汽车动力学之空气动力学

合集下载

空气动力学及其应用

空气动力学及其应用

空气动力学及其应用概述:空气动力学是研究空气对物体运动的影响的科学。

它在各个领域都有广泛的应用,包括航空航天、汽车工程、风力发电等。

本文将介绍空气动力学的基本原理及其在实际应用中的一些例子。

一、空气动力学的基本原理空气动力学研究的对象是空气流动对物体运动的影响。

其中,流体力学和动力学是空气动力学的两个基本分支。

流体力学主要研究流体的运动规律,动力学则探究力对物体运动的影响。

1. 流体力学流体力学分为两个分支:静力学和动力学。

静力学研究的是静止流体的力学性质,而动力学研究的是流体的运动特性。

在空气动力学中,我们主要关注的是流体的动力学性质,即液体或气体的流动过程。

2. 动力学动力学是研究运动物体的力学原理。

在空气动力学中,我们需要考虑物体在空气中移动时所受到的阻力、升力和推力等因素。

其中,阻力是空气对物体运动的阻碍力,而升力是物体在空气中产生的向上的力,推力是物体在空气中产生的向前的力。

二、空气动力学的应用空气动力学在各个领域都有重要的应用,下面将介绍其中一些常见的应用领域。

1. 航空航天工程航空航天工程是空气动力学的典型应用领域之一。

在飞机的设计和制造过程中,空气动力学原理被广泛应用。

例如,空气动力学可以帮助设计机翼的形状和尺寸,以达到减小阻力、增加升力的目的。

此外,空气动力学还能够帮助优化飞机的外形和气动布局,提高飞行稳定性和操纵性能。

2. 汽车工程空气动力学在汽车工程中也有重要的应用。

通过减小汽车的阻力,可以提高汽车的燃油经济性和行驶稳定性。

例如,在汽车外形设计中,空气动力学原理可以指导优化车身的流线型,减小车身与空气之间的阻力。

同时,空气动力学还可以帮助优化车辆底部的空气动力学布局,减小底部的气流阻力。

3. 风力发电风力发电是一种利用空气动力学原理的可再生能源技术。

风力发电机的叶片利用风的流动产生动力,并通过转子变速器将动力转化为电能。

在风力发电机的设计和优化中,空气动力学的原理被广泛应用。

空气动力学

空气动力学

空气动力学概述空气动力学是研究物体在空气中运动时受到的力学效应的学科。

它主要研究物体在流体介质中运动时的力学特性和性能。

空气动力学的研究范围涉及飞行器、汽车、船舶等各种交通工具,以及建筑物、桥梁等建筑结构,甚至涉及生物体在空气中运动的现象。

空气动力学基本原理定义在空气动力学中,物体在流体中的运动被称为空气动力学运动。

研究空气动力学时,我们通常关注以下几个关键参数: - 速度(Velocity):物体在流体中运动的速度。

- 密度(Density):流体的密度,表示在给定体积中流体分子的数量。

- 粘度(Viscosity):流体的粘度,描述了流体分子内聚的力量。

力学模型在空气动力学中,我们使用下面的几个力学模型来研究运动物体受到的力学效应:•定常流动模型(Steady Flow Model):假设物体在流体中的运动速度、流体的密度和粘度都是恒定不变的。

•非定常流动模型(Unsteady Flow Model):考虑流体速度和流体参数(如密度和粘度)随时间变化的情况。

•不可压缩流动模型(Incompressible Flow Model):假设流体在运动过程中密度保持不变。

•可压缩流动模型(Compressible Flow Model):考虑流体在运动过程中密度会发生变化的情况。

流体力学方程在空气动力学中,我们使用基本的流体力学方程来描述物体在流体中受到的力学效应:•欧拉方程(Euler’s Equation):描述了流体的不可压缩流动模型,它基于质量守恒、动量守恒和能量守恒等原理。

•纳维-斯托克斯方程(Navier-Stokes Equation):描述了流体的可压缩流动模型,它在欧拉方程的基础上加入了粘性项,更符合实际流体的运动特性。

应用领域空气动力学在许多领域都有广泛的应用。

以下是一些常见的应用领域:航空航天工程空气动力学在航空航天工程中具有重要的作用。

对于飞机、火箭、导弹等飞行器的设计和性能分析,空气动力学提供了基础理论和方法。

汽车空气动力学六分力

汽车空气动力学六分力

汽车空气动力学六分力
汽车空气动力学是研究汽车在空气中运动时所受到的力学效应及其
影响的学科。

其中的六分力是指汽车在空气中运动时所受到的六种力
学效应,它们分别是:
1. 阻力力:汽车行驶在空气中时,空气对汽车的阻力会产生摩擦作用,阻力力会使汽车的速度减慢或者保持恒定。

