二次函数中考复习题型分类练习
中考数学复习《二次函数》专题训练-附带有参考答案
中考数学复习《二次函数》专题训练-附带有参考答案一、选择题1.下列函数中,是二次函数的是()A.y=x2+1x B.y=12x(x-1) C.y=-2x-1 D.y=x(x2+1).2.抛物线y=(x−2)2−3的顶点坐标是()A.(2,−3)B.(−2,3)C.(2,3)D.(−2,−3)3.把抛物线y=5x2向左平移2个单位,再向上平移3个单位,得到的抛物线是()A.y=5(x−2)2+3B.y=5(x+2)2−3C.y=5(x+2)2+3D.y=5(x−2)2−34.函数y=ax2与y=﹣ax+b的图象可能是()A. B. C. D.5.函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是()A.k<3 B.k<3且k≠0 C.k≤3且k≠0 D.k≤36.若A(−5,y1),B(1,y2),C(2,y3)为二次函数y=x2+2x+m的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y2<y1<y3D.y3<y1<y27.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①b>0;②当x>0,y随着x 的增大而增大;③(a+c)2﹣b2<0;④a+b≥m(am+b)(m为实数).其中结论正确的个数为()A.4个B.3个C.2个D.1个8.某服装店购进单价为15元的童装若干件,销售一段时间后发现:当销售价为25元时,平均每天能售出8件,而当销售价每降低2元时,平均每天能多售出4件,为使该服装店平均每天的销售利润最大,则每件的定价为()A.21元B.22元C.23元D.24元二、填空题9.将二次函数y=x2-2x化为y=(x-h)2+k的形式,结果为10.若抛物线y=ax2+bx+c与x轴的两个交点坐标是(-1,0),(3,0),则此抛物线的对称轴是直线.11.将二次函数y=x2﹣4x+a的图象向左平移1个单位,再向上平移1个单位,若得到的函数图象与直线y=2有两个交点,则a的取值范围是.12.飞机着陆后滑行的距离y (单位:m)关于滑行时间t (单位:s)的函数解析式是y=60t-65t2,从飞机着陆至停下来共滑行米.13.已知如图:抛物线y=ax2+bx+c与直线y=kx+n相交于点A(−52,74)、B(0,3)两点,则关于x的不等式ax2+bx+c<kx+n的解集是三、解答题14.如图,在平面直角坐标系中,一次函数y1=kx−7的图象与二次函数y2=2x2+bx+c的图象交于A(1,−5)、B(3,t)两点.(1)求y1与y2的函数关系式;(2)直接写出当y1<y2时,x的取值范围;(3)点C为一次函数y1图象上一点,点C的横坐标为n,若将点C向右平移2个单位,再向上平移4个单位后刚好落在二次函数y2的图象上,求n的值.15.某品牌服装公司新设计了一款服装,其成本价为60(元/件).在大规模上市前,为了摸清款式受欢迎状况以及日销售量y(件)与销售价格x(元/件)之间的关系,进行了市场调查,部分信息如表:销售价格x(元/件)80 90 100 110日销售量y(件)240 220 200 180(1)若y与x之间满足一次函数关系,请直接写出函数的解析式(不用写自变量x的取值范围);(2)若该公司想每天获利8000元,并尽可能让利给顾客,则应如何定价?(3)为了帮助贫困山区的小朋友,公司决定每卖出一件服装向希望小学捐款10元,该公司应该如何定价,才能使每天获利最大?(利润用w表示)16.如图,抛物线y=−x2+bx+c与x轴交于A,B两点(A在B的左侧),与y轴交于点N,过A点的直线:l:y=−x−1与y轴交于点C,与抛物线y=−x2+bx+c的另一个交点为D(5,−6),已知P点为抛物线y=−x2+bx+c上一动.点(不与A、D重合).(1)求抛物线的解析式;(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作PF∥y轴交直线l于点F,求PE+PF的最大值;(3)设M为直线l上的动点,以NC为一边且顶点为N,C,M,P的四边形是平行四边形,直接写出所有符合条件的M点坐标.17.如图是北京冬奥会举办前张家口某小型跳台滑雪训练场的横截面示意图,取某一位置的水平线为x轴,过跳台终点作水平线的垂线为y轴,建立平面直角坐标系,图中的抛物线C1:y=−18x2+32x+32近似表示滑雪场地上的一座小山坡,某滑雪爱好者小张从点O正上方A点滑出,滑出后沿一段抛物线C2:y=−14x2+bx+c 运动.(1)当小张滑到离A处的水平距离为8米时,其滑行高度为10米,求出b,c的值;(2)在(1)的条件下,当小张滑出后离的水平距离为多少米时,他滑行高度与小山坡的竖直距离为是5米?2(3)若小张滑行到坡顶正上方,且与坡顶距离不低于4米,求b的取值范围.18.如图,在平面直角坐标系中,抛物线y=ax2+bx−4与x轴交于A(4,0)、B(−3,0)两点,与y轴交于点C.(1)求这条抛物线所对应的函数表达式.(2)如图①,点D是x轴下方抛物线上的动点,且不与点C重合.设点D的横坐标为m,以O、A、C、D 为顶点的四边形面积为S,求S与m之间的函数关系式.(3)如图②,连结BC,点M为线段AB上一点,点N为线段BC上一点,且BM=CN=n,直接写出当n为何值时△BMN为等腰三角形.参考答案 1.B 2.A 3.C 4.B 5.D 6.B 7.B 8.B9.y =(x −1)2−1 10.x =1 11.a <5 12.75013.x <−52或x >014.(1)解:把点A(1,−5)代入y 1=kx −7得−5=k −7 ∴y 1=2x −7;把点B(3,t)代入y 1=2x −7中,得t =−1 ∴A(1,−5)把点A 、B 分别代入y 2=2x 2+bx +c 中,得{−2=2+b +c−1=18+3b +c 解得{b =−6c =−1∴y 2=2x 2−6x −1; (2)x <1或x >3(3)解:∵点C 为一次函数y 1图象上一点,∴C(n ,2n −7)将点C 向右平移2个单位,再向上平移4个单位后得到点C ′(n +2,2n −3) 把C ′代入y 2=2x 2−6x −1,得2n −3=2(n +2)2−6(n +2)−1 解得n =±1 所以n 的值为1或-1 15.(1)y=-2x+400(2)解:由题意,得:(x −60)(−2x +400)=8000解得x 1=100,x 2=160 ∵公司尽可能多让利给顾客 ∴应定价100元(3)解:由题意,得w =(x −60−10)(−2x +400)=−2x 2+540x −28000 =−2(x −135)2+8450∵−2<0∴当x =135时,w 有最大值,最大值为8450. 答:当一件衣服定为135元时,才能使每天获利最大. 16.(1)解:∵直线l :y =−x −1过点A∴A(−1,0)又∵D(5,−6)将点A ,D 的坐标代入抛物线表达式可得:{−1−b +c =0−25+5b +c =−6 解得{b =3c =4.∴抛物线的解析式为:y =−x 2+3x +4. (2)解:如图设点P(x ,−x 2+3x +4) ∵PE ∥x 轴,PF ∥y 轴则E(x 2−3x −5,−x 2+3x +4),F(x ,−x −1) ∵点P 在直线l 上方的抛物线上∴−1<x <5∴PE =|x −(x 2−3x −5)|=−x 2+4x +5,PF =|−x 2+3x +4−(−x −1)|=−x 2+4x +5 ∴PE +PF =2(−x 2+4x +5)=−2(x −2)2+18. ∴当x =2时,PE +PF 取得最大值,最大值为18.(3)符合条件的M 点有三个:M 1(4,−5),M 2(2+√14,−3−√14), M 3(2−√14,−3+√14). 17.(1)解:由题意可知抛物线C 2:y=−14x 2+bx+c 过点(0, 4)和(8, 10) 将其代入得:{4=c10=−14×82+8b +c解得 ∴b=114,c=4(2)解:由(1)可得抛物线Cq 解析式为: y=−14x 2+114x+4设运动员运动的水平距离为m 米时,运动员与小山坡的竖直距离为52米,依题意得: −14m 2+114m +4−(−18m 2+32m +32)=52解得: m 1=10,m 2=0(舍)故运动员运动的水平距离为10米时,运动员与小山坡的竖直距离为为52米. (3)解:∵抛物线C 2经过点(0, 4) ∴c=4抛物线C 1: y=−18x 2+32x +32=−18(x −6)2+6 当x=6时,运动员到达坡项 即−14×62+6b+4≥4+6. ∴b ≥15618.(1)解:把A(4,0)、B(−3,0)代入y =ax 2+bx −4中 得{16a +4b −4=09a −3b −4=0解得{a =13b =−13∴这条抛物线所对应的函数表达式为y =13x 2−13x −4. (2)解:当x =0时y =−4∴C(0,−4)当−3<m <0时S =S △ODC +S △OAC =12×4×(−m)+12×4×4=−2m +8当0<m <4时S =S △ODC +S △OAD =12×4×m +12×4×(−13m 2+13m +4)=−23m 2+83m +8. (3)解:n =52,n =2511,n =3011.。
初三--二次函数基础分类练习题(含答案)
1 二次函数练习题练习一 二次函数1、 一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t (秒)的数据如下表:写出用t 表示s 的函数关系式: 2、 下列函数:① y =()21y x x x =-+;③ ()224y x x x =+-;④ 21y x x=+; ⑤ ()1y x x =-,其中是二次函数的是 ,其中a = ,b = ,c = 3、当m 时,函数()2235y m x x =-+-(m 为常数)是关于x 的二次函数 4、当____m =时,函数()2221m m y m m x--=+是关于x 的二次函数5、当____m =时,函数()2564mm y m x-+=-+3x 是关于x 的二次函数6、若点 A ( 2, m ) 在函数 12-=x y 的图像上,则 A 点的坐标是____.7、在圆的面积公式 S =πr 2 中,s 与 r 的关系是( )A 、一次函数关系B 、正比例函数关系C 、反比例函数关系D 、二次函数关系8、正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子. (1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式;(2)当小正方形边长为3cm 时,求盒子的表面积.9、如图,矩形的长是 4cm ,宽是 3cm ,如果将长和宽都增加 x cm ,那么面积增加 ycm 2, ① 求 y 与 x 之间的函数关系式. ② 求当边长增加多少时,面积增加 8cm 2.10、已知二次函数),0(2≠+=a c ax y 当x=1时,y= -1;当x=2时,y=2,求该函数解析式.211、富根老伯想利用一边长为a 米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形.(1) 如果设猪舍的宽AB 为x 米,则猪舍的总面积S (米2)与x 有怎样的函数关系?(2) 请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长BC 和宽AB 的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?