全国统一高考数学试卷理科大纲版014

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国统一高考数学试卷(理科)(大纲版)
一、选择题(本大题共12小题,每小题5分)
1.(5分)设z=,则z的共轭复数为()
A.﹣1+3iB.﹣1﹣3iC.1+3iD.1﹣3i
2.(5分)设集合M={x|x2﹣3x﹣4<0},N={x|0≤x≤5},则M∩N=()A.(0,4]B.[0,4)C.[﹣1,0)D.(﹣1,0]
3.(5分)设a=sin33°,b=cos55°,c=tan35°,则()
A.a>b>cB.b>c>aC.c>b>aD.c>a>b
4.(5分)若向量、满足:||=1,(+)⊥,(2+)⊥,则||=()A.2B.C.1D.
5.(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()
A.60种B.70种C.75种D.150种
6.(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1B.+y2=1C.+=1D.+=1
7.(5分)曲线y=xex﹣1在点(1,1)处切线的斜率等于()
A.2eB.eC.2D.1
8.(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()
A.B.16πC.9πD.
9.(5分)已知双曲线C的离心率为2,焦点为F1、F2,点A在C上,若|F1A|=2|F2A|,则cos∠AF2F1=()
A.B.C.D.
10.(5分)等比数列{an}中,a4=2,a5=5,则数列{lgan}的前8项和等于()A.6B.5C.4D.3
11.(5分)已知二面角α﹣l﹣β为60°,AB⊂α,AB⊥l,A为垂足,CD⊂β,C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为()
A.B.C.D.
12.(5分)函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,则y=f (x)的反函数是()
A.y=g(x)B.y=g(﹣x)C.y=﹣g(x)D.y=﹣g(﹣x)
二、填空题(本大题共4小题,每小题5分)
13.(5分)的展开式中x2y2的系数为.(用数字作答)
14.(5分)设x、y满足约束条件,则z=x+4y的最大值为.
15.(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于.
16.(5分)若函数f(x)=cos2x+asinx在区间(,)是减函数,则a的取值范围是.
三、解答题
17.(10分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.
18.(12分)等差数列{an}的前n项和为Sn,已知a1=13,a2为整数,且Sn≤S4.
(1)求{an}的通项公式;
(2)设bn=,求数列{bn}的前n项和Tn.
19.(12分)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.
(Ⅰ)证明:AC1⊥A1B;
(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小.20.(12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、
0.5、0.4,各人是否需使用设备相互独立.
(Ⅰ)求同一工作日至少3人需使用设备的概率;
(Ⅱ)X表示同一工作日需使用设备的人数,求X的数学期望.
21.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.
(Ⅰ)求C的方程;
(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.
22.(12分)函数f(x)=ln(x+1)﹣(a>1).
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)设a1=1,an+1=ln(an+1),证明:<an≤(n∈N*).
全国统一高考数学试卷(理科)(大纲版)
参考答案与试题解析
一、选择题(本大题共12小题,每小题5分)
1.(5分)设z=,则z的共轭复数为()
A.﹣1+3iB.﹣1﹣3iC.1+3iD.1﹣3i
【考点】A1:虚数单位i、复数;A5:复数的运算.
【专题】5N:数系的扩充和复数.
【分析】直接由复数代数形式的除法运算化简,则z的共轭可求.
【解答】解:∵z==,
∴.
故选:D.
【点评】本题考查复数代数形式的除法运算,考查了复数的基本概念,是基础题.2.(5分)设集合M={x|x2﹣3x﹣4<0},N={x|0≤x≤5},则M∩N=()A.(0,4]B.[0,4)C.[﹣1,0)D.(﹣1,0]
【考点】1E:交集及其运算.
【专题】5J:集合.
【分析】求解一元二次不等式化简集合M,然后直接利用交集运算求解.
【解答】解:由x2﹣3x﹣4<0,得﹣1<x<4.
∴M={x|x2﹣3x﹣4<0}={x|﹣1<x<4},
又N={x|0≤x≤5},
∴M∩N={x|﹣1<x<4}∩{x|0≤x≤5}=[0,4).
故选:B.
【点评】本题考查了交集及其运算,考查了一元二次不等式的解法,是基础题.
3.(5分)设a=sin33°,b=cos55°,c=tan35°,则()
A.a>b>cB.b>c>aC.c>b>aD.c>a>b
【考点】HF:正切函数的单调性和周期性.
【专题】56:三角函数的求值.
【分析】可得b=sin35°,易得b>a,c=tan35°=>sin35°,综合可得.
【解答】解:由诱导公式可得b=cos55°=cos(90°﹣35°)=sin35°,
由正弦函数的单调性可知b>a,
而c=tan35°=>sin35°=b,
∴c>b>a
故选:C.
【点评】本题考查三角函数值大小的比较,涉及诱导公式和三角函数的单调性,属基础题.
4.(5分)若向量、满足:||=1,(+)⊥,(2+)⊥,则||=()A.2B.C.1D.
【考点】9O:平面向量数量积的性质及其运算.
【专题】5A:平面向量及应用.
【分析】由条件利用两个向量垂直的性质,可得(+)•=0,(2+)•=0,由此求得||.
【解答】解:由题意可得,(+)•=+=1+=0,∴=﹣1;
(2+)•=2+=﹣2+=0,∴b2=2,
则||=,
故选:B.
【点评】本题主要考查两个向量垂直的性质,两个向量垂直,则它们的数量积等于零,属于基础题.
5.(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()
A.60种B.70种C.75种D.150种
【考点】D9:排列、组合及简单计数问题.
【专题】5O:排列组合.
【分析】根据题意,分2步分析,先从6名男医生中选2人,再从5名女医生中选出1人,由组合数公式依次求出每一步的情况数目,由分步计数原理计算可得答案.
【解答】解:根据题意,先从6名男医生中选2人,有C62=15种选法,
再从5名女医生中选出1人,有C51=5种选法,
则不同的选法共有15×5=75种;
故选:C.
【点评】本题考查分步计数原理的应用,注意区分排列、组合的不同.
6.(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1B.+y2=1C.+=1D.+=1
【考点】K4:椭圆的性质.
【专题】5D:圆锥曲线的定义、性质与方程.
【分析】利用△AF1B的周长为4,求出a=,根据离心率为,可得c=1,求出b,即可得出椭圆的方程.
【解答】解:∵△AF1B的周长为4,
∵△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,
∴4a=4,
∴a=,
∵离心率为,
∴,c=1,
∴b==,
∴椭圆C的方程为+=1.
故选:A.
【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.
7.(5分)曲线y=xex﹣1在点(1,1)处切线的斜率等于()
A.2eB.eC.2D.1
【考点】62:导数及其几何意义.
【专题】52:导数的概念及应用.
【分析】求函数的导数,利用导数的几何意义即可求出对应的切线斜率.
【解答】解:函数的导数为f′(x)=ex﹣1+xex﹣1=(1+x)ex﹣1,
当x=1时,f′(1)=2,
即曲线y=xex﹣1在点(1,1)处切线的斜率k=f′(1)=2,
故选:C.
【点评】本题主要考查导数的几何意义,直接求函数的导数是解决本题的关键,比较基础.
8.(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()
A.B.16πC.9πD.
【考点】LG:球的体积和表面积;LR:球内接多面体.
【专题】11:计算题;5F:空间位置关系与距离.
【分析】正四棱锥P﹣ABCD的外接球的球心在它的高PO1上,记为O,求出PO1,OO1,解出球的半径,求出球的表面积.
【解答】解:设球的半径为R,则
∵棱锥的高为4,底面边长为2,
∴R2=(4﹣R)2+()2,
∴R=,
∴球的表面积为4π•()2=.
故选:A.
【点评】本题考查球的表面积,球的内接几何体问题,考查计算能力,是基础题.9.(5分)已知双曲线C的离心率为2,焦点为F1、F2,点A在C上,若|F1A|=2|F2A|,则cos∠AF2F1=()
A.B.C.D.
【考点】KC:双曲线的性质.
【专题】5D:圆锥曲线的定义、性质与方程.
【分析】根据双曲线的定义,以及余弦定理建立方程关系即可得到结论.
【解答】解:∵双曲线C的离心率为2,
∴e=,即c=2a,
点A在双曲线上,
则|F1A|﹣|F2A|=2a,
又|F1A|=2|F2A|,
∴解得|F1A|=4a,|F2A|=2a,||F1F2|=2c,
则由余弦定理得cos∠AF2F1===

