初一下学期期末考试试卷数学试题(含答案)
2024年人教版初一数学下册期末考试卷(附答案)
2024年人教版初一数学下册期末考试卷(附答案)一、选择题(每题1分,共5分)1. 若一个数的立方根是2,则这个数是()A. 2B. 8C. 16D. 42. 在直角坐标系中,点(3,4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 下列哪个数是负数()A. 0B. 3/4C. 5/6D. 24. 若一个数的绝对值是3,则这个数是()A. 3B. 3C. 3或35. 下列哪个图形是平行四边形()A. 矩形B. 正方形C. 梯形D. 菱形二、判断题(每题1分,共5分)1. 两个互质的数的最小公倍数是它们的乘积。
()2. 一个数既是偶数又是奇数。
()3. 任何两个数的和都是正数。
()4. 任何两个数的差都是负数。
()5. 任何两个数的积都是正数。
()三、填空题(每题1分,共5分)1. 5的平方根是______。
2. 下列数中,最大的是______(2,3,0,5)。
3. 两个相邻的自然数之和是______。
4. 下列数中,最小的数是______(3,4,2,1)。
5. 下列数中,既是偶数又是合数的是______(4,5,6,7)。
四、简答题(每题2分,共10分)1. 请简述什么是勾股定理。
2. 请简述什么是绝对值。
3. 请简述什么是分数。
4. 请简述什么是比例。
5. 请简述什么是方程。
五、应用题(每题2分,共10分)1. 若一个数的平方是16,求这个数。
2. 若一个数的三分之一是4,求这个数。
3. 若一个数的二分之一是5,求这个数。
4. 若一个数的四分之一是3,求这个数。
5. 若一个数的五分之一是2,求这个数。
六、分析题(每题5分,共10分)1. 请分析什么是正比例函数,并举例说明。
2. 请分析什么是反比例函数,并举例说明。
七、实践操作题(每题5分,共10分)1. 请用尺规作一个边长为5cm的正方形。
2. 请用尺规作一个半径为3cm的圆。
八、专业设计题(每题2分,共10分)1. 设计一个包含两个变量的线性方程组,并给出一个解法。
2024新人教版七年级数学下册期末试卷及答案
2024新人教版七年级数学下册期末试卷及答案一、选择题(每题4分,共40分)1. 下列数中是无理数的是:A. √2B. 3C. 0.5D. 22. 已知a=5,b=3,则a²+b²的值是:A. 34B. 32C. 29D. 263. 下列等式中正确的是:A. a² = 2abB. a³ = 3a²C. a² = a³D. a³ = 2a²4. 下列哪一个数是九的分之一:A. 1/9B. 9/1C. 9/2D. 2/95. 下列哪一个比例式是正确的:A. 3/4 = 12/18B. 5/7 = 15/21C. 4/9 = 12/24D. 6/8 = 18/246. 已知一个正方形的边长为4,则它的面积是:A. 16B. 8C. 4D. 27. 下列哪一个角的度数是90度:A. 直角B. 锐角C. 钝角D. 平角8. 下列哪一个数是负数:A. -3B. 3C. 0D. 29. 已知一个等边三角形的边长为6,则它的面积是:A. 9B. 6C. 3D. 110. 下列哪一个数是立方根:A. 27B. 3C. 3√27D. 3√3二、填空题(每题4分,共40分)1. 若两个数的和为8,它们的差为3,则这两个数分别是______和______。
2. 已知一个数的平方等于36,则这个数是______或______。
3. 下列各数中,是无理数的是______、______、______。
4. 一个等边三角形的周长为15,则它的边长是______,面积是______。
5. 若一个正方形的边长为a,则它的对角线长度为______,面积为______。
三、解答题(共20分)1. (10分)已知一个数的平方等于25,求这个数。
2. (10分)解方程:2x - 5 = 3x + 1。
3. (10分)已知一个长方形的长为8,宽为3,求它的面积和周长。
2023-2024学年全国初中七年级下数学人教版期末试卷(含答案解析)
20232024学年全国初中七年级下数学人教版期末试卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()。
A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()。
A. 2B. 0.5C. √3D. 3/43. 下列等式中,正确的是()。
A. 2^3 = 8B. 3^2 = 9C. 4^0 = 1D. 5^(1) = 54. 若一个正方形的边长是a,则它的面积是()。
A. 2aB. 4aC. a^2D. a^35. 下列各数中,是正数的是()。
A. 3B. 0C. 1/2D. 5/46. 若一个数的平方是9,则这个数是()。
A. 3B. 3C. 3和3D. 07. 下列各数中,是分数的是()。
A. 2B. 3/4C. 5D. 68. 若一个数的绝对值是5,则这个数是()。
A. 5B. 5C. 5和5D. 09. 下列各数中,是整数的是()。
A. 1/2B. 3/4C. 5D. 610. 若一个数的立方是8,则这个数是()。
A. 2B. 2C. 2和2D. 0二、填空题(每题3分,共30分)11. 一个数的立方根是2,则这个数是__________。
12. 下列各数中,是无理数的是__________。
13. 下列等式中,正确的是__________。
14. 若一个正方形的边长是a,则它的面积是__________。
15. 下列各数中,是负数的是__________。
16. 若一个数的平方是16,则这个数是__________。
17. 下列各数中,是正整数的是__________。
18. 若一个数的绝对值是7,则这个数是__________。
19. 下列各数中,是偶数的是__________。
20. 若一个数的立方是27,则这个数是__________。
三、解答题(每题10分,共50分)21. 已知一个正方形的边长是a,求它的面积。
22. 已知一个数的平方是9,求这个数。
(完整版)七年级数学下册期末测试题及答案(共五套)
李庄七年级数学下册期末测试题及答案姓名: 学号 班级 一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A 。
16=±4B 。
±16=4 C.327-=-3 D 。
2(4)-=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B ) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50°5.解为12x y =⎧⎨=⎩的方程组是( )A 。
135x y x y -=⎧⎨+=⎩ B.135x y x y -=-⎧⎨+=-⎩ C 。
331x y x y -=⎧⎨-=⎩ D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB,则∠BPC 的大小是( )A .1000B .1100C .1150D .1200PCBA 小刚小军小华(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .18.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( )A .5B .6C .7D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 cm 2C .15 cm 2D .17 cm 210。
七年级下学期期末考试数学试卷(带答案)
七年级下学期期末考试数学试卷(带答案)一、选择题(本题共10个小题,每小题3分,共30分)1.下列四个图形中,不是轴对称图形的为()A. B.C. D.2.在球的体积公式V=πR3中,下列说法正确的是()A.V、π、R是变量,为常量B.V、π是变量,R为常量C.V、R是变量,、π为常量D.以上都不对3.下列事件中是不可能事件的是()A.从一副扑克牌中任抽一张牌恰好是“红桃”B.在装有白球和黑球的袋中摸球,摸出了红球C.2022年大年初一早晨艳阳高照D.从两个班级中任选三名学生,至少有两名学生来自同一个班级4.新型冠状病毒(2019﹣nCoV)是目前已知的第7种可以感染人的冠状病毒,经研究发现,它的单细胞的平均直径约为0.000000203米,该数据用科学记数法表示为()A.2.03×10﹣8B.2.03×10﹣7C.2.03×10﹣6D.0.203×10﹣65.已知a,b,c分别为三角形的三边长,则化简|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a+b|的结果为()A.a+b+c B.﹣a+b﹣3c C.a+2b﹣c D.﹣a+b+3c6.等腰三角形的两边长分别为4和8,则这个等腰三角形的周长是()A.20或16 B.20C.16 D.以上答案均不对7.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,E是边AB上一点,若CD=6,则DE的长可以是()A.1 B.3 C.5 D.78.如图,下列条件中,不能判断直线a∥b的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°9.已知∠1=∠2,AC=AD,要使△ABC≌△AED,还需添加一个条件,那么在以下条件中不能选择的是()A.AB=AE B.BC=ED C.∠C=∠D D.∠B=∠E10.已知(x﹣2019)2+(x﹣2021)2=34,则(x﹣2020)2的值是()A.4 B.8 C.12 D.16二、填空题(本题共6小题,每小题3分,共18分.)11. 2-的相反数是_____.12. 如图,将三角形ABC沿直线BC平移得到三角形DEF,其中点A与点D是对应点,点B与点E是对应点,点BC=,EC=2,那么线段CF的长是_______.C与点F是对应点.如果513. 已知点P (2a −2,a +5),点Q (4,5),且直线PQ ∥y 轴,则点P 的坐标为________.14. 如图a ∥b,∠1+∠2=75°,则∠3+∠4=______________.15. 方程组{4x +3y =1,mx +(m −1)y =3的解x 和y 的值相等,则m =___.16. 已知实数x 满足{5(x +1)≥3x −112x −1≤7−32x ,若S =|x ﹣1|+|x+1|的最大值为m ,最小值为n ,则mn =_____.三、解答题(本题共9小题,共72分.解答应写出文字说明、证明过程或演算步骤)17.(6分)计算:||﹣+﹣(﹣1)2019.18.(6分)解方程组:.19.(6分)解不等式组.20.(8分)如图,在平面直角坐标系中,有三点A (1,0),B (3,0),C (4,﹣2).(1)画出三角形ABC ;(2)将三角形ABC 先向左平移4个单位长度,再向上平移3个单位长度,画出平移后的三角形DEF ,并写出D、E、F三点的坐标;(3)求三角形ABC的面积.21.(8分)某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了不完整的统计图表.身高分组频数频率152≤x<155 3 0.06155≤x<158 7 0.14158≤x<161 m0.28161≤x<164 13 n164≤x<167 9 0.18167≤x<170 3 0.06170≤x<173 1 0.02根据以上统计图表完成下列问题:(1)统计表中m=,n=;并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在什么范围内?22.(8分)实验室需要一批无盖的长方体模型,一张大纸板可以做成长方体的侧面30个,或长方体的底面25个,一个无盖的长方体由4个侧面和一个底面构成.现有26张大纸板,则用多少张做侧面,多少张做底面才可以使得刚好配套,没有剩余?23.(10分)已知,如图,∠CDG=∠B,AD⊥BC于点D,∠1=∠2,EF分别交AB、BC于点E、F,试判断EF与BC的位置关系,并说明理由.24.(10分)某业主贷款18920元购进一台机器,生产某种产品.已知产品的成本是每个5元,售价是每个8元,应付的税款和其他费用是售价的10%.若每个月能生产、销售2000个产品.(1)问每个月所获得利润为多少元?(2)问至少几个月后能赚回这台机器的贷款?25.(10分)已知数轴上三点A、O、B表示的数分别为4、0、﹣2,动点P从A点出发,以每秒3个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是.(2)另一动点R从点B出发,以每秒2个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多长时间追上点R?(3)若点M为AP的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.参考答案一、选择题1.选:C.2.选:C.3.选:B.4.选:B.5.选:D.6.选:B.7.选:D.8.选:B.9.选:B.10.选:D.二、填空题11、【答案】√5-212、【答案】313、【答案】(4,8)14、【答案】105°15、【答案】1116、【答案】16三、解答题17.【解答】解:原式=﹣1﹣2+2+1=.18.【解答】解:方程组整理得:,①+②得:﹣6y=6,解得:y=﹣1,把y=﹣1代入②得:x﹣2=1,解得:x=3,则方程组的解为.19.【解答】解:∵由①得:x≤3,由②得:x>﹣4,∴不等式组的解集为﹣4<x≤3.20.【解答】解:(1)如图所示,△ABC即为所求;(2)如图所示,△DEF即为所求;其中D(﹣3,3),E(﹣1,3),F(0,1);(3)三角形ABC的面积=×2×2=2.21.【解答】解:(1)测量的总人数是:3÷0.06=50(人),则m=50×0.28=14,n==0.26.补全频数分布直方图:故答案为14,0.26.(2)观察表格可知中位数在 161≤x<164范围内.22.【解答】解:设用x张做侧面,y张做底面才可以使得刚好配套,没有剩余,根据题意得:,解得:.答:用20张做侧面,6张做底面才可以使得刚好配套,没有剩余.23.【解答】解:EF与BC的位置关系是垂直关系.证明:∵∠CDG=∠B(已知),∴DG∥AB(同位角相等,两直线平行),∴∠1=∠DAB(两直线平行,内错角相等),又∠1=∠2(已知),∴∠2=∠DAB(等量代换),∴EF∥AD(同位角相等,两直线平行),∴∠EFB=∠ADB(两直线平行,同位角相等),又AD⊥BC(已知),∴∠ADB=90°,∴∠EFB=∠ADB=90°,∴EF与BC的位置关系是垂直(垂直的定义).24.【解答】解:(1)每个月总收入为:2000×8=16000(元),则应付的税款和其他费用为:16000×10%=1600(元),利润=16000﹣2000×5﹣1600=4400(元),答:每个月所获得利润为4400元;(2)设需要x个月后能赚回这台机器贷款,依题意,得:4400x≥18920,解得:x≥43.答:至少43个月后能赚回这台机器贷款.25.【解答】解:(1)∵A,B表示的数分别为4,﹣2,∴AB=6,∵PA=PB,∴点P表示的数是1,故答案为:1;(2)设P点运动x秒追上R点,由题意得:2x+6=3x 解得:x=6答:P点运动6秒追上R点.(3)MN的长度不变.①当P点在线段AB上时,如图示:∵M为PA的中点,N为PB的中点∴又∵MN=MP+NP∴∵AP+BP=AB,AB=6∴②当P点在线段AB的延长线上时,如图示:∵MN=MP﹣NP,AB=AP﹣BP=6∴=.。
七年级下学期期末考试数学试卷(附有答案)
a b七年级下学期期末考试数学试卷(附有答案)一 、选择题(每小题4分,共40分)1、点P (-2021,12+a )所在象限为( )A 第一象限B 第二象限C 第三象限D 第四象限2、一宾馆有二人间,三人间,四人间三种客房供游客租住,某旅行团20人,准备同时租用这三种客房共7间,如果每个房间都住满租房方案有 ( ) A 4种 B 3种 C 2种 D 1种3、点A (-3,-5)向上平移4个单位,再向左平移3个单位到点B ,则点B 的坐标为 ( ) A.(1,-8) B. (1, -2) C. (-6,-1 ) D. ( 0,-1)4、如右图,下列能判定AB ∥CD 的条件的个数为( ) (1)∠B+∠BCD=0180 (2)∠1=∠2;(3)∠3=∠4 ;(4)∠B=∠5 . A.1 B.2 C.3 D.45、如图和,生活中,将一个宽度相等的纸条按右图所示折叠一下; 如果∠1=140°,那么∠2的度数为( ) A 140° B 120° C 110° D 100°6、如果表示a ,b 两个实数的点在数轴上的位置如图测所示,那么化简│a-b │+2()a b +的结果等于( )A -2bB 2bC -2aD 2a7、已知五个命题,正确的有 ( )(1)有理数与无理数之和是无理数; ⑵有理数与无理数之积是无理数; (3)无理数与无理数之积是无理数; ⑷无理数与无理数之积是有理数;(5)所有的有理数都可以在数轴上表示,反过来,数轴上所有的点都表示有理数。
A. 1个 B. 2个 C. 3个 D.4个8、为了了解参加某运动会的2000名运动员的年龄情况,从中抽取了100名运动员的年龄,就这个问题来说,下面说法正确的是 ( )A .2000名运动员是总体B .100名运动员是所抽取的一个样本C .样本容量为100名D .抽取的100名运动员的年龄是样本第4第5题9、若x 是49的算术平方根,则x 等于 ( )A. 7B. -7C. 49D.-4910、已知点A (-1,0),点B (2,0),在y 轴上存在一点C ,使得△ABC 的面积为6,则点C 的坐标为 ( )A (0,4)B (0,2)C (0,2)或(0,-2)D (0,4)或(0,-4) 二 、填空题(每小题4分,共40分)11、点P在第二象限,P到x 轴的距离为4,P到y 轴距离为3,则点P的坐标为 12 、4的平方根是 .13、若不等式组⎩⎨⎧>>2x mx 解集为2>,则m 取值范围是 .14 、在自然数范围内,方程的解是 .15 、把“同角的余角相等,改写成如果……那么……的形式为 。