练习二 函数2ax y =的图象与性质1、填空:(1)抛物线221x y =的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ; (2)抛物线221x y -=的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ;2、对于函数22x y =下列说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;③y 随x 的增大而减小;④图象关于y 轴对称.其中正确的是 . 3、抛物线 y =-x 2 不具有的性质是( )A 、开口向下B 、对称轴是 y 轴C 、与 y 轴不相交D 、最高点是原点4、苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足 S =12gt 2(g =9.8),则 s 与 t 的函数图像大致是( )A B C D5、函数2ax y =与b ax y +-=的图象可能是( )A .B .C .D .tttt36、已知函数24mm y mx--=的图象是开口向下的抛物线,求m 的值.7、二次函数12-=m mx y 在其图象对称轴的左侧,y 随x 的增大而增大,求m 的值.8、二次函数223x y -=,当x 1>x 2>0时,求y 1与y 2的大小关系.9、已知函数()422-++=m mx m y 是关于x 的二次函数,求:(1) 满足条件的m 的值;(2) m 为何值时,抛物线有最低点?求出这个最低点,这时x 为何值时,y 随x 的增大而增大;(3) m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x 的增大而减小?10、如果抛物线2y ax =与直线1y x =-交于点(),2b ,求这条抛物线所对应的二次函数的关系式.4练习三 函数c ax y +=2的图象与性质1、抛物线322--=x y 的开口 ,对称轴是 ,顶点坐标是 ,当x 时, y 随x 的增大而增大, 当x 时, y 随x 的增大而减小. 2、将抛物线231x y =向下平移2个单位得到的抛物线的解析式为 ,再向上平移3个单位得到的抛物线的解析式为 ,并分别写出这两个函数的顶点坐标 、 .3、任给一些不同的实数k ,得到不同的抛物线k x y +=2,当k 取0,1±时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点.其中判断正确的是 .4、将抛物线122-=x y 向上平移4个单位后,所得的抛物线是 ,当x= 时,该抛物线有最 (填大或小)值,是 .5、已知函数2)(22+-+=x m m mx y 的图象关于y 轴对称,则m =________;6、二次函数c ax y +=2()0≠a 中,若当x 取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值等于 .练习四 函数()2h x a y -=的图象与性质1、抛物线()2321--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有 最 值 .2、试写出抛物线23x y =经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标. (1)右移2个单位;(2)左移32个单位;(3)先左移1个单位,再右移4个单位.3、 请你写出函数()21+=x y 和12+=x y 具有的共同性质(至少2个).54、二次函数()2h x a y -=的图象如图:已知21=a ,OA=OC ,试求该抛物线的解析式.4、 抛物线2)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积.5、 二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6.(1)求出此函数关系式.(2)说明函数值y随x 值的变化情况.7、已知抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值.练习五 ()k h x a y +-=2的图象与性质1、请写出一个二次函数以(2, 3)为顶点,且开口向上.____________.2、二次函数 y =(x -1)2+2,当 x =____时,y 有最小值.3、函数 y =12(x -1)2+3,当 x ____时,函数值 y 随 x 的增大而增大.4、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向 平移3个单位,再向 平移2个单位得到. 5、 已知抛物线的顶点坐标为()2,1,且抛物线过点()3,0,则抛物线的关系式是6、 如图所示,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是( )A 、x>3B 、x<3C 、x>1D 、x<167、已知函数()9232+--=x y .(1) 确定下列抛物线的开口方向、对称轴和顶点坐标; (2) 当x= 时,抛物线有最 值,是 .(3) 当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小. (4) 求出该抛物线与x 轴的交点坐标及两交点间距离;(5) 求出该抛物线与y 轴的交点坐标;(6) 该函数图象可由23x y -=的图象经过怎样的平移得到的?8、已知函数()412-+=x y .(1) 指出函数图象的开口方向、对称轴和顶点坐标;(2) 若图象与x 轴的交点为A 、B 和与y 轴的交点C ,求△ABC 的面积;(3) 指出该函数的最值和增减性;(4) 若将该抛物线先向右平移2个单位,在向上平移4个单位,求得到的抛物线的解析式;(5) 该抛物线经过怎样的平移能经过原点.(6) 画出该函数图象,并根据图象回答:当x 取何值时,函数值大于0;当x 取何值时,函数值小7 练习六 c bx ax y ++=2的图象和性质 1、抛物线942++=x x y 的对称轴是 .2、抛物线251222+-=x x y 的开口方向是 ,顶点坐标是 .3、试写出一个开口方向向上,对称轴为直线x=-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .4、将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,则 y =____.5、把二次函数215322y x x =---的图象向上平移3个单位,再向右平移4个单位,则两次平移后的函数图象的关系式是6、抛物线1662--=x x y 与x 轴交点的坐标为_________; 7、函数x x y +-=22有最____值,最值为_______;8、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,则b 与c 分别等于( )A 、6,4B 、-8,14C 、-6,6D 、-8,-149、二次函数122--=x x y 的图象在x 轴上截得的线段长为( ) A 、22 B 、23 C 、32 D 、3310、通过配方,写出下列函数的开口方向、对称轴和顶点坐标: (1)12212+-=x x y ; (2)2832-+-=x x y ; (3)4412-+-=x x y11、把抛物线1422++-=x x y 沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由.12、求二次函数62+--=x x y 的图象与x 轴和y 轴的交点坐标813、已知一次函数的图象过抛物线223y x x =++的顶点和坐标原点 1) 求一次函数的关系式;2) 判断点()2,5-是否在这个一次函数的图象上14、某商场以每台2500元进口一批彩电.如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?练习七 c bx ax y ++=2的性质1、函数2y x px q =++的图象是以()3,2为顶点的一条抛物线,这个二次函数的表达式为 2、二次函数2224y mx x m m =++-的图象经过原点,则此抛物线的顶点坐标是 3、如果抛物线2y ax bx c =++与y 轴交于点A (0,2),它的对称轴是1x =-,那么acb= 4、抛物线c bx x y ++=2与x 轴的正半轴交于点A 、B 两点,与y 轴交于点C ,且线段AB 的长为1,△ABC 的面积为1,则b 的值为______.5、已知二次函数c bx ax y ++=2的图象如图所示,则a___0,b___0,c___0,ac b 42-____0;297、已知二次函数2y ax bx c =++(0≠a )的图象如图所示,则下列结论:1),a b 同号;2)当1x =和3x =时,函数值相同;3)40a b +=;4)当2y =-时,x 的值只能为0;其中正确的是(第5题) (第6题) (第7题) (第10题) 8、已知二次函数2224m mx x y +--=与反比例函数xm y 42+=的图象在第二象限内的一个交点的横坐标是-2,则m=9、二次函数2y x ax b =++中,若0a b +=,则它的图象必经过点( )A ()1,1--B ()1,1-C ()1,1D ()1,1-10、函数b ax y +=与c bx ax y ++=2的图象如上图所示,则下列选项中正确的是( ) A 、0,0>>c ab B 、0,0><c ab C 、0,0<>c ab D 、0,0<<c ab 11、已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是( )12、二次函数c bx ax y ++=2的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值为正数的有( )A .4个B .3个C .2个D .1个13、抛物线的图角如图,则下列结论: ①>0;②;③>;④<1.其中正确的结论是( ).(A )①② (B )②③ (C )②④ (D )③④1014、二次函数2y ax bx c =++的最大值是3a -,且它的图象经过()1,2--,()1,6两点, 求a 、b 、c 的值。
(完整word版)二次函数中考复习(题型分类练习)
二次函数题型分析练习题型一:二次函数对称轴及顶点坐标的应用1.(2015•兰州)在下列二次函数中,其图象对称轴为x =﹣2的是( )A . y =(x +2)2B .y =2x 2﹣2C .y =﹣2x 2﹣2D .y =2(x ﹣2)22.(2014•浙江)已知点A (a ﹣2b ,2﹣4ab )在抛物线y =x 2+4x +10上,则点A 关于抛物线对称轴的对称点坐标为( )A 。
(﹣3,7) B.(﹣1,7) C.(﹣4,10) D 。
(0,10) 3.在同一坐标系中,图像与y=2x 2的图像关于x 轴对称的函数是( ) A 。
212y x = B 。
212y x =- C.22y x =- D 。
2y x =-4。
二次函数 无论k 取何值,其图象的顶点都在( ) A.直线上 B 。
直线上 C.x 轴上 D.y 轴上5。
(2012•烟台)已知二次函数y=2(x ﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x <3时,y 随x 的增大而减小.则其中说法正确的有( ) A .1个 B .2个 C .3个 D .4个6.(2014•扬州)如图,抛物线y =ax 2+bx +c (a >0)的对称轴是过点(1,0)且平行于y 轴的直线,若点P (4,0)在该抛物线上,则4a ﹣2b +c 的值为 . 7。
已知二次函数,当取 ,(≠)时,函数值相等,则当取时,函数值为( )A.B .C 。
D 。