故选:A.
【点评】本题主要考查双曲线的定义和运算,利用离心率的定义和余弦定理是解决本题的关键,考查学生的计算能力.
10.(5分)等比数列{an}中,a4=2,a5=5,则数列{lgan}的前8项和等于()A.6B.5C.4D.3
【考点】89:等比数列的前n项和.
【专题】54:等差数列与等比数列.
【分析】利用等比数列的性质可得a1a8=a2a7=a3a6=a4a5=10.再利用对数的运算性质即可得出.
【解答】解:∵数列{an}是等比数列,a4=2,a5=5,
∴a1a8=a2a7=a3a6=a4a5=10.
∴lga1+lga2+…+lga8
=lg(a1a2•…•a8)
=
4lg10
=4.
故选:C.
【点评】本题考查了等比数列的性质、对数的运算性质,属于基础题.
11.(5分)已知二面角α﹣l﹣β为60°,AB⊂α,AB⊥l,A为垂足,CD⊂β,C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为()
A.B.C.D.
【考点】LM:异面直线及其所成的角.
【专题】5G:空间角.
【分析】首先作出二面角的平面角,然后再构造出异面直线AB与CD所成角,利用解直角三角形和余弦定理,求出问题的答案.
【解答】解:如图,过A点做AE⊥l,使BE⊥β,垂足为E,过点A做AF∥CD,过点E做EF⊥AE,连接BF,
∵AE⊥l
∴∠EAC=90°
∵CD∥AF
又∠ACD=135°
∴∠FAC=45°
∴∠EAF=45°
在Rt△BEA中,设AE=a,则AB=2a,BE=a,
在Rt△AEF中,则EF=a,AF=a,
在Rt△BEF中,则BF=2a,
∴异面直线AB与CD所成的角即是∠BAF,
∴cos∠BAF===.
故选:B.
【点评】本题主要考查了二面角和异面直线所成的角,关键是构造二面角的平面角和异面直线所成的角,考查了学生的空间想象能力和作图能力,属于难题.
12.(5分)函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,则y=f (x)的反函数是()
A.y=g(x)B.y=g(﹣x)C.y=﹣g(x)D.y=﹣g(﹣x)
【考点】4R:反函数.
【专题】51:函数的性质及应用.
【分析】设P(x,y)为y=f(x)的反函数图象上的任意一点,则P关于y=x的对称点P′(y,x)一点在y=f(x)的图象上,P′(y,x)关于直线x+y=0的对称点P″(﹣x,﹣y)在y=g(x)图象上,代入解析式变形可得.
【解答】解:设P(x,y)为y=f(x)的反函数图象上的任意一点,
则P关于y=x的对称点P′(y,x)一点在y=f(x)的图象上,
又∵函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,
∴P′(y,x)关于直线x+y=0的对称点P″(﹣x,﹣y)在y=g(x)图象上,
∴必有﹣y=g(﹣x),即y=﹣g(﹣x)
∴y=f(x)的反函数为:y=﹣g(﹣x)
故选:D.
【点评】本题考查反函数的性质和对称性,属中档题.
二、填空题(本大题共4小题,每小题5分)
13.(5分)的展开式中x2y2的系数为70.(用数字作答)
【考点】DA:二项式定理.
【专题】5P:二项式定理.
【分析】先求出二项式展开式的通项公式,再令x、y的幂指数都等于2,求得r的值,即可求得展开式中x2y2的系数.
【解答】解:的展开式的通项公式为Tr+1=•(﹣1)r••=•(﹣1)r••,
令 8﹣=﹣4=2,求得 r=4,
故展开式中x2y2的系数为=70,
故答案为:70.
【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.
14.(5分)设x、y满足约束条件,则z=x+4y的最大值为5.
【考点】7C:简单线性规划.
【专题】31:数形结合.
【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.
【解答】解:由约束条件作出可行域如图,
联立,解得C(1,1).
化目标函数z=x+4y为直线方程的斜截式,得.
由图可知,当直线过C点时,直线在y轴上的截距最大,z最大.
此时zmax=1+4×1=5.
故答案为:5.
【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于.
【考点】IV:两直线的夹角与到角问题.
【专题】5B:直线与圆.
【分析】设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,由直角三角形中的边角关系求得sinθ=的值,可得cosθ、tanθ 的值,再根据tan2θ=,计算求得结果.
【解答】解:设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,
且点A与圆心O之间的距离为OA==,
圆的半径为r=,
∴sinθ==,
∴cosθ=,tanθ==,
∴tan2θ===,
故答案为:.
【点评】本题主要考查直线和圆相切的性质,直角三角形中的变角关系,同角三角函数的基本关系、二倍角的正切公式的应用,属于中档题.
16.(5分)若函数f(x)=cos2x+asinx在区间(,)是减函数,则a的取值范围是(﹣∞,2].
【考点】HM:复合三角函数的单调性.
【专题】51:函数的性质及应用;57:三角函数的图像与性质.
【分析】利用二倍角的余弦公式化为正弦,然后令t=sinx换元,根据给出的x的范围求出t的范围,结合二次函数的图象的开口方向及对称轴的位置列式求解a的范围.
