹣=0,将线段PQ向右平移a 个单位长度,其扫过的面积为20,那么a+b+c的值为()A. 12B. 15C. 17D. 20【答案】C【解析】【分析】由非负数的性质得到a=c,b=7,P(a,7),故有PQ∥y轴,PQ=7-3=4,由于其扫过的图形是矩形可求得a,代入即可求得结论.【详解】∵且|a-c|+,∴a=c,b=7,∴P(a,7),PQ∥y轴,∴PQ=7-3=4,∴将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和4的矩形,∴4a=20,∴a=5,∴c=5,∴a+b+c=5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y轴,进而求得PQ是解题的关键.二、填空题(每小题3分,共24分)9.在实数﹣7_____.【解析】【分析】根据无理数的定义解答即可,无限不循环小数叫无理数,无理数通常有以下三种形式,①开方开不尽的数,如3,35等;②圆周率π;③构造的无限不循环小数,如2.01001000100001 (0的个数一次多一个).【详解】5,π是无理数;﹣7,﹣327=-3是有理数.故答案为2.【点睛】本题考查了无理数的识别,熟练掌握无理数的定义是解答本题的关键.10.在平面直角坐标系中,若点P在x轴的下方,y轴的右方,到y轴的距离都是3,到x轴的距离都是5,则点P的坐标为_____.【答案】(3,-5)【解析】【分析】由题可知点P在x轴的下方且在y轴的右侧,于是可以确定M点在第四象限;由于第四象限内点的横坐标为正数、纵坐标为负数,结合P点到两坐标轴的距离可得点P的坐标.【详解】∵点P在x轴的下方且在y轴的右侧,∴点P在第四象限.∵点P到到y轴的距离都是3,到x轴的距离都是5,∴点P的坐标是(3,-5).【点睛】本题考查了象限内点的坐标的确定,需明确各象限内点的横纵坐标的符号特点.11.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生700人,则据此估计步行的有人.【答案】280【解析】试题分析:根据扇形统计图可得:该校学生骑车上学的人数占总人数的百分比是12635%360=,所以估计该校学生上学步行的人数=700×(1-10%-15%-35%)=280人. 考点:1.扇形统计图;2.样本估计总体.12.不等式﹣3≤5﹣2x≤3的正整数解是_____.【答案】1、2、3、4【解析】【分析】先把﹣3≤5﹣2x≤3转化为523523xx-≥-⎧⎨-≤⎩,然后解这个不等式组求出它的解集,再从解集中找出所有的正整数即可.【详解】∵﹣3≤5﹣2x≤3,∴523 523xx-≥-⎧⎨-≤⎩①②,解①得,x≤4,解②得,x≥1,∴不等式组的解集是1≤x≤4,∴不等式﹣3≤5﹣2x≤3的正整数解是1、2、3、4.故答案为1、2、3、4.【点睛】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.13.如图,AB∥CD∥EF,若∠ABC=50°,∠CEF=150°,则∠BCE=_______.【答案】20 °【解析】∵AB∥CD∥EF,∴∠ABC=∠BCD=50°,∠CEF+∠ECD=180°;∴∠ECD=180°−∠CEF=30°,∴∠BCE=∠BCD−∠ECD=20°. 故填20°.14.若54413273193218x y zx y zx y z-+=⎧⎪+-=⎨⎪+-=⎩则5x﹣y﹣z﹣1的立方根是_____.【答案】3【解析】【分析】先③×3-②得7x-y=35④,再①×3+②×4得:23x+16y=115⑤,然后④×16+⑤求出x的值,再把x的值代入④求出y 的值,最后把x、y的值代入③求出z的值即可.【详解】54413 27319 3218x y zx y zx y z-+=⎧⎪+-=⎨⎪+-=⎩①②③,③×3-②得: 7x-y=35④,①×3+②×4得:23x+16y=115⑤, ④×16+⑤得:x=5,把x=5代入④得:y=0,把x=5,y=0代入③得:z=-3;则原方程组的解为:53 xyz=⎧⎪=⎨⎪=-⎩.∴5x﹣y﹣z﹣1=25-0+3-1=24,∴5x﹣y﹣z﹣1的立方根是327=3.故答案为3.【点睛】本题考查了三元一次方程组的解法,关键把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.15.实数a、b在数轴上对应点的位置如图所示,化简:22()a ab a b++--=_____.【答案】a【解析】先根据实数a 、b 在数轴上对应点的位置判断出a ,a +b ,a -b 的正负,然后根据二次根式的性质和绝对值的意义化简即可.【详解】由数轴知,a <0,b >0,a b <,∴a +b >0,a -b <0,∴()22a a b a b ++--=-a +a +b +a -b=a .故答案为a .【点睛】本题考查了利用数轴比较大小,二次根式的性质,绝对值的意义,根据实数a 、b 在数轴上对应点的位置判断出a ,a +b ,a -b 的正负是解答本题的关键.16.如图,动点P 在平面直角坐标系中按图中箭头所示的方向运动,第1次从原点运动到(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过2017次运动后,动点P 的坐标为_____.【答案】(2017,1)【解析】试题分析:根据动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),∴第4次运动到点(4,0),第5次接着运动到点(5,1),…,∴横坐标为运动次数,经过第2017次运动后,动点P 的横坐标为2017,纵坐标为1,0,2,0,每4次一轮,∴经过第2017次运动后,动点P 纵坐标为:2017÷4=504余1,故纵坐标为四个数中第一个,即为1,∴经过第2017次运动后,动点P 的坐标是:(2017,1)点睛:本题主要考查的就是点的坐标的规律的发现,根据图形观察出点的横坐标与纵坐标的变化规律是解题的关键.同学们在解答这种坐标系中的点的规律问题时,我们需要通过前面的几个点的坐标得出横纵坐标变化的规律,从而求出所求点的坐标,一般对于规律性的题目难度都不会很大,关键就是要明白规律是三、解答题(共72分)17.(10.00分)解下列二元一次方程组或不等式组:(1)131222 x yx y⎧-=⎪⎨⎪+=⎩(2)43(2) 2113x xxx-<-⎧⎪+⎨+>⎪⎩【答案】(1)121xy⎧=⎪⎨⎪=⎩;(2)1<x<4.【解析】【分析】(1)把①×2+②,消去y,求出x的值,再把求得的x的值代入②求出y的值即可;(2)先分别解两个不等式,求出它们的解集,然后求出这两个不等式解集的公共部分即可.【详解】(1)解:①×2+②得到x=,把x=代入②得到y=1,∴.(2)由①得到x>1,由②得到x<4,∴1<x<4.【点睛】本题考查了二元一次方程组和一元一次不等式组的解法,熟练掌握二元一次方程组和一元一次不等式组的解题步骤是解答本题的关键.18.如图,这是某市部分简图,请建立适当的平面直角坐标系,分别写出各地的坐标.【答案】见解析【解析】确定原点位置,建立直角坐标系,如图所示.根据坐标系表示各地的坐标.解:以火车站为原点建立直角坐标系.各点的坐标为:火车站(0,0);医院(-2,-2);文化宫(-3,1);体育场(-4,3);宾馆(2,2);市场(4,3);超市(2,-3).19.某兴趣小组进行活动,每个男生都头戴蓝色帽子,每个女生都头戴红色帽子.帽子戴好后,每个男生都看见戴红色帽子的人数比戴蓝色帽子的人数的2倍少1,而每个女生都看见戴蓝色帽子的人数是戴红色帽子的人数的35.问该兴趣小组男生、女生各有多少人?【答案】男生有12人,女生有21人【解析】【分析】设该兴趣小组男生有x人,女生有y人,然后再根据:(男生的人数-1)×2-1=女生的人数,(女生的人数-1) ×35=男生的人数,列出方程组,再进行求解即可.【详解】设该兴趣小组男生有x人,女生有y人,依题意得:2(1)13(1)5y xx y=--⎧⎪⎨=-⎪⎩,解得:1221 xy=⎧⎨=⎩.答:该兴趣小组男生有12人,女生有21人.【点睛】本题主要考查了二元一次方程组的应用,解题的关键是明确题中各个量之间的关系,并找出等量关系列出方程组.20.某城市出租车的收费标准是:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米,每增加1千米,加收2元(不足1千米按1千米).某人乘这种出租车从甲地到乙地共付车费19元,那么他乘此出租车从甲地到乙地行驶的距离不超过多少千米?【答案】不超过8千米.【解析】【分析】已知从甲地到乙地共需支付车费19元,从甲地到乙地经过的路程为x千米,首先去掉前3千米的费用,根据题意列出不等式,从而得出答案.【详解】设他乘此出租车从甲地到乙地行驶的路程是x千米,依题意:7+2.4(x﹣3)≤19,解得:x≤8.答:他乘此出租车从甲地到乙地行驶路程不超过8千米.【点睛】本题考查的是一元一次不等式的应用,关键是根据:不足1千米按1千米计算,从而列出不等式7+2.4(x-3)≤19解题.21.2013年6月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生?(2)请把折线统计图(图1)补充完整;(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.【答案】(1)一共调查了300名学生.(2)(3)体育部分所对应的圆心角的度数为48°.(4)1800名学生中估计最喜爱科普类书籍的学生人数为480.【解析】分析】(1)用文学的人数除以所占的百分比计算即可得解.(2)根据所占的百分比求出艺术和其它的人数,然后补全折线图即可.(3)用体育所占的百分比乘以360°,计算即可得解.(4)用总人数乘以科普所占的百分比,计算即可得解.【详解】解:(1)∵90÷30%=300(名),∴一共调查了300名学生.(2)艺术的人数:300×20%=60名,其它的人数:300×10%=30名.补全折线图如下:(3)体育部分所对应的圆心角的度数为:40300×360°=48°.(4)∵1800×80300=480(名),∴1800名学生中估计最喜爱科普类书籍的学生人数为480.22.如图,已知∠A=∠AGE,∠D=∠DGC(1)求证:AB∥CD;(2)若∠2+∠1=180°,且∠BEC=2∠B+30°,求∠C的度数.【答案】(1)证明见解析;(2)50°.【解析】证明:(1)∵∠A =∠AGE,∠D =∠DGC又∵∠AGE =∠DGC∴∠A=∠D∴AB∥CD(2) ∵∠1+∠2 =180°又∵∠CGD+∠2=180°∴∠CGD=∠1∴CE∥FB∴∠C=∠BFD,∠CEB +∠B=180°又∵∠BEC=2∠B+30°∴2∠B+30°+∠B=180°∴∠B=50°又∵AB∥CD∴∠B=∠BFD∴∠C=∠BFD=∠B=50°.23.在“五•一”期间,某公司组织318名员工到雷山西江千户苗寨旅游,旅行社承诺每辆车安排有一名随团导游,并为此次旅行安排8名导游,现打算同时租甲、乙两种客车,其中甲种客车每辆载客45人,乙种客车每辆载客30人.(1)请帮助旅行社设计租车方案.(2)若甲种客车租金为800元/辆,乙种客车租金为600元/辆,旅行社按哪种方案租车最省钱?此时租金是多少?(3)旅行前,旅行社的一名导游由于有特殊情况,旅行社只能安排7名导游随团导游,为保证所租的每辆车安排有一名导游,租车方案调整为:同时租65座、45座和30座的大小三种客车,出发时,所租的三种客车的座位恰好坐满,请问旅行社的租车方案如何安排?【答案】(1)见解析;(2)租甲种客车6辆;租乙种客车2辆,所需付费最少为6000元;(3)见解析.【解析】【分析】(1)设租甲种客车x辆,则租乙种客车(8-x)辆,依题意关系式为:45x+30(8-x)≥318+8,(2)分别算出各个方案的租金,比较即可;(3)根据设同时租65座、45座和30座的大小三种客车各x辆,y辆,(7-x-y)辆,列出二元一次方程求解即可.【详解】(1)设租甲种客车x辆,则租乙种客车(8﹣x)辆,依题意,得45x+30(8﹣x)≥318+8,解得x≥511 15,∵打算同时租甲、乙两种客车,∴x<8,即51115≤x<8,x=6,7,有两种租车方案:租甲种客车6辆,则租乙种客车2辆,租甲种客车7辆,则租乙种客车1辆;(2)∵6×800+2×600=6000元,7×800+1×600=6200元,∴租甲种客车6辆;租乙种客车2辆,所需付费最少为6000(元);(3)设同时租65座、45座和30座的大小三种客车各x辆,y辆,(7﹣x﹣y)辆,根据题意得出:65x+45y+30(7﹣x﹣y)=318+7,整理得出:7x+3y=23,1≤x<7,1≤y<7,1≤7﹣x﹣y<7,故符合题意的有:x=2,y=3,7﹣x﹣y=2,租车方案为:租65座的客车2辆,45座的客车3辆,30座的2辆.【点睛】此题主要考查了一元一次不等式的应用以及二元一次方程的应用等知识,找到相应的关系式,列出不等式和方程是解决问题的关键.24.已知,平面直角坐标系内,点A(a,0),B(b,2),C(0,2),且a、b是方程组213211a ba b+=⎧⎨+=⎩的解,求:(1)a、b的值.(2)过点E(6,0)作PE∥y轴,点Q(6,m)是直线PE上一动点,连QA、QB,试用含有m的式子表示△ABQ 的面积.(3)在(2)的条件下.当△ABQ的面积是梯形OABC面积一半时,求Q点坐标.【答案】(1)a=5,b=3;(2) △ABQ的面积为|m+1|;(3) Q(6,3)或(6,﹣5).【解析】【分析】(1)解方程组可直接求出a、b的值;(2)先求出直线AB的解析式为y=﹣x+5,当点Q在AB上时,m=﹣1,然后分当m>﹣1时和m<﹣1时两种情况求解;(3)计算S梯形OABC,根据△ABQ的面积是梯形OABC面积一半列出方程求m的值即可.【详解】(1)由方程组两式相加,得a+b=8,再与方程组中两式分别相减,得;(2)由(1)可知,A(5,0),B(3,2),∴直线AB的解析式为y=﹣x+5,当点Q在AB上时,m=﹣1,如图1,当m>﹣1时,过B点作BD⊥x轴,垂足为D,则S△ABQ=S梯形BDEQ﹣S△ABD﹣S△AQE=(2+m)×(6﹣3)﹣×2×(5﹣3)﹣×(6﹣5)×m=m+1;当m<﹣1时,如图2所示,过点B作BM⊥EQ于点M,则S△ABQ=S△BMQ﹣S△AEQ﹣S梯形AEMB=×(2﹣m)×(6﹣3)﹣×(6﹣5)×(﹣m)﹣×(6﹣3+6﹣5)×2=3﹣m+m﹣4=﹣m﹣1.综上所述,△ABQ的面积为|m+1|;(3)∵S梯形OABC=×(3+5)×2=8,依题意,得|m+1|=×8,解得m=3或m=﹣5;∴Q(6,3)或(6,﹣5).【点睛】本题考查了解二元一次方程组,待定系数法求一次函数解析式,坐标与图形的性质,三角形、梯形的面积计算及分类讨论的数学思想.关键是根据题意画出图形,结合图形上点的坐标表示相应的线段长。
2020苏科版七年级下册数学《期末检测题》(带答案解析)
x 2, 是{
y 1.
5.如图,将一把直尺与一块三角板如图放置,若∠1=45°,则∠2 为 (
)
A.115° B.120° C.135° 【答案】C 【解析】试题解析:如图,
D.145°
由三角形的外角性质得,∠3=90°+∠1=90°+45°=135°, ∵直尺的两边互相平行, ∴∠2=∠3=135°. 故选 C. 考点:平行线的性质;余角和补角.
A. 4 m 5 B. 4 m 5 C. 4 m 5 D. 4 m 5
7.下列各组图形,可由一个图形平移得到另一个图形的是( ).
A.
B.
C.
D.
8.(﹣x+y)( )=x2﹣y2,其中括号内的是( ).
A.﹣x﹣y
B.﹣x+y
C.x﹣y
D.x+y
9.下列选项中,可以用来证明命题“若|a-1|>1,则 a>2”是假命题的反例是( )
14.已知不等式 1 x﹣2≥x 与不等式 3x﹣a≤0 解集相同,则 a=
.
3
15.已知方程组
2x x
y
4y k k2
的解
x、y
之和为
2,则
k=
.
16.某地中学生校园足球联赛,共赛 17 轮(即每对均需参赛 17 场),记分办法是:胜 1 场得 3 分,平 1 场
得 1 分,负 1 场得 0 分.在这次校园足球联赛中,光明足球队得 16 分,且踢平场数是所负场数的 k 倍(k
(写出一个即可).