c8.如图所示,已知二次函数的图象经过(-1,0)和(0,-1)两点,则化简代数式= 。
第2题图题型二:平移 1。
抛物线向右平移3个单位长度得到的抛物线对应的函数关系式为( )A. B 。
C 。
D.2.(2012上海)将抛物线y =x 2+x 向下平移2个单位,所得新抛物线的表达式是________3。
二次函数()23212-+=x y 的图象是由函数221x y =的图象先向 (左、右)平移 个单位长度,再向(上、下)平移 个单位长度得到的.4。
中考数学复习《二次函数》专题训练-附带参考答案
中考数学复习《二次函数》专题训练-附带参考答案一、选择题1.抛物线y=−2x2+3的顶点为().A.(0,3)B.(−2,3)C.(2,3)D.(0,−3)2.将抛物线y=4x2向上平移6个单位,再向右平移9个单位,得到的抛物线的解析式为().A.y=4(x+9)2+6B.y=4(x−9)2+6C.y=4(x+9)2−6D.y=4(x−9)2−63.一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A. B. C. D.4.已知二次函数y=ax2+bx+2(a≠0),经过点P(m,12).当y≤−1时,x的取值范围为t−1≤x≤−3−t.则如下四个值中有可能为m的是()A.2 B.3 C.4 D.55.已二次函数y=mx2+(m−2)x+2的图象关于y轴对称,则下列结论不正确的是().A.m=2B.抛物线的开口向上C.当x>0时,y随x的增大而增大D.当x=2时,函数有最小值26.已知二次函数y=(x−1)(x−2),若关于x的方程(x−1)(x−2)=m(m<0)的实数根为α,β,且α<β,则下列不等式正确的是()A.α<1,β<2B.1<α<β<2C.1<α<2<βD.α<1<β<27.小明在期末体育测试中掷出的实心球的运动路线呈抛物线形,若实心球运动的抛物线的解析式为y= (x−3)2+k,其中y是实心球飞行的高度,x是实心球飞行的水平距离,已知该同学出手点A的坐标为(0,−1916),则实心球飞行的水平距离OB的长度为()9A.7m B.7.5m C.8m D.8.5m8.如图,已知抛物线y =ax 2+bx+c (a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,有下列结论:①4ac <b 2;②abc >0;③方程ax 2+bx+c =0的两个根是x 1=﹣1,x 2=3;④当x <0时,y 随x 增大而增大;⑤8a+c <0.其中结论正确的有( )A .5个B .4个C .3个D .2个二、填空题9.若抛物线y =x 2−x +k 与x 轴只有一个交点,则k 的值为 . 10.二次函数y =﹣3(x+1)2的最大值为 .11.若二次函数y =ax 2−bx −1的图象经过点(2,1),则2023−2a +b = .12.为执行国家药品降价政策,给人民群众带来实惠,某药品经过两次降价,每盒零售价由16元降为y 元,设平均每次降价的百分率是x ,则y 关于x 的函数表达式为 .13.如图,已知二次函数y =ax 2+bx+c 的图象过点(3,0),对称轴为直线x =1,则下列结论:①abc <0;②ax 2+bx+c =0的两个根是x 1=﹣1,x 2=3;③当x <1时,y 随着x 的增大而增大 ;④4a+2b+c <0. (填写序号).三、解答题14.已知二次函数y =14x 2+x .(1)确定该抛物线的开口方向、顶点坐标和对称轴;(2)当x 取何值时,y 随x 的增大而增大?当x 取何值时,y 随x 的增大而减小?15.已知抛物线2y x bx c =++经过()3,0A ,对称轴是直线1x =.点()11,B n y -,()222,C n y +两点在抛物(1)求抛物线的解析式;(2)当n 取何值时,12y y -取最大值.16.如图,交易会上主办方利用足够长的一段围墙,用围栏围成一个长方形的空地,中间用围栏分割出2个小长方形展厅,并且在与墙平行的一边上各开了一扇宽为1.5m 的门,总共用去围栏36m .(1)若长方形展厅ABCD 的面积为290m ,求边AB 的长为多少米? (2)当边AB 的长为多少米时,长方形展厅ABCD 的面积最大?17.某商店以每顶60元的价格新进一批头盔,经市场调研发现,售价定为每顶100元时,每月可售出200顶为配合交管部门“一带(安全带)一盔(头盔)”整治活动,计划将头盔降价出售,经调查发现:每降价4元,每月可多售出40顶,设该商店降价后每个头盔的价格为元,每月销售的头盔数量为y 顶.(1)直接写出y 与x 之间的函数关系式;(2)若该商店销售头盔每月的利润为w 元,求w 与x 之间的函数关系式;(3)在(2)的条件下,当x 取何值时,每月销售头盔的利润w 有最大值?最大值是多少?18.如图,抛物线252y ax bx =++与直线AB 交于点()51,0,4,2A B ⎛⎫- ⎪⎝⎭.点D 是直线AB 上方抛物线上的一个动点(不与点A B 、重合),经过点D 且与y 轴平行的直线交直线AB 于点C .(1)求抛物线的函数解析式;(2)若点D 为抛物线的顶点,点P 是抛物线上的动点,点Q 是直线AB 上的动点.是否存在以点,,,P Q C D 为顶点的四边形是以CD 为边的平行四边形,若存在,求出点Q 的坐标;若不存在,请说明理由.1.A 2.B 3.D 4.A 5.D 6.B 7.C 8.B 9.14 10.0 11.202212.y =16x 2−32x +16 13.①②③14.(1)解:∵y =14x 2+x =14(x 2+4x)=14(x 2+4x +4−4)=14(x +2)2−1 ∴抛物线开口向上,顶点坐标为(2,−1),对称轴为直线x =−2 (2)解:∵对称轴为直线x =−2,抛物线开口朝上当x <−2时,y 随x 的增大而减小,当x >−2时,y 随x 的增大而增大. 15.(1)解:由题可得:09312b cb =++⎧⎪⎨-=⎪⎩,解得:23b c =-⎧⎨=-⎩∴二次函数的解析式为2=23y x x --;(2)解:∵点()11,B n y -,()223,C n y +两点在抛物线上∴()()22112134y n n n n =----=- ()()22223223348y n n n n =+-+-=+ ∴()22123123212y y n n n -=--=-++ ∵30-<∴当2n =-时12y y -取最大值.16.(1)解:设AB 的长为x 米,则()3632 1.5393BC x x =-+⨯=-米,根据题意得:()39390x x -=解得13x = 210x = 答:AB 的长为3或10米.(2)解:设AB 的长为x 米,则()393BC x =-米,长方形展厅ABCD 的面积为S 由题意可得()2213507393339324S x x x x x ⎛⎫=-=-+=--+ ⎪⎝⎭∴对称轴为132x = ∴当132AB =时,所围成的长方形展厅ABCD 的面积最大. 17.(1)解:;(2)解:由题知与之间的函数关系式为;(3)解:抛物线开口向下 又当时,有最大值,最大值为9000.即当元,每月销售头盔的利润有最大值,最大利润是9000元.18.(1)解:由题意,将点()51,0,4,2A B ⎛⎫- ⎪⎝⎭代入252y ax bx =++中得5025516422a b a b ⎧-+=⎪⎪⎨⎪++=⎪⎩,解得122a b ⎧=-⎪⎨⎪=⎩ ∴抛物线的解析式为215222y x x =-++;(2)解:存在以点,,,P Q C D 为顶点的四边形是以CD 为边的平行四边形. 由()221519222222y x x x =-++=--+得顶点D 坐标为92,2⎛⎫ ⎪⎝⎭设直线AB 的解析式为y kx t =+将点()51,0,4,2A B ⎛⎫- ⎪⎝⎭代入,得0542k t k t -+=⎧⎪⎨+=⎪⎩解得1212k t ⎧=⎪⎪⎨⎪=⎪⎩∴直线AB 的解析式为1122y x =+ 当2x =时1132222y =⨯+=,∴32,2C ⎛⎫ ⎪⎝⎭∴93322CD =-= ∵以点,,,P Q C D 为顶点的四边形是以CD 为边的平行四边形,CD 在抛物线对称轴上 ∴PQ y ∥轴,且3PQ CD ==由题意,设215,222P m m m ⎛⎫-++ ⎪⎝⎭,则11,22Q m m ⎛⎫+ ⎪⎝⎭∴2151122222PQ m m m ⎛⎫=-++-+ ⎪⎝⎭2132322m m =-++=∴2132322m m -++=①或2132322m m -++=-②解①得1m =或2m =(舍去),则()1,1Q ; 解②得2m =-或5m =,则12,2Q ⎛⎫-- ⎪⎝⎭或()5,3Q ,综上,符合条件的Q 坐标为()1,1或12,2⎛⎫-- ⎪⎝⎭或()5,3.。
中考数学总复习《二次函数》专项训练题(带答案)
中考数学总复习《二次函数》专项训练题(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.下列函数中,y 是x 的二次函数的是( )A .2y x =B .2y x =C .1y x =-D .23y x = 2.抛物线()223y x =-+-的顶点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.把抛物线21y x =+向右平移1个单位,再向上平移2个单位,得到抛物线( ) A .()211y x =+-B .()213y x =++ C .()211y x =-- D .()213y x =-+ 4.已知关于x 的一元二次方程2x bx c =-的解为11x =-和23x =,则二次函数2y x bx c =-+的对称轴是( )A .直线=1x -B .直线0x =C .直线1x =D .直线2x =5.在“探索二次函数()20y ax bx c a =++≠的系数,,a b c 与图象的关系”活动中,老师给出平面直角坐标系中的四点:()()()()0,2,2,3,2,1,3,1A B C D .同学们分别画出了经过这四个点中的三个点的二次函数的图象,并得到对应的函数表达式21111y a x b x c =++,22222y a x b x c =++分别计算111a b c ++,222a b c ++的值,其中较大值为( )A .103B .3C .2D .536.一次函数y ax b =+与二次函数21y ax bx =++在同一平面直角坐标系中的图像可能是( )A .B .C .D .7.已知矩形ABCD 的边4AB =,BC=2,点M 从点A 到点B 以每秒1个单位长度的速度运动,点N 沿A D C B ---以每秒2个单位长度的速度运动,两点相遇时停止运动.连接MN ,则AMN 的面积y 与运动时间x 之间的函数图象大致为( )A .B .C .D .8.如图,二次函数221y x x m =-+++的图象交x 轴于点(),0A a 和(),0B b ,交y 轴于点C ,图象的顶点为D .下列四个结论中:①当0x >时0y >;①若1a =-,则3b =;①点C 关于图象对称轴的对称点为E ,点M 为x 轴上的一个动点,当2m =时,MCE △周长的最小值为2102+;①图象上有两点()11,P x y 和()22,Q x y ,若121x x ,且122x x +>,则12y y >,其中正确的是( )A .①①①①B .①①C .①①D .①①①二、填空题 9.点()11,A y -,()24,B y 是二次函数()21y x m =-+图象上的两个点,则1y 2y (填“>”,“<”或“=”).10.某车的刹车距离()m y 与开始刹车时的速度()m/s x 满足二次函数()20.040y x x =>,若该车某次的刹车距离为9m ,则开始刹车时的速度为 m /s .11.已知二次函数2y x bx c =++的图象如图所示,则此二次函数的解析式为 .12.