【解答】解:由f(x)=cos2x+asinx
=﹣2sin2x+asinx+1,
令t=sinx,
则原函数化为y=﹣2t2+at+1.
∵x∈(,)时f(x)为减函数,
则y=﹣2t2+at+1在t∈(,1)上为减函数,
∵y=﹣2t2+at+1的图象开口向下,且对称轴方程为t=.
∴,解得:a≤2.
∴a的取值范围是(﹣∞,2].
故答案为:(﹣∞,2].
【点评】本题考查复合函数的单调性,考查了换元法,关键是由换元后函数为减函数求得二次函数的对称轴的位置,是中档题.
三、解答题
17.(10分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.
【考点】GL:三角函数中的恒等变换应用;HP:正弦定理.
【专题】58:解三角形.
【分析】由3acosC=2ccosA,利用正弦定理可得3sinAcosC=2sinCcosA,再利用同角的三角函数基本关系式可得tanC,利用tanB=tan[π﹣(A+C)]=﹣tan(A+C)即可得出.
【解答】解:∵3acosC=2ccosA,
由正弦定理可得3sinAcosC=2sinCcosA,
∴3tanA=2tanC,
∵tanA=,
∴2tanC=3×=1,解得tanC=.
∴tanB=tan[π﹣(A+C)]=﹣tan(A+C)=﹣=﹣=﹣1,
∵B∈(0,π),
∴B=
【点评】本题考查了正弦定理、同角的三角函数基本关系式、两角和差的正切公式、诱导公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.18.(12分)等差数列{an}的前n项和为Sn,已知a1=13,a2为整数,且Sn≤S4.
(1)求{an}的通项公式;
(2)设bn=,求数列{bn}的前n项和Tn.
【考点】8E:数列的求和.
【专题】55:点列、递归数列与数学归纳法.
【分析】(1)通过Sn≤S4得a4≥0,a5≤0,利用a1=13、a2为整数可得d=﹣4,进而可得结论;
(2)通过an=13﹣3n,分离分母可得bn=(﹣),并项相加即可.
【解答】解:(1)在等差数列{an}中,由Sn≤S4得:
a4≥0,a5≤0,
又∵a1=13,
∴,解得﹣≤d≤﹣,
∵a2为整数,∴d=﹣4,
∴{an}的通项为:an=17﹣4n;
(2)∵an=17﹣4n,
∴bn===﹣(﹣),
于是Tn=b1+b2+……+bn
=﹣[(﹣)+(﹣)+……+(﹣)]
=﹣(﹣)
=.
【点评】本题考查求数列的通项及求和,考查并项相加法,注意解题方法的积累,属于中档题.
19.(12分)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.
(Ⅰ)证明:AC1⊥A1B;
(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小.
【考点】LW:直线与平面垂直;MJ:二面角的平面角及求法.
【专题】5F:空间位置关系与距离.
【分析】(Ⅰ)由已知数据结合线面垂直的判定和性质可得;
(Ⅱ)作辅助线可证∠A1FD为二面角A1﹣AB﹣C的平面角,解三角形由反三角函数可得.
【解答】解:(Ⅰ)∵A1D⊥平面ABC,A1D⊂平面AA1C1C,
∴平面AA1C1C⊥平面ABC,又BC⊥AC
∴BC⊥平面AA1C1C,连结A1C,
由侧面AA1C1C为菱形可得AC1⊥A1C,
又AC1⊥BC,A1C∩BC=C,
∴AC1⊥平面A1BC,AB1⊂平面A1BC,
∴AC1⊥A1B;
(Ⅱ)∵BC⊥平面AA1C1C,BC⊂平面BCC1B1,
∴平面AA1C1C⊥平面BCC1B1,
作A1E⊥CC1,E为垂足,可得A1E⊥平面BCC1B1,
又直线AA1∥平面BCC1B1,
∴A1E为直线AA1与平面BCC1B1的距离,即A1E=,
∵A1C为∠ACC1的平分线,∴A1D=A1E=,
作DF⊥AB,F为垂足,连结A1F,
又可得AB⊥A1D,A1F∩A1D=A1,
∴AB⊥平面A1DF,∵A1F⊂平面A1DF
∴A1F⊥AB,
∴∠A1FD为二面角A1﹣AB﹣C的平面角,
由AD==1可知D为AC中点,
∴DF==,
∴tan∠A1FD==,
∴二面角A1﹣AB﹣C的大小为arctan
【点评】本题考查二面角的求解,作出并证明二面角的平面角是解决问题的关键,属中档题.
20.(12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、
0.5、0.4,各人是否需使用设备相互独立.
(Ⅰ)求同一工作日至少3人需使用设备的概率;
(Ⅱ)X表示同一工作日需使用设备的人数,求X的数学期望.
【考点】C8:相互独立事件和相互独立事件的概率乘法公式;CH:离散型随机变量的期望与方差.
【专题】5I:概率与统计.
【分析】记Ai表示事件:同一工作日乙丙需要使用设备,i=0,1,2,B表示事件:甲需要设备,C表示事件,丁需要设备,D表示事件:同一工作日至少3人需使用设备(Ⅰ)把4个人都需使用设备的概率、4个人中有3个人使用设备的概率相加,即得所求.
(Ⅱ)X的可能取值为0,1,2,3,4,分别求出PXi,再利用数学期望公式计算即可.【解答】解:由题意可得“同一工作日至少3人需使用设备”的概率为
0.6×0.5×0.5×0.4+(1﹣0.6)×0.5×0.5×0.4+0.6×(1﹣0.5)×0.5×0.4+0.6×0.5×(1﹣0.5)
×0.4+0.6×0.5×0.5×(1﹣0.4)=0.31.
(Ⅱ)X的可能取值为0,1,2,3,4
P(X=0)=(1﹣0.6)×0.52×(1﹣0.4)=0.06