七年级数学下册期末测试题及答案(共五套)
七年级数学下册期末测试题及答案(共五套)七年级数学下册期末测试题及答案姓名。
学号。
班级:一、选择题(共10小题,每小题3分,共30分)1.若m。
-1,则下列各式中错误的是()A。
6m。
-6B。
-5m < -5C。
m+1.0D。
1-m < 22.下列各式中,正确的是()A。
16=±4B。
±16=4C。
3-27=-3D。
(-4)^2=163.已知a。
b。
0,那么下列不等式组中无解的是()A。
{x-a。
x>-b}B。
{x>a。
x<-a。
x<-b}C。
{x>a。
xb}D。
{x-a。
x<b}4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为()A。
先右转50°,后右转40°B。
先右转50°,后左转40°C。
先右转50°,后左转130°D。
先右转50°,后左转50°5.解为{x=1.y=2}的方程组是()A。
{x-y=1.x-y=-1}B。
{x-y=1.3x+y=5}C。
{x-y=3.3x+y=-5}D。
{x-2y=-3.3x+y=5}6.如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是()A。
100°B。
110°C。
115°D。
120°7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是()A。
4B。
3C。
2D。
18.在各个内角都相等的多边形中,一个外角等于一个内角的1/2,则这个多边形的边数是()A。
5B。
6C。
7D。
89.如图,△A'B'C'是由△XXX沿BC方向平移了BC长度的一半得到的,若△ABC的面积为20 cm²,则四边形A'CC'B'的面积为()A。
2024—2025学年最新人教新版七年级下学期数学期末考试试卷(含参考答案)
2024—2025学年最新人教新版七年级下学期数学期末考试试卷(问卷)考生注意:本试卷共三道大题,25道小题一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、在平面直角坐标系中,下列各点在第四象限的是()A.(﹣1,﹣2)B.(1,﹣2)C.(1,2)D.(﹣1,2)2、在同一平面内,将直尺、含30°角的三角尺和木工角尺(CD⊥DE)按如图方式摆放,若AB∥CD,则∠1的大小为()A.30°B.45°C.60°D.75°3、下列调查方式,你认为最合适全面调查的是()A.调查某地全年的游客流量B.乘坐地铁前的安检C.调查某种型号灯泡的使用寿命D.调查春节联欢晚会的收视率4、关于x,y的二元一次方程组的解满足x﹣y=4,则m的值为()A.0B.1C.2D.35、在平面直角坐标系中,点A(1,5),B(m﹣2,m+1),若直线AB与y轴垂直,则m的值为()A.0B.3C.4D.76、下列命题为假命题的是()A.垂线段最短B.同旁内角互补C.对顶角相等D.两直线平行,同位角相等7、打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元.打折后,买500件A商品和500件B商品用了9600元,比不打折少花()A.200元B.300元C.400元D.500元8、我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后面两句的意思是:如果一间客房住7人,那么有7人无房可住;如果一间客房住9人,那么就空出一间客房,若设该店有客房x间,房客y人,则列出关于x、y的二元一次方程组正确的是()A.B.C.D.9、的整数部分是a,的整数部分是b,则a、b的大小关系是()A.a>b B.a=b C.a<b D.无法确定10、在平面直角坐标系中,已知点A(m﹣4,m+2),B(m﹣4,m),C(m,0),D(2,0),三角形ABD的面积是三角形ABC面积的2倍,则m的值为()A.﹣14B.2C.﹣14或2D.14或﹣2二、填空题(每小题3分,满分18分)11、已知是方程kx+2y=﹣8的解,则k=.12、由方程组,可用含x的代数式来表示y为.13、如图,将长方形纸片ABCD沿对角线BD折叠,点C的对应点为E,若∠CBD=34°,则∠ADE的大小为度.14、如图,七个相同的小长方形组成一个大长方形ABCD,若CD=14,则长方形ABCD的面积为.15、如图,直径为1个单位长度的圆,从数轴上的A点处沿数轴向右滚动一周后到达B点,若点A表示的数为﹣1,则点B对应的数是.16、已知关于x,y的方程组的解为非负数,m﹣2n=3,z=2m+n,且n<0,则z的取值范围是.2024—2025学年最新人教新版七年级下学期数学期末考试试卷(答题卡)考生注意:本试卷共三道大题,25道小题姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、解不等式组:.18、已知正实数a的两个平方根分别是x和x+y.(1)若x=2,求y的值;(2)若x﹣y=3,求a的值.19、在平面直角坐标系中,已知点M(m﹣1,2m+3).(1)若AM∥x轴且A(0,1),求m的值.(2)若点M在第一、三象限的角平分线上,求m的值.20、端午节是我国的传统佳节,民间历来有吃“粽子”的习俗.某食品厂为了解市民对去年销量较好的肉(A)、豆沙馅(B)、花生馅(C)、蜜枣馅(D)四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民人数是人.(2)将图①②补充完整;(直接补填在图中)(3)求图②中表示“A”的圆心角的度数;(4)若居民区有100人,请估计爱吃蜜枣馅粽子的人数.21、如图,已知AC∥DE,∠D+∠BAC=180°.(1)求证:AB∥CD;(2)连接CE,恰好满足CE平分∠ACD.若AB⊥BC,∠CED=35°,求∠ACB的度数.22、已知关于x,y的方程组,满足x﹣2y为负数.(1)求出x,y的值(用含m的代数式表示);(2)求出m的取值范围;(3)当m为何正整数时,求s=2x﹣3y+m的最大值?23、一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这两种货车的情况如下表:第一次第二次25甲种货车的辆数36乙种货车的辆数3170累计运货的吨数(1)现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货物,如果按每吨付运费50元计算,货主应付运费多少元?(2)能否租用这两种货车一次恰好运走125吨货物(不超载也不少运)?若能,请说出有哪几种装运方案?若不能,请说明理由.24、在平面直角坐标系xOy中,点P坐标为(x,y),且x﹣2a=﹣1,,其中a,b为实数.(1)若a=3,则点P到y轴的距离为;(2)若实数a,b满足4a﹣b=4.①求证:点P(x,y)不可能在第三象限;②若点Q(﹣2,0),△OPQ的面积为5,求点P的坐标.25、如图1,在平面直角坐标系中,点A,B,C,D均在坐标轴上,其坐标分别是A(a,0),B(0,b),C(0,c),D(d,0),若,c<0,d>0,且∠ABO=∠DCO.(1)求三角形AOB的面积;(2)求证:3d=﹣4c;(3)如图2,若﹣3<c<0,延长CD到Q,使CQ=AB,线段AQ交y轴于点K,求的值.2024—2025学年最新人教新版七年级下学期数学期末考试试卷(参考答案)11、7 12、22 13、y=4﹣2x 14、280 15、π﹣1 16、1≤z<6三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、1<x≤4.18、(1)y=﹣4 (2)a=119、(1)﹣1(2)﹣420、(1)600;(2)略(3)108°(4)4000人21、(1)略(2)20°22、(1);(2)m<6;(3)m=5时,最大值为123、(1)略(2)略24、(1)5(2)①证明略②(﹣1,5)或(9,﹣5).25、(1)6(2)略(3)1.。
七年级数学下学期期末测试卷(含答案)
七年级数学下学期期末测试卷题号一二三总分得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. √ 2的相反数是( )A. 2B. 0C. √ 2D. −√ 22. 下列说法中,错误的是( )A. 4的算术平方根是2B. √ 81的平方根是±3C. 121的平方根是±11D. −1的平方根是±13. 估计√ 10的值( )A. 在3到4之间B. 在4到5之间C. 在5到6之间D. 在6到7之间4. 下列图形中,∠1和∠2是内错角的是( )A. B.C. D.5. 如图,一块直角三角尺的一个顶点落在直尺的一边上,若∠2=35°,则∠1的度数为( )A. 45° B. 55°C. 65°D. 75°6. 在平面直角坐标系中,将点(2,1)向下平移3个单位长度,所得点的坐标是( )A. (−1,1)B. (5,1)C. (2,4)D. (2,−2)7. 用加减法解方程组{2a+2b=3,①3a+b=4,②最简单的方法是( )A. ①×3−②×2B. ①×3+②×2C. ①+②×2D. ①−②×28. 不等式组{x−4≤2(x−1),12(x+3)>x+1中两个不等式的解集在数轴上表示正确的是( )A. B. C. D.9. 如图,把一张长方形纸片沿EF折叠后,点D,C分别落在点D′,C′的位置.若∠EFB=65°,则∠AED′等于( )A. 70°B. 65°C. 50°D. 25°10. 小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下( )A. 31元B. 30元C. 25元D. 19元二、填空题(本大题共6小题,共18.0分)11. 如图所示,△DEF是由△ABC通过平移得到的,且点B,E,C,F在同一条直线上,若BF=14,EC=8,则从△ABC到△DEF的平移距离为_________.12. 若√ x−1+(y+2)2=0,则(x+y)2021等于.13. 若m<n,则3m−23n−2.14. 如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于_____________.15. 3−√ 11的相反数是,绝对值是.16. 在平面直角坐标系中,某机器人从原点O出发,按向右,向上,向右,向下的方向每次移动1个单位长度,行走路线如图所示,第1次移动到A1(1,0)第2次移动到A2(1,1),第3次移动到A3(2,1),第4次移动到A4(2,0)…则第2022次移动至点A2022的坐标是.三、解答题(本大题共7小题,共52.0分。
七年级下学期期末考试数学试卷(附答案解析)
七年级下学期期末考试数学试卷(附答案解析)一、选择题(本大题10小题,每小题3分共30分)1.数4的算术平方根是()A.2 B.﹣2 C.±2 D.2.下列图形中,∠1与∠2互为邻补角的是()A.B.C.D.3.下列各数中是无理数的是()A.B.C.D.3.144.在下列调查中,适宜采用全面调查的是()A.了解某省中学生的视力情况B.了解某班学生的身高情况C.检测一批电灯泡的使用寿命D.调查一批汽车的抗撞击能力5.在乡村振兴活动中,某村通过铺设水管将河水引到村庄C处,为节省材料,他们过点C向河岸l作垂线,垂足为点D,于是确定沿CD铺设水管,这样做的数学道理是()A.两点之间,线段最短B.过一点有且只有一条直线与已知直线垂直C.垂线段最短D.两条直线相交有且只有一个交点6.第三象限内的点P到x轴的距离是5,到y轴的距离是6,那么点P的坐标是()A.(5,6)B.(﹣5,﹣6)C.(6,5)D.(﹣6,﹣5)7.李老师设计了一个关于实数运算的程序:输入一个数,乘以后再减去,输出结果.若小刚按程序输入2,则输出的结果应为()A.2 B.C.﹣D.38.下列语句中,是真命题的是()A.如果|a|=|b|,那么a=bB.一个正数的平方大于这个正数C.内错角相等,两直线平行D.如果a>b,那么ac>bc9.若a﹣b<0,则下列不等式正确的是()A.3a>3b B.﹣2a>﹣2b C.a﹣1>b﹣1 D.3﹣a<3﹣b10.已知关于x,y的二元一次方程组,下列结论中正确的是()①当这个方程组的解x,y的值互为相反数时,a=﹣1;②当x为正数,y为非负数时,﹣<a≤;③无论a取何值,x+2y的值始终不变.A.①②B.②③C.①③D.①②③二、填空题(本大题7小题,每小题4分,共28分)11.(4分)计算:|﹣|=.12.(4分)在平面直角坐标系中,将点A(3,m﹣2)在x轴上,则m=.13.(4分)根据如表数据回答259.21的平方根是.x16 16.1 16.2 16.3x2256 259.21 262.44 265.6914.(4分)已知二元一次方程2x﹣3y﹣5=0的一组解为,则2a﹣3b+3=.15.(4分)某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明想得分不少于90分,他至少要答对题.16.(4分)如图,将长方形ABCD沿对角线AC折叠,使点B落在点E处,AE交CD于点F.若∠EFC=70°,则∠ACF=°.17.(4分)为组织研学活动,王老师把班级里50名学生计划分成若干小组,若每组只能是4人或5人,则有种分组方案.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)在等式y=kx+b中,当x=3时,y=3;当x=﹣1时,y=1.求k,b的值.19.(6分)解不等式组,并将不等式组的解集在数轴上表示出来.20.(6分)在平面直角坐标系中,点P(﹣5,2)和点Q(m+1,3m﹣1),当线段PQ与x轴平行时,求线段PQ的长.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)某校为了解学生的体育锻炼情况,围绕“你最喜欢的一项体育活动”进行随机抽样调查,从而得到一组数据,如图是根据这组数据绘制的两个统计图.请结合统计图,解答下列问题:(1)该校对名学生进行了抽样调查:在扇形统计图中,“羽毛球”所对应的圆心角的度数为度;(2)补全条形统计图;(3)若该校共有2400名学生,请你估计全校学生中最喜欢跳绳活动的人数约为多少人.22.(8分)如图,DE⊥AC,FG⊥AC,∠1=∠2,∠B=∠3+50°,∠CAB=60°.(1)求证:BC∥AG;(2)求∠C的度数.23.(8分)为鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分技第二阶梯电价收费,如图是涛涛家2021年4月和5月所交电费的收据(度数均取整数).(1)该市规定的第一阶梯电费和第二阶梯电费单价分别为多少?(2)涛涛家6月份家庭支出计划中电费不超过120元,她家最大用电量为多少度?五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)小明同学在数学活动中,将一副三角板按如图1所示的方式放置,其中点B在线段EC上,点D在线段AC上,AB与DE相交于点F,∠C=90°,∠A=30°,∠E=45°.(1)求∠BFD的度数;(2)如图2,当小明将三角板DCE绕点C转动到ED⊥AB时,求∠BCE的度数;(3)小明思考:在转动三角板DCE的过程中,当0°<∠BCE<180°,且点E在直线BC的上方时,是否存在DE与三角板ABC的一条边互相平行?若存在,请你帮小明直接写出∠BCE 所有可能的值;若不存在,请说明理由.25.(10分)如图,在平面直角坐标系中,正方形ABCO的边长为1,边AO,CO分别在坐标轴的正半轴上,连接OB,以点O为圆心,对角线OB为半径画弧交x轴的正半轴于点D.(1)填空:线段OB的长为,点D的坐标为;(2)将线段AD向左平移到A′D′位置,当OA'=AD′时,求点D′的坐标;(3)在(2)的条件下,求点D′到直线OB的距离.参考答案与解析一、选择题1.【解答】解:∵2的平方为4,∴4的算术平方根为2.故选:A.2.【解答】解:A.两个角不存在公共边,故不是邻补角,故A不符合题意;B、两个角不存在公共边,故不是邻补角,故B不符合题意;C、两个角不存在公共边,故不是邻补角,故C不符合题意;D、两个角是邻补角,故D符合题意.故选:D.3.【解答】解:A.是分数,属于有理数,故本选项不合题意;B.是无理数,故本选项符合题意;C.,是整数,属于有理数,故本选项不合题意;D.3.14是有限小数,属于有理数,故本选项不合题意;故选:B.4.【解答】解:A.了解某省中学生的视力情况,适合抽样调查,不符合题意;B.了解某班学生的身高情况,适合采用全面调查,符合题意;C.检测一批节能灯的使用寿命,具有破坏性,适合抽样调查,不符合题意;D.调查一批汽车的抗撞击能力,具有破坏性,适合抽样调查,不符合题意;故选:B.5.【解答】解:因为CD⊥l于点D,根据垂线段最短,所以CD为C点到河岸l的最短路径.故选:C.6.【解答】解:∵第三象限的点P到x轴的距离是5,到y轴的距离是6,∴点P的横坐标是﹣6,纵坐标是﹣5,∴点P的坐标为(﹣6,﹣5).故选:D.7.【解答】解:2﹣=.故选:B.8.【解答】解:A、如果|a|=|b|,那么a=b或a=﹣b,原命题是假命题;B、一个正数的平方不一定大于这个正数,如0.1,原命题是假命题;C、内错角相等,两直线平行,是真命题;D、如果a>b,c<0时那么ac<bc,原命题是假命题;故选:C.9.【解答】解:由a﹣b<0可得a<b,A.∵a<b,∴3a<3b,故本选项不合题意;B.∵a<b,∴﹣2a>﹣2b,故本选项符合题意;C.