答案与解析
第Ⅰ卷(选择题 共 30 分)
一、选择题(本大题共 10 小题,每小题 3 分,共 30 分)在每小题所给出的四个选项中,只有一项是符合 题目要求的. 1.下列计算正确的是( )
2020人教版七年级下册数学《期末检测卷》(带答案)
人教版数学七年级下册期末测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共30分,每小题3分,第1~10题符合题意的选项均只有一个) 1. 把不等式x+2≤0的解集在数轴上表示出来,则正确的是( ) A. B. C. D. 2.若13a =,则实数a 在数轴上对应的点P 的大致位置是( )A. B. C. D.3.如图所示,用量角器度量∠AOB 和∠AOC 的度数. 下列说法中,正确的是A. 110AOB ∠=︒B. AOB AOC ∠=∠C. 90AOB AOC ∠+∠=︒D. 180AOB AOC ∠+∠=︒4.下列说法错误..的是( )A. 9的算术平方根是3B. 64的立方根是8±C. 5-没有平方根D. 平方根是本身的数只有05.下列调查中,适合用全面调查方式的是( )A. 调查“神舟十一号”飞船重要零部件的产品质量B. 调查某电视剧的收视率C. 调查一批炮弹的杀伤力D. 调查一片森林的树木有多少棵6.如图,两条直线AB ,CD 交于点O ,射线OM 是∠AOC 的平分线,若∠BOD =80°,则∠BOM 等于()A. 140°B. 120°C. 100°D. 807.下列命题中是真命题的是( )A. 两个锐角的和是锐角B. 两条直线被第三条直线所截,同位角相等C. 点(3,2)-到x 轴的距离是2D. 若a b >,则a b ->-8.如图,在平面直角坐标系中,点A 的坐标为(1,3),点B 的生标,(2,1),将线段AB 沿某一方向平移后,若点A 的对应点'A 的坐标为(-2,0),则点B 的对应点B ′的坐标为( )A. (5,2)B. (-1,-2)C. (-1,-3)D. (0,-2)9.如图,小宇计划在甲、乙、丙、丁四个小区中挑选一个小区租住,附近有东西向的交通主干道a 和南北向的交通主干道b ,若他希望租住的小区到主干道a 和主干道b 的直线距离之和最小,则图中符合他要求的小区是( )A. 甲B. 乙C. 丙D. 丁10.某公园门票的收费标准如下: 门票类别成人票 儿童票 团体票(限5张及以上) 价格(元/人)100 40 60有两个家庭分别去该公园游玩,每个家庭都有5名成员,且他们都选择了最省钱的方案购买门票,结果一家比另一家少花40元,则花费较少的一家花了()元.A. 300B. 260C. 240D. 220二、填空题(本大题共18分,第11-16每题2分,第17,18题每题3分)11.颐和园坐落在北京西郊,是第一批全国重点文物保护单位之一.小万去颐和园参加实践活动时发现有的窗户造型是正八边形,如下图所示,则∠1=__°.12.用一组a,b的值说明命题“若a2>b2,则a>b”是错误的,这组值可以是a=____,b=____.13.有两边相等的三角形的一边是7,另一边是4,则此三角形的周长是_____.14.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO 的度数为______.15.己知关于,x y的方程组4723x y mx y m+=-⎧⎨-=+⎩的解满足0x>,0y>.则m的取值范围是______.16.数学课上, 老师要求同学们利用三角板画两条平行线.老师说苗苗和小华两位同学画法都是正确的,两位同学的画法如下:苗苗的画法:①将含30°角的三角尺的最长边与直线a重合,另一块三角尺最长边与含30°角的三角尺的最短边紧贴;②将含30°角的三角尺沿贴合边平移一段距离,画出最长边所在直线b ,则b//a.小华的画法:①将含30°角三角尺的最长边与直线a 重合,用虚线做出一条最短边所在直线;②再次将含30°角三角尺的最短边与虚线重合,画出最长边所在直线b ,则b//a.请在苗苗和小华两位同学画平行线的方法中选出你喜欢的一种,并写出这种画图的依据.答:我喜欢__________同学的画法,画图的依据是__________.17.如图,在平面直角坐标系xOy ,(1,0)A -,(3,3)B --,若//BC OA ,且BC=4OA .(1)点C 的坐标为______;(2)ABC V 的面积等于_____.18.定义一种新运算“a b ☆”的含义为:当a b …时,a b a b =+☆,当a b <时,a b a b =-☆.例如:3(4)3(4)1-=+-=-☆,111(6)(6)6222-=--=-☆ (1)(4)3-=☆_____;(2)(37)(32)2x x --=☆,则x =______.三、解答题(本大题共18分,第19,20题每题4分,第21,22每题5分)19.3-832|+()2-33. 20.解方程组35342x y x y +=-⎧⎨-=-⎩ .. 21.解不等式组5178(1)1062x x x x -<-⎧⎪⎨--≤⎪⎩并写出它的所有正整数解..... 22.如图,直线CD 与直线AB 相交于C ,根据下列语句画图、解答.(1)过点P 作PQ ∥CD ,交AB 于点Q ;(2)过点P 作PR ⊥CD ,垂足为R ;(3)若∠DCB=120°,猜想∠PQC 是多少度?并说明理由四、解答题(本大题共11分,23题5分,24题6分)23.已知:如图,在ABC V 中,BE 平分ABC ∠交AC 于E ,CD AC ⊥交AB 于D ,BCD A ∠=∠,求BEA ∠的度数.24.为响应市政府“创建国家森林城市”的号召,某小区计划购进A 、B 两种树苗共17棵,已知A 种树苗每棵80元,B 种树苗每棵60元.(1)若购进A 、B 两种树苗刚好用去1220元,问购进A 、B 两种树苗各多少棵?(2)若购买B 种树苗数量少于A 种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.五、解答题(本大题共23分,25题4分,26题6分,27题6分,28题7分)25.某年级共有400名学生,为了解该年级学生上学的交通方式,从中随机抽取100名学生进行问卷调查,并对调查数据进行整理、描述和分析,下面给出了部分信息A .不同交通方式学生人数分布统计图如下:B .采用公共交通方式单程所花费时间(分钟)的频数分布直方图如下(数据分成6组:1020x <…,2030x <…,3040x <…,4050x <…,5060x <…,6070x <…);根据以上信息,完成下列问题:(1)补全频数分布直方图;(2)根据不同交通方式学生人数所占的百分比,算出“私家车方式”对应扇形的圆心角是度_____. (3)请你估计全年级乘坐公共交通上学有_____人,其中单程不少于60分钟的有_____人.26.如图,在平面直角坐标系xOy 中,把一个点P 的横、纵坐标都乘以同一个实数a ,然后将得到的点先向右平移m 个单位,再向上平移n 个单位(0,0)m n >>,得到点P '(1)若(2,1)P -,5a =,1m =,2n =,则点P '坐标是_____;(2)对正方形ABCD 及其内部的每个点进行上述操作,得到正方形A B C D ''''及其内部的点,其中点,A B 的对应点分别为,A B ''.求,,m n a ;(3)在(2)的条件下,己知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F '与点F 重合,求点F 的坐标.27.在AOB V 中,90AOB ∠=︒,点C 为直线AO 上的一个动点(与点,O A 不重合),分别作OBC ∠和ACB ∠的角平分线,两角平分线所在直线交于点E .(1)若点C 在线段AO 上,如图1.①依题意补全图1;②求BEC ∠的度数;(2)当点C 在直线AO 上运动时,BEC ∠的度数是否变化?若不变,请说明理由;若变化,画出相应的图形,并直接写出BEC ∠的度数.28.在平面直角坐标系xOy 中,对于P ,Q 两点给出如下定义:若点P 到x ,y 轴的距离中的最大值等于点Q 到x ,y 轴的距离中的最大值,则称P ,Q 两点为“等距点”图中的P ,Q 两点即为“等距点”.(1)已知点A 的坐标为(3,1)-.①在点(0,3),E (3,3),F -(2,5)G -中,为点A 的“等距点”的是________;②若点B 的坐标为(,6)m m +,且A ,B 两点为“等距点”,则点B 的坐标为________.(2)若1(1,3),T k ---2(4,43)T k -两点为“等距点”,求k 的值答案与解析一、选择题(本大题共30分,每小题3分,第1~10题符合题意的选项均只有一个) 1. 把不等式x+2≤0的解集在数轴上表示出来,则正确的是( ) A.B. C. D.【答案】D【解析】试题分析:根据一元一次不等式的解法解不等式x+2≤0,得x≤﹣2. 表示在数轴上为:. 故选D考点:不等式的解集2.若13a =,则实数a 在数轴上对应的点P 的大致位置是( )A.B. C.D. 【答案】C【解析】【分析】根据3134<<,即可选出答案.【详解】解:∵3134<<,故选C .【点睛】本题主要考查了无理数的估算和实数在数轴上的表示,能判断无理数的估值是解答此题的关键. 3.如图所示,用量角器度量∠AOB 和∠AOC 的度数. 下列说法中,正确的是A. 110AOB ∠=︒B. AOB AOC ∠=∠C. 90AOB AOC ∠+∠=︒D. 180AOB AOC ∠+∠=︒【答案】D【解析】【分析】先根据量角器读出∠AOB 和∠AOC 的度数,再结合选项,得出正确答案.【详解】由图可知70AOB ∠=︒,110AOC ∠=︒,故A 项错误,B 项错误;因为180AOB AOC ∠+∠=︒,所以C 项错误,D 项正确.【点睛】本题考查量角器的度数,解题的关键是会根据量角器读出度数.4.下列说法错误..的是( ) A. 9的算术平方根是3B. 64的立方根是8±C. 5-没有平方根D. 平方根是本身的数只有0【答案】B【解析】【分析】根据平方根、算术平方根与立方根的定义和求法逐个选项进行判断,即可得解.【详解】A. 9的算术平方根是3,说法正确;B. 64的立方根是8±,说法错误,正确答案为4;C. 5-没有平方根,说法正确;D. 平方根是本身的数只有0,说法正确.故答案为:B .【点睛】本题关键是区分并掌握平方根、算术平方根及立方根的定义和求法.5.下列调查中,适合用全面调查方式的是( )A. 调查“神舟十一号”飞船重要零部件的产品质量B. 调查某电视剧的收视率C. 调查一批炮弹的杀伤力D. 调查一片森林的树木有多少棵 【答案】A【解析】【分析】全面调查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,据此逐个选项分析判断.【详解】A. 调查“神舟十一号”飞船重要零部件的产品质量,由于是“重要零部件”,适合全面调查;B. 调查某电视剧的收视率,适合抽样调查;C. 调查一批炮弹的杀伤力,适合抽样调查;D. 调查一片森林的树木有多少棵,适合抽样调查.故选:A .【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查,要根据所要考察的对象的特征灵活选用.一般来说对于具有破坏性的调查,无法进行普查,普查的意义或价值不大应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.如图,两条直线AB ,CD 交于点O ,射线OM 是∠AOC 的平分线,若∠BOD =80°,则∠BOM 等于()A. 140°B. 120°C. 100°D. 80【答案】A【解析】【分析】先根据对顶角相等得出∠AOC =80°,再根据角平分线的定义得出∠COM =40°,最后解答即可.【详解】解:∵∠BOD =80°,∴∠AOC =80°,∠COB =100°,∵射线OM 是∠AOC 的平分线,∴∠COM =40°,∴∠BOM =40°+100°=140°,故选A .【点睛】此题考查对顶角和角平分线的定义,关键是得出对顶角相等.7.下列命题中是真命题的是( )A. 两个锐角和是锐角B. 两条直线被第三条直线所截,同位角相等C. 点(3,2)-到x 轴的距离是2D. 若a b >,则a b ->-【答案】C【解析】【分析】根据角的定义、平行线的性质、点的坐标及不等式的性质对各选项进行分析判断,即可得解.【详解】A. 两个锐角的和是锐角是假命题,例如80°+80°=160°,是钝角,不是锐角,故本选项错误;B. 两条直线被第三条直线所截,同位角相等是假命题,两条平行线被第三条直线所截,同位角才相等,故本选项错误;C. 点(3,2)-到x 轴的距离是2是真命题,故本选项正确;D. 若a b >,则a b ->-是假命题,正确结果应为a b -<-,故本选项错误.故选:C .【点睛】本题考查真假命题的判断,解题关键是认真判断由条件是否能推出结论,如果能举出一个反例,或由条件推出的结论与题干结论不一致,则为假命题.8.如图,在平面直角坐标系中,点A 的坐标为(1,3),点B 的生标,(2,1),将线段AB 沿某一方向平移后,若点A 的对应点'A 的坐标为(-2,0),则点B 的对应点B ′的坐标为( )A. (5,2)B. (-1,-2)C. (-1,-3)D. (0,-2)【答案】B【解析】【分析】 点A (1,3)平移到点'A (-2,0),横坐标减3,纵坐标减3,点B 的平移规律和点A 一样,由此可知点B ′的坐标.【详解】解:因为点A (1,3)平移到点'A (-2,0),横坐标减3,纵坐标减3,故点B (2,1)平移到点B ′横、纵坐标也都减3,所以B ′的坐标为(-1,-2).故选:B【点睛】本题考查了平面直角坐标系中图形的平移变化规律,根据一组对应点的平移找准平移规律是解题的关键.9.如图,小宇计划在甲、乙、丙、丁四个小区中挑选一个小区租住,附近有东西向的交通主干道a 和南北向的交通主干道b,若他希望租住的小区到主干道a和主干道b的直线距离之和最小,则图中符合他要求的小区是()A. 甲B. 乙C. 丙D. 丁【答案】C【解析】【分析】分别作甲、乙、丙、丁四个小区关于道路a和道路b的对称点,分别连接对称点,线段最短的即为所求【详解】解:分别作甲、乙、丙、丁四个小区关于道路a和道路b的对称点,分别连接对称点,线段最短的即为所求,如图:从图中可知丙小区到两坐标轴的距离最短;故选C.【点睛】本题考查轴对称求最短路径;通过两次作轴对称,将问题转化为对称点的连线最短是解题的关键.10.某公园门票的收费标准如下:有两个家庭分别去该公园游玩,每个家庭都有5名成员,且他们都选择了最省钱的方案购买门票,结果一家比另一家少花40元,则花费较少的一家花了()元.A. 300B. 260C. 240D. 220【答案】B【解析】【分析】根据题意,分情况讨论:若花费较少的一家的购票方案为5人团购,则另一家花费340元,据此组合验证是否能凑成整数张成人票和儿童票;若花费较少的一家的购票方案是成人票和儿童票分开购买,则可根据题意设未知数,列方程求解并验证.【详解】若花费较少的一家是60×5=300(元),则花费较多的一家为340元,经检验可知,成人和儿童共5张票无法组合成340元.x+元,根据题意得:设花费较少的一家花了x元,则另一家花了40x+⨯40=605x=解得:260检验可知,该家庭有1个成人,4个儿童,共花费100+40×4=260(元);故选:B.【点睛】本题考查一元一次方程应用,理清题意,找准等量关系,正确列出方程是解题关键.二、填空题(本大题共18分,第11-16每题2分,第17,18题每题3分)11.颐和园坐落在北京西郊,是第一批全国重点文物保护单位之一.小万去颐和园参加实践活动时发现有的窗户造型是正八边形,如下图所示,则∠1=__°.【答案】45【解析】【分析】利用正八边形的外角和等于360度即可求出答案.【详解】解:360°÷8=45°,故答案为:45.【点睛】本题主要考查了多边形的外角和定理,明确任何一个多边形的外角和都是360°是解题的关键. 12.用一组a ,b 的值说明命题“若a 2>b 2,则a >b ”是错误的,这组值可以是a =____,b =____.【答案】 (1).3a =-, (2). 1b =-【解析】【分析】举出一个反例:a =−3,b =−1,说明命题“若a 2>b 2,则a >b”是错误的即可.【详解】解:当a =−3,b =−1时,满足a 2>b 2,但是a <b ,∴命题“若a 2>b 2,则a >b”是错误的.故答案为−3、−1.(答案不唯一)【点睛】此题主要考查了命题与定理,要熟练掌握,解答此题的关键是要明确:任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可. 13.有两边相等的三角形的一边是7,另一边是4,则此三角形的周长是_____.【答案】15或18【解析】【分析】有两边相等的三角形是等腰三角形,由于不确定哪边是底,哪边是腰,故分两种情况讨论,并结合构成三角形的三边的关系,即可得解.【详解】若7为底,则三边为7,4,4,由于4+4>7,故可以构成三角形,周长为15;若4为底,则三边为4,7,7,也可以构成三角形,周长为18.故答案为:15或18.【点睛】本题考查等腰三角形的性质及三角形三边关系,分类讨论哪边为底哪边为腰是解题关键. 14.如图,将一副三角板叠放在一起,使直角的顶点重合于点O ,AB ∥OC ,DC 与OB 交于点E ,则∠DEO 的度数为______.【答案】75°【解析】【分析】由平行线的性质求出∠AOC=120°,再求出∠BOC=30°,然后根据三角形的外角性质即可得出结论.【详解】解:∵AB ∥OC ,∠A=60°,∴∠A+∠AOC=180°,∴∠AOC=120°, ∴∠BOC=120°-90°=30°,∴∠DEO=∠C+∠BOC=45°+30°=75°.故答案为75°.【点睛】本题主要考查了平行线的性质、三角形的外角性质;熟练掌握平行线的性质和三角形的外角性质是解决问题的关键.15.