P(X=1)=0.6×0.52×(1﹣0.4)+(1﹣0.6)×0.52×0.4+(1﹣0.6)×2×0.52×(1﹣0.4)=0.25 P(X=4)=P(A2•B•C)=0.52×0.6×0.4=0.06,
P(X=3)=P(D)﹣P(X=4)=0.25,
P(X=2)=1﹣P(X=0)﹣P(X=1)﹣P(X=3)﹣P(X=4)=1﹣0.06﹣0.25﹣0.25﹣
0.06=0.38.
故数学期望EX=0×0.06+1×0.25+2×0.38+3×0.25+4×0.06=2
【点评】本题主要考查了独立事件的概率和数学期望,关键是找到独立的事件,计算要有耐心,属于难题.
21.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.
(Ⅰ)求C的方程;
(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.
【考点】KH:直线与圆锥曲线的综合.
【专题】5E:圆锥曲线中的最值与范围问题.
【分析】(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C的方程,求得x0=,根据|QF|=|PQ|求得 p的值,可得C的方程.
(Ⅱ)设l的方程为 x=my+1 (m≠0),代入抛物线方程化简,利用韦达定理、中点公式、弦长公式求得弦长|AB|.把直线l′的方程代入抛物线方程化简,利用韦达定理、弦长公式求得|MN|.由于MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,由此求得m的值,可得直线l的方程.
【解答】解:(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C:y2=2px(p >0),
可得x0=,∵点P(0,4),∴|PQ|=.
又|QF|=x0+=+,|QF|=|PQ|,
∴+=×,求得 p=2,或 p=﹣2(舍去).
故C的方程为 y2=4x.
(Ⅱ)由题意可得,直线l和坐标轴不垂直,y2=4x的焦点F(1,0),
设l的方程为 x=my+1(m≠0),
代入抛物线方程可得y2﹣4my﹣4=0,显然判别式△=16m2+16>0,y1+y2=4m,y1•y2=﹣4.
∴AB的中点坐标为D(2m2+1,2m),弦长|AB|=|y1﹣y2|==4(m2+1).
又直线l′的斜率为﹣m,∴直线l′的方程为 x=﹣y+2m2+3.
过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,
把线l′的方程代入抛物线方程可得y2+y﹣4(2m2+3)=0,∴y3+y4=,y3•y4=﹣4(2m2+3).
故线段MN的中点E的坐标为(+2m2+3,),∴|MN|=|y3﹣
y4|=,
∵MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,
∴+DE2=MN2,
∴4(m2+1)2 ++=×,化简可得m2﹣
1=0,
∴m=±1,∴直线l的方程为 x﹣y﹣1=0,或 x+y﹣1=0.
【点评】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理、弦长公式的应用,体现了转化的数学思想,属于难题.
22.(12分)函数f(x)=ln(x+1)﹣(a>1).
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)设a1=1,an+1=ln(an+1),证明:<an≤(n∈N*).
【考点】6B:利用导数研究函数的单调性;RG:数学归纳法.
【专题】53:导数的综合应用.
【分析】(Ⅰ)求函数的导数,通过讨论a的取值范围,即可得到f(x)的单调性;(Ⅱ)利用数学归纳法即可证明不等式.
【解答】解:(Ⅰ)函数f(x)的定义域为(﹣1,+∞),f′(x)=,
①当1<a<2时,若x∈(﹣1,a2﹣2a),则f′(x)>0,此时函数f(x)在(﹣1,a2
﹣2a)上是增函数,
若x∈(a2﹣2a,0),则f′(x)<0,此时函数f(x)在(a2﹣2a,0)上是减函数,
若x∈(0,+∞),则f′(x)>0,此时函数f(x)在(0,+∞)上是增函数.
②当a=2时,f′(x)≥0,此时函数f(x)在(﹣1,+∞)上是增函数,
③当a>2时,若x∈(﹣1,0),则f′(x)>0,此时函数f(x)在(﹣1,0)上是增函
数,
若x∈(0,a2﹣2a),则f′(x)<0,此时函数f(x)在(0,a2﹣2a)上是减函数,
若x∈(a2﹣2a,+∞),则f′(x)>0,此时函数f(x)在(a2﹣2a,+∞)上是增函数.
(Ⅱ)由(Ⅰ)知,当a=2时,此时函数f(x)在(﹣1,+∞)上是增函数,
当x∈(0,+∞)时,f(x)>f(0)=0,
即ln(x+1)>,(x>0),
又由(Ⅰ)知,当a=3时,f(x)在(0,3)上是减函数,
当x∈(0,3)时,f(x)<f(0)=0,ln(x+1)<,
下面用数学归纳法进行证明<an≤成立,
①当n=1时,由已知
,故结论成立.
②假设当n=k时结论成立,即,
则当n=k+1时,an+1=ln(an+1)>ln(),
ak+1=ln(ak+1)<ln(),
即当n=k+1时,成立,
综上由①②可知,对任何n∈N•结论都成立.
【点评】本题主要考查函数单调性和导数之间的关系,以及利用数学归纳法证明不等式,综合性较强,难度较大.
高考理科数学试题及答案 (考试时间:120分钟试卷满分:150分)
一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合
题目要求的。