∵a<b,∴a﹣1<b﹣1,故本选项不合题意;D.∵a<b,∴﹣a>﹣b,∴3﹣a>3﹣b,故本选项不合题意;故选:B.10.【解答】解:解方程组得:,①∵x、y互为相反数,∴x+y=0,∴+=0,解得:a=﹣1,故①正确;②∵x为正数,y为非负数,∴,解得:﹣<a≤,故②正确;③∵x=,y=,∴x+2y=+2×==,即x+2y的值始终不变,故③正确;故选:D.二、填空题11.【解答】解:|﹣|=.故答案为:.12.【解答】解:∵点A(3,m﹣2)在x轴上,∴m﹣2=0,解得:m=2.故答案为:2.13.【解答】解:由表中数据可得:259.21的平方根是:±16.1.故答案为:±16.1.14.【解答】解:∵二元一次方程2x﹣3y﹣5=0的一组解为,∴2a﹣3b﹣5=0,∴2a﹣3b=5,∴2a﹣3b+3=5+3=8,故答案为:815.【解答】解:设应答对x道,则:10x﹣5(20﹣x)>90,解得:x>12,∵x取整数,∴x最小为:13,答:他至少要答对13道题.故答案为:13.16.【解答】解:∵将长方形ABCD沿对角线AC折叠,使点B落在点E处,AE交CD于点F,∴∠E=∠B=90°,∠CAB=∠CAE,∵AB∥CD,∠EFC=70°,∴∠BAE=∠EFC=70°,∠CAB=∠ACF,∴∠CAB=∠BAE=35°,∴∠ACF=∠CAB=35°.故答案为:35.17.【解答】解:设4人小组有x组,5人小组有y组,由题意可得:4x+5y=50,∵x,y为自然数,∴,,,∴有3种分组方案,故答案为:3.三、解答题(一)18.【解答】解:根据题意,得,①﹣②,得4k=2,解得:k=,把k=代入②,得﹣+b=1,解得:b=.19.【解答】解:由2x≥x﹣1,得:x≥﹣1,由x+2>4x﹣1,得:x<1,则不等式组的解集为﹣1≤x<1,将不等式组的解集表示在数轴上如下:20.【解答】解:当线段PQ与x轴平行时,3m﹣1=2,解得:m=1,∴Q点坐标为(2,2),∴PQ=2﹣(﹣5)=2+5=7,即线段PQ的长为7.四、解答题(二)21.【解答】解:(1)因为抽样中喜欢足球的学生有12名,占30%,所以共抽样调查的学生数为:12÷30%=40(名).喜欢羽毛球的2名,占抽样的:2÷40=5%.其对应的圆心角为:360°×5%=18°.故答案为:40,18.(2)∵喜欢篮球的占40%,所以喜欢篮球的学生共有:40×40%=16(名).补全的条形图:(3)∵样本中有5名喜欢跳绳,占抽样的5÷40=12.5%,所以该校喜欢跳绳的学生有2400×12.5%=300(名).答:全校学生中最喜欢跳绳活动的人数约为300名.22.【解答】(1)证明:∵DE⊥AC,FG⊥AC,∴DE∥FG,∴∠2=∠AGF,∵∠1=∠2,∴∠1=∠AGF,∴BC∥AG;(2)解:由(1)得,BC∥AG,∴∠B+∠BAC=180°,即∠B+∠3+∠CAB=180°,∵∠B=∠3+50°,∠CAB=60°,∴∠B+(∠B﹣50°)+60°=180°,∴∠B=85°,∴∠C=180°﹣∠B﹣∠CAB=180°﹣85°﹣60°=35°.23.【解答】解:(1)设该市规定的第一阶梯电费单价为x元,第二阶梯电费单价为y元,依题意,得:,解得:.答:该市规定的第一阶梯电费单价为0.5元,第二阶梯电费单价为0.6元.(2)设涛涛家6月份的用电量为m度,依题意,得:200×0.5+0.6(m﹣200)≤120,解得:m≤233,∵m为正整数,∴m的最大值为233.答:涛涛家6月份最大用电量为233度.五、解答题(三)24.【解答】解:(1)如图1中,∵∠A=30°,∠CDE=45°,∴∠ADF=180°﹣45°=135°,∴∠AFD=180°﹣∠A﹣∠ADF=180°﹣30°﹣135°=15°,∴∠BFD=180°﹣∠AFD=180°﹣15°=165°.(2)如图2中,设AB交CE于J.∵DE⊥AB,∴∠EFJ=90°,∵∠E=45°,∴∠EJF=90°﹣45°=45°,∴∠BJC=∠EJF=45°,∵∠B=60°,∴∠ECB=180°﹣∠B﹣∠BJC=180°﹣60°﹣45°=75°.(3)如图3﹣1中,当DE∥BC时,∠BCE=∠E=45°.如图3﹣2中,当DE∥AC时,∠ACE=∠E=45°,∴∠BCE=∠ACB+∠ACE=90°+45°=135°.如图3﹣3中,当DE∥AB时,延长BC交DE于J.∴∠CJD=∠ABC=60°,∵∠CJD=∠E+∠ECJ,∠E=45°,∴∠ECJ=15°,∴∠BCE=180°﹣∠ECJ=180°﹣15°=165°,综上所述,满足条件的∠BCE的值为45°或135°或165°.25.【解答】解:(1)∵四边形OABC是正方形,且边长为1,∴OA=AB=1,根据勾股定理得,OB=,∴OD=,∴D(,0),故答案为:,(,0);(2)∵线段AD向左平移到A′D′,∴AD=A′D′,∵OA'=AD′,∴OD′=OA'+A′D′=(OA'+A′D′+AD′+AD)=OD=,∴D(,0),(3)设点D′到直线OB的距离为h,则S△OBD′=OB•h=OD′•BA,即h=×1,∴点D′到直线OB的距离为h=.。
七年级数学(下)期末考试含答案解析
七年级数学(下)期末考试(考试时间:120分钟试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:人教版七年级下全册。
第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.36的平方根是()A.﹣6B.36C.±D.±62.已知a<b,则下列四个不等式中,不正确的是()A.a﹣2<b﹣2B.﹣2a<﹣2b C.2a<2b D.a+2<b+23.若是关于x和y的二元一次方程ax+y=1的解,则a的值等于()A.3B.1C.﹣1D.﹣34.如图,直线l与直线a,b相交,且a∥b,∠1=110°,则∠2的度数是()A.20°B.70°C.90°D.110°5.下列调査中,适合用全面调查方式的是()A.了解某校七年级(1)班学生期中数学考试的成绩B.了解一批签字笔的使用寿命C.了解市场上酸奶的质量情况D.了解某条河流的水质情况6.如图,小手盖住的点的坐标可能为()A.(﹣4,﹣5)B.(﹣4,5)C.(4,5)D.(4,﹣5)7.方程4x+3y=16的所有非负整数解为()A.1个B.2个C.3个D.无数个8.已知方程组,则x+y的值为()A.﹣1B.0C.2D.39.已知点A(a,3),点B是x轴上一动点,则点A、B之间的距离不可能是()A.2B.3C.4D.510.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过120分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20﹣x.根据题意得()A.10x﹣5(20﹣x)≥120 B.10x﹣5(20﹣x)≤120C.10x﹣5(20﹣x)>120 D.10x﹣5(20﹣x)<12011.若不等式组⎩⎨⎧-+-142322xxax>>,的解集为32<<x-,则a的取值范围是( )A.21=a B.2-=a C.2-≥a D.1-≤a12.若不等式组⎩⎨⎧<-<-mxxx632无解,则m的取值范围是()A.m>2B.m<2C.m≥2 D.m≤2第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分)13.389-+= .A Ox-1-5-4-3-2-115432114.已知(m +2)x|m |﹣1+3>0是关于x 的一元一次不等式,则m 的值为 .15.如图,点D 在射线BE 上,AD BC ∥.若145ADE ∠=︒,则DBC ∠的度数为 ; 16.已知一组数据有50个,其中最大值是142,最小值是98.若取组距为5,则可分为 组. 17.若方程组⎩⎨⎧-=++=+ay x ay x 13313的解满足x+y=0,则a 的值是 .三、解答题(本大题共7小题,共49分.解答应写出文字说明、证明过程或演算步骤) 18.计算(5分)|﹣|+3﹣2+19.解方程组(5分)20.(6分)解下列不等式组,并把解集在数轴上表示出来。
七年级下学期期末考试数学试卷(附答案)
七年级下学期期末考试数学试卷(附答案)一、选择题(本大题共10小题,每小题4分,满分40分,)1、下列选项中能由如图平移得到的是()A.B.C.D.2、计算m6÷m2的结果是()A.m3B.m4C.m8D.m123、如图,工人师傅在工程施工中,需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC=150°,∠BCD=30°,则()A.AB∥BC B.BC∥CD C.AB∥DC D.AB与CD相交4、若一个三角形的两边长分别为3cm、6cm,则它的第三边的长可能是()A.2cm B.3cm C.6cm D.9cm5、计算:(2x﹣y)2=()A.4x2﹣4xy+y2B.4x2﹣2xy+y2C.4x2﹣y2D.4x2+y26、若a<b,则下列结论中,不正确的是()A.a+2<b+2 B.a﹣2>b﹣2 C.2a<2b D.﹣2a>﹣2b7、学校计划用200元钱购买A、B两种奖品(两种都要买),A种每个15元,B种每个25元,在钱全部用完的情况下,有多少种购买方案()A.2种B.3种C.4种D.5种8、图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空余的部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b29、将一个长为2a,宽为2b的长方形纸片(a>b),用剪刀沿图1中的虛线剪开,分成四块形状和大小都一样的小长方形纸片,然后按图2的方式拼成一个正方形,则中间小正方形的面积为( )A. a2+b2B. a2-b2C. (a+b)2D. (a-b)210、如图,已知AD∥EF∥BC,BD∥GF,且BD平分∠ADC,则图中与∠1相等的角(∠1除外)共有( )A. 4个B. 5个 C. 6个 D. 7个二、填空题(本大题共4小题,每小题5分,满分20分)11.8的立方根是________.12.因式分解:x3y2-x=________13.若分式方程mx−1+31−x=2的解为正数,则m的取值范围是________14.已知:AB∥CD,点C在点D的右侧,BE平分∠ABC,DE平分∠ADC,BE,DE所在直线交于点E,∠ADC=70°。
2023-2024学年海南省海口市七年级(下)期末数学试卷及答案解析
2023-2024学年海南省海口市七年级(下)期末数学试卷一、选择题(每小题3分,共36分)在下列各题的四个备选答案中,只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑.1.(3分)若5﹣2(x﹣1)=1,则x等于()A.﹣4B.4C.﹣3D.32.(3分)若a>﹣b,则下列不等式一定成立的是()A.a+b<0B.1﹣a<1+b C.D.﹣2+b<﹣2﹣a3.(3分)当代数式4x+2的值小于代数式x﹣4的值时,x的取值范围是()A.x<﹣2B.x>﹣2C.x>2D.x<24.(3分)已知y=kx+3,当x=﹣4时,y=1,则k的值为()A.﹣1B.1C.﹣D.5.(3分)若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A.1B.2C.3D.86.(3分)下列四个图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.7.(3分)一副三角板按图所示方式叠放,若AE∥BC,则∠α等于()A.75°B.95°C.105°D.115°8.(3分)如图,在△ABC中,CD⊥AB于点D、E是CD上一点,若△BDE≌△CDA,AB=14,AC=10,则△BDE的周长为()A.22B.23C.24D.269.(3分)如图,点F在正五边形ABCDE的内部,△ABF为等边三角形,则∠AFC等于()A .108°B .120°C .126°D .132°10.(3分)如图,将正方形ABCD 沿BE 对折,使点A 落在对角线BD 上的A '处,连接A ′C ,则∠BA 'C 等于()A .45°B .57.5°C .60°D .67.5°11.(3分)如图,将△ABC 绕点A 逆时针旋转得到△ADE ,点B 的对应点D 恰好落在边BC 上,点C 的对应点为点E ,连接EC .下列结论一定正确的是()A .AB =BD B .∠B =∠ECAC .AC =DED .EC ⊥BC12.(3分)《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的,那么乙也共有钱50.问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为x ,y ,则可列方程组为()A .B .C .D .二、填空题(每小题3分,共12分)13.(3分)由,得到用x表示y的式子为y=.14.(3分)已知x、y满足方程组,则x﹣y的值为.15.(3分)如图,△ABC是等边三角形,点D、E、F分别在AB、BC、AC上,若∠1=∠2,∠DFE=80°,则∠EDF=度.16.(3分)利用两块长方体木块测量一张桌子的高度.首先按图1方式放置,再交换两木块的位置,按图2方式放置.测量的数据如图所示,则桌子的高度是cm.三、解答题(共72分)17.(18分)(1)解方程:;(2)解方程组:;(3)求不等式组的所有整数解.18.(9分)若关于x、y的二元一次方程组的解满足4x+y=15,求k的值.19.(10分)小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元”;爸爸:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%”;小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?”请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).20.(9分)如图,在△ABC中,∠B=45°,点D、E是BC边上两点,∠BAD=∠BDA,∠EAC=∠C,AE⊥AB于点A.求∠DAE、∠DAC和∠BAC的度数.21.(12分)在如图的正方形网格中,每个小正方形的边长都是单位1,△ABC和△A1B1C1的顶点均在格点上,且△ABC≌△A1B1C1.(1)画出△ABC关于直线x对称的△A2B2C2;(2)画出△A3B3C3,使△A3B3C3和△ABC关于点O成中心对称;(3)△A2B2C2与△A3B3C3是否对称?若对称,请在图中画出对称轴或对称中心;(4)写出一种由△ABC经过轴对称、平移和旋转变换得到△A1B1C1的过程.22.(14分)在△ABC中,AB>AC,AD平分∠BAC,点P是直线BC上的一点,PE⊥AD于点E,交直线AB于点F,交直线AC于点G.设∠ABC=x,∠ACB=y.(1)如图1,当点P在线段BC的延长线上时,①若∠ABC=38°,∠ACB=82°,求∠PFA、∠BPF和∠AGP的度数;②求∠BPF和∠AGP的度数(用含有x、y的代数式表示);(2)如图2,如图3,当点P分别在线段DC和BD上时,判断(1)②中的结论是否成立,若不成立请写出正确的结论.2023-2024学年海南省海口市七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)在下列各题的四个备选答案中,只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑.1.【分析】根据解一元一次方程的步骤解答即可.【解答】解:5﹣2(x﹣1)=1,去括号得:5﹣2x+2=1,移项得:﹣2x=1﹣5﹣2,合并同类项得:﹣2x=﹣6,系数化为1得:x=3.故选:D.【点评】本题主要考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解答本题的关键.2.【分析】根据不等式的性质结合特值法逐项判断即可.【解答】解:由a>﹣b得:A.不妨设a=2,b=﹣1,则a+b>0,故本选项不合题意;B.﹣a<b,∴1﹣a<1+b,故本选项符合题意;C.,故本选项不合题意;D.b>﹣a,∴﹣2+b>﹣2﹣a,故本选项不合题意;故选:B.【点评】本题考查了不等式的性质,熟记不等式的基本性质是解答本题的关键.3.【分析】根据题意列出不等式解答即可.【解答】解:根据题意,得4x+2<x﹣4,移项、合并同类项,得3x<﹣6,系数化为1,得x<﹣2,故选:A.【点评】此题考查了解一元一次不等式,熟练掌握不等式的解法是解本题的关键.4.【分析】把x=﹣4,y=1代入y=kx+3中得:1=﹣4k+3,然后进行计算即可解答.【解答】解:把x=﹣4,y=1代入y=kx+3中得:1=﹣4k+3,4k=3﹣1,4k=2,k=,故选:D.【点评】本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解题的关键.5.【分析】根据三角形三边关系定理得出5﹣3<a<5+3,求出即可.【解答】解:由三角形三边关系定理得:5﹣3<a<5+3,即2<a<8,即符合的只有3,故选:C.【点评】本题考查了三角形三边关系定理,能根据定理得出5﹣3<a<5+3是解此题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.6.【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答】解:A.不是中心对称图形,是轴对称图形,故此选项不合题意;B.是中心对称图形,不是轴对称图形,故此选项不合题意;C.是中心对称图形,不是轴对称图形,故此选项不合题意;D.既是中心对称图形,也是轴对称图形,故此选项符合题意;故选:D.