降低汽车的阻力力就能提
高汽车的速度和燃油经济性。

2. 升力力:当汽车在空气中行驶时,车体会对空气产生波动,这些波
动会形成气流,气流会产生向上的力量,也就是升力力。

升力力的大
小取决于汽车的速度、形状、车身倾斜角等因素。

3. 重力力:汽车在地球引力的作用下,受到的向下的力量就是重力力,它是使汽车沿着地面行驶的主要力量。

4. 侧向力:当汽车在高速行驶时,风力会对车身施加侧向切向力,这
个力量被称为侧向力。

侧向力的产生是由于车身的横向移动和风的侧
向作用力相互作用。

侧向力的大小取决于车速和侧向风的作用角度。

5. 即时力:即时力是汽车在高速行驶时所受到的一种向前的推力,它
的大小取决于汽车速度和空气密度。

6. 附着力:汽车在行驶时,轮胎需要与地面保持一定的接触力,这个
力被称为附着力。

附着力的大小与轮胎的材料、大小、胎压以及路面情况等因素有关。

以上就是汽车在空气动力学中的六个重要的力学效应。

研究这些效应可以帮助向我们更好地了解汽车在空气中的行驶原理和提高汽车的燃油经济性。

空气动力学 科普

空气动力学 科普

空气动力学科普空气动力学是研究空气在物体表面周围的流动及其对物体的影响的科学。

它是力学和流体力学的一个重要分支,广泛应用于航空航天、汽车、建筑等领域。

本文将从流动的基本原理、气流的特性以及应用领域三个方面科普空气动力学的知识。

一、流动的基本原理空气动力学研究的基础是流体力学。

在空气动力学中,流体可以看作是连续不断的微小粒子,其运动服从牛顿力学的基本定律。

空气动力学研究的主要对象是流体在物体表面周围的流动。

在空气动力学中,流体的流动可以分为层流和湍流两种形式。

层流是指流体沿着平行于表面的方向流动,流线间没有交叉和混乱。

湍流则是流体流动产生的一种混乱的状态,流线交叉、扭曲,流动速度和压力分布不规则。

物体表面周围的流动可以产生压力分布的变化。

当流体流过物体表面时,流体速度增加,压力就会降低,形成低压区域。

根据伯努利原理,流体速度增加时,压力就会降低,而流体速度减小时,压力就会增加。

这种压力分布的变化对物体产生了升力和阻力。

二、气流的特性在空气动力学研究中,气流的特性对于物体的设计和性能有着重要影响。

首先是气流的速度分布。

在物体周围的气流中,速度分布不均匀。

在物体正面,气流速度较快,而在物体背面,气流速度较慢。

这种速度分布的不均匀性对物体的阻力和升力产生了影响。

其次是气流的粘性。

气体具有一定的黏性,当气体流动时,会与物体表面发生摩擦。

这种摩擦会阻碍气流的流动,并产生阻力。

因此,在空气动力学中,研究气流的粘性对于降低阻力、提高效率非常重要。

最后是气流的湍流特性。

湍流是气流流动中产生的一种混乱状态,流线交叉、扭曲,流动速度和压力分布不规则。

湍流对物体的阻力产生很大影响,因此在空气动力学中,研究气流的湍流特性对于降低阻力、提高性能至关重要。

三、应用领域空气动力学在许多领域都有着重要的应用,下面分别介绍航空航天、汽车和建筑领域的应用。

在航空航天领域,空气动力学是飞机设计的重要基础。

通过研究机翼和机身的气动特性,可以优化飞机的升力和阻力,提高飞行效率。

空气动力汽车的原理

空气动力汽车的原理

空气动力汽车的原理
空气动力汽车是一种利用空气动力学原理来驱动的汽车,它与传统燃油汽车相比具有更环保、更节能的特点。

空气动力汽车的原理主要是通过利用空气动力学原理来驱动汽车,下面我们将详细介绍空气动力汽车的原理。

首先,空气动力汽车的原理是利用空气动力学原理来产生推进力。

空气动力学原理是研究空气在物体表面流动时所产生的力和阻力的科学,通过合理设计车身和发动机,可以使空气在流动过程中产生推进力,从而驱动汽车前进。

其次,空气动力汽车的原理是利用压缩空气来产生动力。

空气动力汽车通常配备有压缩空气储存装置,通过压缩空气储存装置将空气压缩到高压状态,然后释放压缩空气来驱动发动机,产生动力推动汽车前进。

另外,空气动力汽车的原理是利用空气动力学原理来减少空气阻力。

空气动力学原理可以帮助设计车身外形,使得汽车在运动时减少空气阻力,从而提高汽车的行驶效率和节能性能。

最后,空气动力汽车的原理是利用空气动力学原理来提高汽车
的动力性能。

通过合理设计发动机和传动系统,利用空气动力学原
理来提高汽车的动力性能,使得汽车在行驶过程中更加稳定、灵活
和高效。

综上所述,空气动力汽车的原理是基于空气动力学原理来驱动
汽车,通过合理设计车身和发动机,利用压缩空气来产生动力,减
少空气阻力,提高汽车的动力性能,从而实现更环保、更节能的汽
车行驶方式。

空气动力汽车的原理虽然目前还处于研究和发展阶段,但相信随着技术的不断进步,空气动力汽车一定会成为未来汽车发
展的重要方向。

汽车空气动力学

汽车空气动力学

为“非定常流场”;不随时间变化得流场,称做“定常流
场”。
“流线”——为了研究气流得运动,在气流中引人一条假想 得曲线,她任何一点切线得方向都与该时刻气流质点速度向 量得方向相同。流线所给出得,就是在同一瞬时,线上各气 流质点运动方向得图形。
“流谱”——在某一瞬时得流场中,许多流线得集合,可通过 流谱来描述气体流动得全貌。
分离和涡流耗费能量,使阻力增大。
汽车表面得附面层
发动机罩与前风窗凹处得涡系
3、汽车行驶时受到得气动力和力矩
3、1 气动力
将整个汽车外表面上压力合成而得到作用在汽车上得 合力,称为气动力F。合力在汽车上得作用点称为风压 中心,记作C、P。气动力F与气流速度得平方,迎风面 积S以及车身形状系数CF成正比,即:
基本原则: 1、降低高静压区气体静压,升高低静压区得气体静压; 2、延缓分离现象; 3、负迎角造型,疏导底部气流; 4、使风压中心位于汽车质心之后。
造型上改善空气动力性能得措施
1、汽车前部 使迎面气流顺畅得流过:车头部前端低矮,后倾圆化,保险杠位
置前伸,端面呈凸字形,拐角圆滑,俯视图呈半圆形;
控制底部气流量:设置阻流板; 冷却空气入口处得优化:设置在正压区。
M y Fx Zc Fz X c pqS (Cd Zc Cz X c ) pqSLCMy
横摆力矩Mz
M y Fy X c pqSLCMz
侧倾力矩Mx
M x Fy Zc pqSLCMx
Xc、Zc——风压中心到质心距离; L——为特征长度,一般指轴距。
气动力和气动力矩
4、汽车气动阻力得组成
造型上改善空气动力性能得措施
2、汽车中部 前后风窗倾角增大; 增大风窗玻璃法向曲率; 前、后柱圆化; 风窗玻璃表面与周围平滑,采用粘贴法安装玻璃; 俯视图中部鼓腰; 最大横截面尽可能后移; 侧面平滑