己知关于,x y 的方程组4723x y m x y m +=-⎧⎨-=+⎩的解满足0x >,0y >.则m 的取值范围是______. 【答案】5m >【解析】【分析】用加减消元法解关于,x y 的二元一次方程组;根据0x >,0y >,解关于m 的不等式组,可得m 的解集. 【详解】4732235x y m x m x y m y m +=-=-⎧⎧⇒⎨⎨-=+=-⎩⎩∵0x >,0y >,∴232053505m m m m m ⎧->>⎧⎪⇒⇒>⎨⎨->⎩⎪>⎩ 故答案为:5m >.【点睛】本题考查解二元一次方程组和一元一次不等式组,关键是先求出含m 的x 和y ,再根据题意列不等式组求解.16.数学课上, 老师要求同学们利用三角板画两条平行线.老师说苗苗和小华两位同学画法都是正确的,两位同学的画法如下:苗苗的画法:①将含30°角的三角尺的最长边与直线a 重合,另一块三角尺最长边与含30°角的三角尺的最短边紧贴; ②将含30°角的三角尺沿贴合边平移一段距离,画出最长边所在直线b ,则b//a.小华的画法:①将含30°角三角尺的最长边与直线a 重合,用虚线做出一条最短边所在直线;②再次将含30°角三角尺的最短边与虚线重合,画出最长边所在直线b ,则b//a.请在苗苗和小华两位同学画平行线的方法中选出你喜欢的一种,并写出这种画图的依据.答:我喜欢__________同学的画法,画图的依据是__________.【答案】 (1). 苗苗,同位角相等,两直线平行. (2). 小华,内错角相等,两直线平行.【解析】分析】结合两人的画法和“平行线的判定”进行分析判断即可.【详解】(1)如图1,由“苗苗”的画法可知:∠2=∠1=60°,∴a ∥b (同位角相等,两直线平行);(2)如图2,由“小华”的画法可知:∠2=∠1=60°,∴a ∥b (内错角相等,两直线平行).故答案为(1)苗苗,同位角相等,两直线平行;或(2)小华,内错角相等,两直线平行.【点睛】读懂题意,熟悉“三角尺的各个角的度数和平行线的判定方法”是解答本题的关键.17.如图,在平面直角坐标系xOy ,(1,0)A -,(3,3)B --,若//BC OA ,且BC=4OA .(1)点C 的坐标为______;(2)ABC V 的面积等于_____.【答案】 (1). (1,-3)或(-7,-3) (2). 6【解析】【分析】(1)先由//BC OA ,确定C 点纵坐标与B 点相同,再根据BC=4OA ,确定BC 的长,然后分别求出C 点在B 点左侧和右侧的横坐标,即可得解;(2)由三角形面积公式求解即可.【详解】(1)∵//BC OA ,∴点C 纵坐标为-3,又∵BC=4OA=4∴当点C 在点B 右边,点C 横坐标为-3+4=1,故C(1,-3),当点C 在点B 左边,点C 横坐标为-3-4=-7,故C(-7,-3),故答案为:(1,-3)或(-7,-3);(2)S △ABC =12BC ×3=12×4×3=6 故答案为:6.【点睛】本题结合坐标系考查平行和三角形面积,关键是由平行确定C 点纵坐标,并对C点横坐标进行分情况讨论.18.定义一种新运算“a b ☆”的含义为:当a b …时,a b a b =+☆,当a b <时,a b a b =-☆.例如:3(4)3(4)1-=+-=-☆,111(6)(6)6222-=--=-☆ (1)(4)3-=☆_____;(2)(37)(32)2x x --=☆,则x =______.【答案】 (1). -7 (2). 6【解析】【分析】(1)根据新定义计算即可;(2)分3732x x -≥-和3732x x -<-两种情况,根据新定义列方程求解即可.【详解】(1)(4)3437-=--=-☆故答案为:-7;(2)当3732x x -≥-,即2x ≥时,由题意得:(37)+(32)2x x --=解得:6x =;当3732x x -<-,即2x <时,由题意得:(37)(32)2x x ---= 解得:125x =(舍). 故答案为:6.【点睛】本题考查新定义,解题关键是根据新定义列出一元一次不等式和一元一次方程并准确求解.三、解答题(本大题共18分,第19,20题每题4分,第21,22每题5分)19.2|+.【解析】【分析】直接利用立方根的性质和绝对值的性质、二次根式的性质分别化简得出答案.【详解】原式=﹣2+2=.【点睛】本题考查了实数运算,正确化简各数是解题的关键.20.解方程组35342x y x y +=-⎧⎨-=-⎩ .. 【答案】21x y =-⎧⎨=-⎩【解析】【分析】利用加减消元法将方程组中的未知数消去,可求得的值,再将值代入其中一个方程解得的值,即得原方程组的解.【详解】解:35342x y x y +=-⎧⎨-=-⎩①②①×3得: 3915x y +=-③, ③-②,得1313y =-∴ 1y =-把1y =-代入①,得x= -2∴21x y =-⎧⎨=-⎩ 是原方程组的解 21.解不等式组5178(1)1062x x x x -<-⎧⎪⎨--≤⎪⎩并写出它的所有正整数解..... 【答案】不等式组的解集是-3<x ≤2,正整数解是1、2【解析】【分析】先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分,然后从解集中找出所有的正整数即可.【详解】解:() 517811062x xxx⎧-<-⎪⎨--≤⎪⎩①②,解①得,x>-3,解②得,x≤2,∴原不等式组的解是-3<x≤2.∴原不等式组的正整数解有:1,2.点睛:本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.22.如图,直线CD与直线AB相交于C,根据下列语句画图、解答.(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由【答案】(1)见解析;(2)见解析;(3)∠PQC=60°,理由见解析【解析】【详解】解:如图所示:(1)画出如图直线PQ(2)画出如图直线PR(3)∠PQC=60°理由是:因为PQ ∥CD所以∠DCB+∠PQC=180°又因为∠DCB=120°所以∠PQC=180°-120°=60° 四、解答题(本大题共11分,23题5分,24题6分)23.已知:如图,在ABC V 中,BE 平分ABC ∠交AC 于E ,CD AC ⊥交AB 于D ,BCD A ∠=∠,求BEA ∠的度数.【答案】135°【解析】【分析】设BCD A x ∠=∠=,ABE CBE y ∠=∠=,根据三角形外角定理,分别用, x y 表示∠ADC 和∠BEC ,结合∠A 与∠ADC 互余,列方程即可求出∠BEC ,由邻补角的性质进而可求出BEA ∠的度数.【详解】设BCD A x ∠=∠=,ABE CBE y ∠=∠=,∵CD AC ⊥∴∠A+∠ADC=∠A+(∠BCD+∠ABC)=()()22=90x x y x y ++=+︒∴45x y +=︒∴∠BEC=∠A+∠ABE=45x y +=︒∠=180°-45°=135°∴BEA∠的度数为135°.即BEA【点睛】本题主要考察三角形外角定理、互余与邻补角的性质,解题关键是用未知数表示出角的度数,进而根据它们之间的关系进行代数运算.24.为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.【答案】(1)购进A种树苗10棵,B种树苗7棵(2)购进A种树苗9棵,B种树苗8棵,这时所需费用为1200元【解析】【分析】(1)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,利用购进A、B两种树苗刚好用去1220元,结合单价,得出等式方程求出即可;(2)结合(1)的解和购买B种树苗的数量少于A种树苗的数量,可找出方案.【详解】解:(1)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,根据题意得:80x+60(17﹣x )=1220,解得:x=10.∴17﹣x=7.答:购进A种树苗10棵,B种树苗7棵.(2)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,根据题意得:17﹣x<x,解得:x>8.5.∵购进A、B两种树苗所需费用为80x+60(17﹣x)=20x+1020,是x的增函数,∴费用最省需x取最小整数9,此时17﹣x=8,所需费用为20×9+1020=1200(元).答:费用最省方案:购进A种树苗9棵,B种树苗8棵,这时所需费用为1200元.五、解答题(本大题共23分,25题4分,26题6分,27题6分,28题7分)25.某年级共有400名学生,为了解该年级学生上学的交通方式,从中随机抽取100名学生进行问卷调查,并对调查数据进行整理、描述和分析,下面给出了部分信息A.不同交通方式学生人数分布统计图如下:B .采用公共交通方式单程所花费时间(分钟)的频数分布直方图如下(数据分成6组:1020x <…,2030x <…,3040x <…,4050x <…,5060x <…,6070x <…);根据以上信息,完成下列问题:(1)补全频数分布直方图;(2)根据不同交通方式学生人数所占的百分比,算出“私家车方式”对应扇形的圆心角是度_____. (3)请你估计全年级乘坐公共交通上学有_____人,其中单程不少于60分钟的有_____人.【答案】(1)补图见解析;(2)108°;(3)200;8.【解析】【分析】(1)用抽查总人数乘以乘坐公共交通的百分比可得其人数,再减去图中已知的不同花费时间的人数,即得4050x <…的人数,从而补全图形;(2)用360°乘以乘坐私家车所占百分比即可得解;(3)利用样本估算总体,计算求解.【详解】(1)∵选择公共交通的人数为100×50%=50(人),∴4050x <…的人数为50-(5+17+14+4+2)=8(人)故补全直方图如下:(2)“私家车方式”对应扇形的圆心角为360°×30%=108°故答案为:108°;(3)全年级乘坐公共交通上学人数为400×50%=200(人)单程不少于60分钟的有200×250=8(人) 故答案为:200;8.【点睛】本题主要考察读图与计算,解题关键是从图表中准确读取数据信息. 26.如图,在平面直角坐标系xOy 中,把一个点P 的横、纵坐标都乘以同一个实数a ,然后将得到的点先向右平移m 个单位,再向上平移n 个单位(0,0)m n >>,得到点P '(1)若(2,1)P -,5a =,1m =,2n =,则点P '坐标是_____;(2)对正方形ABCD 及其内部的每个点进行上述操作,得到正方形A B C D ''''及其内部的点,其中点,A B 的对应点分别为,A B ''.求,,m n a ;(3)在(2)的条件下,己知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F '与点F 重合,求点F 的坐标.【答案】(1)(11,3)-;(2)12a =,12m =,2n =;(3)()1,4 【解析】【分析】(1)根据题意和平移的性质求点P '坐标;(2)由正方形的性质,结合题意列方程组求解;(3)设点F 的坐标为(,)x y ,根据平移规律列方程组求解.【详解】(1)∵(2,1)P -,5a =,1m =,2n =,∴(251,152)P '⨯+-⨯+∴(11,3)P '-故答案为:(11,3)-;(2)根据题意得:313202a m a m a n -+=-⎧⎪+=⎨⎪⋅+=⎩解得12122a m n ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩即12a =,12m =,2n =; (3)设点F 的坐标为(,)x y ,根据题意得1122122x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩ 解得14x y =⎧⎨=⎩∴F 的坐标为()1,4.【点睛】本题主要考察平移变换,关键是掌握坐标系中平移变换与横、纵坐标的变化规律.27.在AOB V 中,90AOB ∠=︒,点C 为直线AO 上的一个动点(与点,O A 不重合),分别作OBC ∠和ACB ∠的角平分线,两角平分线所在直线交于点E .(1)若点C 在线段AO 上,如图1.①依题意补全图1;②求BEC ∠的度数;(2)当点C 在直线AO 上运动时,BEC ∠的度数是否变化?若不变,请说明理由;若变化,画出相应的图形,并直接写出BEC ∠的度数.【答案】(1)①补图见解析;②45°;(2)图见解析,∠BEC 的度数为45°或135°.【解析】【分析】(1)①根据题意作图即可;②设∠EBO=∠EBC=x ,∠BCK=∠ACK=y ,由三角形外角定理列方程组求BEC ∠的度数;(2)分情况讨论点C 在OA 和AO 延长线上时BEC ∠的度数,结合(1),即点C 在线段OA 上时BEC ∠的度数,可得结论.【详解】(1)①依题意补图如下:②设∠EBO=∠EBC=x ,∠BCK=∠ACK=y ,∵∠ACB=∠OBC+∠BOC ,∠BCK=∠EBC+∠BEC∴2290y x y x BEC =+︒⎧⎨=+∠⎩∴∠BEC=45°(2)如图,当点C 在OA 延长线上时,∵∠AOB=90°,∴∠OBC+∠OCB=90°,∵BE 、CE 分别是OBC ∠和ACB ∠的角平分线,∴∠EBC+∠ECB=90°×12=45°, ∴∠BEC=180°-45°=135°;如图,当点C 在AO 延长线上时,同理,可得∠BEC=135°;由(1)知,当点C 在线段OA 上时,∠BEC=135°.综上可知,当点C 在直线AO 上运动时,BEC ∠的度数为45°或135°.【点睛】本题主要考查角平分线的定义、三角形外角定理,解题关键是熟练掌握基础知识,并根据题意准确画图.28.在平面直角坐标系xOy 中,对于P ,Q 两点给出如下定义:若点P 到x ,y 轴的距离中的最大值等于点Q 到x ,y 轴的距离中的最大值,则称P ,Q 两点为“等距点”图中的P ,Q 两点即为“等距点”.(1)已知点A 的坐标为(3,1)-.①在点(0,3),E (3,3),F -(2,5)G -中,为点A 的“等距点”的是________;②若点B 的坐标为(,6)m m +,且A ,B 两点为“等距点”,则点B 的坐标为________.(2)若1(1,3),T k ---2(4,43)T k -两点为“等距点”,求k 的值.【答案】(1)①E ,F . ②()3,3-;(2)1k =或2k =.【解析】【分析】(1)①找到E 、F 、G 中到x 、y 轴距离最大为3的点即可;②先分析出直线上的点到x 、y 轴距离中有3的点,再根据“等距点”概念进行解答即可;(2)先分析出直线上的点到x 、y 轴距离中有4的点,再根据“等距点”概念进行解答即可.。
2020-2021学年七年级(下)期末数学试卷(解析版)
2020-2021学年七年级(下)期末数学试卷(解析版)一、选择题(每小题只有一个选项符合题意,请将你认为正确的选项字母填入下表相应空格内,每小题3分,共30分)1.下列各式不能成立的是()A.(x2)3=x6B.x2•x3=x5C.(x﹣y)2=(x+y)2﹣4xy D.x2÷(﹣x)2=﹣1【考点】4C:完全平方公式;46:同底数幂的乘法;47:幂的乘方与积的乘方;48:同底数幂的除法.【分析】根据同底数幂的乘法运算以及幂的乘方运算和完全平方公式求出即可.【解答】解:A.(x2)3=x6,故此选项正确;B.x2•x3=x 2+3=x5,故此选项正确;C.(x﹣y)2=(x+y)2﹣4xy=x2+y2﹣2xy,故此选项正确;D.x2÷(﹣x)2=1,故此选项错误;故选:D.【点评】此题主要考查了同底数幂的乘法运算以及幂的乘方运算和完全平方公式的应用,熟练掌握其运算是解决问题的关键.2.给出下列图形名称:(1)线段;(2)直角;(3)等腰三角形;(4)平行四边形;(5)长方形,在这五种图形中是轴对称图形的有()A.1个B.2个C.3个D.4个【考点】P3:轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称可得答案.【解答】解:(1)线段;(2)直角;(3)等腰三角形;(5)长方形是轴对称图形,共4个,故选:D.【点评】此题主要考查了轴对称图形,关键是找出图形的对称轴.3.在下列多项式的乘法中,可用平方差公式计算的是()A.(2+a)(a+2)B.(a+b)(b﹣a)C.(﹣x+y)(y﹣x) D.(x2+y)(x ﹣y2)【考点】4F:平方差公式.【分析】根据平方差公式的定义进行解答.【解答】解:A、(2+a)(a+2)=(a+2)2,是完全平方公式,故本选项错误;B、(a+b)(b﹣a)=b2﹣(a)2,符合平方差公式,故本选项正确;C、(﹣x+y)(y﹣x)=(y﹣x)2,是完全平方公式,故本选项错误;D、(x2+y)(x﹣y2)形式不符合平方差公式,故本选项错误.故选B.【点评】本题考查了平方差公式,要熟悉平方差公式的形式.4.如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为P1,在乙种地板上最终停留在黑色区域的概率为P2,则()A.P1>P2B.P1<P2C.P1=P2 D.以上都有可能【考点】X5:几何概率.【分析】先根据甲和乙给出的图形,先求出黑色方砖在整个地板中所占的比值,再根据其比值即可得出结论.【解答】解:由图甲可知,黑色方砖6块,共有16块方砖,∴黑色方砖在整个地板中所占的比值==,∴在乙种地板上最终停留在黑色区域的概率为P1是,由图乙可知,黑色方砖3块,共有9块方砖,∴黑色方砖在整个地板中所占的比值==,∴在乙种地板上最终停留在黑色区域的概率为P2是,∵>,∴P1>P2;故选A.【点评】本题考查的是几何概率,用到的知识点为:几何概率=相应的面积与总面积之比.5.在同一平面内,如果两条直线被第三条直线所截,那么()A.同位角相等B.内错角相等C.不能确定三种角的关系D.同旁内角互补【考点】J6:同位角、内错角、同旁内角.【分析】根据平行线的性质定理即可作出判断.