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.7.【分析】根据平行线的性质定理及三角形外角性质求解即可.【解答】解:∵AE∥BC,∠E=45°,∴∠EDC=∠E=45°,∵∠α=∠EDC+∠C,∠C=30°,∴∠α=75°,故选:A.【点评】此题考查了平行线的性质,熟记“两直线平行,内错角相等”是解题的关键.8.【分析】由全等三角形的性质可得DE=DA,BE=CA,即可得△BDE的周长BD+DE+BE=BD+DA+CA =BA+CA,即可求解.【解答】解:∵△BDE≌△CDA,∴DE=DA,BE=CA,∴△BDE的周长BD+DE+BE=BD+DA+CA=BA+CA,∵AB=14,AC=10,∴△BDE的周长为BA+CA=14+10=24.故选:C.【点评】本题主要考查全等三角形的性质,掌握全等三角形的性质是解题的关键.9.【分析】利用多边形内角和及正多边形性质易得∠ABC=108°,AB=BC,再由等边三角形性质可得∠AFB=∠ABF=60°,AB=BF,那么∠CBF=48°,BF=BC,再利用等边对等角及三角形内角和定理求得∠BFC的度数,最后利用角的和差即可求得答案.【解答】解:∵五边形ABCDE为正五边形,∴∠ABC=(5﹣2)×180°÷5=108°,AB=BC,∵△ABF为等边三角形,∴∠AFB=∠ABF=60°,AB=BF,∴∠CBF=∠ABC﹣∠ABF=108°﹣60°=48°,BF=BC,∴∠BFC=∠BCF=(180°﹣48°)÷2=66°,∴∠AFC=∠AFB+∠BFC=60°+66°=126°,故选:C.【点评】本题主要考查多边形内角和及正多边形的性质,由题意求得BF=BC,从而求得∠BFC的度数是解题的关键.10.【分析】由正方形的性质和折叠的性质可得AB=BC=BA',∠DBC=45°,即可求解.【解答】解:∵四边形ABCD是正方形,∴AB=BC,∠DBC=45°,∵将正方形ABCD沿BE对折,使点A落在对角线BD上的A'处,∴AB=A'B,∴A'B=BC,∴∠BA'C=∠BCA'=67.5°,故选:D.【点评】本题考查了正方形的性质,折叠的性质,等腰三角形的性质,证明A'B=BC是解题的关键.11.【分析】根据旋转性质逐项分析判断即可.【解答】解:A、若AB=BD,则△ABD为等边三角形,旋转角必须为60°,没有这个条件,故原说法错误,不符合题意;B、根据旋转性质,∠BAD=∠CAE,AB=AD,AC=AE,故∠B=∠ECA正确,符合题意;C、若AC=DE,则DE=AE,就有AC=BC,而题目没有这个条件,故原说法错误,不符合题意;D、若EC⊥BC,则∠ACE+∠ACB=90°,继而∠B+∠ACB=90°,而题目中没有说△ABC是直角三角形,故原说法错误,不符合题意.故选:B.【点评】本题考查了旋转的性质,掌握旋转的性质是本题的关键.12.【分析】根据如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的,那么乙也共有钱50,可以列出相应的方程组.【解答】解:由题意可得,,故选:D.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,找出等量关系,列出相应的方程组.二、填空题(每小题3分,共12分)13.【分析】先移项,把y的系数化为1,即可求解.【解答】解:,﹣=3﹣x,y=﹣6+2x,故答案为:﹣6+2x.【点评】本题考查了二元一次方程中的化简移项,关键在于移项时的变号问题.14.【分析】一般解法是求得方程组的解,把x,y的值代入到代数式求值,但观察方程组未知数的系数特点,把两方程分别看作整体,直接相减,即可求得x﹣y的值.【解答】解:在方程组中,①﹣②得:x﹣y=1.故答案为:1.【点评】此题考查解二元一次方程组,注意此题的简便方法.15.【分析】由等边三角形的性质得出∠B=60°,再根据三角形外角的性质得出∠DEF+∠2=∠B+∠1,结合已知∠1=∠2,得出∠DEF=∠B=60°,最后根据三角形内角和定理即可求出∠EDF的度数.【解答】解:∵△ABC是等边三角形,∴∠B=60°,∵∠DEC是△DBE的外角,∴∠DEC=∠B+∠1,即∠DEF+∠2=∠B+∠1,∵∠1=∠2,∴∠DEF=∠B=60°,∵∠DFE=80°,∴∠EDF=180°﹣∠DEF﹣∠DFE=180°﹣60°﹣80°=40°,故答案为:40.【点评】本题考查了等边三角形的性质,三角形外角的性质,三角形内角和定理,熟练掌握这些知识点是解题的关键.16.【分析】设桌子的高度是x cm,长方体木块截面的长比宽多y cm,观察图形,根据各边之间的关系,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设桌子的高度是x cm,长方体木块截面的长比宽多y cm,依题意得:,解得:,∴桌子的高度是75cm.故答案为:75.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.三、解答题(共72分)17.【分析】(1)按照解一次方程的步骤解答即可;(2)利用加减消元法解方程组即可;(3)分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,即可确定出整数解.【解答】解:(1),4(2x+3)﹣3(4x﹣3)=24,8x+12﹣12x+9=24,﹣4x=3,x=﹣;(2),整理得,②﹣①得:4y=8,解得y=8,把y=8代入①得:2x﹣8=3,解得x=,∴;(3),解不等式①,得x<2.解不等式②,得x>﹣4.∴该不等式组的解集是:﹣4<x<2.∴所有整数解为:﹣3,﹣2,﹣1,0,1.【点评】本题考查了一元一次不等式的整数解、解一元一次方程、二元一次方程组的解,熟练掌握各自的解法是解本题的关键.18.【分析】②+①×12得出5x+2y=0,求出关于x、y的方程组,再代入求出k即可.【解答】解:,②+①×12得,5x+2y=0,∴,解得,代入①得,20﹣25=k,∴k=﹣5.【点评】本题考查了解二元一次方程组和二元一次方程组的解,能求出x、y的值是解此题的关键.19.【分析】设上月萝卜的单价是x元/斤,排骨的单价y元/斤,根据小明的爸爸和妈妈的对话找到等量关系列出方程组求解即可.【解答】解:设上月萝卜的单价是x元/斤,排骨的单价y元/斤,根据题意得:.解得:.这天萝卜的单价是(1+50%)x=(1+50%)×2=3(元/斤),这天排骨的单价是(1+20%)y=(1+20%)×15=18(元/斤),答:这天萝卜的单价是3元/斤,排骨的单价是18元/斤.【点评】本题考查了二元一次方程组的应用,解题的关键是根据题目找到等量关系并列出方程组.20.【分析】利用三角形的内角和定理先求出∠AEB,再求出∠C,再利用角的和差关系、三角形的外角与内角和的关系求出∠DAE、∠DAC和∠BAC的度数.【解答】解:∵AE⊥AB,∴∠BAE=90°.∵∠B=45°,∴∠AEB=45°.∵∠EAC=∠C,∠AEB=∠EAC+∠C,∴∠EAC=∠C=22.5°.∴∠BAC=∠BAE+∠EAC=90°+22.5°=112.5°.∵∠BAD=∠BDA,∠B=45°,∴∠BAD=∠BDA=67.5°.∴∠DAC=∠BAC﹣∠BAD=112.5°﹣67.5°=45°,∠DAE=∠BAE﹣∠BAD=90°﹣67.5°=22.5°.【点评】本题主要考查了三角形的内角和,掌握三角形的内角和定理及推论、角的和差关系等知识点是解决本题的关键.21.【分析】(1)分别作出三个顶点关于直线x的对称点,再首尾顺次连接即可;(2)分别作出三个顶点关于原点O的对称点,再首尾顺次连接即可;(3)由图形可得其对称轴;(4)结合图形,对照平移变换、轴对称变换和旋转变换的概念求解即可.【解答】解:(1)如图所示:(2)如图所示:(3)△A2B2C2与△A3B3C3是轴对称,对称轴如图所示:(4)将△ABC以点B为旋转中心,逆时针旋转90°后,再向右平移6个单位得到△△A1B1C1.【点评】本题主要考查作图—平移变换、轴对称变换和旋转变换,解题的关键是掌握平移变换、轴对称变换和旋转变换的定义和性质.22.【分析】(1)①先求出∠BAC=60°,根据AD平分∠BAC得∠BAD=30°,再根据PF⊥AD,得∠AEF=90°,则∠PFA=60°,进而得∠BFP=120°,由此可得∠BPF的度数;然后根据∠BAC=60°,∠PFA=60°可得∠AGF=60°,由此可得∠AGP的度数;②先求出∠BAC=180°﹣x﹣y,根据AD平分∠BAC得∠BAD=∠CAD=90°﹣x﹣y,再根据PF⊥AD得∠AEF=90°,则∠PFA=x+y,证明∠PFA=∠ABC+∠BPF,由此可得∠BPF的度数,再证明∠AGP=∠PFA+∠BAC,由此可得∠AGP的度数;(2)在图2中,∠BPF=y﹣x,∠AGP=y+x,同①得∠BAD=∠CAD=∠BAC=90°﹣x﹣y,∠PFA=x+y,∠PFA=∠ABC+∠BPF,由此可得∠BPF的度数,再根据PE⊥AD得∠AEG=90°,由此可得∠AGP的度数;在图3中,∠BPF=y﹣x,∠AGP=y+x,同①得∠BAD=∠CAD=∠BAC=90°﹣x﹣y,∠PFA=x+y,∠PFA=∠ABC+∠BPF,由此可得∠BPF的度数,再根据PE⊥AD可得∠AEG=90°,由此可得∠AGP的度数.【解答】解:(1)①∵∠ABC=38°,∠ACB=82°,∴∠BAC=180°﹣(∠ABC+∠ACB)=60°,∵AD平分∠BAC,∴∠BAD=∠BAC=30°,∵PF⊥AD,∴∠AEF=90°,∴∠PFA=180°﹣(∠AEF+∠BAD)=180°﹣(90°+30°)=60°,∴∠BFP=180°﹣∠PFA=120°,∴∠BPF=180°﹣(∠BFP+∠ABC)=180°﹣(120°+38°)=22°,∵∠BAC=60°,∠PFA=60°,∴∠AGF=180°﹣(∠BAC+∠PFA)=60°,∴∠AGP=180°﹣∠AGF=120°,∴∠PFA=60°;∠BPF=22°;∠AGP=120°.②∵∠ABC=x,∠ACB=y,∴∠BAC=180°﹣(∠ABC+∠ACB)=180°﹣x﹣y,∵AD平分∠BAC,∴∠BAD=∠CAD=∠BAC=90°﹣x﹣y,∵PF⊥AD,∴∠AEF=90°,∴∠AFE=90°﹣∠BAD=90°﹣(90°﹣x﹣y)=x+y,∵∠AFE+∠BFP=180°,∠BFP+∠ABC+∠BPF=180°,∴∠AFE=∠ABC+∠BPF即x+y=x+∠BPF,∴∠BPF=y﹣x,∵∠ACB=y,∴∠PCG=180°﹣∠ACB=180°﹣y,∴∠PGC=180°﹣(∠PCG+∠BPF)=180°﹣(180°﹣y+y﹣x)=y+x∴∠AGP=180°﹣∠PGC=180°﹣y﹣x,∴∠BPF=y﹣x;∠AGP=180°﹣y﹣x,(2)在图2中,(1)②中的结论不成立,∠BPF=y﹣x,∠AGP=y+x,理由如下:同①得:∠BAD=∠CAD=∠BAC=90°﹣x﹣y,∠PFA=x+y,∠PFA=∠ABC+∠BPF,∴x+y=x+∠BPF,∴∠BPF=y﹣x,∵PE⊥AD,∴∠AEG=90°,∴∠AGP=180°﹣(∠AEG+∠CAD)=180°﹣(90°+90°﹣x+y)=y+x;在图3中,(1)②中的结论不成立,∠BPF=y﹣x,∠AGP=y+x,理由如下:同①得:∠BAD=∠CAD=∠BAC=90°﹣x﹣y,∠PFA=x+y,∠PFA=∠ABC+∠BPF,∴x+y=x+∠BPF,∴∠BPF=y﹣x,∵PE⊥AD,∴∠AEG=90°,∴∠AGP=180°﹣(∠AEG+∠CAD)=180°﹣(90°+90°﹣x﹣y)=y+x.【点评】此题主要考查了三角形的内角和定理,角平分线的定义,角的计算,准确识图,熟练掌握三角形的内角和定理,角平分线的定义,角的计算是解决问题的关键。
2024年全新七年级数学下册期末试卷及答案(仁爱版)
2024年全新七年级数学下册期末试卷及答案(仁爱版)一、选择题(每题1分,共5分)1. 若一个数的立方根是3,则这个数是()A. 9B. 27C. 81D. 2432. 下列哪个数是负数?()A. 2B. 0C. 1/2D. 23. 若一个等腰三角形的底边长为8cm,腰长为5cm,则这个三角形的周长是()A. 16cmB. 18cmC. 20cmD. 22cm4. 若一个圆的半径是5cm,则这个圆的面积是()A. 25πcm²B. 50πcm²C. 100πcm²D. 200πcm²5. 若一个长方体的长、宽、高分别为4cm、3cm、2cm,则这个长方体的体积是()A. 24cm³B. 36cm³C. 48cm³D. 64cm³二、判断题(每题1分,共5分)1. 任何数的平方都是正数。
()2. 若两个数的和为正数,则这两个数中必有一个是正数。
()3. 一个等腰三角形的底边长等于腰长。
()4. 一个圆的直径等于半径的两倍。
()5. 一个长方体的体积等于长、宽、高的乘积。
()三、填空题(每题1分,共5分)1. 一个数的立方根是2,则这个数是______。
2. 若一个数的平方根是5,则这个数是______。
3. 若一个等腰三角形的底边长为10cm,腰长为6cm,则这个三角形的周长是______cm。
4. 若一个圆的半径是6cm,则这个圆的面积是______cm²。
5. 若一个长方体的长、宽、高分别为6cm、4cm、3cm,则这个长方体的体积是______cm³。
四、简答题(每题2分,共10分)1. 简述有理数的加法法则。
2. 简述等腰三角形的性质。
3. 简述圆的面积公式。
4. 简述长方体的体积公式。
5. 简述因式分解的概念。
五、应用题(每题2分,共10分)1. 若一个数的立方根是3,求这个数的平方根。
2. 若一个等腰三角形的底边长为8cm,腰长为5cm,求这个三角形的面积。
七年级下学期期末考试数学试卷(带答案)
七年级下学期期末考试数学试卷(带答案)一、选择题(本大题共8小题)1.下列计算正确的是()A.a2+a3=a5B.a6÷a2=a3C.(a2)3=a6D.2a×3a=6a2.如果a<b,下列各式中正确的是()A.ac2<bc2B.>C.﹣3a>﹣3b D.>3.不等式组的解集在数轴上可以表示为()A.B.C.D.4.已知是二元一次方程2x+my=1的一个解,则m的值为()A.3 B.﹣5 C.﹣3 D.55.下列命题是真命题的是()A.同旁内角互补B.三角形的一个外角等于两个内角的和C.若a2=b2,则a=bD.同角的余角相等6.如图,已知点A,D,C,F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠A=∠EDF C.BC∥EF D.∠B=∠E7.如图,在长方形ABCD纸片中,AD∥BC,AB∥CD,把纸片沿EF折叠后,点C、D分别落在C'、D'的位置.若∠EFB=65°,则∠AED'等于()A.70°B.65°C.50°D.25°8.如图,在△ABC中,已知点D,E分别为BC,AD的中点,EF=2FC,且△ABC的面积12,则△BEF的面积为()A.5 B.C.4 D.二、填空题(本大题共8小题,请将下列各题正确的结果填写在答题卡相应的位置上)9、计算:a2•a3=.10、不等式3x﹣2>1的解集是.11、2020年6月23日9时43分,“北斗三号”最后一颗全球组网卫星发射成功,它的授时精度小于0.00000002秒,则0.00000002用科学记数法表示为.12、分解因式:a2﹣4=.13、买5kg苹果和3kg梨共需23元,分别求苹果和梨的单价.设苹果的单价x元/kg,梨的单价y元/kg,可列方程:.14、有一个多边形的每一个外角都等于45°,则这个多边形是边形.15、命题“三角形的三个内角中至少有两个锐角”是(填“真命题”或“假命题”).16、阅读材料:定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似.例如计算:(4+i)+(6﹣2i)=(4+6)+(1﹣2)i=10﹣i;(2﹣i)(3+i)=6﹣3i+2i﹣i2=6﹣i﹣(﹣1)=7﹣i;(4+i)(4﹣i)=16﹣i2=16﹣(﹣1)=17;(2+i)2=4+4i+i2=4+4i﹣1=3+4i根据以上信息,完成下面计算:(1+2i)(2﹣i)+(2﹣i)2=.三、解答题(本大题共8小题,把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明)17.(10分)计算:(1)(﹣2)2﹣|﹣3|+(π﹣2021)0;(2)m•m5+(2m3)2.18.(10分)解方程组:(1);(2).19.(10分)解下列不等式(组):(1)x﹣3(x﹣2)>4;(2).20.(6分)先化简,再求值:(x﹣1)2﹣x(x+3),其中x=.21.(6分)请将下列证明过程补充完整:已知:如图,点E在AB上,且CE平分∠ACD,∠1=∠2.求证:AB∥CD证明:∵CE平分∠ACD∴∠=∠(_),∵∠1=∠2.(已知)∴∠1=∠()∴AB∥CD()22.(8分)如图,AB∥CD,点E在CB的延长线上,∠A=∠E,AC=ED,求证:CB=CD.23.(10分)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”.这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?24.(12分)定义:在平面内,如果一个图形沿一条直线折叠,直线两旁的图形能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.(1)如图1,OP是∠MON的平分线,请你在图1中画出一对以OP所在直线为对称轴的全等三角形.(2)请你仿照这个作全等三角形的方法,解答下列问题:①如图2,在△ABC中,∠ACB=90°,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.猜想FE和DF之间的数量关系,直接写出结论.②如图3,在△ABC中,如果∠ACB≠90°,而①中的其它条件不变,请问①中结论是否仍然成立?