车辆空气动力学

车辆空气动力学

车辆空气动力学车辆空气动力学是指车辆行驶时空气对车辆的影响和作用的学科。

空气动力学在汽车设计中起着至关重要的作用,它涉及到车辆的气动外形设计、空气阻力、升力、气流优化等方面,直接影响到车辆的性能、稳定性和燃油经济性。

车辆在行驶过程中,空气对车辆的影响主要表现为空气阻力和升力。

空气阻力是车辆行驶时空气对车辆前进方向施加的阻力,直接影响到车辆的速度和燃油消耗。

为了降低空气阻力,汽车设计师需要通过合理设计车身外形、减小车身侧面积、降低车身下压力等方式来优化车辆的空气动力学性能。

除了空气阻力,车辆在高速行驶时还会受到空气的升力影响。

升力会使车辆在高速行驶时产生不稳定的飘移现象,降低车辆的操控性和行驶稳定性。

为了减小升力,汽车设计师需要通过设计合理的车身下压力装置、增加车身稳定性等措施来改善车辆的空气动力学性能。

在汽车设计中,空气动力学设计是一个复杂而重要的领域。

设计师需要考虑车辆的外形、车身结构、进气口、排气口等因素,以确保车辆在高速行驶时具有良好的空气动力学性能。

通过使用计算流体力学(CFD)等工具,设计师可以模拟车辆在不同速度下的空气流动情况,优化车辆的空气动力学性能。

除了影响车辆性能和燃油经济性外,空气动力学还可以影响到车辆的外观设计。

许多现代汽车设计都采用了流线型的外形设计,以降低空气阻力和减小升力,提高车辆的性能和稳定性。

流线型的外形设计不仅具有美观的外观,也是对空气动力学原理的有效运用。

总的来说,车辆空气动力学是汽车设计中不可忽视的重要领域。

通过优化车辆的空气动力学性能,可以提高车辆的性能、稳定性和燃油经济性,为驾驶员提供更加安全和舒适的驾驶体验。

未来随着科技的不断发展,空气动力学在汽车设计中的作用将变得更加重要,为汽车工业的发展带来新的机遇和挑战。

汽车空气动力学原理解析

汽车空气动力学原理解析

汽车空气动力学原理解析当我们驾驶汽车在道路上疾驰时,可能很少会去思考空气对车辆行驶的影响。

但实际上,汽车空气动力学在车辆的性能、燃油效率、稳定性和舒适性等方面都起着至关重要的作用。

首先,让我们来了解一下什么是汽车空气动力学。

简单来说,它研究的是汽车在行驶过程中与空气相互作用的规律,以及如何通过优化车辆的外形和结构,来减少空气阻力,提高车辆的性能和效率。

空气阻力是汽车行驶中需要克服的主要阻力之一。

当汽车行驶时,空气会在车身表面形成一层边界层。

这层边界层的摩擦力会产生阻力,而且汽车前方的空气被压缩,形成压力波,后方则形成低压区,前后的压力差也会产生阻力。

这些阻力的总和就是我们常说的空气阻力。

空气阻力的大小与车速的平方成正比,这意味着车速越高,空气阻力对车辆性能和燃油消耗的影响就越大。

那么,汽车设计师们是如何运用空气动力学原理来降低空气阻力的呢?车辆的外形设计是关键。

流线型的车身能够有效地减少空气阻力。

比如,车头部分通常设计成较为圆润的形状,这样可以减少空气的冲击和分离,使气流更顺畅地流过车身。

前挡风玻璃的倾斜角度也经过精心设计,既能提供良好的视野,又能减少气流的阻力。

车身侧面的线条要尽量平滑,避免出现突兀的凸起或凹陷。

车尾部分的设计同样重要,一个良好的车尾设计可以减少车尾的乱流,降低阻力。

除了外形,车辆的一些细节设计也对空气动力学有着重要影响。

例如,后视镜的形状和位置,如果设计不合理,会在行驶中产生较大的阻力。

现在很多车型都采用了更符合空气动力学的后视镜形状,或者使用摄像头代替传统后视镜,以降低阻力。

车辆底部的平整度也很重要,不平整的底部会使气流紊乱,增加阻力。

因此,一些高性能汽车会在底部安装护板,使气流能够更顺畅地通过。

汽车的进气和散热系统也与空气动力学密切相关。

进气口的位置和形状要既能保证足够的进气量,又能减少阻力。

散热格栅的设计也要考虑到气流的流动,以提高散热效率的同时降低阻力。

此外,汽车的风阻系数是衡量其空气动力学性能的一个重要指标。

空气动力学基础知识

空气动力学基础知识

空气动力学基础知识目录一、空气动力学概述 (2)1. 空气动力学简介 (3)2. 发展历史及现状 (4)3. 应用领域与重要性 (5)二、空气动力学基本原理 (6)1. 空气的力学性质 (7)1.1 气体状态方程 (8)1.2 空气密度与温度压力关系 (8)1.3 空气粘性 (9)2. 牛顿运动定律在空气动力学中的应用 (10)2.1 力的作用与动量变化 (11)2.2 牛顿第二定律在空气动力学中的体现 (13)3. 空气动力学基本定理 (14)3.1 伯努利定理 (15)3.2 柯西牛顿定理 (16)3.3 连续介质假设与流动连续性定理 (17)三、空气动力学基础概念 (18)1. 流体力学基础概念 (19)1.1 流速与流向 (20)1.2 压力与压强 (21)1.3 流管与流量 (22)2. 空气动力学特有概念 (23)2.1 空气动力系数 (25)2.2 升力与阻力 (26)2.3 空气动力效应与稳定性问题 (27)四、空气动力学分类及研究内容 (28)1. 空气动力学分类概述 (30)2. 理论空气动力学研究内容 (31)一、空气动力学概述空气动力学是研究流体(特别是气体)与物体相互作用的力学分支,主要探讨流体流动过程中的能量转换、压力分布和流动特性。

空气动力学在许多领域都有广泛的应用,如航空航天、汽车、建筑、运动器材等。

空气动力学的研究对象主要是不可压缩流体,即流体的密度在运动过程中保持不变。

根据流体运动的特点和流场特性,空气动力学可分为理想流体(无粘、无旋、不可压缩)和实际流体(有粘性、有旋性、可压缩)两类。

在实际应用中,理想流体问题较为简单,但现实生活中的流体大多具有粘性和旋转性,因此实际流体问题更为复杂。

空气动力学的基本原理包括牛顿定律、质量守恒定律、动量守恒定律、能量守恒定律等。

这些原理构成了空气动力学分析的基础框架,通过建立数学模型和求解方程,可以预测和解释流体流动的现象和特性。

汽车的空气动力学

汽车的空气动力学

150
200
速度 (Km/h)
(气动阻力系数)
CD= 0.30
0.25 时
日本JC08工况
3%
北美工况
5%
100km/h定速
8%
以某小型混动轿车为例
特别在高速走行时,低油耗开发是必不可少的技术。
汽车上的气动力
气动力(F) = ½ ρ V2 CD A
气动阻力系数(CD) =
F ½ ρ V2 A
ρ:空气密度 V:速度 A:正投影面积
涡街噪声的特点
风振
由前方来流撞击在天窗开口后部,产生涡 乘员舱内产生强烈震动,发出压迫耳朵的声音。
导风板
天窗开
涡 导风板 ル天ー窗フ前先端端部部分分
车顶钣金 车顶玻璃
特征
・涡较大时⇒ 频率低 ・涡的能量大 ・变化不大
笛吹音 由于压力变动产生、在狭小的空间发生共鸣
现象
发生部位
段差处的笛吹音
去除段差 增大段差
侧倾力矩(CR)
升力(Lift) 横摆力矩(CY)
横力(CS) 纵倾力矩 (CP)
空力性能对整车性能有非常大的影响。
气动阻力的贡献度
100km/h时占全部行驶阻力7成 200km/h时占全部行驶阻力9成
气动阻力降低,燃料经济性提升效果
行驶阻力
空气阻力
空气阻力