如图,用一段长为16m 的篱笆围成一个一边靠墙的矩形围栏(墙长6m ),则这个围栏的最大面积为 2m .13.已知二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠),函数y 与自变量x 的部分对应值如下表:x … 1- 0 1 2 3 4 …y … 10 m 2 1 2 5 …当y m <时,x 的取值范围是 .三、解答题14.已知抛物线()()3468y x x =+-与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C .(1)求,,A B C 三点的坐标.(2)在该拋物线的对称轴上是否存在点M ,使得MAC △的周长最小?若存在,求出点M 的坐标;若不存在,请说明理由.15.某数学兴趣小组在一次课外活动中设计了一个弹珠投箱子的游戏(无盖正方体箱子放在水平地面上).现将弹珠抽象为一个动点,并建立了如图所示的平面直角坐标系(x 轴经过箱子底面中心,并与其一组对边平行,正方形DEFG 为箱子正面示意图).某同学将弹珠从()1,0A 处抛出,弹珠的飞行轨迹为抛物线2:3L y ax bx =++(单位长度为1m )的一部分,已知抛物线经过点()2,3-,2m DE =和5m AD =.(1)求抛物线L 的解析式和顶点坐标;(2)若弹珠投入箱内后立即向左上方弹起,沿与抛物线L 形状相同的拋物线M 运动,且无阻挡时弹珠最大高度可达3m ,请判断弹珠能否弹出箱子,并说明理由.16.金沙薏米是仙游县著名的土特产,它品质优异,荣获国家地理标志证明商标. 某超市销售的金沙薏米,成本价为每千克22元,超市限定售价不高于每千克34 元. 销售中平均每天销售量y (kg )与销售单价x (元)的关系可以近似地看作一次函数,如下表所示: 26 28 30 321 70 60 50 40(1)求出y 与x 之间的函数关系式;(2)设超市每天销售薏米的利润为 w (元),求w 与x 之间的函数关系式,当x 取何值时,w 的值达到最大?最大值是多少?17.如图,“爱心”图案是由抛物线()20y ax k a =+≠的一部分及其关于直线y x =-的对称图形组成,点A ,B 是“爱心”图案与其对称轴的两个交点,点C ,D ,E ,F 是“爱心”图案与坐标轴的交点,且点C ,D 的坐标分别为()5,0和()0,5.(1)求a,k的值;=-对称后的图象的表达式.(2)求抛物线2y ax k=+关于直线y x18.如图,用长32米的竹篱笆围成一个矩形院墙,其中一面靠墙,墙长14米,墙的对面有一个2米宽的门,设垂直于墙的一边长为x米,院墙的面积为S平方米.(1)直接写出S与x的函数关系式;(2)若院墙的面积为120平方米,求x的值;(3)若在墙的对面再开一个宽为a(3a<)米的门,且面积S的最大值为154平方米,求a 的值.参考答案: 1.D2.C3.D4.C5.A6.C7.A8.D9.<10.1511.223y x x =+-12.3013.04x <</40x >>14.(1)()()()4,0,6,0,0,9A B C --(2)存在,点M 的坐标为151,2⎛⎫- ⎪⎝⎭. 15.(1)抛物线L 的解析式为223y x x =--+,顶点坐标为()1,4- (2)弹珠能弹出箱子 16.(1)5200(2234)y x x +≤≤=-(2)()2531405w x =--+,当31x =时,w 取得最大值,最大值是405. 17.(1)a 的值为1-,k 的值为5;(2)25y x =+. 18.(1)2234S x x =-+ (2)x 的值为12. (3)2a =。
(完整版)初三中考复习二次函数专题练习题含答案
二次函数专题练习题一、选择题1 抛物线y=x2+2x+3的对称轴是( )A.直线x=1 B.直线x=-1 C.直线x=-2 D.直线x=22.在平面直角坐标系中,将抛物线y=x2-x-6向上(下)或向左(右)平移m个单位,使平移后的抛物线恰好经过原点,则|m|的最小值为( )A.1 B.2 C.3 D.63.如图,在平面直角坐标系中,抛物线y=12x2经过平移得到抛物线y=12x2-2x,其对称轴与两段抛物线所围成的阴影部分的面积为( )A.2 B.4 C.8 D.164. 如图,已知顶点为(-3,-6)的抛物线y=ax2+bx+c经过点(-1,-4),则下列结论中错误的是( )A.b2>4acB.ax2+bx+c≥-6C.若点(-2,m),(-5,n)在抛物线上,则m>nD.关于x的一元二次方程ax2+bx+c=-4的两根为-5和-15. 如图,观察二次函数y=ax2+bx+c的图象,下列结论:①a+b+c>0;②2a+b>0;③b2-4ac>0;④ac>0.其中正确的是( )A.①② B.①④ C.②③ D.③④6. 如图,一次函数y1=x与二次函数y2=ax2+bx+c的图象相交于P,Q两点,则函数y=ax2+(b-1)x+c的图象可能是( )7. 如图,在正方形ABCD中,AB=8 cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以 1 cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为( )二、填空题8.若y=(2-m)xm2-3是二次函数,且开口向上,则m的值为.9.已知点A(x1,y1),B(x2,y2)在二次函数y=(x-1)2+1的图象上,若x1>x2>1,则y1____y2.(填或“=”)“>”“<”10.已知二次函数y=-2x2-4x+1,当-3≤x≤0时,它的最大值是____,最小值是____.11.一个足球被从地面向上踢出,它距地面的高度h(m)与足球被踢出后经过的时间t(s)之间具有函数关系h=at2+19.6t,已知足球被踢出后经过 4 s落地,则足球距地面的最大高度是____m.12. 如图,抛物线y=-x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为.三、解答题13.如果抛物线y=ax2+bx+c过定点M(1,1),则称此抛物线为定点抛物线.(1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的一个解析式.小敏写出了一个答案:y=2x2+3x-4,请你写出一个不同于小敏的答案;(2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线y=-x2+2bx+c+1,求该抛物线顶点纵坐标的值最小时的解析式,请你解答.14.用铝合金材料做一个形状如图①所示的矩形窗框,设窗框的一边为x m,窗户的透光面积为y m2,y与x的函数图象如图②所示.(1)观察图象,当x为何值时,窗户的透光面积最大?最大透光面积是多少?(2)要使窗户的透光面积不小于 1 m2,则窗框的一边长x应该在什么范围内取值?15. 某农庄计划在30亩空地上全部种植蔬菜和水果,菜农小张和果农小李分别承包了种植蔬菜和水果的任务.小张种植每亩蔬菜的工资y(元)与种植面积m(亩)之间的函数关系如图①所示,小李种植水果所得报酬z(元)与种植面积n(亩)之间的函数关系如图②所示.(1)如果种植蔬菜20亩,则小张种植每亩蔬菜的工资是____元,小张应得的工资总额是____元;此时,小李种植水果____亩,小李应得的报酬是____元;(2)当10<n≤30时,求z与n之间的函数关系式;(3)设农庄支付给小张和小李的总费用为W(元),当10<m≤30时,求W与m之间的函数关系式.16. 如图,抛物线y=-12x2+bx+c与x轴分别交于点A(-2,0),B(4,0),与y轴交于点C,顶点为点P.(1)求抛物线的解析式;(2)动点M,N从点O同时出发,都以每秒1个单位长度的速度分别在线段OB,OC上向点B,C方向运动,过点M作x轴的垂线交BC于点F,交抛物线于点H,当四边形OMHN为矩形时,求点H的坐标.答案:一、1. B2. B3. B4. C5. C6. A7. B二、8. -59. >10. 3 -511. 19.612. (1+2,2)或(1-2,2)三、13. 解:(1)答案不唯一,如y=x2-2x+2(2)∵定点抛物线的顶点坐标为(b,b2+c+1),且-1+2b+c+1=1,∴c=1-2b,∵顶点纵坐标c+b2+1=2-2b+b2=(b-1)2+1,∴当b=1时,c+b2+1最小,抛物线顶点纵坐标的值最小,此时c=-1,∴抛物线的解析式为y=-x2+2x14. 解:(1)由图象可知当x=1时,窗户的透光面积最大,最大透光面积是 1.5 m2(2)由题意可设二次函数解析式为y=a(x-1)2+1.5,将(0,0)代入可求a=-1.5,∴解析式为y=-1.5(x-1)2+1.5,令y=1,则-1.5(x-1)2+1.5=1,解得x1=1-33,x2=1+33,由图象可知,当1-33≤x≤1+33时,透光面积不小于 1 m215. (1) 140 2800 10 1500(2) z=120n+300(10<n≤30)(3)当10<m≤30时,y=-2m+180,∵m+n=30,又∵当0≤n<10时,z=150n;当10≤n<20时,z=120n+300,∴当10<m≤20时,10≤n<20,∴W=m(-2m+180)+120n+300=m(-2m+180)+120(30-m)+300=-2m2+60m+3900;当20<m≤30时,0≤n<10,∴W=m(-2m+180)+150n=m(-2m+180)+150(30-m)=-2m2+30m+4500,∴W=-2m2+60m+3900(10<m≤20)-2m2+30m+4500(20<m≤30)16. 解:(1)y=-12x2+x+4(2)根据题意可设ON=OM=t,则MH=-12t2+t+4,∵ON∥MH,∴当ON=MH时,四边形OMHN为矩形,即t=-12t2+t+4,解得t=22或t=-22(不合题意,舍去),把t=22代入y=-12t2+t+4得y=22,∴H(22,22)。
2023年数学《二次函数》在中考高频压轴题中的分类特训
二次函数在中考高频压轴题中的分类训练基础知识:如图,已知抛物线y=- 14x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知B点的坐标为B(8,0).(1)求抛物线的解析式及其对称轴;(2)连接AC、BC,试判断△AOC与△COB是否相似?并说明理由;(3)证明:△ABC为直角三角形(5)在BC上求一个点D,使得OD将△ABC的面积平分(一)最值问题:(6) 在抛物线的对称轴上求一点P,使PA+PC的值最小值?若P1是∠ABC角平分线上的一点,P2是射线BC上的一点,求CP1+P1P2最小值(7)M为BC上方抛物线上的一点,N为线段BC上的一点,若MN∥y轴,求MN的最大值;(8)M为BC上方抛物线上的一点,求△BCM面积的最大值;变式练习:1若点E 是抛物线顶点,点D (4,m )在抛物线上,在X 轴和Y 轴上找两个点M,N 使四边形DEMN 的周长最小,求M 和N 点的坐标2.若点Q 是线段AB 上的动点,过点Q 作QE\\BC,交AC 于点E ,连接CQ ,当△CQE 面积最大时,求点Q 坐标3.若点Q 是抛物线上的动点,过点Q 作QE\\X 轴,交线段AC 于点E ,交线段BC 于点F,分别过E,F 两点向X 轴作垂线,垂足分别为M,N ,当矩形EMNF 面积最大时,求点Q 坐标4.若M 为BC 上方抛物线上的一点,N 为线段BC 上的一点,且MN 垂直于BC,垂足为N ,求MN 的最大值;5.若M 为BC 上方抛物线上的一点,连接OM 交BC 于点N ,求ONMN的最大值;6.若M为BC上方抛物线上的一点,N为线段BC上的一点,且MN平行于AC,交点为N,求MN的最大值;(二)面积问题:(9)在抛物线上找一个点P,使△ABC与△PBC的面积相等变式练习:1若点F是抛物线上的一个动点,是否存在点F使△BCF的面积为8,若存在,求出点F的坐标;若不存在,请说明理由(三)等腰三角形问题:(10)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.变式练习:1.若点N在X轴上运动,当△BCN是等腰三角形时,求N点的坐标。