1.31i i
+=+() A .12i + B .12i - C .2i + D .2i -
2. 设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B =,则B =()
A .{}1,3-
B .{}1,0
C .{}1,3
D .{}1,5
3. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百
八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()
A .1盏
B .3盏
C .5盏
D .9盏
4. 如图,网格纸上小正方形的边长为1,粗实线画出的是某
几何体的三视图,该几何体由一平面将一圆柱截去一部
分所得,则该几何体的体积为()
A .90π
B .63π
C .42π
D .36π
5. 设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩
,则2z x y =+的最小值是()
A .15-
B .9-
C .1
D .9
6. 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共
有()
A .12种
B .18种
C .24种
D .36种
7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,
2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家
说:我还是不知道我的成绩.根据以上信息,则()
A .乙可以知道四人的成绩
B .丁可以知道四人的成绩
C .乙、丁可以知道对方的成绩
D .乙、丁可以知道自己的成绩8. 执行右面的程序框图,如果输入的1a =-,则输出的
S =()A .2 B .3 C .4 D .5
9. 若双曲线C:22221x y a b -=(0a >,0b >)的一条渐 近线被圆()2224x y -+=所截得的弦长为2,则C 的
离心率为()
A .2
B .3
C .2
D .
23 10. 若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为()
A.1-
B.32e --
C.35e -
D.1
11. 已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB
与1C B 所成角的余弦值为()
A .
32 B .155 C .105
D .33 12. 已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()
A.2-
B.32-
C. 43-
D.1-
二、填空题:本题共4小题,每小题5分,共20分。