90%


空气阻力
70%
0
50
100
例如:
100km行驶时 ⇒ 140km时!?
50kg
〇98〇kgkg
速度增加1.4倍 ⇒ 那么、汽车行驶阻力增加约2倍
气动阻力较小的车辆
正面投影面积小

汽车动力学之空气动力学

汽车动力学之空气动力学



1.空气动力学基础知识节
1.3 压力系数

定义
常用压力系数来表示物体在气流流场中表面各点压力的大小。 压力系数定义: CP =
P-P∞ V )2 C = 1 - ( ; 可整理为: P 2 V∞ ρV∞ /2
CP≤1。CP=1处,V=0,是驻点。

表示方法
矢量法 坐标法
汽车空气动力学
2.汽车空气动力与空气动力矩
前四种为压力阻力。
Cd总值:0.45 A—形状阻力(Cd=0.262); B—干扰阻力(Cd=0.064); C—形状阻力(Cd=0.053); D—形状阻力(Cd=0.031); E—形状阻力(Cd=0.040)。
3.空气阻力
3.2 形状阻力
形状阻力主要是压差阻力,是由车身的外部形状决定的。

前风窗对空气阻力的影响 • 前风窗对气流的影响 • 减小前风窗处空气阻力的措施

1.空气动力学基础知识节 • 减小形状阻力的措施 • 降低逆压梯度 减缓物体背流面的截面变化,使分离 点(分离线)向后移,减小尾流区。 • 增大紊流度 增大物面的粗糙度。 分离是产生在附面层 • 流体没有粘度,就没有附面层。 • 没有附面层,就不会产生气流分离现象。 汽车上的分离区 气流在前风窗下部、车顶前端、行李前 部等处分离后,又重新附着,形成分离区(亦 称为“气泡”( bubble))。

理想的发动机空气冷却系统
• • • • • • 气流通道为密封的直管道; 散热器面积大,进入的气流速度低; 全部气流都流经散热器; 通道面积变化缓和,无涡流产生; 流经散热器的气流为紊流; 可根据散热要求调节气流流量。
汽车空气动力学
4.空气升力
4.1 空气升力

空气动力学总结

空气动力学总结

汽车空气动力学总结第一章绪言一、何谓汽车空气动力学:以流体力学和空气动力学的基本原理、基本方法,分析汽车绕流汽车时的速度场、压强场,来研究作用在汽车上的气动力、气动力矩及其对汽车造型和性能影响的一门学科。

二、研究内容:1•气动力和气动力矩2.流场3.内部设备的冷却4. 散热通风和空调三、促使汽车空气动力学迅速发展的几个重要原因1.实用车速的提高2.石油危机价格暴涨3.市场竞争日趋激烈,促使各汽车厂家注重汽车性能。

四、汽车设计外形的要素1.机械工程要素:满足构件的布局,易于制造,方便维修。

2.人体工程要素:保证乘员乘坐舒适,上下方便,视野广阔,安全。

3.流体力学要素:满足流体力学方面的要求。

4.商品学要素。

五、小轿车外形的演变1、箱型汽车2、甲虫型汽车3、船型汽车4、鱼型汽车5、楔型汽车6 、未来型汽车各种型号汽车的特点六、货车和客车的造型问题第二章空气动力学基本原理大多数问题在流体力学中都有所设计,不在作详细论述,重要问题:从空气动力学的观点考察作用在汽车上的气动力和气动力矩1、摩擦阻力以边界层反映出的摩擦阻力2、压差阻力形成的原因3、诱导阻力分析诱导阻力形成的原因4、汽车坐标系的建立第三章空气动力对汽车性能的影响一、牵引力必须克服的各种阻力1、气动阻力X二C x 1W2A22、滚动阻力X R=(G -Y)f R忽略Y则X R=Gf3、爬行阻力X c G sin -4、加速阻力X A」ag汽车在水平无风的路面上等速行驶时,总阻力只有滚动阻力和气动阻力12A Gf由前述知,气动阻力系数下降,燃油消耗率下降。

第四章小轿车的气动造型一、 小轿车表面气流的流动情况1、 以阶梯背为例进行分析各部位的流动情况阻力总阻力气动阻力滚动阻力― vN e总阻力气动阻力二、 功率和车速的关系1、 气动阻力消耗的功率和车速的三次方成正比2、滚动阻力近似和速度的一次方成正比 三、气动力和最大车速的关系r T max 一Gf R 行 書 ]TA(C x -C y f R )由上式知:气动阻力系数下降,最大速度增大。