中考数学总复习《二次函数》专项提升练习题(附答案)
中考数学总复习《二次函数》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________一、单选题1.已知二次函数2281y x x =-+,当11x -≤≤时,函数y 的最小值是( )A .1B .5-C .6-D .7-2.把一抛物线向上平移3个单位,再向左平移1个单位得到的解析式为22y x =,则原抛物线的解析式为( ) A .()2213y x =-+B .()2213y x =++C .()2213y x =+-D .()2213y x =--3.新定义:若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:()1,3A 与()2,6B --,()0,0C 等都是“三倍点”.若二次函数2y x x c =--+的图像在31x -<<的范围内,至少存在一个“三倍点”,则c 的取值范围是( )A .45c -≤<B .43c -≤<-C .164c -≤<D .114c -≤< 4.如图为2y x bx c =++的图象,则( )A .0b > 0c <B .0b > 0c >C .0b < 0c >D .0b < 0c < 5.把抛物线22y x =-先向右平移6个单位长度,再向下平移2个单位长度后,所得函数的表达式为( )A .22(6)2y x =-++B .22(6)2y x =-+-C .22(6)2y x =--+D .22(6)2y x =---6.如图,抛物线2y ax c =-经过正方形OACB 的三个顶点A ,B ,C ,点C 在y 轴上,则ac 的值为( )A .1B .2C .3D .47.如图,菱形ABCD 的边长为3cm ,=60B ∠︒动点P 从点B 出发以3cm /s 的速度沿着边BC CD DA --运动,到达点A 后停止运动;同时动点Q 从点B 出发,以1cm/s 的速度沿着边BA 向A 点运动,到达点A 后停止运动.设点P 的运动时间为(s)x ,BPQ 的面积为()2cm y ,则y 关于x 的函数图象为( )A .B .B .C .D .8.已知在平面直角坐标系中,抛物线1C 的图象如图所示,对称轴为直线2x =-,将抛物线1C 向右平移2个单位长度得到抛物线2C :2y ax bx c =++ (a 、b 、c 为常数,且0a ≠),则代数式b c a +-与0的大小关系是( )A .0b c a +-<B .0b c a +-=C .0b c a +->D .不能确定二、填空题9.若关于x 的二次函数2321y x x m =-+-的值恒为正数,则m 的取值范围为 . 10.将抛物线2(1)2y x =++先向右平移3个单位,再向下平移4个单位,则所得抛物线的解析式为 .11.小华酷爱足球运动一次训练时,他将足球从地面向上踢出,足球距地面的高度h (单位:m )与足球被踢出后经过的时间t (单位:s )之间的关系为:2412h t t =-+,则足球距离地面的最大高度为 m .12.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,若水面下降1m ,则水面宽度增加 m .(结果可保留根号)13.如图,抛物线()20y ax bx c a =++≠的对称轴是直线2x =-,且抛物线与x 轴交于A ,B两点,若5OA OB =,则下列结论中:①0abc >;①()220a c b +->;①50a c +=;①若m 为任意实数,则224am bm b a ++≥,正确的是 .(填序号)三、解答题 14.已知抛物线23y ax bx =++交x 轴于()()1030A B ,,,两点 (1)求抛物线的函数表达式;(2)当x 取何值时,y 随x 的增大而减小.15.如图,抛物线214y x bx c =++过点()0,0O ,()10,0E 矩形ABCD 的边AB 在线段OE 上(点B 在点A 的左侧),点C ,D 在抛物线上.设动点B 坐标为(),0t .(1)求抛物线的函数表达式及顶点坐标;(2)当t 为何值时矩形ABCD 的周长有最大值?最大值是多少?16.“潼南柠檬”获评国家地理标志商标,被认定为全国名特优新农产品,柠檬即食片是其加工产品中非常受欢迎的一款零食.一家超市销售了净重500g 一袋的柠檬即食片,进价为每袋10元.销售过程中发现,如果以单价14元销售,那么一个月内可售出200袋.根据销售经验,提高销售单价会导致销售量减少,即销售单价每提高1元,每月销售量相应减少20袋.根据物价部门规定,这种柠檬即食片的销售单价不得低于进价且不得高于18元.(1)求每月销售量y (件)与销售单价x (元)之间的函数关系式;(2)设超市每月销售柠檬即食片获得离利润为w (元),当销售单价定为多少元时,每月可获得最大利润?最大利润是多少?(3)若超市想每月销售柠檬即食片所得利润w 稳定在900元,销售单价应定为多少元?17.如图,一名同学推铅球,铅球出手后行进过程中离地面的高度y (单位:m )与水平距离x (单位:m )近似满足函数关系212123y x x c =-++.已知铅球落地时的水平距离为10m .(1)求铅球出手后水平距离与这名同学相距多远时,铅球离地面最高?(2)在铅球出手后的行进过程中,当它离地面的高度为5m 3时,此时铅球的水平距离是多少?18.我市某企业安排20名工人生产甲、乙两种产品,根据生产经验,每人每天生产2件甲产品或1件乙产品(每人每天只能生产一种产品).甲产品生产成本为每件10元;若安排1人生产一件乙产品,则成本为38元,以后每增加1人,平均每件乙产品成本降低2元.规x x≥人生产乙产品.定甲产品每天至少生产20件.设每天安排()1(1)根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品生产成本(元)甲10-乙x402x(2)为了增加利润,企业须降低成本,该企业如何安排工人生产才能使得每天的生产总成本最低?最低成本是多少?参考答案:1.B2.D3.A4.D5.D6.B7.D8.C9.43m > 10.2(2)2y x =--11.912.()264-13.③④/④③14.(1)243y x x =-+(2)当2x <,y 随x 的增大而减小15.(1)抛物线的函数表达式为21542y x x =-,顶点坐标为2554⎛⎫- ⎪⎝⎭,; (2)当1t =时,矩形ABCD 的周长有最大值,最大值为412.16.(1)()480201018y x x =-≤≤; (2)当销售单价定为17元时,每月可获得最大利润;每月获得最大利润为980元.(3)当销售单价定为15元时,每月获得利润可稳定在900元.17.(1)铅球出手后水平距离与这名同学相距3m 远时,铅球离地面最高为3m(2)此时铅球的水平距离为8m18.安排10名工人生产甲产品,10名工人生产乙产品才能使得每天的生产总成本最低,最低成本是400元。
中考数学总复习《二次函数》专项训练题(附有答案)
中考数学总复习《二次函数》专项训练题(附有答案) 学校:___________班级:___________姓名:___________考号:___________一、单选题 1.已知关于x 的方程20x bx c +-=的两个根分别是1228,33x x =-=,若点A 是二次函数2y x bx c =+-的图象与y 轴的交点,过A 作AB y ⊥轴交抛物线于另一交点B ,则AB 的长为( )A .2B .73C .83D .32.如果将抛物线²1y x =+向右平移2个单位,再向下平移2个单位,那么所得新抛物线的表达式是( )A .2(2)2y x =--B .2(2)2y x =+-C .2(2)1y x =--D .2(2)1y x =+-3.抛物线()230y ax bx a =+-<过()13,A y -,()22,B y -和()31,C y ,()23,D y 四点,则1y ,2y ,3y 的大小关系是( )A .123y y y >>B .312y y y >>C .132y y y >>D .321y y y >> 4.用总长为m 米的材料做成如图1的矩形窗框,设窗框的宽为x 米,窗框的面积为y 米2,y 关于x 的函数图象如图2,则m 的值是( )A .6B .7C .8D .不能确定5.一个二次函数的图象的顶点坐标是()24,,且过另一点()04-,,则这个二次函数的解析式为( )A .()2224y x =-+-B .()2224y x =--+ C .()2224y x =+- D .()2224y x =-- 6.如图,二次函数()20y ax a =>在第一象限的图象上有三点1A 、2A 和3A ,这三点的横坐标为连续的三个整数n 1-、n 和1n +,过这三点分别作x 轴的垂线,垂足分别为点1B 、2B 和3B ,直线22A B 交线段13A A 于点C ,则2A C 的长度为( )A .aB .2aC .nD .1n -7.一次函数y ax b =+与反比例函数c y x=在同一平面直角坐标系中的图像如图所示,则二次函数2y ax bx c =++的图像可能是( )A .B .C .D .8.如图,在Rt ACB △中90,8,9C AC BC ∠=︒==,点P Q 、分别从A C 、出发向C 、B 匀速运动,若P Q 、的速度大小相等,则PCQ △的面积最大为( )A .152B .598C .8D .172二、填空题9.已知二次函数284y x x =-++,当x k >时,y 随x 的增大而减小,则k 的取值范围是 .10.已知实数m 、n ,使得关于x 的方程20x mx n -+=有两个相等的实数根,则代数式2222m n n +-+的最小值为 .11.关于x 的二次函数()211y x a x =+--在y 轴的右侧,y 随x 的增大而增大,且使得关于y 的分式方程11222a y y -+=--有非负数解的所有整数a 的值之和 . 12.烟花厂为庆祝元旦晚会特别设计制作一种新型礼炮,这种礼炮的升空高(m)h 与飞行时间(s)t 的关系式是2520(0)2h t t ππ=-++>,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为 s .13.如图,已知二次函数21y ax bx c =++与一次函数2y kx m =+的图象相交于点(5,3)A --和(3,4)B ,则关于x 的不等式2ax bx c kx m ++>+的解是 .三、解答题14.如图,二次函数图像顶点坐标为()1,4--,与x 轴一个交点坐标为()1,0.(1)该函数图像与x 轴的另一个交点坐标为______;(2)求这个二次函数的表达式;(3)当40x -<<时,y 的取值范围为______.15.物理课上我们学习了物体的竖直上抛运动,若从地面竖直向上抛一小球,小球的高度y (单位:m )与小球运动的时间x (单位:s )之间的函数图象是如图所示的抛物线.(1)小球从抛出到落地经过的路程是______m ;(2)求y 与()06x x ≤≤之间的函数关系式.16.如图,在长方形ABCD 中,6cm AB =和12cm BC =,点P 从点A 出发,沿边AB 以1cm/s 的速度向点B 移动;点Q 从点B 出发,沿边BC 以2cm/s 的速度向点C 移动.已知P 、Q 两点分别从点A ,B 同时出发.问:(1)经过几秒,PBQ 的面积等于28cm ?