若成立,请证明;若不成立,请说明理由.参考答案一、选择题1.选:D. 2.选:A. 3.选:A. 4.选:B.5.选:A. 6.选:C. 7.选:D. 8.选:C.二、填空题9、a5.10、 x>1.11、2×10﹣8.12、(a+2)(a﹣2).13、5x+3y=23.14、八.15、真命题.16、7﹣i.三、解答题17.【解答】解:(1)原式=4﹣3+1=2;(2)原式=m6+4m6=5m6.18.【解答】解:(1),①+②得5x=20,解得x=4,将x=4代入②得2×4﹣2y=15,解得y=﹣3.5,∴原方程组的解为;(2)原方程组可化为,②﹣①×5得3y=6,解得y=2,将y=2代入①得x+2=6,解得x=4,∴原方程组的解为.19.【解答】解:(1)去括号,得:x﹣3x+6>4,移项,得:x﹣3x>4﹣6,合并同类项,得:﹣2x>﹣2,系数化为1,得:x<1;(2)解不等式3(x﹣1)<5x+1,得:x>﹣2,解不等式2x﹣4≤,得:x≤3,则不等式组的解集为﹣2<x≤3.20.【解答】解:原式=x2﹣2x+1﹣x2﹣3x=﹣5x+1,当x=时,原式=﹣5×+1=0.21.【解答】证明:∵CE平分∠ACD∴∠2=∠ECD(角平分线的定义),∵∠1=∠2.(已知)∴∠1=∠ECD(等量代换))∴AB∥CD(内错角相等两直线平行).故答案为:2,ECD,角平分线的定义,ECD,等量代换,内错角相等两直线平行.22.【解答】证明:∵AB∥CD,∴∠ABC=∠DCE,在△ABC和△ECD中,,∴△ABC≌△ECD(AAS),∴CB=CD.23.【解答】解:(1)设本次试点投放的A型车x辆、B型车y辆,根据题意,得:,解得:,答:本次试点投放的A型车60辆、B型车40辆;(2)由(1)知A、B型车辆的数量比为3:2,设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据题意,得:3a×400+2a×320≥1840000,解得:a≥1000,即整个城区全面铺开时投放的A型车至少3000辆、B型车至少2000辆,则城区10万人口平均每100人至少享有A型车3000×=3辆、至少享有B型车2000×=2辆.24.【解答】解:(1)如图1,在射线OP上取点A,作AB⊥OM于B,AC⊥ON于C,∵OP是∠MON的平分线,AB⊥OM,AC⊥ON,∴AB=AC,∴Rt△AOB≌Rt△AOC,则AOB和Rt△AOC是一对以OP所在直线为对称轴的全等三角形;(2)①FE=DF,理由如下:如图2,在AC上截取CH=CD,连接FH,∵AD是∠BAC的平分线,∠BAC=30°,∴∠BAD=∠CAD=15°,∴∠ADC=∠BAD+∠B=75°,∵CE是∠ACB的平分线,∠ACB=90°,∴∠ACE=∠BCE=45°,在△FCD和△FCH中,,∴△FCD≌△FCH(SAS),∴FH=FH,∠FHC=∠FDC=75°,∴∠AHF=105°,∵∠AEF是△BCE的外角,∴∠AEF=∠B+∠BCE=105°,∴∠AEF=∠AHF,∴△AEF≌△AHF(AAS),∴FE=FH,∴FE=DF;②、①中结论仍然成立,FE=DF,理由如下:如图3,在AC上截取CG=CD,连接FG,∵∠B=60°,∴∠BAC+∠BCA=120°∵AD、CE分别是∠BAC、∠BCA的平分线,∴∠FAC+∠FCA=(∠BAC+∠BCA)=60°,∴∠AFC=180°﹣60°=120°,∴∠CFD=60°,∵CE是∠ACB的平分线,∴∠ACE=∠BCE,在△FCD和△FCG中,∴△FCD≌△FCG(SAS),∴FD=FG,∠CFG=∠CFD=60°,∴∠AFE=∠AFG=60°,在△AFE和△AFG中,,∴△AFE≌△AFG(ASA),∴FG=FE,∴FE=DF.。
七年级数学下册期末考试卷(带答案解析)
七年级数学下册期末考试卷(带答案解析)一、选择题(本大题共10小题,每小题3分,共30分.)1.下列各组图形中,一个图形经过平移能得到另一个图形的是()A.B.C. D.2.下列各数中是无理数的是()A.B.πC.6.25 D.3.下列运算正确的是()A.=±5 B.|﹣3|=3 C.=3 D.=﹣4 4.下列事件中,最适合采用普查的是()A.对我校七年级一班学生出生日期的调查B.对全国中学生节水意识的调查C.对山东省初中学生每天阅读时间的调查D.对某批次灯泡使用寿命的调查5.不等式4x<3x+1的解集在数轴上表示正确的是()A.B.C.D.6.下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.7.如图,a⊥c,b⊥c,若∠1=70°,则∠2等于()A.70°B.90°C.110°D.80°8.如图,下列条件:①∠1=∠5;②∠2=∠6;③∠3=∠7;④∠4=∠8.其中能判定AB∥CD的是()A.①②B.②③C.①④D.②④9.小亮的妈妈用28元钱买了甲乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果多买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x千克,乙种水果y千克,则可列方程组为()A.B.C.D.10.已知且0<y﹣x<1,则k的取值范围是()A.﹣1B.0C.0<k<1 D.<k<1二、填空题(本大题共6小题,每小题3分,共18分.)11.的平方根为.12.若+(a﹣1)2=0,则a+b的值为.13.已知点A(0,a)在y轴的负半轴上,则点B(a,a﹣1)在第象限.14.某校对七年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级,根据收集的评价结果绘制了如图所示的统计图,已知图中从左到右的五个长方形的高之比为2:3:3:1:1,评价结果为“A”的学生有68名,则该校七年级学生共有.15.如图,已知AB∥CD,∠BAC与∠ACD的平分线相交于点E,若∠ACE=31°,则∠BAE的度数是.16.关于x的不等式组无整数解,则a的取值范围为.三.解答题(共72分)17.计算:.18.如图,直线AB,CD相交于点O,∠BOC=130°,OE⊥AB于点O,求∠EOD的度数.19.解方程组:(1);(2).20.解不等式组,并把它的解集在数轴上表示出来.21.已知线段AB两端点的坐标为A(2,0),B(0,4),将线段AB平移后得到线段A'B',AB上任意一点P(x,y)平移后的对应点为P'(x+2,y+2).(1)在平面直角坐标系中画出线段AB和A'B';(2)连接OA',OB',求三角形OA'B'的面积.22.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中提供的信息,解答下列问题:(1)补全频数分布直方图;(2)求扇形统计图中m的值和“E”组对应的圆心角度数;(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数.23.已知如图,△ABC过点A做∠DAE=∠BAC,且AD∥BC,∠1=∠2.(1)求证AB∥DE;(2)若已知AE平分∠BAC,∠C=35°,求∠BAD的度数.24.“地摊经济”已成为社会关注的热门话题,小明从市场得知如下信息:甲商品每件售价为90元,乙商品每件售价为10元,销售1件甲商品和4件乙商品可获得利润45元,销售2件甲商品和3件乙商品可获得利润65元.(1)求甲、乙商品的进货价格;(2)小明计划用不超过3500元的资金购进甲、乙商品共100件进行销售,设小明购进甲商品a件,求a的取值范围;(3)在(2)的条件下,若要求甲,乙商品全部销售完后获得的利润不少于1450元,请说明小明有哪些可行的进货方案,并计算哪种进货方案的利润最大,最大利润是多少?25.同学们,我们已学习了角平分线的概念和性质,那么你会用它们解决有关问题吗?(1)如图(1),已知∠AOB,请你画出它的角平分线OC,并填空:因为OC是∠AOB的平分线(已知)所以∠=∠=∠AOB(2)如图(2),已知∠AOC,若将∠AOC沿着射线OC翻折,射线OA落在OB处,请你画出射线OB,射线OC一定平分∠AOB.理由如下:因为∠BOC是由∠AOC翻折而成,而翻折不改变图形的形状和大小,所以∠BOC=∠所以射线是∠的角平分线.拓展应用(3)如图(3),将长方形纸片的一角折叠,使顶点A落在C处,折痕为OE,再将它的另一个角也折叠,顶点B落在D处并且使OD过点C,折痕为OF.直接利用(2)的结论;①若∠AOE=60°,求∠EOF的度数.②若∠AOE=m°,求∠EOF的度数,从计算中你发现了∠EOF的度数有什么规律?③∠DOF的补角为;∠DOF的余角为.参考答案与解析一.选择题(共10小题)1.解:各组图形中,选项D中的图形是一个图形经过平移能得到另一个图形,故选:D.2.解:A.5.34是分数,属于有理数,故这个选项不符合题意;B.是无理数,故这个选项符合题意;C.6.25是分数,属于有理数,故这个选项不符合题意;D.是分数,属于有理数,故这个选项不符合题意;故选:B.3.解:A、=5,故本选项错误;B、|﹣3|=3,故本选项正确;C、∵=3,∴≠3,故本选项错误;D、=4,故本选项错误;故选:B.4.解:A、对我校七年级一班学生出生日期的调查适合采用普查;B、对全国中学生节水意识的调查适合采用抽样调查;C、对山东省初中学生每天阅读时间的调查适合采用抽样调查;D、对某批次灯泡使用寿命的调查适合采用抽样调查;故选:A.5.解:4x<3x+1,移项得:4x﹣3x<1,合并同类项得:x<1,在数轴上表示为:故选:C.6.解:线段AD的长表示点A到直线BC距离的是图D,故选:D.7.解:∵a⊥c,b⊥c,∴a∥b,∴∠3=∠1=70°,∴∠2=∠3=70°.故选:A.8.解:①∵∠1=∠5,∴AB∥CD,能判定AB∥CD;②∵∠2=∠6,∴AD∥BC,不能判定AB∥CD;③∵∠3=∠7;∴AD∥BC,不能判定AB∥CD;④∵∠4=∠8,∴AB∥CD,能判定AB∥CD.故选:C.9.解:设小亮妈妈买了甲种水果x千克,乙种水果y千克,根据题意得:,故选:C.10.解:将两个方程相减得到y﹣x=2k﹣1,∵0<y﹣x<1,∴0<2k﹣1<1,解得<k<1.故选:D.二.填空题(共6小题)11.【答案】±【分析】根据平方根的定义求解.【解答】解:的平方根为±=±.故答案为:±.12.【答案】﹣1【分析】直接利用非负数的性质得出b,a的值,即可得出答案.【解答】解:∵+(a﹣1)2=0,∴3b+6=0,a﹣1=0,解得:b=﹣2,a=1,∴a+b=﹣2+1=﹣1.故答案为:﹣1.13.【答案】三【分析】根据点A(0,a)在y轴的负半轴上可得到a<0,再根据各象限内点的坐标特征解答.【解答】解:∵点A(0,a)在y轴的负半轴上,∴a<0,∴a﹣1<0,∴点B(a,a﹣1)在第三象限.故答案为:三.14.【答案】340名【分析】用A等级人数除以其对应权重,再乘以权重之和即可得出答案.【解答】解:该校七年级学生共有68÷2×(2+3+3+1+1)=340(名),故答案为:340名.15.【答案】59°【分析】根据平行线的性质得到∠BAC+∠ACD=180°,再根据角平分线的定义得到∠CAE+∠ACE=90°,根据题意即可得解.【解答】解:∵AB∥CD,∴∠BAC+∠ACD=180°,∵∠BAC与∠ACD的平分线相交于点E,∴∠BAE=∠CAE=∠BAC,∠ACE=∠ACD,∴∠CAE+∠ACE=×(∠BAC+∠ACD)=90°,∵∠ACE=31°,∴∠CAE=90°﹣∠ACE=59°,∴∠BAE=59°,故答案为:59°.16.【答案】a≥2【分析】先求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据“无整数解”这个条件分析答案;另外需考虑不等式组无解的情况.【解答】解:不等式组整理得:不等式组的解集是:a<x<,或a≥时,不等式组无解,∵不等式组无整数解,∴a≥2故答案为:a≥2.三.解答题17.计算:.【分析】首先计算开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:=2﹣﹣3+(﹣4)=﹣2﹣4.18.如图,直线AB,CD相交于点O,∠BOC=130°,OE⊥AB于点O,求∠EOD的度数.【答案】40°.【分析】利用对顶角的性质可得∠AOD=130°,再利用垂直定义计算即可.【解答】解:∵∠BOC=130°,∠AOD与∠BOC是对顶角,∴∠AOD=130°,∵OE⊥AB,∴∠AOE=90°,∴∠EOD=130°﹣90°=40°,即∠EOD的度数是40°.19.解方程组:(1);(2).【答案】(1);(2).【分析】(1)应用代入消元法,求出方程组的解即可.(2)应用加减消元法,求出方程组的解即可.【解答】解:(1),②代入①,可得:y﹣1+2y=8,解得y=3,把y=3代入②,解得x=2,∴原方程组的解是.(2),由②,可得:5x+5y=1③,①×5+③,可得20x=26,解得x=1.3,把x=1.3代入①,解得y=﹣1.1,∴原方程组的解是.20.解不等式组,并把它的解集在数轴上表示出来.【答案】x>2,解集在数轴上的表示见解答.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式5x+2≥3x,得:x≥﹣1,解不等式2﹣<x,得:x>2,则不等式组的解集为x>2,将不等式组的解集表示在数轴上如下:21.已知线段AB两端点的坐标为A(2,0),B(0,4),将线段AB平移后得到线段A'B',AB上任意一点P(x,y)平移后的对应点为P'(x+2,y+2).(1)在平面直角坐标系中画出线段AB和A'B';(2)连接OA',OB',求三角形OA'B'的面积.【答案】(1)见解答;(2)10.【分析】(1)先利用P点和P′点的坐标特征确定平移的方向与距离,再利用此平移规律写出A′、B′的坐标,然后描点得到线段AB和A'B';(2)用一个矩形的面积分别减去三个直角三角形的面积去计算三角形OA'B'的面积.【解答】解:(1)如图,线段AB和A'B'为所作;(2)三角形OA'B'的面积=4×6﹣×4×2﹣×2×4﹣×6×2=10.22.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中提供的信息,解答下列问题:(1)补全频数分布直方图;(2)求扇形统计图中m的值和“E”组对应的圆心角度数;(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数.【答案】见试题解答内容【分析】(1)根据第二组频数为21,所占百分比为21%,求出数据总数,再用数据总数减去其余各组频数得到第四组频数,进而补全频数分布直方图;(2)用第三组频数除以数据总数,再乘以100,得到m的值;先求出“E”组所占百分比,再乘以360°即可求出对应的圆心角度数;(3)用3000乘以每周课外阅读时间不小于6小时的学生所占百分比即可.【解答】解:(1)数据总数为:21÷21%=100,第四组频数为:100﹣10﹣21﹣40﹣4=25,频数分布直方图补充如下:(2)m=40÷100×100=40;“E”组对应的圆心角度数为:360°×=14.4°;(3)3000×(25%+)=870(人).即估计该校3000名学生中每周的课外阅读时间不小于6小时的人数是870人.23.已知如图,△ABC过点A做∠DAE=∠BAC,且AD∥BC,∠1=∠2.(1)求证AB∥DE;(2)若已知AE平分∠BAC,∠C=35°,求∠BAD的度数.【答案】见试题解答内容【分析】(1)根据平行线的性质得出∠DAE=∠2,求出∠BAC=∠1,根据平行线的判定得出即可;(2)根据角平分线的定义得出∠BAE=∠CAE,根据∠DAE=∠BEA求出∠BAE=∠EAC=∠DAC,根据平行线的性质得出∠C=∠DAC,求出∠C=∠BAE=∠DAC=35°,即可得出答案.【解答】(1)证明:∵AD∥BC,∴∠DAE=∠2,∵∠1=∠2,∴∠DAE=∠1,∵∠DAE=∠BAC,∴∠BAC=∠1,∴AB∥DE;(2)解:∵∠DAE=∠BEA,∴∠BAE=∠EAC=∠DAC,∵AD∥BC,∴∠C=∠DAC,∴∠C=∠BAE=∠DAC=35°,∵AE平分∠BAC,∴∠BAC=2∠BAE=70°,∴∠BAD=∠BAC+∠CAD=105°.24.“地摊经济”已成为社会关注的热门话题,小明从市场得知如下信息:甲商品每件售价为90元,乙商品每件售价为10元,销售1件甲商品和4件乙商品可获得利润45元,销售2件甲商品和3件乙商品可获得利润65元.(1)求甲、乙商品的进货价格;(2)小明计划用不超过3500元的资金购进甲、乙商品共100件进行销售,设小明购进甲商品a件,求a的取值范围;(3)在(2)的条件下,若要求甲,乙商品全部销售完后获得的利润不少于1450元,请说明小明有哪些可行的进货方案,并计算哪种进货方案的利润最大,最大利润是多少?【答案】(1)甲商品的进货价格为65元,乙商品的进货价格为5元;(2)a的取值范围是0≤a≤50;(3)进货方案有:甲商品进48件,乙商品进52件;甲商品进49件,乙商品进51件;甲商品进50件,乙商品进50件;甲商品进50件,乙商品进50件利润最大,最大利润是1500元.【分析】(1)设甲、乙商品的进货价格分别是x元,y元,根据题意列方程组即可得到结论;(2)设小明购进甲商品a件,由题意列出不等式,即可求解;(3)由获得的利润不少于1450元,列出不等式可求a的范围,可求出答案.【解答】解:(1)设甲、乙商品的进货价格分别是x元,y元,由题意列方程组得:,解得,答:甲商品的进货价格为65元,乙商品的进货价格为5元;(2)设小明购进甲商品a件,由题意得,65a+5(100﹣a)≤3500,解得a≤50,∴a的取值范围是0≤a≤50;(3)由题意可得:(90﹣65)a+(10﹣5)(100﹣a)≥1450,解得:a≥47.5,∴47.5≤a≤50,又∵a为整数,∴a=48,49,50,∴进货方案有:甲商品进48件,乙商品进52件;甲商品进49件,乙商品进51件;甲商品进50件,乙商品进50件;若甲商品进48件,乙商品进52件,利润为(90﹣65)×48+(10﹣5)×52=1460(元),若甲商品进49件,乙商品进51件,利润为(90﹣65)×49+(10﹣5)×51=1480(元),若甲商品进50件,乙商品进50件,利润为(90﹣65)×50+(10﹣5)×50=1500(元),∴当甲商品进50件,乙商品进50件,利润有最大值.利润最大值为1500(元).答:进货方案有:甲商品进48件,乙商品进52件;甲商品进49件,乙商品进51件;甲商品进50件,乙商品进50件;甲商品进50件,乙商品进50件利润最大,最大利润是1500元.25.解:(1)如图1所示:∵OC是∠AOB的平分线,∴∠AOC=∠BOC=∠AOB,故答案为:AOC,BOC,;(2)如图2所示:∵∠BOC是由∠AOC翻折而成,而翻折不改变图形的形状和大小,∴∠BOC=∠AOC,∴射线OC是∠AOB的角平分线,故答案为:BOC,OC,AOB;(3))①∵△COE由△AOE翻折而成,△DOF由△BOF翻折而成,∠AOE=60°,∴∠AOE=∠EOC=60°,∠BOF=∠DOF=(180°﹣∠AOE﹣∠EOC)=×60°=30°,∴∠EOF=∠EOC+∠DOF=60°+30°=90°;②∵△COE由△AOE翻折而成,△DOF由△BOF翻折而成,∠AOE=m°∴∠AOE=∠EOC=m°,∠BOF=∠DOF=[180°﹣(∠AOE+∠EOC)]=×[18°﹣2m°]=90°﹣m°,∴∠EOF=∠EOC+∠DOF=m°+90°﹣m°=90°,发现∠EOF始终为90°;③∵由②知,∠DOF=∠BOF,∠BOF+∠AOF=180°,∴∠DOF的补角是∠AOF;∵∠DOF+∠EOC=90°,∴∠DOF的余角是∠EOC和∠AOE,故答案为:∠AOF,∠EOC和∠AOE.。