13. 一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽
到的二等品件数,则D X =. 14. 函数()23sin 3cos 4
f x x x =+-
(0,2x π⎡⎤
∈⎢⎥⎣⎦
)的最大值是. 15. 等差数列{}n a 的前n 项和为n S ,33a =,410S =,则
11
n
k k
S ==∑. 16. 已知F 是抛物线C:2
8y x =的焦点,M 是C 上一点,F M 的延长线交y 轴于点N .若M 为
F N 的中点,则F N =.
三、解答题:共70分。

解答应写出文字说明、解答过程或演算步骤。

第17~21题为必做题,每个试题考生都必须作答。

第22、23题为选考题,考生根据要求作答。

(一)必考题:共60分。

17.(12分)
ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2
sin()8sin 2
B
A C +=. (1)求cos B
(2)若6a c += , ABC ∆面积为2,求.b
18.(12分)
淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg )某频率直方图如下:
1.
设两种养殖方法的箱产量相互独立,记A 表示事件:旧养殖法的箱产量低于50kg, 新养殖法的箱产量不低于50kg,估计A 的概率;
2.
填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
箱产量<50kg 箱产量≥50kg 旧养殖法 新养殖法
3.根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)
P (

0.050 0.010 0.001 k
3.841 6.635
10.828
2
2
()()()()()
n ad bc K a b c d a c b d -=
++++
19.(12分)
如图,四棱锥PABCD 中,侧面PAD 为等比三角形且垂直于底面ABCD ,
o 1
,90,2
AB BC AD BAD ABC ==
∠=∠= E 是PD 的中点.
(1)证明:直线//CE 平面PAB
(2)点M 在棱PC 上,且直线BM 与底面ABCD 所
成锐角为o 45 ,求二面角MABD 的余弦值
20. (12分)
设O 为坐标原点,动点M 在椭圆C :2
212
x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP NM =
.
(1) 求点P 的轨迹方程;
(2)设点Q 在直线x=3上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F. 21.(12分)
已知函数3
()ln ,f x ax ax x x =--且()0f x ≥. (1)求a ;
(2)证明:()f x 存在唯一的极大值点0x ,且2
30()2e
f x --<<.
(二)选考题:共10分。

请考生在第22、23题中任选一题作答。

如果多做,按所做的第一题计
22.[选修44:坐标系与参数方程](10分)
在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.
(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2
C 的直角坐标方程;
(2)设点A 的极坐标为(2,
)3
π
,点B 在曲线2C 上,求OAB ∆面积的最大值.
23.[选修45:不等式选讲](10分)
已知3
3
0,0,2a b a b >>+=,证明: (1)3
3()()4a b a b ++≥; (2)2a b +≤.
参考答案
1.D
【解析】1是方程240x x m -+=的解,1x =代入方程得3m =
∴2430x x -+=的解为1x =或3x =,∴{}13B =,
3.B
【解析】设顶层灯数为1a ,2=q ,()7171238112
-==-a S ,解得13a =.
4.B
【解析】该几何体可视为一个完整的圆柱减去一个高为6的圆柱的一半.
2211
π310π3663π
22=-=⋅⋅-⋅⋅⋅=V V V 总上
5.A
【解析】目标区域如图所示,当直线-2y =x+z 取到点()63--,时,所求z 最小值为15-.
6.D
【解析】只能是一个人完成2份工作,剩下2人各完成一份工作.
由此把4份工作分成3份再全排得23
43C A 36⋅=
7.D
【解析】四人所知只有自己看到,老师所说及最后甲说的话.
甲不知自己成绩→乙、丙中必有一优一良,(若为两优,甲会知道自己成绩;两良亦然)→乙看了丙成绩,知自己成绩→丁看甲,甲、丁中也为一优一良,丁知自己成绩.
【解析】0S =,1k =,1a =-代入循环得,7k =时停止循环,3S =. 9.A
【解析】取渐近线b
y x a =
,化成一般式0bx ay -=,圆心()20,
= 得224c a =,24e =,2e =.
10.C
【解析】M ,N ,P 分别为AB ,1BB ,11B C 中点,则1AB ,1BC 夹角为MN 和NP 夹角或其补角
(异面线所成角为π02⎛
⎤ ⎥⎝
⎦,)
可知112MN AB =
,1122
NP BC ==, 作BC 中点Q ,则可知PQM △为直角三角形. 1=PQ ,1
2
MQ AC =
ABC △中,2222cos AC AB BC AB BC ABC =+-⋅⋅∠
14122172⎛⎫
=+-⨯⨯⋅-= ⎪⎝⎭
,=AC
则MQ =
MQP △
中,MP = 则PMN △中,222
cos 2MN NP PM PNM MH NP
+-∠=⋅⋅
222
+-=
= 又异面线所成角为π02⎛
⎤ ⎥⎝⎦