(2)五边形APQCD 的面积最小值是多少?17.某水果超市以16元/千克购进一定数量的A 种水果,若每千克售价为20元,每天可以售出120千克.经市场调查发现,在进价不变的情况下,每千克A 种水果的售价每上涨2元,日销售量就减少10千克.(1)若该水果超市希望每天销售A 种水果盈利900元,那么这个水果超市A 种水果每千克的售价应上涨多少元?(2)按照有关管理部门规定,利润率不得高于75%,那么每千克的售价定为多少元,才能使每天所获利润最大?最大利润是多少?18.如图,抛物线2y x bx c =-++的图象与x 轴交于()3,0A -、B 两点,与y 轴交于点()0,3C .(1)求抛物线的解析式及顶点D 的坐标;(2)若点E 在抛物线上,且EOC ABC S S =△△,求点E 的坐标;(3)点P 是抛物线上A 、D 之间的一点,过点P 作PM x ⊥轴于点M ,过点P 作PQ AB ∥交抛物线于点Q ,过点Q 作QN x ⊥轴于点N .设点P 的横坐标为点m ,请用含m 的代数式表示矩形PQNM 的周长,并求矩形PQNM 周长的最大值.参考答案: 1.A2.C3.D4.A5.B6.A7.B8.C9.4k ≥10.111.1912.413.5x <-或3x >14.(1)()3,0-;(2)223y x x =+-;(3)45y -≤<.15.(1)80;(2)()()240340069y x x =--+≤≤;16.(1)经过4秒或2秒,PBQ 的面积等于28cm(2)五边形APQCD 的面积最小,最小值为263cm17.(1)水果超市A 种水果每千克的售价应上涨14或6元;(2)每千克的售价定为28元,才能使每天所获利润最大,最大利润是960元.18.(1)()214y x =-++,顶点D 的坐标为()1,4-(2)()()4,21,4,5E E ---(3)矩形PMNQ 的周长为2282m m --+,矩形的周长最大值为10。
初三--二次函数基础分类练习题(含答案)
二次函数练习题练习一 二次函数1、 一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t (秒)的数据如下表:写出用t 表示s 的函数关系式:2、 下列函数:① y =()21y x x x =-+;③ ()224y x x x =+-;④ 21y x x=+; ⑤ ()1y x x =-,其中是二次函数的是 ,其中a = ,b = ,c = 3、当m 时,函数()2235y m x x =-+-(m 为常数)是关于x 的二次函数 4、当____m =时,函数()2221m m y m m x--=+是关于x 的二次函数5、当____m =时,函数()2564m m y m x-+=-+3x 是关于x 的二次函数6、若点 A ( 2, m ) 在函数 12-=x y 的图像上,则 A 点的坐标是____.7、在圆的面积公式 S =πr 2 中,s 与 r 的关系是( )A 、一次函数关系B 、正比例函数关系C 、反比例函数关系D 、二次函数关系8、正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子. (1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式; (2)当小正方形边长为3cm 时,求盒子的表面积.9、如图,矩形的长是 4cm ,宽是 3cm ,如果将长和宽都增加 x cm ,那么面积增加 ycm 2, ① 求 y 与 x 之间的函数关系式. ② 求当边长增加多少时,面积增加 8cm 2.10、已知二次函数),0(2≠+=a c ax y 当x=1时,y= -1;当x=2时,y=2,求该函数解析式.11、富根老伯想利用一边长为a 米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形.(1) 如果设猪舍的宽AB 为x 米,则猪舍的总面积S (米2)与x 有怎样的函数关系?(2) 请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长BC 和宽AB 的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?练习二 函数2ax y =的图象与性质1、填空:(1)抛物线221x y =的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ;(2)抛物线221x y -=的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ;2、对于函数22x y =下列说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;③y 随x 的增大而减小;④图象关于y 轴对称.其中正确的是 . 3、抛物线 y =-x 2 不具有的性质是( )A 、开口向下B 、对称轴是 y 轴C 、与 y 轴不相交D 、最高点是原点4、苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足 S =12gt 2(g =9.8),则 s 与 t 的函数图像大致是( )A B C D5、函数2ax y =与b ax y +-=的图象可能是( )A .B .C .D .6、已知函数24mm y mx--=的图象是开口向下的抛物线,求m 的值.7、二次函数12-=m mx y 在其图象对称轴的左侧,y 随x 的增大而增大,求m 的值.8、二次函数223x y -=,当x 1>x 2>0时,求y 1与y 2的大小关系. 9、已知函数()422-++=m mx m y 是关于x 的二次函数,求:(1) 满足条件的m 的值;(2) m 为何值时,抛物线有最低点?求出这个最低点,这时x 为何值时,y 随x 的增大而增大; (3) m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x 的增大而减小? 10、如果抛物线2y ax =与直线1y x =-交于点(),2b ,求这条抛物线所对应的二次函数的关系式.练习三 函数c ax y +=2的图象与性质1、抛物线322--=x y 的开口 ,对称轴是 ,顶点坐标是 ,当x 时, y 随x 的增大而增大, 当x 时, y 随x 的增大而减小. 2、将抛物线231x y =向下平移2个单位得到的抛物线的解析式为 ,再向上平移3个单位得到的抛物线的解析式为 ,并分别写出这两个函数的顶点坐标 、 .3、任给一些不同的实数k ,得到不同的抛物线k x y +=2,当k 取0,1±时,关于这些抛物线有以下判断:①开口方t ttt向都相同;②对称轴都相同;③形状相同;④都有最底点.其中判断正确的是 .4、将抛物线122-=x y 向上平移4个单位后,所得的抛物线是 ,当x= 时,该抛物线有最 (填大或小)值,是 .5、已知函数2)(22+-+=x m m mx y 的图象关于y 轴对称,则m =________;6、二次函数c ax y +=2()0≠a 中,若当x 取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值等于 .练习四 函数()2h x a y -=的图象与性质1、抛物线()2321--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有 最 值 .2、试写出抛物线23x y =经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标. (1)右移2个单位;(2)左移32个单位;(3)先左移1个单位,再右移4个单位.3、请你写出函数()21+=x y 和12+=x y 具有的共同性质(至少2个).4、二次函数()2h x a y -=的图象如图:已知21=a ,OA=OC ,试求该抛物线的解析式.5、抛物线2)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积.6、二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6.(1)求出此函数关系式.(2)说明函数值y 随x 值的变化情况.7、已知抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值.练习五 ()k h x a y +-=2的图象与性质1、请写出一个二次函数以(2, 3)为顶点,且开口向上.____________.2、二次函数 y =(x -1)2+2,当 x =____时,y 有最小值.3、函数 y =12(x -1)2+3,当 x ____时,函数值 y 随 x 的增大而增大.4、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向 平移3个单位,再向 平移2个单位得到. 5、 已知抛物线的顶点坐标为()2,1,且抛物线过点()3,0,则抛物线的关系式是6、 如图所示,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是( )A 、x>3B 、x<3C 、x>1D 、x<17、已知函数()9232+--=x y .(1) 确定下列抛物线的开口方向、对称轴和顶点坐标; (2) 当x= 时,抛物线有最 值,是 .(3) 当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小. (4) 求出该抛物线与x 轴的交点坐标及两交点间距离; (5) 求出该抛物线与y 轴的交点坐标;(6) 该函数图象可由23x y -=的图象经过怎样的平移得到的? 8、已知函数()412-+=x y .(1) 指出函数图象的开口方向、对称轴和顶点坐标;(2) 若图象与x 轴的交点为A 、B 和与y 轴的交点C ,求△ABC 的面积; (3) 指出该函数的最值和增减性;(4) 若将该抛物线先向右平移2个单位,在向上平移4个单位,求得到的抛物线的解析式; (5) 该抛物线经过怎样的平移能经过原点.(6) 画出该函数图象,并根据图象回答:当x 取何值时,函数值大于0;当x 取何值时,函数值小练习六 c bx ax y ++=2的图象和性质 1、抛物线942++=x x y 的对称轴是 .2、抛物线251222+-=x x y 的开口方向是 ,顶点坐标是 .3、试写出一个开口方向向上,对称轴为直线x=-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .4、将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,则 y =____.5、把二次函数215322y x x =---的图象向上平移3个单位,再向右平移4个单位,则两次平移后的函数图象的关系式是6、抛物线1662--=x x y 与x 轴交点的坐标为_________; 7、函数x x y +-=22有最____值,最值为_______;8、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,则b 与c 分别等于( )A 、6,4B 、-8,14C 、-6,6D 、-8,-149、二次函数122--=x x y 的图象在x 轴上截得的线段长为( ) A 、22 B 、23 C 、32 D 、3310、通过配方,写出下列函数的开口方向、对称轴和顶点坐标: (1)12212+-=x x y ; (2)2832-+-=x x y ; (3)4412-+-=x x y 11、把抛物线1422++-=x x y 沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由.12、求二次函数62+--=x x y 的图象与x 轴和y 轴的交点坐标 13、已知一次函数的图象过抛物线223y x x =++的顶点和坐标原点 1) 求一次函数的关系式;2) 判断点()2,5-是否在这个一次函数的图象上14、某商场以每台2500元进口一批彩电.