汽车空气动力学性能分析

汽车空气动力学性能分析

汽车空气动力学性能分析随着汽车的普及,汽车安全和性能也成为消费者关注的重要问题。

汽车空气动力学性能是指在行驶过程中汽车受到空气阻力的大小和变化规律,它是汽车性能中最基本的一个方面。

了解汽车的空气动力学性能可以帮助我们更好地了解汽车的性能和安全。

一、汽车空气动力学性能的原理汽车在行驶过程中,空气会对汽车产生阻力,这种阻力称为空气阻力。

汽车空气动力学性能的分析就是研究空气阻力的大小和变化规律。

空气阻力的大小与气流的速度、密度、粘性、形状以及流向等因素有关。

汽车在行驶过程中,前方的气流会受到汽车遮挡,产生空气压力,而这种压力会对汽车产生阻力,直接影响汽车的速度、加速度和燃油消耗等方面的性能。

二、汽车空气动力学性能分析的方法有多种方法可以对汽车的空气动力学性能进行分析,其中比较常见的有风洞试验和数值模拟两种方法。

1. 风洞试验风洞试验是通过在实验室中重建汽车行驶时的气流环境,通过测量气流的流速、密度等参数来分析汽车在行驶过程中受到的空气阻力。

风洞试验的优点是可以更精确地模拟汽车行驶时的空气环境,否则就需要在实际路面上进行测试,成本高且不便于控制变量。

2. 数值模拟数值模拟是通过计算机模拟整个汽车行驶过程中的空气动力学过程,从而分析汽车受到的空气阻力。

数值模拟的优点是可以更方便地对不同的因素进行分析,优化设计;缺点是需要消耗大量的计算资源和时间。

三、汽车空气动力学性能的优化汽车制造商可以根据汽车的空气动力学性能分析结果,对汽车的外形进行优化。

经过优化设计,汽车可以减少空气阻力,提高速度和燃油效率。

汽车空气动力学性能对车辆运动性和油耗有重要影响。

为了提高汽车的油耗性能,汽车外观设计不断优化。

1. 减小风阻力减小车身面积、改善车身型线是减小风阻力的常用方法。

如改善W222 S级的车身线条,设计更近似于水滴的外形,通过调整底部的空气入口与排气孔位置和大小,以及调整后行灯的设计,降低了大约14%的风阻。

2. 优化空气流通优化加油口、调整前大灯等与空气流通国界完成的部件也是减小风阻力的有效方法。

汽车空气动力学研究

汽车空气动力学研究

汽车空气动力学研究汽车是现代工业中不可或缺的交通工具,每年全球汽车产量都在稳步增长。

在汽车发展的漫长历程中,科技不断深入,汽车空气动力学成为汽车工程领域重要的研究方向之一。

空气动力学研究通过优化汽车的空气动力特性,实现汽车的工程优化,提高汽车性能、安全性、耐久性等方面的指标。

汽车气动力学的研究内容汽车气动力学是研究汽车行驶时,车辆与空气相互作用的力学学科。

汽车气动力学主要涉及以下内容:1. 静态外观。

汽车设计外观时不能只考虑外观美观,还应当考虑各个零部件装配后形成的flow field,避免影响车辆稳定性。

2. 内部空气动力。

驾驶员通风以及气流对座椅、前挡风玻璃表面的影响也应当纳入研究范围之内。

3. 车辆纵向平衡。

车辆纵向平衡主要涉及车辆的气动力分布,主要考虑空气动力的平衡特性,减少纵向风阻能提高汽车行驶的稳定性。

4. 车辆横向控制。

包括汽车侧翻、车身倾斜等因素对车辆安全性的影响。

5. 车辆安全保护。

以人为本,消除风噪、震动等因素,为人车安全提供保障。

汽车气动力学的意义汽车气动力学研究的意义主要体现在以下三个方面。

1. 提高汽车性能。

气动性能的优化可以减小汽车的风阻,提高汽车行驶时的速度、操控性、平稳性等指标。

2. 提高汽车安全性。

汽车在行驶时受到的气动力和侧风力的影响较大,优化汽车造型和气动表面,可以降低车辆因风阻、偏移而失控的风险。

3. 降低汽车油耗。

优化汽车气动性能可以减小汽车的风阻,从而减少汽车总的能耗,达到降低油耗的目的。

汽车气动力学研究的方法几何模型流程与其他物体不同,汽车具有相当复杂的结构,其中零部件的形状和安排都不同,而零部件的尺寸和角度对于气流的影响也不同,这就为汽车气动力学研究带来了很大的挑战。

传统的汽车空气动力学研究一般是使用流体模拟软件对汽车进行零部件建模,并用实验一次次验证模拟结果的准确性,使车辆专业人员更优秀的预测分析车辆的气动性能。

通过三维CAD模型建立一套完整的汽车外形模型,并分析不同结构条件下的汽车流场分布。

空气动力学公式范文

空气动力学公式范文

空气动力学公式范文空气动力学公式指的是描述物体在空气中受力和运动的数学公式。

在工程和物理学领域中,空气动力学公式被广泛应用于空气动力学研究、航空航天工程设计、汽车设计以及建筑设计等方面。

下面是一篇超过1200字的空气动力学公式范文,介绍了一些常见的空气动力学公式及其应用。

一、气体动力学理论基础在空气动力学研究中,气体动力学理论是非常重要的基础。

根据气体动力学理论,气体中的压力(P)、密度(ρ)和温度(T)之间存在一定的关系。

根据理想气体状态方程,可以得到如下公式:1.理想气体状态方程P=ρRT其中,P为气体的压力,ρ为气体的密度,R为气体的气体常数(通常为287 J/(kg·K)),T为气体的绝对温度。

2.理想气体压力与温度之间的关系P∝T根据理想气体状态方程,可以得出气体的压力与温度成正比。

二、飞行器气动力学公式在航空航天工程中,空气动力学公式用于描述飞行器受力和运动过程。

以下是一些常见的飞行器气动力学公式及其应用。

1.飞行器升力与气动系数之间的关系L = 0.5C_liftρV^2S其中,L为飞行器的升力,C_lift为升力系数,ρ为空气密度,V为飞行器的速度,S为飞行器的参考面积。

2.飞行器阻力与气动系数之间的关系D = 0.5C_dragρV^2S其中,D为飞行器的阻力,C_drag为阻力系数,ρ为空气密度,V为飞行器的速度,S为飞行器的参考面积。

3.飞行器侧向力与气动系数之间的关系Y = 0.5C_sideρV^2S其中,Y为飞行器的侧向力,C_side为侧向力系数,ρ为空气密度,V为飞行器的速度,S为飞行器的参考面积。

4.飞行器俯仰力矩与气动系数之间的关系M_pitch = 0.5C_pitchρV^2SC_bar其中,M_pitch为飞行器的俯仰力矩,C_pitch为俯仰力矩系数,ρ为空气密度,V为飞行器的速度,S为飞行器的参考面积,C_bar为平均气动弦长。