11.A 【解析】()()21
21x f x x a x a e -'⎡⎤=+++-⋅⎣⎦,
则()()3
2422101f a a e a -'-=-++-⋅=⇒=-⎡⎤⎣⎦,
则()()211x f x x x e -=--⋅,()()212x f x x x e -'=+-⋅, 令()0f x '=,得2x =-或1x =, 当2x <-或1x >时,()0f x '>, 当21x -<<时,()0f x '<, 则()f x 极小值为()11f =-.
12.B
【解析】几何法:
如图,2PB PC PD +=(D 为BC 中点), 则()
2PA PB PC PD PA ⋅+=⋅,
要使PA PD ⋅最小,则PA ,PD 方向相反,即P 点在线段AD 上, 则min 22PD PA PA PD ⋅=-⋅, 即求PD PA ⋅最大值, 又3
23PA PD AD +==⨯
=, 则2
233
24PA PD PA PD ⎛⎫+⎛⎫ ⎪⋅== ⎪ ⎪ ⎪⎝
⎭⎝⎭≤, 则min 332242
PD PA ⋅=-⨯=-. 解析法:
建立如图坐标系,以BC 中点为坐标原点,
P
D C
B
A
∴()
03A ,,()10B -,,()10C ,. 设()P x y ,, ()
3PA x y
=--,,
()
1PB x y =---,,
()1PC x y =--,,
∴()
222222PA PB PC x y y ⋅+=-+
2
2
3324x y ⎡⎤⎛⎫⎢⎥=+-- ⎪ ⎪⎢⎥⎝⎭⎣⎦
则其最小值为33242⎛⎫
⨯-=- ⎪⎝⎭
,此时0x =,3y =.
13.1.96
【解析】有放回的拿取,是一个二项分布模型,其中0.02=p ,100n =
则()11000.020.98 1.96x D np p =-=⨯⨯= 14.1
【解析】()23πsin 3cos 042f x x x x ⎛⎫⎡
⎤=+-∈ ⎪⎢⎥⎣
⎦⎝⎭,
()231cos 3cos 4
f x x x =-+-
令cos x t =且[]01t ∈, 21
34y t t =-++
2
31t ⎛⎫
=--+ ⎪ ⎪⎝⎭
则当3
t =时,()f x 取最大值1. 15.
2+1
n n 【解析】设{}n a 首项为1a ,公差为d .
则3123a a d =+= 414610S a d =+=
求得11a =,1d =,则n a n =,()12
n n n S +=
()()
1
1
2222
1223
11n
k k
S
n n n n ==
+++
+⨯⨯-+∑
111
111121223
11n n n n ⎛⎫=-+-++-+- ⎪-+⎝⎭
122111n n n ⎛
⎫=-=
⎪++⎝⎭
16.6
【解析】28y x =则4p =,焦点为()20F ,
,准线:2l x =-, 如图,M 为F 、N 中点,
故易知线段BM 为梯形AFMC 中位线, ∵2CN =,4AF =, ∴3ME =
又由定义ME MF =, 且MN NF =, ∴6
NF NM MF =+=
17.
【解析】(1)依题得:2
1cos sin 8sin
84(1cos )22
B B B B -==⋅=-. ∵22sin cos 1B B +=, ∴2216(1cos )cos 1B B -+=, ∴(17cos 15)(cos 1)0B B --=, ∴15
cos 17
B =
, (2)由⑴可知8sin 17
B =. ∵2AB
C S =△, ∴1
sin 22
ac B ⋅=, ∴18
2217
ac ⋅=, ∴17
2ac =
, ∵15cos 17
B =
, l F
N M C B A
O
y
x
∴22215217
a c
b a
c +-=,
∴22215a c b +-=, ∴22()215a c ac b +--=, ∴2361715b --=, ∴2b =.
18.
【解析】(1)记:“旧养殖法的箱产量低于50kg ” 为事件B
“新养殖法的箱产量不低于50kg ”为事件C
而()0.04050.03450.02450.01450.0125P B =⨯+⨯+⨯+⨯+⨯
0.62=
()0.06850.04650.01050.0085P C =⨯+⨯+⨯+⨯
0.66=
()()()0.4092P A P B P C ==
(2)
由计算可得2K 的观测值为
()2
22006266383415.705
10010096104
k ⨯⨯-⨯=
=⨯⨯⨯
∵15.705 6.635> ∴()2 6.6350.001P K ≈≥
∴有99%以上的把握产量的养殖方法有关.
(3)150.2÷=,()0.20.0040.0200.0440.032-++=
80.0320.06817÷=
,8
5 2.3517
⨯≈ 50 2.3552.35+=,∴中位数为52.35.
19.【解析】
z
y
x
M 'M
O
F
P
A
B
C
D
E
(1)令PA 中点为F ,连结EF ,BF ,CE .
∵E ,F 为PD ,PA 中点,∴EF 为PAD △的中位线,∴1
2
EF AD ∥.
又∵90BAD ABC ∠=∠=︒,∴BC AD ∥. 又∵12AB BC AD ==
,∴1
2
BC AD ∥,∴EF BC ∥. ∴四边形BCEF 为平行四边形,∴CE BF ∥. 又∵BF PAB ⊂面,∴CE PAB 面∥
(2)以AD 中点O 为原点,如图建立空间直角坐标系.
设1AB BC ==,则(000)O ,,,(010)A -,,,(110)B -,,,(100)C ,
,,(010)D ,,, (00P ,.
M 在底面ABCD 上的投影为M ',∴MM BM ''⊥.∵45MBM '∠=︒,
∴MBM '△
为等腰直角三角形. ∵POC △为直角三角形,OC =,∴60PCO ∠=︒.
设MM a '=,
CM '=

1OM '=.∴100M ⎛⎫' ⎪ ⎪⎝⎭

,.
BM a a '==⇒
=
.∴11OM
'==. ∴100M ⎛⎫'
⎪ ⎪⎝
⎭,,10M ⎛ ⎝⎭
2611AM ⎛⎫=- ⎪ ⎪⎝⎭
,,,(100)AB =,,.设平面ABM 的法向量11(0)m y z =,,. 116
0y z +
=,∴(062)m =-,, (020)AD =,,,(100)AB =,,.设平面ABD 的法向量为2(00)n z =,,,
(001)n =,,.
∴10
cos ,m n m n m n
⋅<>=
=
⋅. ∴二面角M AB D --的余弦值为10
. 20.
【解析】 ⑴设()P x y ,,易知(0)N x ,
(0)NP y =,又1022NM NP ⎛== ⎪⎝
⎭,
∴1
2M x y ⎛