如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?练习七 c bx ax y ++=2的性质1、函数2y x px q =++的图象是以()3,2为顶点的一条抛物线,这个二次函数的表达式为 2、二次函数2224y mx x m m =++-的图象经过原点,则此抛物线的顶点坐标是 3、如果抛物线2y ax bx c =++与y 轴交于点A (0,2),它的对称轴是1x =-,那么acb= 4、抛物线c bx x y ++=2与x 轴的正半轴交于点A 、B 两点,与y 轴交于点C ,且线段AB 的长为1,△ABC 的面积为1,则b 的值为______.5、已知二次函数c bx ax y ++=2的图象如图所示,则a___0,b___0,c___0,ac b 42-____0;6、二次函数c bx ax y ++=2的图象如图,则直线bc ax y +=的图象不经过第 象限. 7、已知二次函数2y ax bx c =++(0≠a )的图象如图所示,则下列结论:1),a b 同号;2)当1x =和3x =时,函数值相同;3)40a b +=;4)当2y =-时,x 的值只能为0;其中正确的是(第5题) (第6题) (第7题) (第10题)8、已知二次函数2224m mx x y +--=与反比例函数xm y 42+=的图象在第二象限内的一个交点的横坐标是-2,则m=9、二次函数2y x ax b =++中,若0a b +=,则它的图象必经过点( )A ()1,1--B ()1,1-C ()1,1D ()1,1-10、函数b ax y +=与c bx ax y ++=2的图象如上图所示,则下列选项中正确的是( )A 、0,0>>c abB 、0,0><c abC 、0,0<>c abD 、0,0<<c ab 11、已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是( )12、二次函数c bx ax y ++=2的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值为正数的有( )A .4个B .3个C .2个D .1个13、抛物线的图角如图,则下列结论: ①>0;②;③>;④<1.其中正确的结论是( ).(A )①② (B )②③ (C )②④ (D )③④14、二次函数2y ax bx c =++的最大值是3a -,且它的图象经过()1,2--,()1,6两点, 求a 、b 、c 的值。
二次函数中考复习题型分类练习定稿版
二次函数中考复习题型分类练习精编W O R D版IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】二次函数题型分析练习题型一:二次函数对称轴及顶点坐标的应用1.(2015?兰州)在下列二次函数中,其图象对称轴为x =﹣2的是( )A . y =(x +2)2B .y =2x 2﹣2C .y =﹣2x 2﹣2D .y =2(x ﹣2)22.(2014?浙江)已知点A (a ﹣2b ,2﹣4ab )在抛物线y =x 2+4x +10上,则点A 关于抛物线对称轴的对称点坐标为( )A.(﹣3,7)B.(﹣1,7)C.(﹣4,10)D.(0,10)3.在同一坐标系中,图像与y=2x 2的图像关于x 轴对称的函数是( )A.212y x =B.212y x =- C.22y x =- D.2y x =- 4.二次函数 y =y (y +y )2+y (y ≠0), 无论k 取何值,其图象的顶点都在( )A.直线 y =y 上B.直线 y =−y 上C.x 轴上D.y 轴上5.(2012?烟台)已知二次函数y=2(x ﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x <3时,y 随x 的增大而减小.则其中说法正确的有( )A .1个B .2个C .3个D .4个6.(2014?扬州)如图,抛物线y =ax 2+bx +c (a >0)的对称轴是过点(1,0)且平行于y 轴的直线,若点P (4,0)在该抛物线上,则4a ﹣2b +c 的值为 .7.已知二次函数 y =yy 2+y,当 y 取 y 1,y 2(y 1≠y 2)时,函数值相等,则当 y 取 y 1+y 2时,函数值为( )A.y +y B .y −y C.−y D.c8.如图所示,已知二次函数y =yy 2+yy +y 的图象经过(-1,0)和(0,-1)两点,则化简代数式√(y −1y )2+4+√(y +1y )2−4= .题型二:平移1.抛物线 y =−3(y −4)2向右平移3个单位长度得到的抛物线对应的函数关系式为( )A. y =−3(y −7)2B. y =−3(y −1)2C. y =−3(y −3)2D. y =−3(y +3)22.(2012上海)将抛物线y =x 2+x 向下平移2个单位,所得新抛物线的表达式是________3.二次函数()23212-+=x y 的图象是由函数221x y =的图象先向 (左、右)平移 个单位长度,再向 (上、下)平移 个单位长度得到的.4.把抛物线的图象先向右平移3 个单位长度,再向下平移2 个单位长度,所得图象的解析式是532+-=x x y ,则0=++c b a = .题型三:求未知数范围1.已知点()11y ,,()25.1y ,,()35.0y ,在函数2x y =图像上,则比较321y y y ,,的大小 。
中考数学复习《二次函数》专项练习题-附带有答案
中考数学复习《二次函数》专项练习题-附带有答案一、选择题1.抛物线y =−2x 2+3的顶点为( ). A .(0,3)B .(−2,3)C .(2,3)D .(0,−3)2.将抛物线y =4x 2向上平移6个单位,再向右平移9个单位,得到的抛物线的解析式为( ). A .y =4(x +9)2+6 B .y =4(x −9)2+6 C .y =4(x +9)2−6D .y =4(x −9)2−63.一次函数y =ax +b(a ≠0)与二次函数y =ax 2+bx +c(a ≠0)在同一平面直角坐标系中的图象可能是( )A .B .C .D .4.已知二次函数y =ax 2+bx +2(a ≠0),经过点P (m ,12).当y ≤−1时,x 的取值范围为t −1≤x ≤−3−t .则如下四个值中有可能为m 的是( ) A .2B .3C .4D .55.已知点A(x 1,y 1)、B(x 2,y 2)在二次函数y =−x 2+2x +4的图象上.若x 1>x 2>1,则y 1 与y 2的大小关系是( ) A .y ≥1y 2B .y 1=y 2C .y 1>y2D .y 1<y 26.若抛物线y =x 2+bx +c 与x 轴两个交点间的距离为4,对称轴为直线x =2,p 为这条抛物线的顶点,则点p 关于x 轴的对称点的坐标是( ) A .(−2,−4)B .(−2,4)C .(2,4)D .(2,−4)7.巴人广场中心标志性建筑处有高低不同的各种喷泉,其中一支高度为1米的喷水管最大喷水高度为3米,此时喷水水平距离为12米,在如图所示的坐标系中,这支喷泉的函数关系式是( )A .y =−(x −12)2+3 B .y =3(x −12)2+1 C .y =−8(x −12)2+3D .y =−8(x +12)2+38.已知抛物线y =ax 2+bx +c(a >0),且a +b +c =−12,a −b +c =−32下列结论:①abc <0,②3a +2b +c >0,③抛物线与x 轴正半轴必有一个交点,④当2≤x ≤3时,y 最小=3a ,⑤抛物线与直线y =x −c ,有一个交点,其中正确结论的个数有( ) A .2 B .3 C .4 D .5二、填空题9.若关于x 的函数y =(a +1)x 2−2x +3是二次函数,则a 的取值范围是 . 10.已知二次函数y =2(x +1)2−3,它与y 轴的交点坐标是 . 11.抛物线y =x 2+bx +2的对称轴是直线x =1,那么b 的值为 . 12.已知二次函数y =−2(x −2)2+m 的图像经过原点,那么m 的值为 .13.如图1是某地公园的一座抛物线型拱桥,按如图2所示建立坐标系,得到函数y =−116x 2,在正常水位时水面宽AB =24米,当水位上升5米时,则水面宽CD = 米.图1 图2 三、解答题14.如图,直线y 1=−x +3与x 轴、y 轴分别相交于B 、C ,经过B 、C 两点的抛物线y 2=ax 2+bx +c 与x 轴另一交点为A ,顶点为P ,且对称轴是直线x =2.(1)求抛物线解析式;(2)当y 1<y 2时,直接写出x 的取值范围.15.已知在平面直角坐标系xOy 中(如图),已知抛物线y=﹣x 2+bx+c 经过点A (2,2),对称轴是直线x=1,顶点为B .(1)求这条抛物线的表达式和点B的坐标;(2)点M在对称轴上,且位于顶点上方,设它的纵坐标为m,联结AM,用含m的代数式表示∠AMB的余切值;(3)将该抛物线向上或向下平移,使得新抛物线的顶点C在x轴上.原抛物线上一点P平移后的对应点为点Q,如果OP=OQ,求点Q的坐标.16.小明在一次打篮球时,篮球传出后的运动路线为如图所示的抛物线,以小明所站立的位置为原点O建立平面直角坐标系,篮球出手时在O点正上方1m处的点P.已知篮球运动时的高度y(m)与水平距离x(m)之间x2+x+c.满足函数表达式y=−18(1)求y与x之间的函数表达式;(2)求篮球在运动的过程中离地面的最大高度;(3)小亮手举过头顶,跳起后的最大高度为BC=2.5m,若小亮要在篮球下落过程中接到球,求小亮离小明的最短距离OB.17.某校为进一步打造“空中花园”,优化育人环境,增添校园绿色文化,计划到一家花卉种植基地采购甲、乙两种花卉共50盆,其中甲种花卉的数量不超过30盆,且不少于10盆.据了解,甲、乙两种花卉的原价分别是80元/盆、56元/盆.种植基地负责人为了支持学校建设,提供以下优惠:购买几盆甲种花卉,甲种花卉每盆就降几元,乙种花卉按原价购买.设该校购买甲种花卉x盆,请回答以下问题:(1)若该校采购甲、乙两种花卉共花费2880元,求该校分别购买甲、乙两种花卉各多少盆?(2)设购买甲、乙两种花卉共花费w元,求w与x的函数关系式;(3)请预计本次采购该校最少准备多少元,最多准备多少元?x2+bx+c的图象18.如图,一次函数y=−4x−4的图象与x轴、y轴分别交于A、C两点,抛物线y=43经过A,B两点,且与x轴交于点B.(1)求抛物线的函数表达式;(2)设抛物线的顶点为D,求四边形ABDC的面积;(3)作直线MN平行于x轴,分别交线段AC、BC于点M、N.问在x轴上是否存在点P,使得△PMN是等腰直角三角形?如果存在,求出所有满足条件的P点的坐标;如果不存在,请说明理由.参考答案1.A2.B3.D4.A5.D6.C7.C8.C9.a≠−110.(0,−1)11.−212.813.1614.(1)解:由题意B(3,0),C(0,3)∵抛物线的对称轴x=2,抛物线y=ax2+bx+c与x轴另一交点为A∴A(1,0)设抛物线的解析式为y=a(x−1)(x−3)把C(0,3)代入得到a=1∴抛物线的解析式为y=x2−4x+3(2)解:当y1<y2时,x<0或x>315.(1)解:∵抛物线的对称轴为x=1∴x=﹣b2a =1,即−b2×(−1)=1,解得b=2.∴y=﹣x2+2x+c.将A(2,2)代入得:﹣4+4+c=2,解得:c=2.∴抛物线的解析式为y=﹣x2+2x+2.