2024年最新人教版七年级数学(下册)期末考卷及答案(各版本)
2024年最新人教版七年级数学(下册)期末考卷及答案(各版本)一、选择题:每题1分,共5分1. 一个等差数列的前三项分别是2,5,8,那么第10项是______。
A. 29B. 30C. 31D. 322. 如果一个三角形的两边分别是8和15,那么第三边的长度可能是______。
A. 6B. 7C. 17D. 233. 下列哪一个数是有理数______?A. √2B. √3C. √5D. √94. 下列哪一个比例是正确的______?A. 3 : 4 = 6 : 8B. 4 : 5 = 8 : 9C. 5 : 6 = 10 : 12D.6 :7 = 12 : 145. 下列哪一个图形是平行四边形______?A. 矩形B. 正方形C. 梯形D.菱形二、判断题:每题1分,共5分1. 任何两个奇数之和都是偶数。
()2. 任何两个有理数相乘都是无理数。
()3. 一个等边三角形的三个角都是60度。
()4. 两个锐角之和一定大于90度。
()5. 任何两个等腰三角形的底角相等。
()三、填空题:每题1分,共5分1. 一个等差数列的第5项是15,第10项是______。
2. 如果一个三角形的两边分别是5和12,那么第三边的长度可能是______。
3. 下列哪一个数是无理数______。
4. 如果一个比例是3 : 4 = 6 : 8,那么比例的外项是______。
5. 下列哪一个图形是矩形______。
四、简答题:每题2分,共10分1. 简述等差数列的定义和通项公式。
2. 简述勾股定理及其应用。
3. 简述有理数的定义和性质。
4. 简述平行四边形的性质和判定。
5. 简述等边三角形的性质和判定。
五、应用题:每题2分,共10分1. 一个等差数列的前三项分别是2,5,8,求第10项。
2. 如果一个三角形的两边分别是8和15,那么第三边的长度可能是多少?3. 下列哪一个数是有理数?4. 下列哪一个比例是正确的?5. 下列哪一个图形是平行四边形?六、分析题:每题5分,共10分1. 分析并证明等差数列的前n项和公式。
七年级(下)期末数学试卷(含答案)
七年级(下)期末数学试卷(解析版)一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.根据下列表述,能确定位置的是()A.东经118°,北纬40°B.江东大桥南C.北偏东30°D.某电影院第2排2.为了了解某校初三年级400名学生的体重情况,从中抽查了50名学生的体重进行统计分析,在这个问题中,总体是()A.400名学生的体重B.被抽取的50名学生C.400名学生D.被抽取的50名学生的体重3.在平面直角坐标系中,点P(3,﹣x2﹣1)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0 B.a<0 C.a>﹣1 D.a<﹣15.若x、y满足方程组,则x﹣y的值等于()A.﹣1 B.1 C.2 D.36.如图:AB∥CD,直线MN与AB交于E,过点E作直线HE⊥MN,∠1=130°,则∠2等于()A.50°B.40°C.30°D.60°7.下列选项中正确的是()A.27的立方根是±3 B.的平方根是±4C.9的算术平方根是3 D.立方根等于平方根的数是18.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%、若设甲、乙两种商品原来的单价分别为x元、y元,则下列方程组正确的是()A.B.C.D.9.如图,木工师傅在一块木板上画两条平行线,方法是:用角尺画木板边缘的两条垂线,这样画的理由有下列4种说法:其中正确的是()①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平面内垂直于同一直线的两条直线平行.A.①②③ B.①②④ C.①③④ D.①③10.若关于x的一元一次不等式组有解,则m的取值范围为()A. B.m≤C.D.m≤二、填空题:本大题共5小题,每小题3分,共15分,把答案填在题中横线上.11.若|x+3|+=0,则x y的值为.12.已知关于x的不等式x﹣a<1的解集如图所示,则a的值为.13.若方程4x m﹣n﹣5y m+n=6是二元一次方程,则m=,n=.14.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=6,BC=9,DH=2,平移距离为3,则阴影部分的面积是.15.在平面直角坐标系中,点A1(1,2),A2(2,5),A3(3,10),A4(4,17),…,用你发现的规律确定点A n的坐标为.三、解答题:本大题共7小题,共55分,解答应写出证明过程或演算步骤.16.(1)解方程组:;(2)解不等式组:.17.如图,已知:AD⊥BC于D,EG⊥BC于G,∠E=∠1.求证:AD平分∠BAC.下面是部分推理过程,请你将其补充完整:∵AD⊥BC于D,EG⊥BC于G (已知)∴∠ADC=∠EGC=90°∴AD∥EG.∴∠1=∠2.=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3.∴AD平分∠BAC.18.甲乙两人解方程组.由于甲看错了方程①中的m的值,得到方程组的解为,乙看错了方程②中的n的值,得到方程组的解为,试求m2+n2+mn 的值.19.某市球类运动协会为了筹备一次大型体育活动,购进了一定数量的体育器材,器材管理员对购买的部分器材进行了统计,图表和图是器材管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:频率分布表器材种类频数频率排球20乒乓球拍50 0.50篮球25 0.25足球合计 1(1)填充频率分布表中的空格.(2)在图中,将表示“排球”和“足球”的部分补充完整.(3)若该协会购买这批体育器材时,篮球和足球一共花去950元,且足球每个的价格比篮球多10元,现根据筹备实际需要,准备再采购篮球和足球这两种球共10个(两种球的个数都不能为0),计划资金不超过320元,试问该协会有哪几种购买方案?20.某中学计划从办公用品公司购买A,B两种型号的小黑板.经洽谈,购买一块A型小黑板比购买一块B型小黑板多用20元,且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需多少元.(2)根据该中学实际情况,需从公司购买A,B两种型号的小黑板共60块,要求购买A,B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量不小于购买B型小黑板数量的.则该中学从公司购买A,B两种型号的小黑板有哪几种方案?哪种方案的总费用最低?21.我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3;用<a>表示大于a的最小整数,例如:<2.5>=3,<4>=5,<﹣1.5>=﹣1.解决下列问题:(1)[﹣4.5]=,<3.5>=.(2)若[x]=2,则x的取值范围是;若<y>=﹣1,则y的取值范围是.(3)已知x,y满足方程组,求x,y的取值范围.22.如图,已知直线AC∥BD,直线AB、CD不平行,点P在直线AB上,且和点A、B 不重合.(1)如图①,当点P在线段AB上时,若∠PAC=20°,∠PDB=30°,求∠CPD的度数;(2)当点P在A、B两点之间运动时,∠PCA、∠PDB、∠CPD之间满足什么样的等量关系?(直接写出答案)(3)如图②,当点P在线段AB延长线运动时,∠PCA、∠PDB、∠CPD之间满足什么样的等量关系?并说明理由.参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.根据下列表述,能确定位置的是()A.东经118°,北纬40°B.江东大桥南C.北偏东30°D.某电影院第2排【分析】根据在平面内,要有两个有序数据才能清楚地表示出一个点的位置,即可得答案.【解答】解:在平面内,点的位置是由一对有序实数确定的,只有A能确定一个位置,故选A.【点评】本题考查了在平面内,如何表示一个点的位置的知识点.2.为了了解某校初三年级400名学生的体重情况,从中抽查了50名学生的体重进行统计分析,在这个问题中,总体是()A.400名学生的体重B.被抽取的50名学生C.400名学生D.被抽取的50名学生的体重【分析】本题考查的是确定总体.解此类题需要注意“考查对象实际应是表示事物某一特征的数据,而非考查的事物.”.我们在区分总体、个体、样本、样本容量这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本.【解答】解:本题考查的对象是某校初三年级400名学生的体重情况,故总体是400名学生的体重.故选:A.【点评】解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.3.在平面直角坐标系中,点P(3,﹣x2﹣1)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】根据非负数的性质判断出点P的纵坐标是负数,再根据各象限内点的坐标特征解答.【解答】解:∵﹣x2﹣1≤﹣1,∴点P(3,﹣x2﹣1)所在的象限是第四象限.故选D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0 B.a<0 C.a>﹣1 D.a<﹣1【分析】本题可对a>﹣1,与a<﹣1的情况进行讨论.不等式两边同时除以一个正数不等号方向不变,同时除以一个负数不等号方向改变,据此可解本题.【解答】解:(1)当a>﹣1时,原不等式变形为:x>1;(2)当a<﹣1时,原不等式变形为:x<1.故选:D.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意同除a+1时是否要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式,不等号的方向不变.在不等式的两边同时乘以或除以同一个正数,不等号的方向不变;在不等式的两边同时乘以或除以同一个负数,不等号的方向改变.5.若x、y满足方程组,则x﹣y的值等于()A.﹣1 B.1 C.2 D.3【分析】方程组两方程相减即可求出x﹣y的值.【解答】解:,②﹣①得:2x﹣2y=﹣2,则x﹣y=﹣1,故选:A.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.6.如图:AB∥CD,直线MN与AB交于E,过点E作直线HE⊥MN,∠1=130°,则∠2等于()A.50°B.40°C.30°D.60°【分析】先根据平行线的性质及对顶角相等求出∠AEM的度数,再根据垂直的性质求出∠2的度数即可.【解答】解:∵∠1=130°,∴∠3=∠1=130°,∵AB∥CD,∴∠3=∠AEM,∵HE⊥MN,∴∠HEM=90°,∴∠2=∠3﹣∠HEM=130°﹣90°=40°.故选B.【点评】本题涉及到的知识点为:(1)对顶角相等;(2)两直线平行,同位角相等;(3)垂线的定义.7.下列选项中正确的是()A.27的立方根是±3 B.的平方根是±4C.9的算术平方根是3 D.立方根等于平方根的数是1【分析】A、根据立方根的即可判定;B、根据算术平方根、平方根的定义即可判定;C、根据算术平方根的定义即可判定;D、根据平方根、立方根的定义求解即可判定.【解答】解:A、27的立方根是3,故选项错误;B、的平方根是±2,故选项错误;C、9的算术平方根是3,故选项正确;D、立方根等于平方根的数是1和0,故选项错误.故选C.【点评】本题主要考查了平方根和立方根的性质,并利用此性质解题.平方根的被开数不能是负数,开方的结果必须是非负数;立方根的符号与被开立方的数的符号相同.要注意一个正数的平方根有两个,它们互为相反数.8.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%、若设甲、乙两种商品原来的单价分别为x元、y元,则下列方程组正确的是()A.B.C.D.【分析】如果设甲商品原来的单价是x元,乙商品原来的单价是y元,那么根据“甲、乙两种商品原来的单价和为100元”可得出方程为x+y=100;根据“甲商品降价10%,乙商品提价40%,调价后,两种商品的单价之和比原来的单价之和提高了20%”,可得出方程为x(1﹣10%)+y(1+40%)=100(1+20%).【解答】解:设甲商品原来的单价是x元,乙商品原来的单价是y元.根据题意列方程组:.故选:C.【点评】找到两个等量关系是解决本题的关键,还需注意相对应的原价及相应的百分比得到的新价格.9.如图,木工师傅在一块木板上画两条平行线,方法是:用角尺画木板边缘的两条垂线,这样画的理由有下列4种说法:其中正确的是()①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平面内垂直于同一直线的两条直线平行.A.①②③ B.①②④ C.①③④ D.①③【分析】利用同位角相等(都等于90°),同旁内角互补,两条直线平行,或同一平面内,垂直于同一条直线的两条直线平行作答.【解答】解:由图可知,用角尺画木板边缘的两条垂线,这样画的理由:①同位角相等,两直线平行;③同旁内角互补,两直线平行;④平面内垂直于同一直线的两条直线平行.故选C.【点评】本题考查平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;两条直线都和第三条直线平行,那么这两条直线平行;在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行.10.若关于x的一元一次不等式组有解,则m的取值范围为()A. B.m≤C.D.m≤【分析】先求出两个不等式的解集,再根据有解列出不等式组求解即可.【解答】解:,解不等式①得,x<2m,解不等式②得,x>2﹣m,∵不等式组有解,∴2m>2﹣m,∴m>.故选C.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).二、填空题:本大题共5小题,每小题3分,共15分,把答案填在题中横线上.11.若|x+3|+=0,则x y的值为9.【分析】直接利用非负数的性质得出x,y的值,进而利用有理数的乘方运算法则求出答案.【解答】解:∵|x+3|+=0,∴x=﹣3,y=2,则x y=(﹣3)2=9.故答案为:9.【点评】此题主要考查了非负数的性质,正确得出x,y的值是解题关键.12.已知关于x的不等式x﹣a<1的解集如图所示,则a的值为1.【分析】根据在数轴上表示不等式解集的方法得出不等式的解集,再用a表示出不等式的解集,进而可得出a的值.【解答】解:由题意可知,x<2,∵解不等式x﹣a<1得,x<1+a,∴1+a=2,解得a=1.故答案为:1.【点评】本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键.13.若方程4x m﹣n﹣5y m+n=6是二元一次方程,则m=1,n=0.【分析】根据二元一次方程的定义,可得x和y的指数分别都为1,列关于m、n的方程组,再求出m和n的值,最后代入可得到m n的值.【解答】解:根据二元一次方程的定义,得,解得,故答案为:1,0.【点评】考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.14.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=6,BC=9,DH=2,平移距离为3,则阴影部分的面积是15.【分析】根据平移的性质,判断出△HEC∽△ABC,再根据相似三角形的性质列出比例式解答.【解答】14.15解:由平移的性质知,BE=3,DE=AB=6,∴HE=DE﹣DH=6﹣2=4,∴S四边形HDFC =S梯形ABEH=(AB+EH)BE=(6+4)×3=15.故答案为:15.【点评】本题主要利用了平行线截线段对应成比例和平移的基本性质求解,找出阴影部分和三角形面积之间的关系是关键.15.