【解答】解:A、两条被截直线平行时,同位角相等,故选项错误;B、两条被截直线平行时,内错角相等,故选项错误;C、正确;D、两条被截直线平行时,同旁内角互补,故选项错误.故选C.【点评】本题主要考查了平行线的性质定理,注意定理的条件:两直线平行.6.如图,下图是汽车行驶速度(千米/时)和时间(分)的关系图,下列说法其中正确的个数为()(1)汽车行驶时间为40分钟;(2)AB表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了.A.1个B.2个C.3个D.4个【考点】E6:函数的图象.【分析】观察图象,结合题意,明确横轴与纵轴的意义,依次分析选项可得答案.【解答】解:读图可得,在x=40时,速度为0,故(1)(4)正确;AB段,y的值相等,故速度不变,故(2)正确;x=30时,y=80,即在第30分钟时,汽车的速度是80千米/时;故(3)错误;故选C.【点评】解决本题的关键是读懂图意,明确横轴与纵轴的意义.7.如图,AB∥ED,则∠A+∠C+∠D=()A.180°B.270°C.360°D.540°【考点】JA:平行线的性质.【分析】首先过点C作CF∥AB,由AB∥ED,即可得CF∥AB∥DE,然后根据两直线平行,同旁内角互补,即可求得∠1+∠A=180°,∠2+∠D=180°,继而求得答案.【解答】解:过点C作CF∥AB,∵AB∥ED,∴CF∥AB∥DE,∴∠1+∠A=180°,∠2+∠D=180°,∴∠A+∠ACD+∠D=∠A+∠1+∠2+∠D=360°.故选C.【点评】此题考查了平行线的性质.此题难度适中,注意掌握辅助线的作法,注意掌握两直线平行,同旁内角互补定理的应用.8.已知一个正方体的棱长为2×102毫米,则这个正方体的体积为()A.6×106立方毫米B.8×106立方毫米C.2×106立方毫米D.8×105立方毫米【考点】47:幂的乘方与积的乘方.【分析】正方体的体积=棱长的立方,代入数据,然后根据积的乘方,把每一个因式分别乘方,再把所得的幂相乘计算即可.【解答】解:正方体的体积为:(2×102)3=8×106立方毫米.故选B.【点评】考查正方体的体积公式和积的乘方的性质,熟记体积公式和积的乘方的性质是解题的关键.9.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,四个结论中成立的是()A.①②④B.①②③C.②③④D.①③【考点】KF:角平分线的性质;KD:全等三角形的判定与性质.【分析】过E作EF⊥AD于F,易证得Rt△AEF≌Rt△AEB,得到BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,得到EC=EF=BE,则可证得Rt△EFD≌Rt△ECD,得到DC=DF,∠FDE=∠CDE,也可得到AD=AF+FD=AB+DC,∠AED=∠AEF+∠FED=∠BEC=90°,即可判断出正确的结论.【解答】解:过E作EF⊥AD于F,如图,∵AB⊥BC,AE平分∠BAD,∴Rt△AEF≌Rt△AEB∴BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,∴EC=EF=BE,所以③错误;∴Rt△EFD≌Rt△ECD,∴DC=DF,∠FDE=∠CDE,所以②正确;∴AD=AF+FD=AB+DC,所以④正确;∴∠AED=∠AEF+∠FED=∠BEC=90°,所以①正确.故选A.【点评】本题考查了角平分线的性质:角平分线上的点到角的两边的距离相等.也考查了三角形全等的判定与性质.10.如图,是把一张长方形的纸片沿长边中点的连线对折两次后得到的图形,再沿虚线裁剪,展开后的图形是()A.B.C.D.【考点】P9:剪纸问题.【分析】严格按照图中的方法亲自动手操作一下,即可得到所得图形应既关于过原长方形两长边中点的连线对称,也关于两短边中点的连线对称,展开即可得到答案.【解答】解:由折叠可得最后展开的图形应既关于过原长方形两长边中点的连线对称,也关于两短边中点的连线对称,并且关于长边对称的两个剪去部分是不相连的,各选项中,只有选项D符合.故选D.【点评】本题主要考查学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.解决本题的关键是根据折叠确定所得图形的对称轴.二、填空题(本大题共6个小题,每题3分,共计18分)11.任意翻一下2016年的日历,翻出1月6日是不确定事件,翻出4月31日是确定事件.(填“确定”或“不确定”)【考点】X1:随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:任意翻一下2016年的日历,翻出1月6日是随机事件,即不确定事件,翻出4月31日是不可能事件,即确定事件,故答案为:不确定;确定.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.等腰三角形一边长为8,另一边长为5,则此三角形的周长为18或21.【考点】KH:等腰三角形的性质.【分析】本题应分为两种情况8为底或5为底,还要注意是否符合三角形三边关系.【解答】解:当8为腰,5为底时;8﹣5<8<8+5,能构成三角形,此时周长=8+8+5=21;当8为底,5为腰时;8﹣5<5<8+5,能构成三角形,此时周长=5+5+8=18;故答案为18或21.【点评】本题主要考查了等腰三角形的性质和三角形的三边关系;求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.13.若x2+6x+b2是一个完全平方式,则b的值是±3.【考点】4E:完全平方式.【分析】利用完全平方公式的结构特征计算即可求出b的值.【解答】解:∵x2+6x+b2是一个完全平方式,∴b=±3,故答案为:±3【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.14.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有①②③(填序号)【考点】KN:直角三角形的性质.【分析】根据有一个角是直角的三角形是直角三角形进行分析判断.【解答】解:①∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,∠C=90°,则该三角形是直角三角形;②∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C=90°,则该三角形是直角三角形;③∠A=90°﹣∠B,则∠A+∠B=90°,∠C=90°.则该三角形是直角三角形;④∠A=∠B=∠C,则该三角形是等边三角形.故能确定△ABC是直角三角形的条件有①②③.【点评】此题要能够结合已知条件和三角形的内角和定理求得角的度数,根据直角三角形的定义进行判定.15.如图,已知C,D两点在线段AB上,AB=10cm,CD=6cm,M,N分别是线段AC,BD 的中点,则MN=8cm.【考点】ID:两点间的距离.【分析】结合图形,得MN=MC+CD+ND,根据线段的中点,得MC=AC,ND=DB,然后代入,结合已知的数据进行求解.【解答】解:∵M、N分别是AC、BD的中点,∴MN=MC+CD+ND=AC+CD+DB=(AC+DB)+CD=(AB﹣CD)+CD=×(10﹣6)+6=8.故答案为:8.【点评】此题考查的知识点是两点间的距离,关键是利用线段的中点结合图形,把要求的线段用已知的线段表示.16.一辆小车由静止开始从光滑的斜面上向下滑动,通过观察记录小车滑动的距离s(m)与时间t(s)的数据如下表:时间t(s) 1 2 3 4距离s(m) 2 8 18 32 …则写出用t表示s的关系式s=2t2.【考点】E3:函数关系式.【分析】根据物理知识列出函数表达式s=at2,代入数据计算即可得到关系式.【解答】解:设t表示s的关系式为s=at2,则s=a×12=2,解得a=2,∴s=2t2.故t表示s的关系式为:s=2t2.故答案为:2t2.【点评】本题考查了由实际问题列函数关系式,关键是掌握两个变量的关系.三、解答题(本大题共8个题,共72分.解答题要写出过程.)17.(15分)计算(1)简便计算:(2)计算:2a3b2•(﹣3bc2)3÷(﹣ca2)(3)先化简再求值:[(3x+2y)(3x﹣2y)﹣(x+2y)(5x﹣2y)]÷4x,其中x=,y=2.【考点】4J:整式的混合运算—化简求值.【分析】(1)把15、16分别写成(16﹣)与(16+)的形式,利用平方差公式计算.(2)先乘方,再按整式的乘除法法则进行运算.(3)先计算左括号里面的,再算除法.最后代入求值.【解答】解:(1)原式=(16﹣)×(16+)=162﹣()2=255(2)原式=2a3b2×(﹣27b3c6)÷(﹣ca2)=54a3﹣2b2+3c6﹣1=54ab5c5(3)原式=[(9x2﹣4y2)﹣(5x2+8xy﹣4y2)]÷4x=(4x2﹣8xy)÷4x=x﹣2y当x=,y=2时原式=﹣4=﹣【点评】本题考查了整式的乘方、乘除、加减运算及乘法公式.解题过程中注意运算顺序.平方差公式:两个数的和与这两个数的差的积等于这两个数的平方差.18.(5分)“西气东输”是造福子孙后代的创世纪工程.现有两条高速公路和A、B两个城镇(如图),准备建立一个燃气中心站P,使中心站到两条公路距离相等,并且到两个城镇距离相等,请你画出中心站位置.【考点】N4:作图—应用与设计作图.【分析】到两条公路的距离相等,则要画两条公路的夹角的角平分线,到A,B两点的距离相等又要画线段AB的垂直平分线,两线的交点就是点P的位置.【解答】解:如图所示,.【点评】本题主要考查了角平分线的性质及垂直平分线的性质.解题的关键是理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.19.(8分)如图所示,转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6.(1)若自由转动转盘,当它停止转动时,指针指向奇数区的概率是多少?(2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向的区域的概率为.【考点】X5:几何概率.【分析】(1)根据题意先得出奇数的个数,再根据概率公式即可得出答案;(2)根据概率公式设计如:自由转动的转盘停止时,指针指向大于2的区域,答案不唯一.【解答】解:(1)根据题意可得:转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6,有3个扇形上是奇数.故自由转动转盘,当它停止转动时,指针指向奇数区的概率是=.(2)答案不唯一.如:自由转动的转盘停止时,指针指向大于2的区域.【点评】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.20.(7分)如图,已知∠1=∠2,∠3=∠4,∠E=90°,试问:AB∥CD吗?为什么?解:∵∠1+∠3+∠E=180°180°∠E=90°已知∴∠1+∠3=90°∵∠1=∠2,∠3=∠4已知∴∠1+∠2+∠3+∠4=180°∴AB∥CD同旁内角互补,两直线平行.【考点】J9:平行线的判定;K7:三角形内角和定理.【分析】第一空利用三角形内角和定理即可求解;第二利用已知条件即可;第三空利用等式的性质即可求解;第四空利用已知条件即可;第五孔利用等式的性质即可;第六空利用平行线的判定方法即可求解.【解答】解:∵∠1+∠3+∠E=180°∠E=90°(已知),∴∠1+∠3=90°,∵∠1=∠2,∠3=∠4 (已知),∴∠1+∠2+∠3+∠4=180°,∴AB∥CD (同旁内角互补两直线平行).故答案为:180°、90°已知、已知、180°、同旁内角互补两直线平行.【点评】此题主要考查了平行线的判定及三角形的内角和定理,解题的关键是利用三角形内角和定理得到同旁内角互补解决问题.21.(7分)星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图象回答下列问题.(1)玲玲到达离家最远的地方是什么时间?离家多远?(2)她何时开始第一次休息?休息了多长时间?(3)她骑车速度最快是在什么时候?车速多少?(4)玲玲全程骑车的平均速度是多少?【考点】E6:函数的图象.【分析】(1)利用图中的点的横坐标表示时间,纵坐标表示离家的距离,进而得出答案;(2)休息是路程不在随时间的增加而增加;(3)往返全程中回来时候速度最快,用距离除以所用时间即可;(4)用玲玲全称所行的路程除以所用的时间即可.【解答】解:观察图象可知:(1)玲玲到达离家最远的地方是在12时,此时离家30千米;(2)10点半时开始第一次休息;休息了半小时;(3)玲玲郊游过程中,各时间段的速度分别为:9~10时,速度为10÷(10﹣9)=10千米/时;10~10.5时,速度约为(17.5﹣10)÷(10.5﹣10)=15千米/小时;10.5~11时,速度为0;11~12时,速度为(30﹣17.5)÷(12﹣11)=12.5千米/小时;12~13时,速度为0;13~15时,在返回的途中,速度为:30÷(15﹣13)=15千米/小时;可见骑行最快有两段时间:10~10.5时;13~15时.两段时间的速度都是15千米/小时.速度为:30÷(15﹣13)=15千米/小时;(4)玲玲全程骑车的平均速度为:(30+30)÷(15﹣9)=10千米/小时.【点评】本题是一道函数图象的基础题,解题的关键是通过仔细观察图象,从中整理出解题时所需的相关信息,因此本题实际上是考查同学们的识图能力.22.(10分)把两个含有45°角的直角三角板如图放置,点D在AC上,连接AE、BD,试判断AE与BD的关系,并说明理由.【考点】KD:全等三角形的判定与性质.【分析】可通过全等三角形将相等的角进行转换来得出结论.本题中我们可通过证明△AEC 和BCD全等得出∠FAD=∠CBD,根据∠CBD+∠CDB=90°,而∠ADF=∠BDC,因此可得出∠AFD=90°,进而得出结论.那么证明三角形AEC和BCD就是解题的关键,两直角三角形中,EC=CD,AC=BC,两直角边对应相等,因此两三角形全等.【解答】解:BF⊥AE,理由如下:由题意可知:△ECD和△BCA都是等腰Rt△,∴EC=DC,AC=BC,∠ECD=∠BCA=90°,在△AEC和△BDC中EC=DC,∠ECA=∠DCB,AC=BC,∴△AEC≌△BDC(SAS).∴∠EAC=∠DBC,AE=BD,∵∠DBC+∠CDB=90°,∠FDA=∠CDB,∴∠EAC+∠FDA=90°.∴∠AFD=90°,即BF⊥AE.故可得AE⊥BD且AE=BD.【点评】本题考查了全等三角形的判定与性质,解答本题首先要大致判断出两者的关系,然后通过全等三角形来将相等的角进行适当的转换,从而得出所要得出的角的度数.23.(8分)暑假期间某中学校长决定带领市级“三好学生”去北京旅游,甲旅行社承诺:“如果校长买全票一张,则学生可享受半价优惠”;乙旅行社承诺:“包括校长在内所有人按全票的6折优惠”.若全票价为240元(1)设学生数为x,甲、乙旅行社收费分别为y甲(元)和y乙(元),分别写出两个旅行社收费的表达式.(2)当学生人数为多少时,两旅行社收费相同?【考点】E3:函数关系式.【分析】(1)由题意不难得出两家旅行社收费的函数关系式,(2)若求解那个更优惠,可先令两个式子相等,得到一个数值,此时两家都一样进而求解即可.【解答】解:(1)y甲=240+120x;y乙=240×60%(x+1);(2)240+120x=240×60%(x+1)解得x=4,所以当有4名学生时,两家都可以.【点评】本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.24.(12分)如图1,线段BE上有一点C,以BC,CE为边分别在BE的同侧作等边三角形ABC,DCE,连接AE,BD,分别交CD,CA于Q,P.(1)找出图中的所有全等三角形.(2)找出一组相等的线段,并说明理由.(3)如图2,取AE的中点M、BD的中点N,连接MN,试判断三角形CMN的形状,并说明理由.【考点】KD:全等三角形的判定与性质;KK:等边三角形的性质.【分析】(1)根据全等三角形的判定,可得答案;(2)根据全等三角形的判定与性质,可得答案;(3)根据全等三角形的判定与性质,可得CM=CN,根据等边三角形的判定,可得答案.【解答】解:(1)△BCD≌△ACE;△BPC≌△AQC;△DPC≌△EQC(2)BD=AE.理由:等边三角形ABC、DCE中,∵∠ACB=∠ACD=∠DCE=60°,∴∠BCD=∠ACE,在△BCD和△ACE中,,∴△BCD≌△ACE(SAS),∴BD=AE.(3)等边三角形.理由:由△BCD≌△ACE,∴∠1=∠2,BD=AE.∵M是AE的中点、N是BD的中点,∴DN=EM,又DC=CE.在△DCN和△ECM中,,∴△DCN≌△ECM(SAS),∴CN=CM,∠NCD=∠MCE,∠MCE+∠DCM=60°.∴∠NCD+∠DCM=60°,即∠NCM=60°,又∵CM=CN,∴△CMN为等边三角形.【点评】本题考查了全等三角形的判定与性质,解(1)的关键是全等三角形的判定,解(2)的关键是全等三角形的判定;解(3)的关键是利用全等三角形的判定与性质得出CN=CM,∠NCD=∠MCE,∠MCE+∠DCM=60°.,又利用了等边三角形的判定.。
辽宁省大连市中山区2020-2021学年七年级下学期期末数学试题试卷(Word版,含答案与解析)
C. D.
【答案】D
【解析】
【分析】根据如果甲得到乙所有钱 一半,那么甲共有钱50,如果乙得到甲所有钱的 ,那么乙也共有钱50.得到等量关系,列二元一次方程组即可
【详解】解:设甲需带钱 ,乙带钱 ,
根据题意,得: ,
答案:D
【点睛】本题考查列二元一次方程组解决实际问题,找到等量关系是关键
二、填空题(本题共6小题,每小题2分,共12分)
【解析】
【分析】观察频数分布直方图,找到横轴,代表次数,仰卧起坐次数在25~30次对应的纵轴人数是12人.
