一次函数的应用题分类总结整理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.海拔高度每上升1千米,温度下降6℃.某时刻,益阳地面温度为20℃,设高出地面x千米处的温度为y℃.
写出y与x之间的函数关系式________________。

2.已知等腰三角形的周长是18cm,设腰长为xcm,底边为ycm,则y与x的函数关系式为________,自变量x 的取值范围________。

3.某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优
惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).(1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式;
(2)对x的取值情况进行分析,说明按哪种优惠方法购买比较便宜;
(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.
二、明确函数类型,利用待定系数法构建函数表达式;(课本163 4题)
特点:所给问题中已经明确告知为一次函数
....关系或者给出函数的图像为直线或直线的一部分时,就等于告诉我们此函数为“一次函数”,此时可以利用待定系数法,设关系式为:y=kx+b,然后寻找满足关系式的两个x与y的值或两个图像上的点,代入求解即可。

常见题型:销售问题中售价与销量之间常以表格形式给出的有规律的变化,蕴含着一次函数关系;行程问题中的路程与时间的关系常给出函数的图像(多是直线或折线);
【典型例题赏析】
1.(2010 江苏连云港)(本题满分10分)我市某工艺品厂生产一款工艺品.已知这款工艺品的生产成本为每件60元.经市场调研发现:该款工艺品每天的销售量y(件)与售价x(元)之间存在着如下表所示的一次函数关
(1)求销售量y(件)与售价x(元)之间的函数关系式;
(2)你认为如何定价才能使工艺品厂每天获得的利润为40 000 元?
2.已知A、B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即沿原路返回.图2是它们离A城的距离y(千米)与行驶时间x(小时)之间的函数图像。

(1)求甲车在行驶过程中y与x之间的函数关系式;
(2)当它们行驶了7小时时,两车相遇.求乙车的速度.
3.(2010浙江湖州)一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系.
(1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离;
(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;
(3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y关于x的函数的大致图像。

三、根据各类信息猜测函数类型为一次函数,并验证猜
想。

(课本168页“一起探究”)
特点:所给问题中并不明确告知函数类型,而让同学自己通过
分析数据变化规律,猜测函数类型,并说明理由或加以验证,
此类问题应“有猜有验”或者要文字说明推断是“一次函
数”的理由,
常见题型:给问题多是表格形式出现或者通过描点观察函数图
像的形状猜测类型。

【典型例题赏析】
1.(2011四川乐山)某学校的复印任务原来由甲复印社承接,其收费y(元)与复印页数x(页)的关系如下
⑴、若y与x满足我们学过的某一函数关系,求函数的解析式;
⑵、现在乙复印社表示:若学校先按每月付给200元的承包费,则可按每页0.15元收费。

则乙复印社每月收费y(元)与复印页数x(页)的函数关系为;
⑶、在给出的坐标系内画出(1)、(2)中的函数图象,并回答每月复印页数在1200左右应选择哪个复印社?
2.(2010重庆綦江县)“震灾无情人有情”,玉树地震牵动了全国人民的心,武警某部队接到命令,运送一批救灾物资到灾区,货车在公路A处加满油后,以每小时60千米的速度匀速行驶,前往与A处相距360千米的灾区B
图15
单位:cm (1)请你用学过的函数中的一种建立y 与x 之间的函数关系式,说明选择这种函数的理由;............(不要求写出自变量的取值范围)
(2)如果货车的行驶速度和每小时的耗油量都不变,货车行驶4小时后到达C 处,C 的前方12千米的D 处有一加油站,那么在D 处至少加多少升油,才能使货车到达灾区B 处卸去货物后能顺利返回D 处加油?(根据驾驶经验,为保险起见,油箱内余油量应随时不少于10升)
四、利用问题中各个量之间的关系,变形推导所求两个变量之间的函数关系式;
特点:所给题目一般涉及三个以上的量,而这些数量之间往往互相牵制,互有联系,因此要有足够耐心审题并逐个理清两两之间的关系,书写所要求的函数关系时要注意适当的等量代换!
【典型例题赏析】
1.(2009河北)某公司装修需用A 型板材240块、B 型板材180块,A 型板材规格是60 cm×30 cm ,B 型板材规格是40 cm×30 cm .现只能购得规格是150 cm×30 cm 的标准板材.一张标准板材尽可能多地裁出A 型、B 型板材,共有下列三种裁法:(图15是裁法一的裁剪示意图)
设所购的标准板材全部裁完,其中按裁法一裁x 张、按裁法二裁y 张、按裁法三裁z 张,且所裁出的A 、B 两种型号的板材刚好够用. (1)上表中,m = ,n = ; (2)分别求出y 与x 和z 与x 的函数关系式;
(3)若用Q 表示所购标准板材的张数,求Q 与x 的函数关系式,
并指出当x 取何值时Q 最小,此时按三种裁法各裁标准板材 多少张?
解:(1)0 ,3.
(2)由题意,得2240
x y
+=,∴
1
120
2
y x =-.
23180
x z
+=,∴
2
60
3
z x =-.
(3)由题意,得
12
12060
23
Q x y z x x x
=++=+-+-.
整理,得
1
180
6
Q x
=-.由题意,得
1
120
2
2
60
3
x
x