在平面直角坐标系中,点A1(1,2),A2(2,5),A3(3,10),A4(4,17),…,用你发现的规律确定点A n的坐标为(n,n2+1).【分析】首先观察各点坐标,找出一般规律,然后根据规律确定点A n的坐标.【解答】解:设A n(x,y).∵当n=1时,A1(1,1),即x=1,y=12+1,当n=2时,A2(2,5),即x=2,y=22+1;当n=3时,A3(3,10),即x=3,y=32+1;当n=4时,A1(4,17),即x=4,y=42+1;…∴当n=n时,x=n,y=n2+1,故答案为:(n,n2+1).【点评】此题主要考查了点的坐标规律,解决本题的关键在于总结规律.对于寻找规律的题,应通过观察,发现哪些部分没有变化,哪些部分发生了变化,变化的规律是什么.三、解答题:本大题共7小题,共55分,解答应写出证明过程或演算步骤.16.(1)解方程组:;(2)解不等式组:.【分析】(1)先用加减消元法求出x的值,再用代入消元法求出y的值即可;(2)分别求出各不等式的解集,再求出其公共解集即可.【解答】解:(1),①+②×3得,10x=50,解得x=5,把x=5代入②得,10+y=13,解得y=3.故方程组的解为;(2),由①得,x<3,由②得,x≥﹣2,故方程组的解为:﹣2≤x<3.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17.如图,已知:AD⊥BC于D,EG⊥BC于G,∠E=∠1.求证:AD平分∠BAC.下面是部分推理过程,请你将其补充完整:∵AD⊥BC于D,EG⊥BC于G (已知)∴∠ADC=∠EGC=90°∴AD∥EG同位角相等,两直线平行.∴∠1=∠2两直线平行,内错角相等.∠E=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3等量代换.∴AD平分∠BAC角平分线的定义.【分析】根据平行线的判定与性质进行解答即可.【解答】解:∵AD⊥BC于D,EG⊥BC于G (已知)∴∠ADC=∠EGC=90°∴AD∥EG,(同位角相等,两直线平行).∴∠1=∠2,(两直线平行,内错角相等).∠E=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3,(等量代换).∴AD平分∠BAC.(角平分线的定义)故答案为:同位角相等,两直线平行;两直线平行,内错角相等;∠E;等量代换;角平分线的定义.【点评】本题考查的是平行线的判定与性质,用到的知识点为:同位角相等,两直线平行;两直线平行,内错角相等,同位角相等.18.甲乙两人解方程组.由于甲看错了方程①中的m的值,得到方程组的解为,乙看错了方程②中的n的值,得到方程组的解为,试求m2+n2+mn的值.【分析】根据甲看错了方程①中的m,②没有看错,代入②得到一个方程求出n的值,乙看错了方程②中的n,①没有看错,代入①求出m的值,然后再把m、n的值代入代数式计算即可求解【解答】解:根据题意得,4×(﹣3)﹣b(﹣1)=﹣2,5a+5×4=15,解得m=﹣1,n=10,把m=﹣1,n=10代入代数式,可得:原式=91.【点评】本题考查了二元一次方程的解,根据题意列出方程式解题的关键.19.某市球类运动协会为了筹备一次大型体育活动,购进了一定数量的体育器材,器材管理员对购买的部分器材进行了统计,图表和图是器材管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:频率分布表器材种类频数频率排球20乒乓球拍50 0.50篮球25 0.25足球合计 1(1)填充频率分布表中的空格.(2)在图中,将表示“排球”和“足球”的部分补充完整.(3)若该协会购买这批体育器材时,篮球和足球一共花去950元,且足球每个的价格比篮球多10元,现根据筹备实际需要,准备再采购篮球和足球这两种球共10个(两种球的个数都不能为0),计划资金不超过320元,试问该协会有哪几种购买方案?【分析】(1)根据乒乓球的总数为50,频数为0.50,求出体育器材总数,然后减去乒乓球、排球、篮球数目,即可得到足球频数、频率及合计数.(2)根据统计表中的数据,将统计图补充完整即可.(3)列方程求出篮球和足球的单价,再根据单价列出不等式,推知购买方案.【解答】解:(1)50÷0.50=100个;则足球有100﹣20﹣50﹣25=5个;足球频率=0.05;排球频率=0.2;合计为100.故答案为:0.2;5,0.05;100.(2)如图:.(3)设篮球每个x元,足球每个(x+10)元,列方程得,25x+5(x+10)=950,解得x=30,则篮球每个30元,足球每个40元.设再买y个篮球,列不等式得,30y+40(10﹣y)≤320,解得y≥8,由于篮球足球共10个,则篮球8个,足球2个;或篮球9个,足球1个.【点评】本题考查了频数分布表、频数分布直方图及一元一次方程的应用,从图中得到相关信息是解题的关键.20.某中学计划从办公用品公司购买A,B两种型号的小黑板.经洽谈,购买一块A型小黑板比购买一块B型小黑板多用20元,且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需多少元.(2)根据该中学实际情况,需从公司购买A,B两种型号的小黑板共60块,要求购买A,B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量不小于购买B型小黑板数量的.则该中学从公司购买A,B两种型号的小黑板有哪几种方案?哪种方案的总费用最低?【分析】(1)设购买一块A型小黑板需要x元,一块B型为y元,根据等量关系:购买一块A型小黑板比买一块B型小黑板多用20元;购买5块A型小黑板和4块B型小黑板共需820元;可列方程组求解.(2)设购买A型小黑板m块,则购买B型小黑板(60﹣m)块,根据需从公司购买A、B 两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量不小于购买B型小黑板数量的,可列不等式组求解.【解答】解:(1)设一块A型小黑板x元,一块B型小黑板y元.则,解得.答:一块A型小黑板100元,一块B型小黑板80元.(2)设购买A型小黑板m块,则购买B型小黑板(60﹣m)块则,解得20≤m≤22,又∵m为正整数∴m=20,21,22则相应的60﹣m=40,39,38∴共有三种购买方案,分别是方案一:购买A型小黑板20块,购买B型小黑板40块;方案二:购买A型小黑板21块,购买B型小黑板39块;方案三:购买A型小黑板22块,购买B型小黑板38块.方案一费用为100×20+80×40=5200元;方案二费用为100×21+80×39=5220元;方案三费用为100×22+80×38=5240元.∴方案一的总费用最低,即购买A型小黑板20块,购买B型小黑板40块总费用最低,为5200元.【点评】本题考查理解题意的能力,关键根据购买黑板块数不同钱数的不同求出购买黑板的钱数,然后要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量不小于购买B型小黑板数量的,列出不等式组求解.21.我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3;用<a>表示大于a的最小整数,例如:<2.5>=3,<4>=5,<﹣1.5>=﹣1.解决下列问题:(1)[﹣4.5]=﹣5,<3.5>=4.(2)若[x]=2,则x的取值范围是2≤x<3;若<y>=﹣1,则y的取值范围是﹣2≤y<﹣1.(3)已知x,y满足方程组,求x,y的取值范围.【分析】(1)根据题目所给信息求解;(2)根据[2.5]=2,[3]=3,[﹣2.5]=﹣3,可得[x]=2中的2≤x<3,根据<a>表示大于a 的最小整数,可得<y>=﹣1中,﹣2≤y<﹣1;(3)先求出[x]和<y>的值,然后求出x和y的取值范围.【解答】解:(1)由题意得,[﹣4.5]=﹣5,<3.5>=4;(2)∵[x]=2,∴x的取值范围是2≤x<3;∵<y>=﹣1,∴y的取值范围是﹣2≤y<﹣1;(3)解方程组得:,∴x,y的取值范围分别为﹣1≤x<0,2≤y<3.【点评】本题考查了一元一次不等式组的应用,解答本题的关键是读懂题意,根据题目所给的信息进行解答.22.如图,已知直线AC∥BD,直线AB、CD不平行,点P在直线AB上,且和点A、B 不重合.(1)如图①,当点P在线段AB上时,若∠PAC=20°,∠PDB=30°,求∠CPD的度数;(2)当点P在A、B两点之间运动时,∠PCA、∠PDB、∠CPD之间满足什么样的等量关系?(直接写出答案)(3)如图②,当点P在线段AB延长线运动时,∠PCA、∠PDB、∠CPD之间满足什么样的等量关系?并说明理由.【分析】(1)如图①,过P点作PE∥AC交CD于E点,由于AC∥BD,则PE∥BD,根据平行线的性质得∠CPE=∠PCA=20°,∠DPE=∠PDB=30°,所以∠CPD=50°;(2)证明方法与(1)一样;(3)如图②,过P点作PF∥BD交CD于F点,由于AC∥BD,则PF∥AC,根据平行线的性质得∠CPF=∠PCA,∠DPF=∠PDB,所以∠CPD=∠PCA﹣∠PDB.【解答】解:(1)如图①,过P点作PE∥AC交CD于E点,∵AC∥BD∴PE∥BD,∴∠CPE=∠PCA=20°,∠DPE=∠PDB=30°,∴∠CPD=∠CPE+∠DPE=50°;(2)∠CPD=∠PCA+∠PDB(证明方法与(1)一样;(3)∠CPD=∠PCA﹣∠PDB.理由如下:如图②,过P点作PF∥BD交CD于F点,∵AC∥BD,∴PF∥AC,∴∠CPF=∠PCA,∠DPF=∠PDB,∴∠CPD=∠CPF﹣∠DPF=∠PCA﹣∠PDB;【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.合理添加平行线是解决此题的关键.。
七年级(下)期末数学试卷(解析版试卷)
七年级(下)期末数学试卷(解析版)一、填空题(每小题3分,共18分)1.如图,点D,B,C点在同一条直线上,∠A=60°,∠C=50°,∠D=25°,则∠1=45度.【考点】K8:三角形的外角性质;K7:三角形内角和定理.【分析】根据三角形的外角的性质及三角形的内角和定理可求得.【解答】解:∵∠ABD是△ABC的外角,∴∠ABD=∠A+∠C=60°+50°=110°,∴∠1=180°﹣∠ABD﹣∠D=180°﹣110°﹣25°=45°.【点评】本题考查三角形外角的性质及三角形的内角和定理,比较简单.2.若方程组,则3(x+y)(3x﹣5y)的值是﹣63.【考点】98:解二元一次方程组.【分析】将x+y=7与3x﹣5y=﹣3代入原式即可求出答案.【解答】解:由题意可知:x+y=7与3x﹣5y=﹣3∴原式=3×7×(﹣3)=﹣63故答案为:﹣63【点评】本题考查二元一次方程组,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.3.将点(1,2)向左平移1个单位,再向下平移2个单位后得到对应点的坐标是(0,0).【考点】Q3:坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:原来点的横坐标是1,纵坐标是2,向左平移1个单位,再向下平移2个单位得到新点的横坐标是1﹣1=0,纵坐标为2﹣2=0.即对应点的坐标是(0,0).故答案填:(0,0).【点评】解题关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.4.为了了解全校学生的视力情况,小明、小华、小李三个同学分别设计了三个方案.①小明:检查全班每个同学的视力,以此推算出全校学生的视力情况.②小华:在校医室找到2000年全校的体检表,由此了解全校学生视力情况.③小李:抽取全校学号为5的倍数的同学,检查视力,从而估计全校学生视力情况.以上的调查方案最合适的是③(填写序号).【考点】V4:抽样调查的可靠性.【分析】根据抽样调查和全面调查的意义分别分析得出即可.【解答】解:①小明:检查全班每个同学的视力,以此推算出全校学生的视力情况,样本具有片面性,不能作为样本,故此选项错误;②小华:在校医室找到2000年全校的体检表,由此了解全校学生视力情况,人数较多不易全面调查,故此选项错误;③小李:抽取全校学号为5的倍数的同学,检查视力,从而估计全校学生视力情况,此选项正确;故选;③.【点评】此题主要考查了抽样调查的可靠性,利用抽样调查和全面调查的定义得出是解题关键.5.不等式1﹣2x<6的负整数解是﹣2,﹣1.【考点】C7:一元一次不等式的整数解;C2:不等式的性质;C6:解一元一次不等式.【分析】根据不等式的性质求出不等式的解集,找出不等式的整数解即可.【解答】解:1﹣2x<6,移项得:﹣2x<6﹣1,合并同类项得:﹣2x<5,不等式的两边都除以﹣2得:x>﹣,∴不等式的负整数解是﹣2,﹣1,故答案为:﹣2,﹣1.【点评】本题主要考查对解一元一次不等式,一元一次不等式的整数解,不等式的性质等知识点的理解和掌握,能根据不等式的性质求出不等式的解集是解此题的关键.6.如图所示,围棋盘放置在某个平面直角坐标系中,白棋②的坐标为(﹣7,﹣4),黑棋④的坐标为(﹣6,﹣8),那么黑棋①的坐标应该是(﹣3,﹣7).【考点】D3:坐标确定位置.【分析】根据点的平移规律,可得答案.【解答】解:黑棋④的坐标为(﹣6,﹣8),右移3个单位,再上移1个单位,得黑棋①的坐标(﹣3,﹣7),故答案为:(﹣3,﹣7).【点评】本题考查了坐标确定位置,利用点的平移规律:右加左减,上加下减是解题关键.二、选择题(每小题4分,共32分)7.4的平方根是()A.2 B.4 C.±2 D.±4【考点】21:平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a 的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8.在平面直角坐标系中,点P的横坐标是﹣3,且点P到x轴的距离为5,则点P的坐标是()A.(5,﹣3)或(﹣5,﹣3)B.(﹣3,5)或(﹣3,﹣5)C.(﹣3,5)D.(﹣3,﹣5)【考点】D1:点的坐标.【分析】根据点到x轴的距离是点的纵坐标的绝对值,可得答案.【解答】解:在平面直角坐标系中,点P的横坐标是﹣3,且点P到x轴的距离为5,则点P 的坐标是(﹣3,5)或(﹣3,﹣5),故选:B.【点评】本题考查了点的坐标,利用了点到x轴的距离是点的纵坐标的绝对值确定点的纵坐标是解题关键.9.方程组的解是()A.B.C.D.【考点】98:解二元一次方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:3x=6,解得:x=2,把x=2代入①得:y=1,则方程组的解为,故选B【点评】此题考查了解二元一次方程组,利用消元的思想,消元的方法有:代入消元法与加减消元法.10.在△ABC中,三边长为9、10、x,则x的取值范围是()A.1≤x<19 B.1<x≤19 C.1<x<19 D.1≤x≤19【考点】K6:三角形三边关系.【分析】根据三角形的三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边可得10﹣9<x<10+9,再解即可.【解答】解:由题意得:10﹣9<x<10+9,解得:1<x<19,故选:C.【点评】此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.11.不等式的解集在数轴上表示正确的是()A. B.C.D.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】求出第一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x+4≤6,得:x≤1,∴不等式组的解集为﹣3<x≤1,故选:A【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12.下列说法正确的是()A.抽样调查选取样本时,所选样本可按自己的爱好抽取B.某工厂质量检查员检测某批灯泡的使用寿命采用普查法C.想准确了解某班学生某次数学测验成绩,采用抽样调查,但需抽取的样本容量较大D.检测某城市的空气质量,采用抽样调查【考点】V2:全面调查与抽样调查.【分析】根据全面调查和抽样调查的特点即可作出判断.【解答】解:A、选样本时,样本必须有代表性及普遍性,A错误;B、应用抽样调查方式,错误;C、要得到准确的成绩,应用全面调查,错误,所以,故选D.【点评】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.13.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x,女生人数为y,则下列方程组中,能正确计算出x、y的是()A.B.C.D.【考点】99:由实际问题抽象出二元一次方程组.【分析】此题中的等量关系有:①该班一男生请假后,男生人数恰为女生人数的一半;②男生人数+女生人数=49.【解答】解:根据该班一男生请假后,男生人数恰为女生人数的一半,得x﹣1=y,即y=2(x﹣1);根据某班共有学生49人,得x+y=49.列方程组为.故选:D.【点评】列方程组解应用题的关键是找准等量关系,同时能够根据等式的性质对方程进行整理变形,从而找到正确答案.14.一个多边形的每一个外角都是45°,那么这个多边形是()A.八边形B.九边形C.十边形D.十二边形【考点】L3:多边形内角与外角.【分析】任意多边形的外角和为360°,用360°除以45°即为多边形的边数.【解答】解:360°÷45°=8.故选:A.【点评】本题主要考查的是多边形的外角和的应用,明确正多边形的每个外角的数×边数=360°是解题的关键.三、解答题(本大题共9小题,满分70分)15.(6分)如图所示,已知AB∥CD,∠C=75°,∠A=25°,求∠E的度数.【考点】JA:平行线的性质.【分析】先根据平行线的性质得∠BFE=∠C=105°,然后根据三角形外角性质求∠E的度数.