三、车辆空气动力学公式在汽车设计中,空气动力学公式用于描述汽车在行驶过程中受到的空气阻力。

空气动力学的基础理论与应用

空气动力学的基础理论与应用

空气动力学的基础理论与应用空气动力学是研究物体在空气中运动时,所受到的气动力及其作用性能的科学。

自人类研制飞行器以来,空气动力学便成为飞行器设计和研究的重要领域。

但实际上,空气动力学研究的范围远不止飞行器,还适用于汽车、高铁、桥梁等领域。

本文将介绍空气动力学的基础理论和应用。

一、空气动力学的基础理论1.流体力学空气动力学的基础理论是流体力学,它主要研究流体的运动方式和运动规律。

在空气动力学中,流体大多指气体。

气体的流动可以分为层流和湍流。

层流指气流的运动呈现平滑的状态,流线整齐,速度分布均匀,剪应力小。

而湍流则是气流的运动方式呈现混沌、无规律的状态,流线混乱,速度分布不均匀,剪应力大。

2.空气动力学基本方程空气动力学基本方程包括质量守恒方程、动量守恒方程和能量守恒方程。

质量守恒方程描述的是气体内部质量的守恒。

动量守恒方程描述的是气体内部动量的守恒。

能量守恒方程描述的是气体内部能量的守恒。

这些方程组成了解决气体流动问题的数学基础。

3.气动力学气动力学研究物体在空气中运动时所受到的气动力。

气动力可以由压力力和剪力组成。

气体静压力是气体由于分子速度和数密度变化产生的压力。

气体剪切力是气体分子之间的相互作用力,作用在物体表面上。

二、空气动力学的应用1.飞行器在飞行器设计中,空气动力学是不可或缺的。

飞行器的气动外形和气动力性能的研究需要应用空气动力学的基础理论和计算方法。

在工程实践中,需要进行气动计算、模拟和试验研究,以验证新型设计的气动性能,并进行数据分析和优化。

2.汽车汽车空气动力学研究主要是优化车身外形和改善车辆的空气动力性能。

优化车辆外形可以提高燃油效率、降低汽车空气阻力、提高安全性和稳定性。

在汽车设计中,也需要进行气动计算、模拟和试验研究,以验证新型设计的气动性能,并进行数据分析和优化。

3.高铁高铁空气动力学研究主要是优化列车外形和改善列车的空气动力性能。

在高速列车行驶过程中,空气阻力对列车运行速度和能源消耗有着重要影响。

汽车空气动力学术语和定义

汽车空气动力学术语和定义

汽车空气动力学术语和定义一、前言汽车空气动力学是汽车工程领域中的一个重要分支,它主要研究汽车在空气中运动时所受到的各种力和阻力以及这些力和阻力对汽车性能和行驶安全的影响。

本文将介绍汽车空气动力学术语及其定义,以帮助读者更好地了解和掌握这一领域的知识。

二、基本概念1. 气动力(Aerodynamic force)指空气对运动物体产生的作用力,包括阻力、升力、侧向力等。

2. 阻力(Drag)指空气对运动物体前进方向上产生的阻碍作用,是影响汽车行驶稳定性和燃油经济性的主要因素之一。

3. 升力(Lift)指空气对运动物体垂直方向上产生的提升作用,例如飞机在起飞时所受到的升力就是由于机翼形状产生了该方向上的压强差而形成。

4. 侧向力(Side force)指空气对运动物体横向产生的推挤作用,例如赛车在高速弯道中所受到的侧向力就是由于车身和空气之间的相互作用而产生的。

5. 气动力系数(Aerodynamic coefficient)指气动力与运动物体表面积、速度、密度等参数的关系,通常用来描述汽车在空气中运动时所受到的各种力和阻力。

三、流场特性1. 空气流场(Airflow)指空气在汽车周围形成的一种流动状态,其特性包括速度、压强、密度等。

2. 空气流量(Airflow rate)指单位时间内通过某个截面的空气体积,通常用来描述汽车所需进入发动机燃烧室的空气量。

3. 湍流(Turbulence)指空气流场中存在的一种不规则且随机变化的运动状态,其特征包括涡旋、涡街等。

4. 压强分布(Pressure distribution)指汽车表面上各点处所受到的压强大小及其分布情况,通常用来描述汽车在不同速度下所受到的各种气动力。

四、汽车外形设计1. 空气阻力系数(Drag coefficient)指汽车在运动时所受到阻力与空气密度和前截面积的比值,是衡量汽车空气动力性能的重要指标之一。

2. 空气动力学外形设计(Aerodynamic design)指在保证汽车外形美观和车内舒适性的前提下,通过优化车身线条和尾部设计等方式来降低汽车的空气阻力系数和提高燃油经济性。

汽车空气动力学知识点

汽车空气动力学知识点

第一章绪论引言:利用视频、图片介绍什么是空气动力学?空气动力学的在航空、航天、火车、汽车、建筑、体育运动方面的应用1.1 汽车空气动力学的重要性1.1.1 汽车空气动力学的作用及重要性汽车空气动力学是研究空气与汽车相对运动时的现象和作用规律的一门科学。

汽车空气动力学特性对汽车的动力性、经济性、操纵稳定性、安全性和舒适性都有重要的影响。

1.1.2汽车空气动力学的研究方法实验研究:理论分析和数值计算的基础,并用来检验理论结果的正确性和可靠性;理论分析:能指导实验和数值计算,它在大量实验基础上,归纳和总结出相应的规律,同时通过理论自身的发展反过来指导实验,并为数值计算提供理论模型;数值计算:可以弥补实验研究和理论分析的不足。

1.1.3 汽车空气动力学的研究内容1.气动力及其对汽车性能的影响2.流场与表面压强3.发动机和制动器的冷却特性4.通风、采暖和制冷5.汽车空气动力学专题研究(例如改善雨水流径、减少表面尘土污染、降低气动噪声、侧向风稳定性以及刮水器上浮等专题研究)1.2 汽车空气动力学的发展人们在对汽车陆地速度的追求中,无论汽车外形怎么变化,它的发展始终贯穿着汽车空气动力学这根脉络。

1.2.1汽车空气动力学的四个发展阶段(1)基本形造型阶段基本形是人们直接将水流和气流中的合理外形应用到汽车上。

这个阶段的主要特点是已经开始从完整的车身来考虑空气动力学问题,并且较明确的将航空空气动力学的研究成果运用于汽车车身。

相对于马车来说,这个阶段汽车的气动阻力系数明显改善。

但是仍然没有认识到地面效应的影响,而且造型实用型不强,没有获得广泛应用。

(2)流线形造型阶段特点:地面效应已被人们所认识。

人们用空气动力学观点指导汽车造型,试图降低气动阻力,并获得了可观的进展。

同时,开始对内流阻力及操纵稳定性有了认识。

(3)细部最优化阶段汽车设计应首先服从汽车工程的需要,即首先要充分保证总布置、安全、舒适性和制造工艺的要求,并在保证造型风格的前提下,进行外形设计,然后对形体细部(如圆角半径、曲面弧度、斜度及扰流器等)逐步或同时进行修改,控制以及防止气流分离现象的发生,以降低阻力,称为“细部优化法”(4)整体最优化阶段首先确定一个符合总布置要求的理想的低阻形体,在其发展成实用化汽车的每一设计步骤中,都应严格保证形体的光顺性,使气流不从汽车表面分离,这种设计方法称为形体最佳化法。