【详解】观察频数分布直方图,找到横轴,代表次数,
则仰卧起坐次数在25~30次对应的纵轴人数是12人.
故答案选:D.
【点睛】本题考查频数分布直方图.理解横轴和纵轴代表的意义是本题解题的关键.
6.已知 是二元一次方程ax+2y=5的一个解,则a的值为( )
.检查神州十二号航天飞机的零部件,适用全面调查,因此选项 符合题意;
.调查明泽湖中鱼的数量,适用抽样调查,因此选项 不符合题意;
故选:C.
【点睛】本题考查全面调查与抽样调查,理解抽样调查与全面调查的意义以及具体的问题情境是正确判断的关键.
3.在下列长度的三条线段中,能组成三角形的是( )
A.1,2,4B.2,3,4C.3,5,8D.8,4,4
【详解】 在﹣3, , ,1四个数中,
是开方开不尽的数,
是无理数.
故选B.
【点睛】本题考查了无理数的定义,无理数的定义:“无限不循环的小数是无理数”,熟记定义是解题关键.无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.
2.下列调查中,适宜采用全面调查方式的是( )
2020年北师大版七年级下册数学《期末检测题》(附答案)
北师大版数学七年级下学期期 末 测 试 卷(时间:120 总分:120分) 学校________ 班级________ 姓名________ 座号________ 一、选择题(每小题3分,共30分)1.下列世界博览会会徽图案中是轴对称图形的是( )A. B. C. D.2.下列计算正确的是 ( ) A. a 5+a 5=a 10B. a 3·a 2=a 6C. a 7÷a=a 6D. (-a 3)2=-6a 63.如图所示,已知∠1=∠2,那么下列结论正确的是( )A. AB∥BCB. AB∥CDC. ∠C=∠DD. ∠3=∠44. 下面每组数分别是三根小木棒的长度, 它们能摆成三角形的是( ) A. 5,1, 3B. 2, 4, 2C. 3, 3, 7D. 2, 3, 45.如图①所示,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图2摆放,从中任意翻开一张是汉字“信”的概率是( )A.12B.13C.23D.166.利用基本作图,不能作出唯一三角形的是( ) A. 已知三边 B. 已知两边及其夹角C. 已知两角及其夹边D. 已知两边及其中一边对角7.下列说法:①在同一平面内过一点有且只有一条直线和已知直线垂直;②垂线段最短;③在同一平面内平行于同一条直线的两条直线也互相平行;④同位角相等.其中正确的个数有( ) A 1个B. 2个C. 3个D. 4个8.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )A. 22()()a b a b a b +-=-B. 222()2a b a ab b +=++C. 22()22a a b a ab +=+D. 222()2a b a ab b -=-+9.如图,等腰△ABC 中,AB=AC=8,BC=5,AB 的垂直平分线DE 交AB 于点D ,交AC 于点E ,则△BEC 的周长为( )A. 13B. 14C. 15D. 1610.如图,火车匀速通过隧道(隧道长等于火车长)时,火车进入隧道的时间x 与火车在隧道内的长度y 之间的关系用图像描述大致是( )A. B. C. D.二、填空题(每小题3分,共15分)11.0.000 000 087用科学记数法可表示为_____. 12.如图,已知AB∥CD,∠1=120°,则∠C=____.13.一棵树高h(m)与生长时间n(年)之间满足一定的关系,请你根据下表中的数写出 h(m)与n(年)之间的关系式:h =____.n(年) 2 4 6 8 10 …h(m) 2.6 3.2 3.8 4.4 5.0 …14.在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是________个.15.如图,△ABE和△ADC是△ABC分别沿着AB,AC边翻折180°形成的.若∠BAC=145°,则∠α=____.三、解答题(共75分)16.先化简,再求值:(a+2)2-(a+1)(a-1),其中a=-3217.校园一角的形状如图所示,其中AB,BC,CD表示围墙,小亮通过作角平分线在图示的区域中找到了一点P,使得点P到三面墙的距离都相等,请你用尺规作图法帮小亮画出P点.(保留作图痕迹)18.请将下列事件发生的概率标在图中.(1)抛出的篮球会下落;(2)从装有3个红球、7个白球的口袋中取一个球,恰好是红球(这些球除颜色外完全相同);(3)掷一枚质地均匀硬币,硬币落下后正面朝上.19.如图所示,已知AD∥BC,且DC⊥AD于D.(1)DC与BC有怎样的位置关系?说说你的理由;(2)你能说明∠1+∠2=180°吗?20.如图,已知P 点是∠AOB 平分线上一点,PC ⊥OA ,PD ⊥OB ,垂足为C 、D . (1)∠PCD=∠PDC 吗?为什么? (2)OP 是CD 的垂直平分线吗?为什么?21.如图,C 是线段AB 的中点,CD 平分ACE ∠,CE 平分BCD ∠,CD CE =.(1)求证:ACD ∆≌BCE ∆; (2)若D ∠=50°,求B Ð的度数.22.周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍. (1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?23.已知:CD 是经过∠BCA 顶点C 的一条直线,CA =CB ,E 、F 分别是直线CD 上两点,且∠BEC =∠CFA =∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上.①如图1,若∠BCA=90°,∠α=90°,则BE CF;②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件,使①中的结论仍然成立,并说明理由;(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出关于EF,BE,AF三条线段数量关系的合理猜想: .答案与解析一、选择题(每小题3分,共30分)1.下列世界博览会会徽图案中是轴对称图形的是()A. B. C. D.【答案】B【解析】【分析】根据轴对称的定义即可解答. 【详解】解:如果一个图形沿着一条直线对折后两部分完全重合,这样的图叫做轴对称图形,这条直线叫做对称轴,根据轴对称的定义可得只有B选项是轴对称图形.故选B.【点睛】本题考查轴对称的定义,熟悉掌握是解题关键.2.下列计算正确的是 ( )A. a5+a5=a10B. a3·a2=a6C. a7÷a=a6D. (-a3)2=-6a6【答案】C【解析】A. a5+a5=2a5,故A选项错误;B. a3·a2=a5,故B选项错误;C. a7÷a=a6,正确;D. (-a3)2=a6,故D选项错误,故选C.3.如图所示,已知∠1=∠2,那么下列结论正确的是( )A. AB∥BCB. AB∥CDC. ∠C=∠DD. ∠3=∠4【答案】B【解析】∵∠1=∠2,∴AB//CD(内错角相等,两直线平行),故选B.4. 下面每组数分别是三根小木棒的长度, 它们能摆成三角形的是()A. 5, 1, 3B. 2, 4, 2C. 3, 3, 7D. 2, 3, 4【答案】D【解析】A、3+1<5,不能构成三角形,故本选项错误;B、2+2=4,不能构成三角形,故本选项错误;C、3+3<7,不能构成三角形,故本选项错误;D、2+3>4,能构成三角形,故本选项正确,故选D.5.如图①所示,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图2摆放,从中任意翻开一张是汉字“信”的概率是( )A. 12B.13C.23D.16【答案】D 【解析】一共有6张卡片,只有一张上的汉字是“信”字,所以从中任意翻开一张是汉字“信”的概率是:16,故选D.6.利用基本作图,不能作出唯一三角形的是()A. 已知三边B. 已知两边及其夹角C. 已知两角及其夹边D. 已知两边及其中一边的对角【答案】D【解析】【分析】根据全等三角形判定定理一一判断即可.【详解】A.根据SSS定理可知能作出唯一三角形,故本选项错误;B.根据SAS定理可知能作出唯一三角形,故本选项错误;C.根据ASA定理可知能作出唯一三角形,故本选项错误;D.根据已知两边及其中一边的对角不能作出唯一三角形,故本选项正确. 故选D.【点睛】本题考查了全等三角形的判定定理,熟练掌握定理是解题的关键.7.下列说法:①在同一平面内过一点有且只有一条直线和已知直线垂直;②垂线段最短;③在同一平面内平行于同一条直线的两条直线也互相平行;④同位角相等.其中正确的个数有( ) A. 1个 B. 2个C. 3个D. 4个【答案】C 【解析】 【分析】根据垂线的性质、平行线的性质、平行公理的推论逐个判断即可.【详解】解:在同一平面内过一点有且只有一条直线和已知直线垂直,正确,故①正确; 垂线段最短,故②正确;在同一平面内平行于同一条直线的两条直线也互相平行,故③正确; 只有两直线平行时,同位角才相等,错误,故④错误; 正确的个数是3个, 故选C .【点睛】本题考查了垂线的性质、平行线的性质、平行公理的推论等知识点,能熟记知识点的内容是解此题的关键.8.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )A. 22()()a b a b a b +-=- B. 222()2a b a ab b +=++C. 22()22a a b a ab +=+D. 222()2a b a ab b -=-+【答案】A 【解析】 【分析】根据阴影部分面积的两种表示方法,即可解答. 【详解】图1中阴影部分的面积为:22a b -,图2中的面积为:()()a b a b+-,则22()()a b a b a b+-=-故选:A. 【点睛】本题考查了平方差公式的几何背景,解决本题的关键是表示阴影部分的面积.9.如图,等腰△ABC中,AB=AC=8,BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC 的周长为()A. 13B. 14C. 15D. 16【答案】A【解析】试题分析:∵DE是AB的垂直平分线,∴AE=BE,∴△BEC周长=BE+CE+BC=AE+CE+BC=AC+BC,∵腰长AB=8,∴AC=AB=8,∴△BEC周长=8+5=13.故选A.考点:线段垂直平分线的性质;等腰三角形的性质.10.如图,火车匀速通过隧道(隧道长等于火车长)时,火车进入隧道的时间x与火车在隧道内的长度y之间的关系用图像描述大致是()A. B. C. D.【答案】B【解析】先分析题意,把各个时间段内y与x之间的关系分析清楚,本题是分段函数,分为二段.根据题意和图示分析可知:火车进入隧道的时间x与火车在隧道内的长度y之间的关系具体可描述为:当火车开始进入时y逐渐变大,当火车完全进入隧道,由于隧道长等于火车长,此时y最大,当火车开始出来时y逐渐变小,故选B.二、填空题(每小题3分,共15分)11.0.000 000 087用科学记数法可表示为_____.10-【答案】8.7×8【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,10-,所以:0.000 000 087=8.7×810-.故答案为8.7×812.如图,已知AB∥CD,∠1=120°,则∠C=____.【答案】60°【解析】∵∠1+∠FEB=180°,∠1=120°,∴∠FEB=180°-∠1=60°,∵AB//CD,∴∠C=∠FEB=60°,故答案为60°.13.一棵树高h(m)与生长时间n(年)之间满足一定的关系,请你根据下表中的数写出 h(m)与n(年)之间的关系式:h=____.n(年) 2 4 6 8 10 …h(m) 2.6 3.2 3.8 4.4 5.0 …【答案】2+0.3n.【解析】∵2.6=2+0.3×2;3.2=2+0.3×4;3.8=2+0.3×6;…∴h=2+0.3n,故答案为2+0.3n.14.在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是________个.【答案】15【解析】试题分析:利用频率估计概率,可得到摸到红色、黄色球的概率为10%和15%,则摸到蓝球的概率为75%,然后根据概率公式可计算出口袋中蓝色球的个数.根据题意得摸到红色、黄色球的概率为10%和15%,所以摸到蓝球的概率为75%,因为20×75%=15(个),所以可估计袋中蓝色球的个数为15个.故答案为15.考点:利用频率估计概率.15.如图,△ABE和△ADC是△ABC分别沿着AB,AC边翻折180°形成的.若∠BAC=145°,则∠α=____.【答案】70°【解析】∵△ABE和△ADC是△ABC分别沿着AB,AC边翻折180°形成的,∴∠BAE=∠BAC=145°,∠DAC=∠BAC=145°,∠E=∠ACD=∠ACB,∴∠DAE=∠BAC+∠BAE+∠DAC-360°=145°+145°+145°-360°=75°,∴∠EAC=∠DAC-∠DAE=145°-75°=70°,∵∠E+∠α+∠EMD=180°,∠EAC+∠AMC+∠ACD=180°,∠EMD=∠AMC,∴∠α=∠EAC=70°,故答案为70°.【点睛】本题考查了翻折的性质,三角形的内角和是180度等,掌握翻折前后的两个三角形是全等的,对应角是相等的是解题的关键.三、解答题(共75分)16.先化简,再求值:(a+2)2-(a+1)(a-1),其中a=-3 2【答案】-1.【解析】试题分析:先去括号,然后再合并同类项,最后代入数值进行计算即可. 试题解析:原式=a2+4a+4-a2+1=4a+5,当a=-32时,原式=4×(-32)+5=-1.17.校园一角的形状如图所示,其中AB,BC,CD表示围墙,小亮通过作角平分线在图示的区域中找到了一点P,使得点P到三面墙的距离都相等,请你用尺规作图法帮小亮画出P点.(保留作图痕迹)【答案】见解析【解析】试题分析:分别作∠ABC、∠BCD的角平分线BP、CP,BP与CP的交点即为满足条件的点.试题解析:如图所示,点P即为所求作的点.18.请将下列事件发生的概率标在图中.(1)抛出的篮球会下落;(2)从装有3个红球、7个白球的口袋中取一个球,恰好是红球(这些球除颜色外完全相同);(3)掷一枚质地均匀的硬币,硬币落下后正面朝上.【答案】(1)1处.(2)310处.(3)12处. 【解析】 试题分析:先分别计算所给事件的概率,然后根据概率在图中标记即可.根据随机事件概率大小的求法,找准两点:(1)符合条件的情况数目;(2)全部情况的总数;二者的比值就是其发生的概率的大小.试题解析:(1)抛出的篮球会落下,是必然事件,所以概率为1,因此应该标在1(100%)处;(2)袋子中一共有10个球,其中有3个红球,因此从中任意取一个球是红球的概率为310,因此应该标在310(30%)处; (3)掷一枚质地均匀的硬币,硬币落下后正面朝上的概率为12,因此应该标在12(50%)处. 【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 19.如图所示,已知AD∥BC,且DC⊥AD 于D.(1)DC 与BC 有怎样的位置关系?说说你的理由;(2)你能说明∠1+∠2=180°吗?【答案】(1)见解析;(2)见解析【解析】试题分析:(1)根据垂直的定义可得∠ADC=90°,然后根据两直线平行,同旁内角互补求出∠DCB=90°,即可得证;(2)先根据两直线平行,同旁内角互补得到∠2+∠3=180°,然后根据对顶角相等的性质得到∠1=∠3,进行等量代换即可得证.试题解析:(1)DC⊥BC.理由:∵AD//BC,∴∠ADC+∠DCB=180°,∵DC⊥AD,∴∠ADC=90°,∴∠DCB=90°,∴DC⊥BC;(2∵AD∥BC,∴∠2+∠3=180°,∵∠1=∠3,∴∠1+∠2=180°.20.如图,已知P点是∠AOB平分线上一点,PC⊥OA,PD⊥OB,垂足为C、D.(1)∠PCD=∠PDC吗?为什么?(2)OP是CD的垂直平分线吗?为什么?【答案】(1)见解析;(2)见解析【解析】试题分析:(1)由角平分线的性质易得PC=PD,根据等边对等角即可得出∠PCD=∠PDC;(2)易证△POC≌△POD,则OC=OD,根据线段垂直平分线的性质逆定理可得OP垂直平分CD.试题解析:(1)∠PCD=∠PDC,理由如下:∵点P 是∠AOB 平分线上一点,PC ⊥OA ,PD ⊥OB ,∴PC =PD ,∴∠PCD =∠PDC ;(2)OP 垂直平分CD .理由:∵PC=PD,OP=OP ,∴Rt △POC ≌Rt △POD (HL ),∴OC=OD ,∴OP 垂直平分CD (线段垂直平分线的性质逆定理).21.