-
⎪⎪

⎪-
⎪⎩
≥0
≥0
解得x≤90.
【注:事实上,0≤x≤90 且x是6的整数倍】
由一次函数的性质可知,当x=90时,Q最小.此时按三种裁法分别裁90张、75张、0张.
2.“一方有难,八方支援”.在抗击“5.12”汶川特大地震灾害中,某市组织20辆汽车装运食品、药品、生活用品三种救灾物资共100吨到灾民安置点.按计划20辆汽车都要装运,每辆汽车只能装运同一种救灾物资且
(1)设装运食品的车辆数为x,装运药品的车辆数为y.求y与x的函数关系式;
(2)如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆,那么车辆的安排有哪几种方案?(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?并求出最少总运费.
解:1、设装运生活用品的车辆数为z,根据题意可得如下方程:
6x+5y+4z=100 (1)
x+y+z=20 (2)
由(2)得z=20-(x+y),代入(1)得y=20-2x (3)
2、当x≥5时y≤10
当y≥4时x≤8
因此,由(2)、(3)可知有如下4种安排方案
1)x=5,y=10,z=5; 2)x=6,y=8,z=6;
3)x=7,y=6,z=7; 4)x=8,y=4,z=8.
3、设总运费为Q,则
Q=120*6x+160*5y+100*4z
将式(2)、(3)代入得Q=16000-480x
所以,当x取最大值x=8时,Q取最小值Q=12160
3.(2011•达州)我市化工园区一化工厂,组织20辆汽车装运A、B、C三种化学物资共200吨到某地.按计划20辆汽车都要装运,每辆汽车只能装运同一种物资且必须装满.请结合表中提供的信息,解答下列问题:(1)设装运A种物资的车辆数为x,装运B种物资的车辆数为y.求y与x的函数关系式;
(2)如果装运A种物资的车辆数不少于5辆,装运B种物资的车辆数不少于4辆,那么车辆的安排有几种方案?并写出每种安排方案;
(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?请求出最少总运费.
200)20(81012=--++y x y x
200881601012=--++y x y x 202=+y x
∴x y 220-=……………………2分
(2)根据题意,得:


⎧≥-≥42205
x x 解之得:85≤≤x ∵x 取正整数,∴=x 5,6,7,8……………………4分
(3)设总运费为M 元,
则M=)20220(2008)220(3201024012-+-⨯+-⨯+⨯x x x x 即:M=640001920+-x
∵M 是x 的一次函数,且M 随x 增大而减小,
∴当x =8时,M 最小,最少为48640元……………………7分
五、自觉运用函数思想,构建函数模型解决(最值、决策)问题 (课本复习题178页C 组)
特点:当问题中并没有提到谁与谁之间的函数关系如何,而是交代了一些量的关系,最后问题往往是请同学们进行决策如何获取最大利润或者如何涉及最合算方案? 【典型例题赏析】
1.(2010 南京) 甲车从A 地出发以60km/h 的速度沿公路匀速行驶,0.5小时后,乙车也从A 地出发,以80km/h 的速度沿该公路与甲车同向匀速行驶,求乙车出发后几小时追上甲车。

请建立一次函数关系........解决上述问题。

2.某超市经销A,B 两种商品,A 种商品每件进价20元,售价30元;B 种商品每件进价35元,售价48元,该超市准备用800元去购进A 、B 两种商品若干件,怎样购进才能使超市经销这两种商品所获利润最大(其中B 种商品不少于7件)?。

相关文档
最新文档