汽车空气动力学重点

汽车空气动力学重点

汽车空气动力学重点第一章绪论1. 空气动力学的研究方法1实验研究2理论分析3数值计算2. 汽车流场包括和内部流场车身外部流场3. 气动阻力增加,加速能力下降。

当汽车达到最大车速时,加速度的值就瞬低为零4. 消耗于气动阻力的功率TD A C P ηρ23a u =,功率与速度3次方、阻力与速度2次方成正比5. 汽车空气动力特性对操纵稳定性的影响:1.升力和纵倾力矩都将减小汽车的附着力,从而使转向轮失去转向力,使驱动轮失去牵引力,影响汽车的操纵稳定性,质量轻的汽车,特别是重心靠后的汽车,对前轮胜利越敏感。

2.为提高汽车的方向稳定性,要减小侧向力,使侧向力的作用点移向车身后方6. 汽车空气动力学发展的历史阶段答:(1)基本形状化造型阶段(2)流线形化造型阶段:①杰瑞提出“最小阻力的外形是以流线形的一半构成的车身”‘只有消除尾部的分离,才能降低阻力’;②雷提出:短粗的尾部与长尾相比,仅使气动阻力系数有较小的升高,1934年起,雷提出的粗大后尾端的形状逐渐发展为快背式。

③康姆提出,对大阻力的带棱角的车型,气动阻力系数随横摆角的增加变化很小,而对于流线型汽车,随着横摆角变化,阻力系数有很大变化,即地租汽车侧风稳定性差、。

(3)车身细部优化阶段:汽车空气动力学设计的原则是首先进行外形设计,然后对形体细部逐步或同时进行修改,控制以及防止气流的分离现象发生以降低附着力,成为细部优化法(4)汽车造型的整体优化阶段:整体优化法设计的原则是首先确定一个符合总部制要求的理想的低阻形体,在其发展成实用化汽车的每一设计步骤中,都应严格的保证形体的光顺性,使气流不从汽车表面分离,称之为形体最佳化第二章汽车空气动力学概述7. 气动升力及纵倾力矩:1.由于汽车车身上部和下部气流的流速不同,使车身上部和下部形成压力差,从而产生升力。

作用于汽车上的升力将减小轮胎对地面的压力,使轮胎附着力和侧偏刚度降低,影响汽车的操纵稳定性。

2.车身底部外形对升力系数影响很大,故不能仅根据侧面形状来分析汽车空气动力特性8. 侧向力及横摆力矩:1.侧向力和横摆力矩都影响汽车的行驶稳定性,在非对称气流中,横摆力矩有使汽车绕垂直轴转动的趋势。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.空气阻力
3.3 诱导阻力(Induced Drag)
在侧面由下向上的气流形成的涡流(vortice)的作用下,车顶上面的 气流在后背向下偏转,使产生的实际升力有一向后的水平分力,这个分 力就是诱导阻力。 洗流不易分离。
3.空气阻力 • 气流在后背的偏转角越大,诱导阻力越大; 后背倾角越大,气流在后背的偏转角越大。 • 气流在后背的流程越长,诱导阻力越大。 分离点前移,气流在后背的流程减小。 • 后背倾角的变化,对形状阻力和诱导阻力都有影响。 诱导阻力:随后背倾角增大,诱导阻力增大;随分离点前移,增 大速度减缓,进而减小,直至至消失; 形状阻力:随后背倾角增大,形状阻力先减小,再增大;分离点 前移至后背顶端时,不再增大。
1.空气动力学基础知识节

文丘里效应(Venture Effect):
流体经过狭窄通道时压力减小的现象。
同向行舟: 热水淋浴器:
发动机化油器喉管
吹纸条:
球浮气流:
第一章 空气动力学基础知识
1.2 空气的粘滞性和气流分离现象

达朗贝尔悖论(d’Alembert‘s Paradox)
对于上下对称,左右对称的物体,在气流中所受流体作用的合力应 为零。 这显然不符合客观现实情况。
4. 空气升力

地效飞行器
苏联KM地效飞行器
天鹅号地效飞行器
信天翁4型地效飞行器
4. 空气升力
4.3 汽车外形与空气升力

汽车前端高度
• 汽车前端高度影响流入底部的气流量。 • 进入汽车底部的空气越多,流速越高,压力越小; 另一方面,空气越多,堵塞越严重,压力越大,空气升力越大。
4. 空气升力

车外小物件产生的干扰阻力
气流流经物体时流速增加,另一物体臵于这被加速了的气流中时, 就会受到更大的空气阻力作用。两物体距离越小,干扰阻力越大。
3.空气阻力

车身表面凸起物对气流影响
• 凸起物可能引起气流分离。 • 凸起物使附面层加厚,气流容易分离。
3.空气阻力

车身表面凹表面凹槽。 凹槽的方向有垂直于和平行于气流方向两种典型状况。
3.空气阻力

车轮旋转对气流的影响
• 马格纳斯效应(Magnus Effect):在流体中运动的物体由于自身旋转 而改变运动方向的现象。 • 路面上滚动的车轮受到一升力作用。 • 车轮旋转使车轮上的分离线前移,因此有一较大的空气阻力。
车轮旋转
旋转车轮在气流中
路面上的旋转车轮在气流中
3.空气阻力
• 轮罩的遮挡,减弱了车轮旋转对气流的干扰,降低了空气阻力。 • 在轮罩中的转动车轮,在其前侧面和前下部有气流向外流动,对主气流 产生干扰。 • 轮胎宽度有一空气阻力最小的值。
3.空气阻力
• 车身后背上减小诱导阻力的措施
• 选择适当的后背倾角 • 后背后缘处为尖锐棱角 形成稳定的气流分离线;减小转角处产生的诱导阻力。 • 设扰流器 减小诱导阻力,同时减小空气升力。
3.空气阻力
3.4 干扰阻力
干扰阻力是由于车身表面的凸起物、凹坑和车轮等局部地影响着气流 流动而引起的空气阻力。