如图,C 是线段AB 的中点,CD 平分ACE ∠,CE 平分BCD ∠,CD CE =.(1)求证:ACD ∆≌BCE ∆;(2)若D ∠=50°,求B Ð的度数.【答案】(1)证明见解析;(2)70°.【解析】【详解】解:(1)∵点C 是线段AB 的中点,∴AC BC =,又∵CD 平分ACE ∠,CE 平分BCD ∠,∴∠1=∠2,∠2=∠3,∴∠1=∠3在ACD ∆和BCE ∆中,13CD CE AC BC =⎧⎪∠=∠⎨⎪=⎩∴ACD ∆≌BCE ∆(2)解:∴∠1+∠2+∠3=180°∴∠1=∠2=∠3=60°∵ACD ∆≌BCE ∆∴E D ∠=∠=50°∴180370B E ∠=︒-∠-∠=︒.22.周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?【答案】(1)0.5 h.(2)1.75h,25km【解析】【详解】解:(1)小明骑车速度:1020(km/h)0.5=在甲地游玩的时间是:1﹣0.5=0.5(h)(2) 妈妈驾车速度:20×3=60(km/h)设直线BC解析式为y=20x+b1,把点B(1,10)代入得b1=﹣10∴y=20x﹣10设直线DE解析式为y=60x+b2,把点D(43,0)代入得b2=﹣80∴y=60x﹣80∴20106080 y xy x=-⎧⎨=-⎩解得1.7525 xy=⎧⎨=⎩∴交点F(1.75,25)【点睛】中等难度题.此题有较强的综合性,要求考生正确认识函数的性质和函数的图像,此题是一题很好的实际应用题,考生可以通过训练此类型的题目以达到举一反三的效果.23.已知:CD是经过∠BCA顶点C的一条直线,CA=CB,E、F分别是直线CD上两点,且∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上.①如图1,若∠BCA=90°,∠α=90°,则BE CF;②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件,使①中的结论仍然成立,并说明理由;(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出关于EF,BE,AF三条线段数量关系的合理猜想: .【答案】(1)BE=CF;(2)∠BCA=180°-∠α,(3)EF=BE+AF.【解析】试题分析:(1)①由∠BCA=90°,∠α=90°可得∠CBE+∠BCE=90°,∠BCE+∠ACD=90°,可推得∠CBE=∠ACD,且已知CA=CB,∠BEC=∠CFA,所以△BEC≌△CDA,可得BE=CF;②只有满足△BEC≌△CDA,才有①中的结论,即∠BCE=∠CAF,∠CBE=∠FCA;由三角形内角和等于180°,可知∠α+∠BCE+∠CBE=180°,即∠α+∠BCE+∠FCA=180°,即可得到∠BCA=180°-∠α;(2)只要通过条件证明△BEC≌△CFA(可通过ASA证得),可得BE=CF,EC=AF,即可得到EF=EC+CF=BE+AF.试题解析:(1)①∵∠BCA=90°,∠α=90°,∴∠CBE+∠BCE=90°,∠BCE+∠ACD=90°,∴∠CBE=∠ACD,在△BEC与△CDA中,∵BEC CFACBE ACD CA CB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BEC≌△CFA(AAS),∴BE=CF故答案为=;②∠α与∠BCA应满足的关系是∠BCA=180°-∠α,理由为:∵∠α+∠BCA=180°,∴∠α+∠BCE+∠FCA=180°,∵∠α+∠BCE+∠CBE=180°(三角形内角和等于180°),∴∠CBE=∠ACD,又∵∠BEC=∠CFA,CA=CB,∴△BEC≌△CFA(AAS),∴BE=CF,则∠α与∠BCA应满足的关系是∠BCA=180°-∠α;(2)探究结论:EF=BE+AF,∵∠1+∠2+∠BCA=180°,∠2+∠3+∠CFA=180°,又∵∠BCA=∠α=∠CFA,∴∠1=∠3;又∵∠BEC=∠CFA=∠α,CB=CA,∴△BEC≌△CFA(AAS),∴BE=CF,EC=FA,∴EF=EC+CF=BE+AF.【点睛】本题主要考查三角形全等的判定,涉及到三角形内角和定理,线段比较长短等知识点,仔细阅读,弄清题意是解题的关键.。
2020年人教版七年级(下)期末数学试卷及答案
七年级(下)期末数学试卷一、选择题1.若x2+ax+9=(x+3)2,则a的值为()A.3 B.±3 C.6 D.±62.下列计算①(﹣1)0=﹣1 ②﹣x2•x3=x5 ③2×2﹣2=④(m3)3=m6⑤(﹣a2)m=(﹣a m)2正确的有()A.1个B.2个C.3个D.4个3.如图,下列判断中错误的是()A.由∠A+∠ADC=180°得到AB∥CD B.由AB∥CD得到∠ABC+∠C=180°C.由∠1=∠2得到AD∥BC D.由AD∥BC得到∠3=∠44.如图,a∥b,∠1的度数是∠2的一半,则∠3等于()A.60°B.100°C.120°D.130°5.一个游戏的中奖率是1%,小林买100张奖券,下列说法正确的是()A.一定有1张会中奖 B.一定不中奖C.中奖的可能性大D.中奖的可能性小6.下列各题中的数据,精确的是()A.小颖班上共有56位同学B.我国人口总数约为13亿C.珠玛朗玛峰的海拔高度为8848米D.我们数学教科书封面的长为21厘米7.下面每组数分别是三根小木棒的长度,它们能摆成三角形的是()A.12cm,3cm,6cm B.8cm,16cm,8cm C.6cm,6cm,13cm D.2cm,3cm,4cm8.下面计算正确的是()A.(a+1)2=a2+1 B.(b﹣1)(﹣1﹣b)=b2﹣1C.(﹣2a+1)2=4a2+4a+1 D.(x+1)(x+2)=x2+3x+29.一个角的度数是40°,那么它的余角的补角度数是()A.130°B.140°C.50°D.90°10.如图,已知:∠A=∠D,∠1=∠2,下列条件中能使△ABC≌△DEF的是()A.∠E=∠B B.ED=BC C.AB=EF D.AF=CD二、填空题11.多项式﹣abx2+x3﹣ab+3中,最高项的系数是,次数是.12.已知正方形的边长为a,如果它的边长增加4,那么它的面积增加.13.如果x+y=6,xy=7,那么x2+y2=.14.被称为“地球之肺”的森林正以每年15 000 000公顷的速度从地球上消失,每年森林的消失量用科学记数法表示为公顷.15.太阳的半径是6.96×104千米,它是精确到位,有效数字有个.16.小明在一个小正方体的六个面上分别标了1、2、3、4、5、6六个数字,随意地掷出小正方体,则P(掷出的数字小于3)=.三、解答下列各题17.(1)9(x+2)(x﹣2)﹣(3x﹣2)2.(2)(a﹣1)(a2+a+1)(3)(m﹣1)(m+1)(m2﹣1)(4)232﹣124×122(利用公式进行计算)18.一个角的补角比它的余角的二倍还多18度,这个角有多少度?四、解答题19.如图,∠1+∠2=284°,b∥c,求∠3,∠4的度数.20.如图,A、B两建筑物位于河的两岸,要测得它们之间的距离,可以从B点出发沿河岸画一条射线BF,在BF上截取BC=CD,过D作DE∥AB,使E、C、A在同一直线上,则DE的长就是A、B之间的距离,请你说明道理.21.如图,∠ABC=∠DCB=90°,且AC=BD.AB与DC相等吗?∠BAC与∠CDB相等吗?为什么?22.如图,已知:AB⊥BD,ED⊥BD,AB=CD,BC=DE,那么AC与CE有什么关系?写出你的猜想并说明理由.四、解答题(第26题7分,其余两题各8分,共23分)23.如图是明明作的一周零用钱开支的统计图(单位:元)分析如图,试回答以下问题(1)星期几明明花的零用钱最少?是多少?他零用钱花得最多的一天用了多少?(2)哪几天他花的零用钱是一样的?分别为多少?(3)请你能帮明明算一算他一周平均每天花的零用钱.24.如图为一位旅行者在早晨8时从城市出发到郊外所走的路程S(单位:千米)与时间t(单位:时)的变量关系的图象.根据图象回答问题:(1)在这个变化过程中,自变量是,因变量是.(2)9时,10时,12时所走的路程分别是多少?(3)他休息了多长时间?(4)他从休息后直至到达目的地这段时间的平均速度是多少?25.如图,∠1=∠2,∠3+∠4=180°,问a与c的关系如何?为什么?七年级(下)期末数学试卷参考答案与试题解析一、选择题1.若x2+ax+9=(x+3)2,则a的值为()A.3 B.±3 C.6 D.±6【考点】完全平方公式.【专题】计算题.【分析】根据题意可知:将(x+3)2展开,再根据对应项系数相等求解.【解答】解:∵x2+ax+9=(x+3)2,而(x+3)2=x2+6x+9;即x2+ax+9=x2+6x+9,∴a=6.故选C.【点评】本题主要考查完全平方公式的应用,利用对应项系数相等求解是解题的关键.2.下列计算①(﹣1)0=﹣1 ②﹣x2•x3=x5 ③2×2﹣2=④(m3)3=m6⑤(﹣a2)m=(﹣a m)2正确的有()A.1个B.2个C.3个D.4个【考点】整式的混合运算.【分析】根据幂的乘方和同底数幂的乘法进行计算,然后找出正确的式子即可.【解答】解:①(﹣1)0=1,计算错误;②﹣x2•x3=﹣x5 ,计算错误;③2×2﹣2=,计算正确;④(m3)3=m9,计算错误;⑤(﹣a2)m=(﹣a m)2,计算正确;正确的有③⑤两个.故选:B.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.3.如图,下列判断中错误的是()A.由∠A+∠ADC=180°得到AB∥CD B.由AB∥CD得到∠ABC+∠C=180°C.由∠1=∠2得到AD∥BC D.由AD∥BC得到∠3=∠4【考点】平行线的判定与性质.【分析】根据平行线的性质与判定,逐一判定.【解答】解:A、由∠A+∠ADC=180°得到AB∥CD(同旁内角互补,两直线平行),正确;B、由AB∥CD得到∠ABC+∠C=180°(两直线平行,同旁内角互补),正确;C、由∠1=∠2得到AD∥BC(内错角相等,两直线平行),正确;D、由AD∥BC得到∠1=∠2(两直线平行,内错角相等),所以此选项错误.故选D.【点评】此题考查了平行线的判定与性质.解题时注意内错角与同旁内角的确定,关键是找到哪两条直线被第三条直线所截构造的内错角与同旁内角.4.如图,a∥b,∠1的度数是∠2的一半,则∠3等于()A.60°B.100°C.120°D.130°【考点】平行线的性质.【分析】由a∥b,可得∠1与∠2互补,∠2与∠3相等,因为两直线平行,同旁内角互补,内错角相等.再根据题意组成方程组,可得∠2的度数,即可得到∠3的度数.【解答】解:∵a∥b,∴∠1+∠2=180°,∠3=∠2;∵∠1=∠2,∴∠1=60°,∠2=120°;∴∠3=120°.故选C.【点评】此题考查了平行线的性质:两直线平行,同旁内角互补;两直线平行,内错角相等.注意在求角时,有时需要借助于方程组求解.5.一个游戏的中奖率是1%,小林买100张奖券,下列说法正确的是()A.一定有1张会中奖 B.一定不中奖C.中奖的可能性大D.中奖的可能性小【考点】概率的意义.【专题】应用题.【分析】事件的可能性主要看事件的类型,事件的类型决定了可能性及可能性的大小.【解答】解:∵某奖券的中奖率是1%,属随机事件,∴买了100张奖券可能中奖且中奖的可能性很小,故A、B、C错误.故选D.【点评】本题主要考查的是可能性大小的判断,解决这类题目要注意具体情况具体对待,一般地必然事件的可能性大小为1,不可能事件发生的可能性大小为0,随机事件发生的可能性大小在0至1之间,难度适中.6.下列各题中的数据,精确的是()A.小颖班上共有56位同学B.我国人口总数约为13亿C.珠玛朗玛峰的海拔高度为8848米D.我们数学教科书封面的长为21厘米【考点】近似数和有效数字.【分析】精确的数就是准确数,区分每项中的数据是近似数或准确数即可.【解答】解:A、是准确数,故选项正确;B、是近似数,故选项错误;C、是近似数,故选项错误;D、是近似数,故选项错误.故选A.【点评】本题主要考查了近似数的定义,正确理解定义是解题的关键.7.下面每组数分别是三根小木棒的长度,它们能摆成三角形的是()A.12cm,3cm,6cm B.8cm,16cm,8cm C.6cm,6cm,13cm D.2cm,3cm,4cm【考点】三角形三边关系.【专题】应用题.【分析】根据三角形的三边关系,看哪个选项中两条较小的边的和大于最大的边即可.【解答】解:A、3+6<12,不能构成三角形,故本选项错误;B、8+8=16,不能构成三角形,故本选项错误;C、6+6<13,不能构成三角形,故本选项错误;D、2+3>4,能构成三角形,故本选项正确.故选D.【点评】本题主要考查了三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边,比较简单.8.下面计算正确的是()A.(a+1)2=a2+1 B.(b﹣1)(﹣1﹣b)=b2﹣1C.(﹣2a+1)2=4a2+4a+1 D.(x+1)(x+2)=x2+3x+2【考点】完全平方公式;多项式乘多项式.【分析】根据完全平方公式,多项式乘多项式法则:先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加,对各选项分析判断后利用排除法求解.【解答】解:A、应为(a+1)2=a2+2a+1,故本选项错误;B、应为(b﹣1)(﹣1﹣b)=﹣b2+1,故本选项错误;C、应为(﹣2a+1)2=4a2﹣4a+1,故本选项错误;D、(x+1)(x+2)=x2+2x+x+2=x2+3x+2,正确.故选D.【点评】本题考查了完全平方公式,多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相同.9.一个角的度数是40°,那么它的余角的补角度数是()A.130°B.140°C.50°D.90°【考点】余角和补角.【分析】若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.依此求出度数.【解答】解:40°角的余角是:90°﹣40°=50°,50°角的补角是:180°﹣50°=130°.故选A.【点评】本题主要考查了余角和补角的定义,正确计算进行角度的计算是解题的关键.10.如图,已知:∠A=∠D,∠1=∠2,下列条件中能使△ABC≌△DEF的是()A.∠E=∠B B.ED=BC C.AB=EF D.AF=CD【考点】全等三角形的判定.【分析】添加AF=CD,根据等式的性质可得AC=FD,然后利用ASA判定△ABC≌△DEF.【解答】解:添加AF=CD,∵AF=CD,∴AF+FC=CD+FC,∴AC=FD,在△ABC和△DEF中,∴△ABC≌△DEF(ASA),故选:D.【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、填空题11.多项式﹣abx2+x3﹣ab+3中,最高项的系数是﹣1,次数是4.【考点】多项式.【分析】直接利用多项式的定义得出最高次项的系数与次数.【解答】解:多项式﹣abx2+x3﹣ab+3中,最高项的系数是:﹣1,次数是4.故答案为:﹣1,4.【点评】此题主要考查了多项式,正确把握多项式的次数与系数的定义是解题关键.12.已知正方形的边长为a,如果它的边长增加4,那么它的面积增加8a+16.【考点】列代数式.【专题】应用题.【分析】首先表示正方形增加后的边长是a+4,根据正方形面积公式分得到:增加后的面积为:(a+4)2减去原来的面积即可.【解答】解:由题意得其面积增加的是:(a+4)2﹣a2=(a+4+a)(a+4﹣a)=8a+16.【点评】列代数式的关键是正确理解文字语言中的关键词,找到其中的数量关系.注意:正方形的面积=边长×边长.13.如果x+y=6,xy=7,那么x2+y2=22.【考点】完全平方公式.【专题】计算题.【分析】将x+y=6两边平方,利用完全平方公式展开,把xy=7代入即可求出所求式子的值.【解答】解:将x+y=6两边平方得:(x+y)2=x2+y2+2xy=36,把xy=7代入得:x2+y2+14=36,则x2+y2=22.故答案为:22【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.14.被称为“地球之肺”的森林正以每年15 000 000公顷的速度从地球上消失,每年森林的消失量用科学记数法表示为 1.5×107公顷.【考点】科学记数法—表示较大的数.【专题】应用题.【分析】科学记数法就是将一个数字表示成a×10n的形式,其中1≤|a|<10,n表示整数,n为整数.【解答】解:15 000 000=1.5×107.【点评】本题考查学生对科学记数法的掌握.