⎪⎝⎭
,,又M 在椭圆上. ∴2
2122x += ⎪⎝⎭
,即222x y +=. ⑵设点(3)Q Q y -,,()P P P x y ,,(0)Q y ≠,
由已知:()(3)1P P P Q P OP PQ x y y y y ⋅=⋅---=,,, ()
2
1OP OQ OP OP OQ OP ⋅-=⋅-=,
∴2
13OP OQ OP ⋅=+=, ∴33P Q P Q P P Q x x y y x y y ⋅+=-+=.
设直线OQ :3Q y y x =
⋅-,
因为直线l 与OQ l 垂直. ∴3
l Q
k y =
故直线l 方程为3
()P P Q
y x x y y =
-+, 令0y =,得3()P Q P y y x x -=-,
1
3
P Q P y y x x -⋅=-, ∴1
3
P Q P x y y x =-⋅+,
∵33P Q P y y x =+, ∴1
(33)13
P P x x x =-++=-,
若0Q y =,则33P x -=,1P x =-,1P y =±, 直线OQ 方程为0y =,直线l 方程为1x =-, 直线l 过点(10)-,,为椭圆C 的左焦点.
21.
【解析】 ⑴ 因为()()ln 0f x x ax a x =--≥,0x >,所以ln 0ax a x --≥.
令()ln g x ax a x =--,则()10g =,()11
ax g x a x x
-'=-
=
, 当0a ≤时,()0g x '<,()g x 单调递减,但()10g =,1x >时,()0g x <; 当0a >时,令()0g x '=,得1
x a
=. 当10x a <<
时,()0g x '<,()g x 单调减;当1
x a
>时,()0g x '>,()g x 单调增. 若01a <<,则()g x 在11a ⎛⎫ ⎪⎝⎭,上单调减,()110g g a ⎛⎫
<= ⎪⎝⎭;
若1a >,则()g x 在11a ⎛⎫ ⎪⎝⎭,上单调增,()110g g a ⎛⎫
<= ⎪⎝⎭;
若1a =,则()()min 110g x g g a ⎛⎫
=== ⎪⎝⎭
,()0g x ≥.
综上,1a =.
⑵()2ln f x x x x x =--,()22ln f x x x '=--,0x >.
令()22ln h x x x =--,则()121
2x h x x x
-'=-=
,0x >. 令()0h x '=得1
2
x =, 当102x <<
时,()0h x '<,()h x 单调递减;当1
2
x >时,()0h x '>,()h x 单调递增. 所以,()min 112ln 202h x h ⎛⎫
==-+< ⎪⎝⎭

因为()22e 2e 0h --=>,()22ln 20h =->,21e 02-⎛⎫∈ ⎪⎝⎭,,122⎛⎫
∈+∞ ⎪⎝⎭
,,
所以在102⎛⎫ ⎪⎝⎭,和12⎛⎫
+∞ ⎪⎝⎭
,上,()h x 即()f x '各有一个零点.
设()f x '在102⎛⎫ ⎪⎝⎭,和12⎛⎫+∞ ⎪⎝⎭,上的零点分别为02x x ,
,因为()f x '在102⎛⎫
⎪⎝⎭
,上单调减,
所以当00x x <<时,()0f x '>,()f x 单调增;当01
2
x x <<时,()0f x '<,()f x 单调减.因此,0x 是()f x 的极大值点.
因为,()f x '在12⎛⎫
+∞ ⎪⎝⎭
,上单调增,所以当212x x <<时,()0f x '<,()f x 单调减,
2x x >时,()f x 单调增,因此2x 是()f x 的极小值点.
所以,()f x 有唯一的极大值点0x .
由前面的证明可知,201e 2x -⎛
⎫∈ ⎪⎝
⎭,,则()()
24220e e e e f x f ---->=+>.
因为()00022ln 0f x x x '=--=,所以00ln 22x x =-,则 又()()22000000022f x x x x x x x =---=-,因为0102x <<,所以()01
4
f x <. 因此,()201
e 4
f x -<<
. 22.
【解析】⑴设()()00M P ρθρθ,
,, 则0||OM OP ρρ==,. 000016
cos 4ρρρθθθ
=⎧⎪
=⎨⎪=⎩
解得4cos ρθ=,化为直角坐标系方程为
()
2
224x y -+=.()0x ≠
⑵连接AC ,易知AOC △为正三角形.
||OA 为定值.
∴当高最大时,AOB S △面积最大,
如图,过圆心C 作AO 垂线,交AO 于H 点 交圆C 于B 点, 此时AOB S △最大
max 1
||||2
S AO HB =⋅ ()1
||||||2
AO HC BC =
+
2=
23.
【解析】⑴由柯西不等式得:()()
()
2
2
5533
4a b a b a b ++=+=≥
1a b ==时取等号. ⑵∵332a b +=
∴()()
222a b a ab b +-+=
∴()()2
32a b b ab α⎡⎤++-=⎣⎦
∴()()3
32a b ab a b +-+=
∴()()
3
23a b ab
a b +-=+
由均值不等式可得:()()3
2
232a b a b ab a b +-+⎛⎫= ⎪+⎝⎭
≤ ∴()()3
2232a b a b a b +-+⎛⎫ ⎪+⎝⎭
≤ ∴()()3
3
324
a b a b ++-≤

()3
124
a b +≤ ∴2a b +≤ 当且仅当1a b ==时等号成立.。

相关文档
最新文档