气流侧偏角与空气动力特性系数
各种汽车的空气动力特性 系数随侧偏角的变化而变化的 规律是不同的。多数汽车的空 气动力特性系数是随气流侧偏 角的增加而增大。
2. 汽车空气动力与空气动力矩

空气动力矩的表达式
俯仰力矩
M Y LX C DZC (CL X C Cd ZC )
V 2
2
A
令 则
CL X C Cd ZC lCMY
M Y C MY
V 2
2
Al
一般取汽车的轴距作为特征长度l 。 类似地,侧倾力矩MX、横摆力矩MZ也表示为
3.空气阻力
• 后背倾角与空气阻力
• • • • 后背倾角越大,气流的逆压梯度越大。 分离点在后端时,后背倾角增大,尾流区减小; 分离点在后背上时,后背倾角增大,尾流区增大。 有一空气阻力最小的最佳后背倾角。 后背长度越大,空气阻力越小。
3.空气阻力
• 车身后背形状与空气阻力
• 截尾式 • 两厢式与三厢式 • 行李箱高度
在无粘性气流中, 所受合力为零。
在粘性气流中, 所受合力不为零。
1.空气动力学基础知识节

附面层(Boundary Layer)
由于流体的粘性,靠近物面处的流体有粘附在物面的趋势,于是有一 流速较低的区域,即为附面层。 • 附面层随流程的增加而增厚。 • 附面层的流态由层流转捩为紊流。
1.空气动力学基础知识节


空气静压力的合力为空气动力,其三个分力分别为: 空气阻力(Drag)D、空气升力(Lift)L、空气侧向力(Side Force)S。 将空气动力平移至汽车质心Cg,就有一附加力矩,其三个分力矩分别为: 侧倾力矩(Rolling Moment) MX、俯仰力矩(Pitching Moment) MY、横 摆力矩(Yow Moment) MZ。

前风窗对空气阻力的影响 • 前风窗对气流的影响 • 减小前风窗处空气阻力的措施
• 增大风窗与发动机罩间的夹角; • 风窗横向弯曲。
3.空气阻力

车身后背对空气阻力的影响
• 几种典型的车身后背型式
• • • •
直背式(Fast back):后背倾角<20°; 舱背式(Hatch back):后背倾角20°~50°; 方背式(Square back):后背倾角>50°; 折背式(Notch back)。
M X C MX
M Z C MZ
Al 2 V 2 Al 2
V 2
汽车空气动力学
3.空气阻力
3.1 空气阻力的分类
• • • • •
形状阻力(Form Drag) 干扰阻力(Interference Drag) 内部阻力(Internal Flow Drag) 诱导阻力(Induced Drag) 摩擦阻力(Skin Friction)


1.空气动力学基础知识节
1.3 压力系数

定义
常用压力系数来表示物体在气流流场中表面各点压力的大小。 压力系数定义: CP =
P-P∞ V )2 C = 1 - ( ; 可整理为: P 2 V∞ ρV∞ /2
CP≤1。CP=1处,V=0,是驻点。

表示方法
矢量法 坐标法
汽车空气动力学
2.汽车空气动力与空气动力矩

顺压梯度和逆压梯度
• 顺压梯度:顺流动方向压力降低。(流速↑,压力↓) 逆压梯度:顺流动方向压力升高。(流速↓,压力↑) • 轿车的横截面积分布和气流压力梯度
1.空气动力学基础知识节

气流分离现象(Flow Separation)
当气流越过物面的最高点后,气流流束扩大、流速减小,具有逆压 梯度。气体是顶着压力的增高流动。在因粘滞损失而使能量较低的附面层 内,流动尤为困难。 v 在物面法向速度梯度为零( Y =0 )时,气流开始分离。靠近物面 Y=0 的气流先停止流动,进而反向流动,形成涡流区,将继续流动的气流与物 面隔开。

底部的前后遮挡的影响

底部气流的侧向流动
• 减小了底部压力; • 加强了侧面涡流,从而增强了下洗作用。
4. 空气升力

后背倾角对空气升力的影响

前风窗下部分离区对空气升力的影响 行李厢上的分离区对空气升力的影响
汽车空气动力学
5.侧向气流和空气动力稳定性
5.1 侧向气流对空气动力特性系数的影响
汽车空气动力学
4.空气升力
4.1 空气升力
• 翼型的迎角越大,空气升力越大。 • 汽车如翼型,上凸下平,受空气升力作用。 • 不同外形的汽车,其“迎角”不同,空气升力系数也不同。
4. 空气升力
4.2 地面效应
地面对气流的影响,使物体受到的空气动力发生变化的现象。 • 当距离h 较大时,随h 减小,气流加速,压力减小; • 当距离h 较小时 ,附面层的影响随h 减小而突出。随h 减小,气 流减速,压力增大。
1.空气动力学基础知识节

伯努利方程(Bernoulli’s Law)
对于不可压缩流体,有: mgz+mp/ρ+mV2/2=常数 ——流体的重力势能、压力势能、动能之和为一常数。 气体的重力很小,若忽略气体的重力势能,则 p/ρ+V2/2=常数 或 p+ρV2/2=常数 ——静压力与“动压力”之和为一常数。 • 伯努利方程是能量守恒定律在流体力学中的表现形式。 • 流速越大,动压力越大,压力(静压力)越小。
前四种为压力阻力。
CD总值:0.45 A——形状阻力(CD=0.262); B——干扰阻力(CD=0.064); C——内部阻力(CD=0.053); D——诱导阻力(CD=0.031); E——摩擦阻力(CD=0.040)。
3.空气阻力
3.2 形状阻力
形状阻力主要是压差阻力,是由车身的外部形状决定的。
汽车空气动力学
1.空气动力学基础知识
1.1 连续性方程和伯努利方程

连续性方程
对于定常流动,流过流束任一截面的流量彼此相等,即 ρ1V1A1= ρ2V2A2 = · · · · · · =常数 对于不可压缩流体(ρ1= ρ2 = · · · · · · =常数),有 V1A1= V2A2 = · · · · · · =常数 • 连续性方程是质量守恒定律在流体力学中的表现形式。 • 汽车周围的空气压力变化不大,可近似认为空气密度不变。
3.空气阻力
3.5 内部阻力
流经车身内部的气流对通道的作用以及流动中的能量损耗,产生了内部 阻力。

内部气流
• 发动机冷却气流:流量大。是减小内部阻力的主要研究对象。 • 通风气流:流量约为冷却气流的1/10左右。 • 制动器冷却气流
相关文档
最新文档