科学记数法要求前面的部分|a|是>或等于1,而<10,n为整数.15.太阳的半径是6.96×104千米,它是精确到百位,有效数字有三个.【考点】科学记数法与有效数字.【分析】近似数精确到哪一位,应当看末位数字实际在哪一位.有效数字是从左边第一个不是0的数字起后面所有的数字都是有效数字,用科学记数法表示的数a×10n的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:6.96×104中,右边的6在百位上,则精确到了百位,有三个有效数字分别是6、9、6.【点评】对于用科学记数法表示的数,有效数字的计算方法以及与精确到哪一位是需要识记的内容,经常会出错.16.小明在一个小正方体的六个面上分别标了1、2、3、4、5、6六个数字,随意地掷出小正方体,则P(掷出的数字小于3)=.【考点】概率公式.【分析】由一个小正方体的六个面上分别标了1、2、3、4、5、6六个数字,数字小于3的有2种情况,利用概率公式即可求得答案.【解答】解:∵一个小正方体的六个面上分别标了1、2、3、4、5、6六个数字,数字小于3的有2种情况,∴P(掷出的数字小于3)==.故答案为:.【点评】此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.三、解答下列各题17.(1)9(x+2)(x﹣2)﹣(3x﹣2)2.(2)(a﹣1)(a2+a+1)(3)(m﹣1)(m+1)(m2﹣1)(4)232﹣124×122(利用公式进行计算)【考点】整式的混合运算.【专题】计算题;整式.【分析】(1)原式利用平方差公式及完全平方公式化简,去括号合并即可得到结果;(2)原式利用多项式乘以多项式法则计算即可得到结果;(3)原式利用平方差公式及完全平方公式化简,计算即可得到结果;(4)原式变形后,利用平方差公式计算即可得到结果.【解答】解:(1)原式=9x2﹣36﹣9x2+12x﹣4=12x﹣40;(2)原式=a3+a2+a﹣a2﹣a﹣1=a3﹣1;(3)原式=(m2﹣1)(m2﹣1)=m4﹣2m2+1;(4)原式=232﹣(123+1)×(123﹣1)=232﹣1232+1=(23+123)×(23﹣123)+1=146×(﹣100)+1=﹣14600+1=﹣14599.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.18.一个角的补角比它的余角的二倍还多18度,这个角有多少度?【考点】余角和补角.【专题】计算题.【分析】首先根据余角与补角的定义,设这个角为x°,则它的余角为(90°﹣x),补角为(180°﹣x),再根据题中给出的等量关系列方程即可求解.【解答】解:设这个角的度数为x,则它的余角为(90°﹣x),补角为(180°﹣x),依题意,得180°﹣x=2(90°﹣x)+18°解得x=18°答:这个角的度数为18°.【点评】此题综合考查余角与补角,属于基础题中较难的题,解答此类题一般先用未知数表示所求角的度数,再根据一个角的余角和补角列出代数式和方程求解.四、解答题19.如图,∠1+∠2=284°,b∥c,求∠3,∠4的度数.【考点】平行线的性质.【分析】根据对顶角相等求出∠1的度数,再根据邻补角的和等于180°求出∠3,根据两直线平行,同位角相等即可求出∠4的度数.【解答】解:∵∠1+∠2=284°,∠1=∠2(对顶角相等),∴∠1=×284°=142°,∴∠3=180°﹣∠1=180°﹣142°=38°,∵b∥c,∴∠4=∠1=∠142°.故答案为:∠3=38°,∠4=142°.【点评】本题考查了对顶角相等,邻补角的和等于180°的性质,以及两直线平行,同位角相等的性质,是基础题,比较简单.20.如图,A、B两建筑物位于河的两岸,要测得它们之间的距离,可以从B点出发沿河岸画一条射线BF,在BF上截取BC=CD,过D作DE∥AB,使E、C、A在同一直线上,则DE的长就是A、B之间的距离,请你说明道理.【考点】全等三角形的应用.【专题】计算题;作图题.【分析】根据BC=CD,∠CED=∠CAB,∠ACB=∠ECD,即可求证△ABC≌△EDC,根据全等三角形对应边相等的性质可以求得AB=DE.【解答】解:∵DE∥AB,∴∠CED=∠CAB,∴△ABC≌△EDC(AAS),∴AB=ED,答:DE的长就是A、B之间的距离.【点评】本题考查了全等三角形在实际生活中的应用,考查了全等三角形的证明和对应边相等的性质,本题中正确的求证△ABC≌△EDC是解题的关键.21.如图,∠ABC=∠DCB=90°,且AC=BD.AB与DC相等吗?∠BAC与∠CDB相等吗?为什么?【考点】全等三角形的判定与性质.【分析】由AC=BD、BC=BC结合勾股定理可得出AB=DC,在△ABC和△DCB中由SSS即可得出△ABC≌△DCB,根据全等三角形的性质可得出∠BAC=∠CDB.【解答】证明:AB=DC,∠BAC=∠CDB.由勾股定理得:AB=,DC=,∴AB=DC.在△ABC和△DCB中,,∴△ABC≌△DCB(SSS),∴∠BAC=∠CDB.【点评】本题考查了全等三角形的判定与性质,解题的关键是证出△ABC≌△DCB.本题属于基础题,难度不大,解决该类型题目时,可以利用直角三角形全等的判定定理HL来得出结论.22.如图,已知:AB⊥BD,ED⊥BD,AB=CD,BC=DE,那么AC与CE有什么关系?写出你的猜想并说明理由.【考点】全等三角形的判定与性质.【专题】探究型.【分析】根据SAS证△ABC≌△CDE,推出∠A=∠ECD,推出∠ACB+∠ECD=90°,求出∠ACE=90°即可.【解答】解:AC与CE垂直;理由是:∵AB⊥BD,∴∠ABC=90°,∵ED⊥BD,∴∠EDC=90°,在△ABC和△CDE中,∴△ABC≌△CDE(SAS),∵∠B=90°,∴∠A+∠ACB=90°,∴∠ACB+∠ECD=90°,∴∠ACE=90°,∴AC与CE垂直.【点评】本题考查了全等三角形的性质和判定,三角形的内角和定理,关键是求出∠A=∠ECD,题目比较好.四、解答题(第26题7分,其余两题各8分,共23分)23.如图是明明作的一周零用钱开支的统计图(单位:元)分析如图,试回答以下问题(1)星期几明明花的零用钱最少?是多少?他零用钱花得最多的一天用了多少?(2)哪几天他花的零用钱是一样的?分别为多少?(3)请你能帮明明算一算他一周平均每天花的零用钱.【考点】条形统计图.【专题】图表型.【分析】(1)条形图中最低的小长方形表示花钱最少的,最高的表示花钱最多的;(2)小长方形一样高的小组花钱一样多;(3)分别写出每天的花钱数,然后加在一起除以7即可得到一周花钱平均数.【解答】解:(1)星期三花钱最少,是2元,星期六花钱最多为12元;(2)星期四和星期五花钱一样多,为6元;(3)∵七天花钱数分别为:8元、4元、2元、6元、6元、12元、10元,∴花钱的平均数为:≈6.86元.【点评】本题考查了条形统计图的知识,解题的关键是正确的读图,并从中整理出有关的信息.24.如图为一位旅行者在早晨8时从城市出发到郊外所走的路程S(单位:千米)与时间t(单位:时)的变量关系的图象.根据图象回答问题:(1)在这个变化过程中,自变量是时间,因变量是路程.(2)9时,10时,12时所走的路程分别是多少?(3)他休息了多长时间?(4)他从休息后直至到达目的地这段时间的平均速度是多少?【考点】函数的图象.【专题】数与式.【分析】(1)根据自变量是横轴表示的量,因变量是纵轴表示的量,解答即可.(2)由图象看相对应的y值即可.(3)由图象可知,休息时,时间在增多,路程没有变化,表现在函数图象上是与x轴平行的线段.(4)根据这段时间的平均速度=这段时间的总路程÷这段时间,算出即可.【解答】解:(1)由图象可得,时间是自变量,路程是因变量;故答案为:时间;路程;(2)由图可知:9时,10时,12时所走的路程分别是9km,9km,15km;(3)根据图象可得,该旅行者休息的时间为:10﹣9=1小时;(4)根据图象得:(15﹣9)÷(12﹣10)=3km/h.【点评】本题主要考查了分段函数的图象,正确理解函数的图象所表示的意义,能够通过图象得到函数自变量和因变量的变化关系;注意休息时表现在函数图象上是与x轴平行的线段.25.如图,∠1=∠2,∠3+∠4=180°,问a与c的关系如何?为什么?【考点】平行线的判定与性质.【分析】由∠1=∠2,∠2=∠5可得出∠1=∠5,由此得出a∥b;由∠3+∠4=180°,∠3+∠4+∠6+∠7=360°可得出∠6+∠7=180°即∠6、∠7互补,由此得出b∥c;结合上面结论即可得出a∥c.【解答】解:a∥c.∵∠1=∠2,∠2=∠5,∴∠1=∠5,∴a∥b.∵∠3+∠4=180°,∠3+∠4+∠6+∠7=360°,∴∠6+∠7=180°,∴b∥c,∴a∥c.【点评】本题考查了平行线的判定与性质,解题的关键是找出a∥b,b∥c.本题属于基础题,难度不大,解决该题型题目时,根据内错角相等或同旁内角互补来证明直线平行.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年初一数学下期末试题(带答案)一、选择题1.已知实数a ,b ,若a >b ,则下列结论错误的是A .a-7>b-7B .6+a >b+6C .55a b >D .-3a >-3b2.将一块直角三角板ABC 按如图方式放置,其中∠ABC =30°,A 、B 两点分别落在直线m 、n 上,∠1=20°,添加下列哪一个条件可使直线m ∥n( )A .∠2=20°B .∠2=30°C .∠2=45°D .∠2=50°3.下面不等式一定成立的是( )A .2a a <B .a a -<C .若a b >,c d =,则ac bd >D .若1a b >>,则22a b >4.已知实数x ,y 满足254()0x y x y +-+-=,则实数x ,y 的值是( )A .22x y =-⎧⎨=-⎩B .00x y =⎧⎨=⎩C .22x y =⎧⎨=⎩D .33x y =⎧⎨=⎩ 5.如图所示的表格是某次篮球联赛部分球队的积分表,则下列说法不正确的是( ) 队名 比赛场数 胜场 负场 积分前进 1410 4 24 光明 149 5 23 远大 147 a 21 卫星 144 10 b 钢铁 140 14 14 … … … … …A .负一场积1分,胜一场积2分B .卫星队总积分b =18C .远大队负场数a =7D .某队的胜场总积分可以等于它的负场总积分6.已知是关于x ,y 的二元一次方程x-ay=3的一个解,则a 的值为( )A .1B .-1C .2D .-27.如图,能判定EB ∥AC 的条件是( )A .∠C =∠ABEB .∠A =∠EBDC .∠C =∠ABCD .∠A =∠ABE8.在平面直角坐标系内,线段CD 是由线段AB 平移得到的,点A (-2,3)的对应点为C (2,5),则点B (-4,-1)的对应点D 的坐标为()A .()8,3--B .()4,2C .()0,1D .()1,89.如图,下列能判断AB ∥CD 的条件有 ( )①∠B +∠BCD =180°②∠1 = ∠2 ③∠3 =∠4 ④∠B = ∠5 A .1 B .2 C .3 D .410.下列说法正确的是( )A .两点之间,直线最短;B .过一点有一条直线平行于已知直线;C .和已知直线垂直的直线有且只有一条;D .在平面内过一点有且只有一条直线垂直于已知直线.11.如图,将△ABC 沿BC 边上的中线AD 平移到△A'B'C'的位置,已知△ABC 的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D 等于( )A .2B .3C .23D .3212.用反证法证明命题“在三角形中,至多有一个内角是直角”时,应先假设( ) A .至少有一个内角是直角B .至少有两个内角是直角C .至多有一个内角是直角D .至多有两个内角是直角二、填空题13.如图,已知AB ,CD ,EF 互相平行,且∠ABE =70°,∠ECD =150°,则∠BEC =________°.14.如果a 的平方根是3±,则a =_________15.已知二元一次方程2x-3y=6,用关于x 的代数式表示y ,则y=______.16.不等式3x 134+>x 3+2的解是__________. 17.已知(m-2)x |m-1|+y=0是关于x ,y 的二元一次方程,则m=______.18.已知在一个样本中,50个数据分别在5个组内,第一、二、三、五组数据的个数分别为2,8,15,5,则第四组的频数为__________.19.如图,将周长为10的三角形ABC 沿BC 方向平移1个单位长度得到三角形DEF ,则四边形ABFD 的周长为__________.20.已知方程组236x y x y +=⎧⎨-=⎩的解满足方程x +2y =k ,则k 的值是__________. 三、解答题21.如图,直线AB 、CD 相交于O 点,AOC ∠与AOD ∠的度数比为4:5,OE AB ⊥,OF 平分DOB ∠,求EOF ∠的度数.22.在综合与实践课上,老师请同学们以“两条平行线AB ,CD 和一块含60︒角的直角三角尺EFG (90EFG ∠=︒,60EGF ∠=︒)”为主题开展数学活动.(1)如图(1),把三角尺的60︒角的顶点G 放在CD 上,若221∠=∠,求1∠的度数; (2)如图(2),小颖把三角尺的两个锐角的顶点E 、G 分别放在AB 和CD 上,请你探索并说明AEF ∠与FGC ∠之间的数量关系;(3)如图(3),小亮把三角尺的直角顶点F 放在CD 上,30角的顶点E 落在AB上.若AEG α∠=,CFG β∠=,请用含α,β的式子直接表示AEG ∠与CFG ∠的数量关系.23.随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注,某校计划将这种学习方式应用到教育学中,从全校1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备的情况进行调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为 ,图①中m 的值为 ;(Ⅱ)求本次调查获取的样本数据的众数、中位数和平均数;(Ⅲ)根据样本数据,估计该校1500名学生家庭中拥有3台移动设备的学生人数.24.如图,以直角三角形AOC 的直角顶点O 为原点,以OC 、OA 所在直线为x 轴和y 轴建立平面直角坐标系,点()0,A a ,(),0C b 满足220a b b -+-=.()1则C 点的坐标为______;A 点的坐标为______.()2已知坐标轴上有两动点P 、Q 同时出发,P 点从C 点出发沿x 轴负方向以1个单位长度每秒的速度匀速移动,Q 点从O 点出发以2个单位长度每秒的速度沿y 轴正方向移动,点Q 到达A 点整个运动随之结束.AC 的中点D 的坐标是()1,2,设运动时间为(0)t t >秒.问:是否存在这样的t ,使ODP ODQ SS =?若存在,请求出t 的值;若不存在,请说明理由. ()3点F 是线段AC 上一点,满足FOC FCO ∠=∠,点G 是第二象限中一点,连OG ,使得.AOG AOF ∠=∠点E 是线段OA 上一动点,连CE 交OF 于点H ,当点E 在线段OA 上运动的过程中,OHC ACE OEC∠+∠∠的值是否会发生变化?若不变,请求出它的值;若变化,请说明理由.25.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A :月销售件数200件,月总收入2400元;营业员B :月销售件数300件,月总收入2700元;假设营业员的月基本工资为x 元,销售每件服装奖励y 元.(1)求x 、y 的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】A.∵a >b ,∴a-7>b-7,∴选项A 正确;B.∵a >b ,∴6+a >b+6,∴选项B 正确;C.∵a >b ,∴55a b >,∴选项C 正确;D.∵a >b ,∴-3a <-3b ,∴选项D 错误.故选D. 2.D解析:D【解析】【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.【详解】∵直线EF ∥GH ,∴∠2=∠ABC+∠1=30°+20°=50°,故选D .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.3.D解析:D【解析】【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【详解】A. 当0a ≤时,2a a ≥,故A 不一定成立,故本选项错误; B. 当0a ≤时,a a -≥,故B 不一定成立,故本选项错误; C. 