【解答】解:∵AB∥CD,∴∠BFE=∠C=75°,∵∠BFE=∠A+∠E,∴∠E=75°﹣25°=50°.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了三角形外角性质.16.(6分)计算:+(﹣)【考点】2C:实数的运算.【分析】首先计算开方、乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:+(﹣)=3+(﹣2﹣)=3﹣﹣=﹣【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.17.(5分)如图所示,已知∠A=∠F,∠C=∠D,按图填空,并在括号内注明理由.∵∠A=∠F(已知)∴DF∥AC(内错角相等,两直线平行)∴∠D=∠ABD(两直线平行,内错角相等)又∵∠D=∠C(已知)∴∠C=∠ABD(等量代换)∴BD∥EC(同位角相等,两直线平行)【考点】JB:平行线的判定与性质.【分析】根据平行线的判定推出DF∥AC,根据平行线的性质得出∠D=∠ABD,求出∠C=∠ABD,根据平行线的判定得出即可.【解答】解:∵∠A=∠F(已知),∴DF∥AC(内错角相等,两直线平行),∴∠D=∠ABD(两直线平行,内错角相等),∵∠D=∠C(已知),∴∠C=∠ABD(等量代换),∴BD∥EC(同位角相等,两直线平行),故答案为:已知,DF,AC,内错角相等,两直线平行,两直线平行,内错角相等,已知,等量代换,BD,EC,同位角相等,两直线平行.【点评】本题考查了平行线的性质和判定定理,能灵活运用平行线的判定和性质定理进行推理是解此题的关键.18.(7分)在平面直角坐标系中,△ABC的三个顶点的位置如图所示,点A′的坐标是(﹣1,1),现将△ABC平移,使点A变换为A′,点B′、C′分别是B、C的对应点,请画出平移后的△A′B′C′,并直接写出点B′、C′的坐标:B′(﹣3,0)、C′(0,﹣1).【考点】Q4:作图﹣平移变换.【分析】直接利用平移的性质得出对应点位置进而得出答案.【解答】解:如图所示:△A′B′C′即为所求,B′(﹣3,0)、C′(0,﹣1).故答案为:(﹣3,0);(0,﹣1).【点评】此题主要考查了平移变换,正确得出对应点位置是解题关键.19.(7分)如图,已知BD是∠ABC的角平分线,且∠C=∠DBC,∠BDA=72°,求△ABC各内角度数.【考点】K7:三角形内角和定理.【分析】由∠C=∠DBC、∠BDA=72°结合三角形外角的性质,即可得出∠C=∠DBC=36°,由BD是∠ABC的角平分线可求出∠ABC=2∠DBC=72°,再利用三角形内角和定理即可求出∠A 的度数.【解答】解:∵∠C=∠DBC,∠BDA=∠C+∠DBC=72°,∴∠C=∠DBC=36°.∵BD是∠ABC的角平分线,∴∠ABC=2∠DBC=72°,∴∠A=180°﹣∠ABC﹣∠C=72°.【点评】本题考查了三角形内角和定理、角平分线以及三角形外角的性质,牢记“三角形内角和是180°”是解题的关键.20.(8分)(1)解方程组(2)解不等式组并把解集在数轴上表示出来.【考点】CB:解一元一次不等式组;98:解二元一次方程组;C4:在数轴上表示不等式的解集.【分析】(1)整理原方程组为一般式,再利用加减消元法求解可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)原方程组整理可得:,①+②,得:6x=10,解得:x=,②﹣①,得:4y=﹣6,解得:y=﹣,则方程组的解为;(2),解不等式①,得:x>﹣2,解不等式②,得:x≤1,∴不等式组的解集为﹣2<x≤1,将解集表示在数轴上如下:【点评】本题考查的是解二元一次方程组和一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(9分)商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元,乙种商品每件进价35元,售价45元,若该商场同时购进甲、乙两种商品共100件,恰好用去2700元,求能购进甲、乙两种商品各多少件.【考点】9A:二元一次方程组的应用;8A:一元一次方程的应用.【分析】设商场购买甲种商品m件,购买乙种商品n件,根据该商场同时购进甲、乙两种商品共100件,恰好用去2700元列方程组求解即可.【解答】解:设商场购买甲种商品m件,购买乙种商品n件,由题意得:,解得:.答:该商场能购进甲种商品40件,乙种商品60件.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程组.22.(10分)某校九年级所有学生参加2011年初中毕业英语口语、听力自动化考试,我们从中随机抽取了部分学生的考试成绩,将他们的成绩进行统计后分为A、B、C、D四等,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:25分~30分;B级:20分~24分;C级:15分~19分;D级:15分以下)(1)请把条形统计图补充完整;(2)扇形统计图中D级所占的百分比是10%;(3)扇形统计图中A级所在的扇形的圆心角度数是72°;(4)若该校九年级有850名学生,请你估计全年级A级和B级的学生人数共约为561人.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)抽查人数可由B等所占的比例为46%,根据总数=某等人数÷比例来计算,然后可由总数减去A、B、C的人数求得D等的人数,再画直方图;(2)根据总比例为1计算出D等的比例.(3)由总比例为1计算出A等的比例,对应的圆心角=360°×比例.(4)用九年级学生数乘以这次考试中A级和B级的学生所占百分比即可.【解答】解:(1)抽查的人数为:23÷46%=50,∴D等的人数所占的比例为:1﹣46%﹣24%﹣20%=10%;D等的人数为:50×10%=5,(2)扇形统计图中D级所占的百分比是1﹣46%﹣24%﹣20%=10%;(3)扇形统计图中A级所在的扇形的圆心角度数是:20%×360°=72°.(4)估计达到A级和B级的学生数=(A等人数+B等人数)÷50×850=(10+23)÷50×850=561人.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23.(12分)园林部门用3600盆甲种花卉和2900盆乙种花卉搭配A、B两种园艺造型共50个,挂放在迎宾大道两侧,搭配每个造型所要花盆数如表,综合上述信息,解答下列问题.造型甲乙A 90盆30盆B 40盆100盆(1)符合题意的搭配方案有哪几种?(2)若搭配一个A种造型的成本为1000元,搭配一个乙种造型的成本为1200元,选(1)中那种方案的成本最低?【考点】CE:一元一次不等式组的应用.【分析】(1)设需要搭配x个A种造型,则需要搭配B种造型(50﹣x)个,根据“3600盆甲种花卉”“2900盆乙种花卉”列不等式求解,取整数值即可.(2)总成本为:1000x+1200(50﹣x)=60000﹣2x.利用一次函数的性质进行解答即可.【解答】解:(1)设需要搭配x个A种造型,则需要搭配B种造型(50﹣x)个,则有,解得30≤x≤32,所以x=30或31或32.第一方案:A种造型32个,B种造型18个;第二种方案:A种造型31个,B种造型19个;第三种方案:A种造型30个,B种造型20个.(2)总成本为:1000x+1200(50﹣x)=60000﹣2x.显然当x取最大值32时成本最低,为60000﹣2×32=53600答:第一种方案成本最低,最低成本是53600【点评】此题考查了一元一次不等式组的应用,也是一道实际问题,有一定的开放性,(1)利用所用花卉数量不超过甲、乙两种花卉的最高数量列不等式组解答;(2)为最优化问题,根据(1)的结果直接计算即可.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学试题 第1页 共4页21第9题图c ba2018—2019学年度第二学期期终考试七年级数学试题注意事项:1.本试卷考试时间为100分钟,试卷满分120分.考试形式闭卷. 2.本试卷中所有试题必须作答在答题纸上规定的位置,否则不给分.3.答题前,务必将自己的学校、班级、姓名、准考证号填写在答题纸上相应位置.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在答题纸相应位置上) 1.六边形的内角和为A .720°B .360°C .540°D .180° 2.满足不等式30x +<的最大整数解是A .3-B .4-C .3D .4 3.有两条线段长度分别为:2cm ,5cm ,再添加一条线段能构成一个三角形的是 A .1cm B .2cm C .3cm D .4 cm 4.下列四个算式中,可以直接用平方差公式进行计算的是A .()()a b a b -+--B .(2)(2)a b a b +-C .()()a b b a --D .()()a b a b +-- 5.关于字母x 的整式2(1)(2)x x mx ++-化简后的结果中二次项系数为0,则A .2m =B .2m =-C .1m =D .1m =-6.若3a b =,4b m =,则m 为A .7aB .12aC .81aD .64a7.不等式组1,.x x a >⎧⎨>⎩的解集是1x >,则a 的取值范围是A .1a ≥B .1a >C .1a ≤D .1a < 8. 下列命题是真命题的是A .同位角互补则内错角相等B .同位角互补则同旁内角相等C .同旁内角相等则内错角相等D .内错角互补则同位角相等二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题纸相应位置上)9. 如图,直线a 、b 被直线c 所截,a ∥b ,∠1=70°,则∠2= ▲ °.10.命题“如果两个数相等,那么它们的倒数相等”的逆命题是 ▲ .11.肥皂泡的泡壁厚度大约是0.0007毫米,换算成以米为单位,用科学记数法应表示为 ▲ 米. 12.计算:337()a a ÷= ▲ .13.二元一次方程2325x y +=的正整数解有 ▲ 组.七年级数学试题 第2页 共4页14.已知方程组123.a b b c a c -=-⎧⎪-=⎨⎪+=⎩,,则a = ▲ .15.已知:33223()33x y x x y xy y +=+++,则3()m n -= ▲ .16.小冬发现:23932622,(2)2==.所以他归纳()cb bc a a ≥,请你举反例说明小冬的结论是错误的,你的反例是 ▲ .三、解答题(本大题共有9小题,共72分.请在答题纸指定区域内作答,解答时应写出文字说明、推理过程或演算步骤) 17.(本题满分8分)分解因式:(1)2436x -;(2)22344ab a b b --.18.(本题满分7分)先化简,再求值:2(1)(3)x x x --+,其中15x =.19.(本题满分8分)解方程组:235347.x y x y -=⎧⎨-=⎩,20.(本题满分7分)已知:如图,AD 是△ABC 的角平分线,点E 在BC 上,点F 在CA 的延长线上, EF ∥AD ,EF 交AB 于点G . 求证:∠AGF =∠F .证明:∵ ▲ ( 已知 )∴∠BAD =∠CAD ( ▲ )∵EF ∥AD ( 已知 )∴∠ ▲ =∠BAD ( ▲ ) ∠ ▲ =∠CAD ( ▲ )∴∠AGF =∠F ( ▲ ) 第20题图七年级数学试题 第3页 共4页21.(本题满分8分)一个三角形的三边长分别是x cm 、(2)x +cm 、(5)x +cm .它的周长不超过37 cm .求x 的取值范围. 22.(本题满分8分)已知关于x 、y 的二元一次方程组42.x y m x y +=⎧⎨-=⎩,(1)若1y =,求m 的值;(2)若x y 、异号,求m 的取值范围. 23.(本题满分8分)如图,在相邻两点距离为1的点阵纸上(左右相邻或上下相邻的两点之间的距离都是1个单位长度),三个顶点都在点阵上的三角形叫做点阵三角形,请按要求完成下列操作: (1)将点阵△ABC 水平向右平移4个单位长度,再竖直向上平移5个单位长度,画出平移后的△A 1B 1C 1;(2)连接AA 1、BB 1,则线段AA 1、BB 1的位置关系为 ▲ 、数量关系为 ▲ .估计线段AA 1的长度大约在 ▲ 1AA << ▲ 单位长度;(填写两个相邻整数)(3)画出△ABC 边AB 上的高CD .第23题图七年级数学试题 第4页 共4页24.(本题满分8分)学校提倡练字,小冬和小红一起去文具店买钢笔和字帖,小冬在文具店买1支钢笔和3本字帖共花了38元,小红买了2支钢笔和4本字帖共花了64元. (1)每支钢笔与每本字帖分别多少元?(2)帅帅在六一节当天去买,正巧碰到文具店搞促销,促销方案有两种形式:①所购商品均打九折;②买一支钢笔赠送一本字帖;帅帅要买5支钢笔和15本字帖,他有三种选择方案: (Ⅰ)一次买5支钢笔和15本字帖,然后按九折付费;(Ⅱ)一次买5支钢笔和10本字帖,文具店再赠送5本字帖;(Ⅲ)分两次购买,第一次买5支钢笔,文具店会赠送5本字帖,第二次再去买10本字帖,可以按九折付费; 问帅帅最少要付多少钱?25.(本题满分10分)完全平方公式:222()2a b a ab b ±=±+适当的变形,可以解决很多的数学问题.例如:若31a b ab +==,,求22a b +的值. 解:因为31a b ab +==,所以2()9a b +=,22ab =所以2229a b ab ++=,22ab = 得 227a b +=根据上面的解题思路与方法,解决下列问题: (1)若(7)(4)1x x --=,求22(7)(4)x x -+-的值;(2)如图,点C 是线段AB 上的一点,以AC 、BC 为边向两边作正方形,设AB =5,两正方形的面积和S 1+ S 2=17,求图中阴影部分面积.第25题图B七年级数学试题 第5页 共4页2018—2019学年度第二学期期终考试七年级数学参考答案一、选择题(每小题3分,共24分)1.A 2.B 3.D 4.A 5.D6.B7.C8.B二、填空题(每小题3分,共24分)9. 7010.如果两个数的倒数相等,那么这两个数也相等 11.-7710⨯ 12.2a 13.414.215.322333m m n mn n -+-16.23320.5(0.5)< (答案不唯一)三、解答题17.解:(1)()()2436433x x x -=+- ··························································· 4分(2)()2223442ab a b b b a b --=--····················································· 4分18.解:222(1)(3)21351x x x x x x x x --+=-+--=-+ ······································································ 4分当15x =时,原式=15105-⨯+= ······························································ 3分 19.解:235347.x y x y -=⎧⎨-=⎩,解得:11.x y =⎧⎨=-⎩, ··················································································· 8分(解对一个未知数的值可以得4分) 20.(本题满分7分)已知:如图,AD 是△ABC 的角平分线,点E 在BC 上,点F 在CAEF ∥AD ,EF 交AB 于点G . 求证:∠AGF =∠F .证明:∵AD 是△ABC 的角平分线( 已知 )∴∠BAD =∠CAD ( 角平分线定义 ) ∵EF ∥AD( 已知 )七年级数学试题 第6页 共4页1B ∴∠AGF =∠BAD ( 两直线平行,内错角相等 ) ∠F =∠CAD( 两直线平行,同位角相等 )∴∠AGF =∠F ( 等量代换 ) (每空1分)2537x x x ++++≤······················································· 3分 21.解:由题意得:25x x x ++>+ ···························································· 3分 解得310x <≤ ············································································· 2分22.解:(1)把1y =代入②式得3x =把3x =、1y =代入①式得1m =(方法不唯一) 4分(2)解得:212 1.x m y m =+⎧⎨=-⎩,x y 、异号得:210210.m m +>⎧⎨-<⎩,或210210.m m +<⎧⎨->⎩,得:1122m -<<(方法不唯一) 4分 23.(本题满分8分)(1)如图就是平移后的三角形 2分 (2)位置关系为 平行 、数量关系为 相等 . 2分6 1AA <<7 2分 (3)画出△ABC 边AB 上的高CD . 2分24.解:(1)设每支钢笔x 元,每本字帖分别y 元,由题意得:3382464.x y x y +=⎧⎨+=⎩,得:206.x y =⎧⎨=⎩,答:每支钢笔20元,每本字贴6元. 5分 (2)选择方案三,()20515560.9154⨯+-⨯⨯=元,答:帅帅最少要花154元. 3分 25.解: (1)设7,4;a x b x =-=-则3,1;a b ab +==由题意得: ()()22747x x -+-=; 5分 (2)设AC =a 、BC =b ;由题意得:225,b 17;a b a +=+=计算得:122ab = 5分。