若ab >,当0cd =≤时,则ac bd ≤,故C 不一定成立,故本选项错误;D. 若1a b >>,则必有22a b >,正确;故选D .【点睛】主要考查了不等式的基本性质.“0”是很特殊的数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.4.C解析:C【解析】【分析】根据绝对值和平方的非负性,得到二元一次方程粗,求解即可得到答案.【详解】解:∵实数x ,y 满足254()0x y x y +-+-=, ∴40x y +-=且2()0x y -=,即400x y x y +-=⎧⎨-=⎩, 解得:22x y =⎧⎨=⎩, 故选C .【点睛】本题只要考查了绝对值和平方的非负性,知道一个数的绝对值不可能为负数和平方后所得的数非负数是解题的关键.5.D解析:D【解析】【分析】A 、设胜一场积x 分,负一场积y 分,根据前进和光明队的得分情况,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;B、根据总积分=2×得胜的场次数+1×负的场次数,即可求出b值;C、由负的场次数=总场次数-得胜的场次数,即可求出a值;D、设该队胜了z场,则负了(14-z)场,根据胜场总积分等于负场总积分,即可得出关于z的一元一次方程,解之即可得出z值,由该值不为整数即可得出结论.【详解】A、设胜一场积x分,负一场积y分,依题意,得:10424 9523x yx y+⎧⎨+⎩==,解得:21xy⎧⎨⎩==,∴选项A正确;B、b=2×4+1×10=18,选项B正确;C、a=14-7=7,选项C正确;D、设该队胜了z场,则负了(14-z)场,依题意,得:2z=14-z,解得:z=143,∵z=143不为整数,∴不存在该种情况,选项D错误.故选:D.【点睛】本题考查了一元一次方程的应用以及二元一次方程组的应用,找准等量关系,正确列出一元一次方程(或二元一次方程组)是解题的关键.6.B解析:B【解析】【分析】把代入x-ay=3,解一元一次方程求出a值即可.【详解】∵是关于x,y的二元一次方程x-ay=3的一个解,∴1-2a=3解得:a=-1故选B.【点睛】本题考查二元一次方程的解,使方程左右两边相等的未知数的值,叫做方程的解;一组数是方程的解,那么它一定满足这个方程.7.D解析:D【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A、∠C=∠ABE不能判断出EB∥AC,故A选项不符合题意;B、∠A=∠EBD不能判断出EB∥AC,故B选项不符合题意;C、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故C选项不符合题意;D、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故D选项符合题意.故选:D.【点睛】此题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是解题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.8.C解析:C【解析】【分析】根据点A(-2,3)的对应点为C(2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,以此规律可得D的对应点的坐标.【详解】点A(-2,3)的对应点为C(2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,于是B(-4,-1)的对应点D的横坐标为-4+4=0,点D的纵坐标为-1+2=1,故D(0,1).故选C.【点睛】此题考查了坐标与图形的变化----平移,根据A(-2,3)变为C(2,5)的规律,将点的变化转化为坐标的变化是解题的关键.9.C解析:C【解析】【分析】判断平行的条件有:同位角相等、内错角相等、同旁内角互补,依次判断各选项是否符合.【详解】①∠B+∠BCD=180°,则同旁内角互补,可判断AB∥CD;②∠1 = ∠2,内错角相等,可判断AD ∥BC ,不可判断AB ∥CD ;③∠3 =∠4,内错角相等,可判断AB ∥CD ;④∠B = ∠5,同位角相等,可判断AB ∥CD故选:C【点睛】本题考查平行的证明,注意②中,∠1和∠2虽然是内错角关系,但对应的不是AB 与CD 这两条直线,故是错误的.10.D解析:D【解析】解:A .应为两点之间线段最短,故本选项错误;B .应为过直线外一点有且只有一条一条直线平行于已知直线,故本选项错误;C .应为在同一平面内,和已知直线垂直的直线有且只有一条,故本选项错误;D .在平面内过一点有且只有一条直线垂直于已知直线正确,故本选项正确.故选D .11.A解析:A【解析】分析:由S △ABC =9、S △A′EF =4且AD 为BC 边的中线知S △A′DE =12S △A′EF =2,S △ABD =12S △ABC =92,根据△DA′E ∽△DAB 知2A DE ABDS A D AD S ''=(),据此求解可得. 详解:如图,∵S △ABC =9、S △A′EF =4,且AD 为BC 边的中线,∴S △A′DE =12S △A′EF =2,S △ABD =12S △ABC =92, ∵将△ABC 沿BC 边上的中线AD 平移得到△A'B'C',∴A′E ∥AB ,∴△DA′E ∽△DAB ,则2A DEABD S A D AD S ''=(),即22912A D A D '='+(),解得A′D=2或A′D=-25(舍),故选A.点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.12.B解析:B【解析】【分析】本题只需根据在反证法的步骤中,第一步是假设结论不成立,可据此进行分析,得出答案.【详解】根据反证法的步骤,则可假设为三角形中有两个或三个角是直角.故选B.【点睛】本题考查的知识点是反证法,解此题关键要懂得反证法的意义及步骤,反证法的步骤是:1.假设结论不成立;2.从假设出发推出矛盾;3.假设不成立,则结论成立.二、填空题13.40【解析】根据平行线的性质先求出∠BEF和∠CEF的度数再求出它们的差就可以了解:∵AB∥EF∴∠BEF=∠ABE=70°;又∵EF∥CD∴∠CEF=180°-∠ECD=180°-150°=30°解析:40【解析】根据平行线的性质,先求出∠BEF和∠CEF的度数,再求出它们的差就可以了.解:∵AB∥EF,∴∠BEF=∠ABE=70°;又∵EF∥CD,∴∠CEF=180°-∠ECD=180°-150°=30°,∴∠BEC=∠BEF-∠CEF=40°;故应填40.“点睛”本题主要利用两直线平行,同旁内角互补以及两直线平行,内错角相等进行解题.14.81【解析】【分析】根据平方根的定义即可求解【详解】∵9的平方根为∴=9所以a=81【点睛】此题主要考查平方根的性质解题的关键是熟知平方根的定义解析:81【解析】【分析】根据平方根的定义即可求解.【详解】∵9的平方根为3±,,所以a=81【点睛】此题主要考查平方根的性质,解题的关键是熟知平方根的定义.15.【解析】【分析】把x 看做已知数求出y 即可【详解】解:方程2x-3y=6解得:y=故答案为【点睛】此题考查了解二元一次方程解题的关键是将x 看做已知数求出y 解析:263x - 【解析】【分析】把x 看做已知数求出y 即可.【详解】解:方程2x-3y=6,解得:y=263x -, 故答案为263x -. 【点睛】此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y . 16.x >-3【解析】>+2去分母得:去括号得:移项及合并得:系数化为1得:故答案为x >-3解析:x >-3【解析】3134x +>3x +2, 去分母得:3(313)424,x x +>+ 去括号得:939424,x x +>+ 移项及合并得:515,x >- 系数化为1得:3x >- .故答案为x >-3.17.0【解析】【分析】根据二元一次方程的定义可以得到x 的次数等于1且系数不等于0由此可以得到m 的值【详解】根据二元一次方程的定义得|m-1|=1且m-2≠0解得m=0故答案为0【点睛】考查了二元一次方程解析:0【解析】【分析】根据二元一次方程的定义,可以得到x 的次数等于1,且系数不等于0,由此可以得到m的值.【详解】根据二元一次方程的定义,得|m-1|=1且m-2≠0,解得m=0,故答案为0.【点睛】考查了二元一次方程的定义.二元一次方程必须符合以下三个条件: (1)方程中只含有2个未知数; (2)含未知数项的最高次数为一次;(3)方程是整式方程.18.【解析】【分析】每组的数据个数就是每组的频数50减去第1235小组数据的个数就是第4组的频数【详解】50−(2+8+15+5)=20则第4小组的频数是20【点睛】本题考查频数与频率解题的关键是掌握频解析:20【解析】【分析】每组的数据个数就是每组的频数,50减去第1,2,3,5,小组数据的个数就是第4组的频数.【详解】50−(2+8+15+5)=20.则第4小组的频数是20.【点睛】本题考查频数与频率,解题的关键是掌握频数与频率的计算.19.12【解析】试卷分析:根据平移的基本性质由等量代换即可求出四边形ABFD的周长解:根据题意将周长为10个单位的△ABC沿边BC向右平移1个单位得到△DEF可知AD=1BF=BC+CF=BC+1DF=解析:12【解析】试卷分析:根据平移的基本性质,由等量代换即可求出四边形ABFD的周长.解:根据题意,将周长为10个单位的△ABC沿边BC向右平移1个单位得到△DEF,可知AD=1,BF=BC+CF=BC+1,DF=AC;又因为AB+BC+AC=10,所以,四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=12.故答案为12.点睛:本题主要考查平移的性质.解题的关键在于要利用平移的性质找出相等的线段. 20.-3【解析】分析:解出已知方程组中xy的值代入方程x+2y=k即可详解:解方程组得代入方程x+2y=k得k=-3故本题答案为:-3点睛:本题的实质是考查三元一次方程组的解法需要对三元一次方程组的定义解析:-3【解析】分析:解出已知方程组中x ,y 的值代入方程x+2y=k 即可.详解:解方程组236x y x y +=⎧⎨-=⎩, 得33x y ⎧⎨-⎩==, 代入方程x+2y=k ,得k=-3.故本题答案为:-3.点睛:本题的实质是考查三元一次方程组的解法.需要对三元一次方程组的定义有一个深刻的理解.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成无该未知数的二元一次方程组.三、解答题21.50∠=EOF .【解析】【分析】根据AOC ∠与AOD ∠互补且度数比为4:5,求得80AOC ∠=,由OE AB ⊥得到90BOE =∠,根据对顶角相等得80AOC BOD ∠=∠=,则可求得DOE ∠的度数,根据角平分线的定义可求得∠DOF 的度数,进而得到答案.【详解】解:4AOC x ∠=,则5AOD x ∠=,∵180AOC AOD ∠+∠=,∴45180x x +=,解得:20x =,∴480AOC x ∠==,∵OE AB ⊥,∴90BOE =∠,∵80AOC BOD ∠=∠=,∴10DOE BOE BOD ∠=∠-∠=,又∵OF 平分DOB ∠, ∴1402DOF BOD ∠=∠=, ∴104050EOF EOD DOF ∠=∠+∠=+=.【点睛】本题主要考查角平分线的定义,角的计算,解此题的关键在于准确掌握题图中各角的位置关系.22.(1)∠1=40°;(2)∠AEF+∠FGC =90°;(3)α+β=300°.【解析】【分析】(1)通过AB CD ∥,得出1EGD ∠∠=,再通过2180FGE EGD ∠+∠+∠︒= 求出∠1的度数;(2)如图,过点F 作FP AB ∥ ,通过FP AB CD ∥∥,解得AEF FGC EFG ∠+∠∠=,从而求出AEF FGC ∠+∠的度数;(3)根据AB CD ∥得出180AEF CFE ∠+∠=︒,代入求出αβ+的度数.【详解】解:(1)∵AB CD ∥ ,∴1EGD ∠∠= .∵2180221FGE EGD ∠+∠+∠︒∠∠=,= ,∴21601180∠+︒+∠︒= ,解得140∠︒= ;(2)如图,过点F 作FP AB ∥ ,∵CD AB ,∴FP AB CD ∥∥ .∴AEF EFP FGC GFP ∠∠∠∠=,= .∴AEF FGC EFP GFP EFG ∠+∠∠+∠∠==∵90EFG ∠︒= ,∴90AEF FGC ∠+∠︒= ;(3)300αβ+︒= .∵AB CD ∥∴180AEF CFE ∠+∠=︒即30900αβ-︒+-︒︒=18∴0αβ+︒=30【点睛】本题考查了平行线的性质以及判定定理,掌握平行线的内错角、同位角或同旁内角之间的关系是解题的关键.23.(Ⅰ)50、32;(Ⅱ)4;3;3.2;(Ⅲ)420人.【解析】【分析】(Ⅰ)利用家庭中拥有1台移动设备的人数除以其所占百分比即可得调查的学生人数,将拥有4台移动设备的人数除以总人数即可求得m 的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)将样本中拥有3台移动设备的学生人数所占比例乘以总人数1500即可求解.【详解】解:(Ⅰ)本次接受随机抽样调查的学生人数为:48%=50(人), ∵1650×100=32%, ∴图①中m 的值为32.故答案为50、32;(Ⅱ)∵这组样本数据中,4出现了16次,出现次数最多,∴这组数据的众数为4;∵将这组数据从小到大排列,其中处于中间的两个数均为3,有332+=3, ∴这组数据的中位数是3; 由条形统计图可得142103144165650x ⨯+⨯+⨯+⨯+⨯==3.2, ∴这组数据的平均数是3.2.(Ⅲ)1500×28%=420(人). 答:估计该校学生家庭中;拥有3台移动设备的学生人数约为420人.【点睛】 本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(1)()2,0;()0,4 ;(2)1;(3)2.【解析】分析:(1)根据绝对值和算术平方根的非负性,求得a ,b 的值即可;(2)先得出CP =t ,OP =2﹣t ,OQ =2t ,AQ =4﹣2t ,再根据S △ODP =S △ODQ ,列出关于t 的方程,求得t 的值即可;(3)过H 点作AC 的平行线,交x 轴于P ,先判定OG ∥AC ,再根据角的和差关系以及平行线的性质,得出∠PHO =∠GOF =∠1+∠2,∠OHC =∠OHP +∠PHC =∠GOF +∠4=∠1+∠2+∠4,最后代入OHC ACE OEC∠∠∠+进行计算即可.详解:(1+|b ﹣2|=0,∴a ﹣2b =0,b ﹣2=0,解得:a =4,b =2,∴A (0,4),C (2,0);(2)由条件可知:P 点从C 点运动到O 点时间为2秒,Q 点从O 点运动到A 点时间为2秒,∴0<t ≤2时,点Q 在线段AO 上,即 CP =t ,OP =2﹣t ,OQ =2t ,AQ =4﹣2t ,∴1111222212222DOP D DOQ D SOP y t t S OQ x t t =⋅=-⨯=-=⋅=⨯⨯=(),. ∵S △ODP =S △ODQ ,∴2﹣t =t ,∴t =1; (3)OHC ACE OEC∠∠∠+的值不变,其值为2. ∵∠2+∠3=90°.又∵∠1=∠2,∠3=∠FCO ,∴∠GOC +∠ACO =180°,∴OG ∥AC ,∴∠1=∠CAO ,∴∠OEC =∠CAO +∠4=∠1+∠4,如图,过H 点作AC 的平行线,交x 轴于P ,则∠4=∠PHC ,PH ∥OG ,∴∠PHO =∠GOF =∠1+∠2,∴∠OHC =∠OHP +∠PHC =∠GOF +∠4=∠1+∠2+∠4,∴124421421414OHC ACE OEC ∠∠∠∠∠∠∠∠∠∠∠∠∠+++++===++().点睛:本题主要考查了坐标与图形性质,解决问题的关键值作辅助线构造平行线.解题时注意:任意一个数的绝对值都是非负数,算术平方根具有非负性,非负数之和等于0时,各项都等于0.25.(1) 18003x y =⎧⎨=⎩;(2) 434;(3) 180. 【解析】解:(1)依题意,得20024003002700x y x y +=⎧⎨+=⎩解,得18003x y =⎧⎨=⎩(2)设他当月要卖服装m 件.则180033100m +≥14333m ≥14333m ≥的最小整数是434答:他当月至少要卖服装434件.(3)设甲、乙、丙服装的单价分别为a 元、b 元、c 元. 则3235023370a b c a b c ++=⎧⎨++=⎩ ∴ 444720a b c ++=∴ 180a b c ++=答:购买甲、乙、丙各一件共需180元.。