配方得:y=﹣(x﹣1)2+3.∴抛物线的顶点坐标为(1,3)(2)解:如图所示:过点A作AC⊥BM,垂足为C,则AC=1,C(1,2).∵M(1,m),C(1,2)∴MC=m﹣2.∴cot∠AMB= CMAC=m﹣2(3)解:∵抛物线的顶点坐标为(1,3),平移后抛物线的顶点坐标在x轴上∴抛物线向下平移了3个单位.∴平移后抛物线的解析式为y=﹣x2+2x﹣1,PQ=3.∵OP=OQ∴点O在PQ的垂直平分线上.又∵QP∥y轴∴点Q与点P关于x轴对称.∴点Q的纵坐标为﹣32.将y=﹣32代入y=﹣x2+2x﹣1得:﹣x2+2x﹣1=﹣32,解得:x= 2+√62或x= 2−√62.∴点Q的坐标为(2+√62,﹣32)或(2−√62,﹣32)16.(1)解:∵OP=1∴当x=0时y=1,代入y=−18x2+x+c 解得:c=1∴y与x的函数表达式为y=−18x2+x+1;(2)解:y=−18x2+x+1=−18(x2−8x)+1=−18(x−4)2+3当x=4时,y有最大值3故篮球在运动的过程中离地面的最大高度为3m;(3)解:令y=2.5,则有−18(x−4)2+3=2.5解得x1=2,x2=6根据题意可知x1=2不合题意,应舍去故小亮离小明的最短距离OB为6m.17.(1)解:由题意可得(80−x)x+56(50−x)=2880解得x1=20,x2=4(不符合题意,舍去)∴50−x=30答:该校分别购买甲、乙两种花卉20盆、30盆;(2)解:由题意可得w=(80−x)x+56(50−x)=−x2+24x+2800即w与x的函数关系式是w=−x2+24x+2800(3)解:由(2)知:w=−x2+24x+280=−(x−12)2+2944∴该函数图象开口向下,对称轴为直线x=12∵10≤x≤30∴当x=12时,w取得最大值2944,当x=30时,w取得最小值2620答:预计本次采购该校最少准备2620元,最多准备2944元.18.(1)解:∵一次函数y=−4x−4的图象与x轴、y轴分别交于A、C两点∴A(−1,0),C(0,−4)把A(−1,0),C(0,−4)代入y=43x2+bx+c得∴{43−b+c=0c=−4,解得{b=−83c=−4∴y=43x2−83x−4;(2)解:∵y=43x2−83x−4=43(x−1)2−163∴顶点为D(1,−163)设直线DC交x轴于点E由D(1,−163),C(0,−4)∴设直线CD 的解析式为y =kx +h ∴{k +h =−163b =−4,解得{k =−43b =−4 ∴可得直线CD 的解析式为y =−43x −4 ∴令y =0,即0=−43x −4,解得x =−3 ∴E(−3,0)令抛物线y =0,即0=43x 2−83x −4 解得x 1=−1 ∴B(3,0) ∴S △EDB =12×6×163=16∴S △ECA =12×2×4=4∴S 四边形ABDC =S △EDB −S △ECA =12; (3)解:设M 、N 的纵坐标为a由B 和C 点的坐标可知BC 所在直线的解析式为:y =43x −4 则M(−4−a 4,a),N(3a+124,a)①当∠PMN =90°,MN =a +4,PM =−a因为是等腰直角三角形,则−a =a +4,则a =−2,则P 的横坐标为−12即P点坐标为(−12,0);②当∠PNM=90°,PN=MN同上,a=−2,则P的横坐标为3×(−2)+124=32即P点坐标为(32,0);③当∠MPN=90°,作MN的中点Q,连接PQ,则PQ=−a 又PM=PN∴PQ⊥MN,则MN=2PQ,即:a+4=−2a解得:a=−43点P的横坐标为:−4−a+3a+1242=a+44=23即P点的坐标为(23,0).。
初三数学二次函数必刷题
初三数学二次函数必刷题以下是一些初三数学二次函数的必刷题,涵盖了二次函数的基本概念、性质以及应用等方面:一、选择题1.下列函数中,哪些是二次函数?A. y = 3x + 5B. y = x^2 - 2xC. y = 1/xD. y = x3答案:B2.二次函数y = ax^2 + bx + c的对称轴是直线()。
A. x = -b/aB. x = b/aC. x = -b/2aD. x = b/2a答案:C3.已知二次函数y = 2x^2 + 9x + 34,当x取何值时,y有最小值?A. x = -9/4B. x = -3/4C. x = 9/4D. x = 3/4答案:A(通过公式x=-b/2a求得)二、填空题4.二次函数y = -3x^2 + 6x的顶点坐标为______。
答案:(1,3)(通过公式-b/2a求得x坐标,再代入求得y坐标)5.已知二次函数y = ax^2经过点(2,4),则a的值为______。
答案:2(代入点(2,4)到y=ax^2中求解)三、解答题6.已知二次函数y = x^2 - 4x + 3。
(1)求该二次函数的顶点坐标和对称轴;答案:顶点坐标为(2,-1),对称轴为直线x=2(通过公式-b/2a求得对称轴,再代入求得顶点坐标)(2)求该二次函数与x轴的交点坐标;答案:交点坐标为(1,0)和(3,0)(令y=0,求解x的值)(3)当x取何值时,y随x的增大而增大?当x取何值时,y随x的增大而减小?答案:当x>2时,y随x的增大而增大;当x<2时,y随x的增大而减小(根据二次函数的开口方向和对称轴判断)7.某商店销售一种商品,每件的成本为40元。
若按每件50元销售,一个月能售出500件。
销售单价每涨1元,月销售量就减少10件。
设销售单价为x元,月销售利润为y元。
(1)求y与x的函数关系式;答案:y=-10x^2+1400x-40000(根据题意,利润=销售量×(销售单价-成本),销售量=500-10(销售单价-50))(2)当销售单价定为多少元时,该商店一个月销售这种商品所获得的利润最大?最大利润是多少元?答案:当销售单价定为70元时,利润最大,最大利润为9000元(将y=-10x^2+1400x-40000转化为顶点式求解)8.抛物线y = -x^2 + 3x + 4与x轴负半轴相交于点A,正半轴相交于点B,与y轴相交于点C。
中考数学总复习《二次函数》专题训练(附答案)
中考数学总复习《二次函数》专题训练(附答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列函数不属于二次函数的是()A.y=(x−1)(x+2)B.y=(x−1)2−x2C.y=2(x−1)2D.y=1−x22.将抛物线y=x2先向右平移3个单位,再向上平移4个单位,得到的抛物线是()A.y=(x−3)2+4B.y=(x+3)2+4C.y=(x−3)2−4D.y=(x+3)2−43.若点(3,a)、(4,b)都在二次函数y=(x−2)2的图象上,则a与b的大小关系()A.a>b B.a<b C.a=b D.无法确定4.在同一平面直角坐标系中,函数y=ax+a和y=-ax2+2x+2(a是常数,且a≠0)的图象可能是()A.B.C.D.(x+2)2−3,下列说法正确的是()5.已知二次函数y=−12A.顶点坐标为(2,-3)B.对称轴为x=2C.函数的最小值是-3 D.当x>0时随x的增大而减小6.已知二次函数y=(a−1)x2+(2a+2)x+a+1,对于任意的x值,y<0恒成立,则a的值可以是()A.0 B.−1C.−2D.17.如图,一个移动喷灌架喷射出的水流可以近似地看成抛物线,喷水头的高度(即OB的长度)是1米.当喷射出的水流距离喷水头8米时,达到最大高度1.8米,水流喷射的最远水平距离OC是()A.20米B.18米C.10米D.8米8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc<0;②2a+b=0;③m为任意实数时,a+b≤m(am+b);④a−b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=2.其中正确的有()A.1个B.2个C.3个D.4个二、填空题9.将二次函数y=x2−4x+3化成y=a(x−h)2+k的形式,结果为.10.抛物线y=−2x2+3与y轴的交点坐标为.11.如图.二次函数y=ax2+bx+c的图象与x轴交于点(3,0),对称轴是直线上x= 1.则当y<0时。
中考数学总复习《二次函数》专项练习题-附带参考答案
中考数学总复习《二次函数》专项练习题-附带参考答案一、选择题:(本题共8小题,共40分.)1.若二次函数y=x2+bx+5配方后为y=(x﹣2)2+k,则b,k的值分别()A.0,5 B.﹣4,1 C.﹣4,5 D.﹣4,﹣1 2.在平面直角坐标系xOy中,直线l经过点(0,−2),且直线l//x轴.若直线l与二次函数y=3x2+a的图像交于A,B两点,与二次函数y=−2x2+b的图像交于C,D两点,其中a,b为整数.若AB=2,CD=4 .则b−a的值为( )A.9 B.11 C.16 D.24 3.如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(−2,0)、B(1,0)两点.则以下结论:①ac>0;②二次函数y=ax2+bx+c的图象的对称轴为x=−1;③2a+c=0;④a−b+c>0 .其中正确的有()个.A.0 B.1 C.2 D.34.如图,在平面直角坐标系中,已知点A(-2,0)、B(-2,2)、C(0,2),当抛物线y=2(x-a)2 +2a与四边形OABC的边有交点时a的取值范围是()A.-1≤a≤0 B.−5−√132≤a≤−1−√52C.−4≤a≤−1+√52D.−5−√132≤a≤−1+√525.已知函数y1=mx2+n,y2=mx+n(m>0),当p<x<q时,y1<y2,则()A.0<q−p<2B.0<q−p≤2C.0<q−p<1D.0<q−p≤16.如图,在平面直角坐标系中,抛物线所表示的函数解析式为y=﹣2(x﹣h)2+k,则下列结论正确的是( )A.h>0,k>0 B.h<0,k>0 C.h<0,k<0 D.h>0,k<07.已知抛物线y=mx2+4x+m+3开口向下,且与坐标轴的公共点有且只有2个,则m的值为()A.m=﹣4 B.m=﹣3或﹣4C.m﹣3、﹣4、0或1 D.﹣4<m<08.在平面直角坐标系中,我们把横纵坐标都是整数的点叫做整点,已知二次函数y=−x2+ bx(b>0)和反比例函数y=4x(x>0)的图象如图所示,它们围成的封闭图形(不包括边界)的整点个数为4,则b的取值范围是()A.72<b≤103B.103<b≤4 C.174<b≤92D.4<b≤133二、填空题:(本题共5小题,共15分.)9.抛物线y=x2−10x+c的顶点在x轴上,则c=.10.请写出同时符合以下两个条件的一个二次函数的解析式;①过点(3,1);②当x>0时,y随x的增大而减小.11.已知点A(4,y1),B(√2,y2),C(﹣2,y3)都在二次函数y=(x﹣2)2的图象上,则y1、y2、y3的大小关系是.12.如图,一条抛物线与x轴的交点为A、B两点,其顶点P在折线C﹣D﹣E上运动.若C、D、E的坐标分别为(﹣1,4)、(3、4)、(3,1),点B横坐标的最小值为1,则点A横坐标的最大值为.13.若二次函数y=ax2+2ax−3的图象与x轴的一个交点是(2,0),则与x轴的另一个交点坐标是.三、解答题:(本题共4题,共45分.)14.黔东南州某超市购进甲、乙两种商品,已知购进3件甲商品和2件乙商品,需60元;购进2件甲商品和3件乙商品,需65元.(1)甲、乙两种商品的进货单价分别是多少?(2)设甲商品的销售单价为x(单位:元/件),在销售过程中发现:当11≤x≤19时,甲商品的日销售量y(单位:件)与销售单价x之间存在一次函数关系,x、y之间的部分数值对应关系如表:销售单价x(元/件)11 19日销售量y(件)18 2请写出当11≤x≤19时,y与x之间的函数关系式.(3)在(2)的条件下,设甲商品的日销售利润为w元,当甲商品的销售单价x(元/件)定为多少时,日销售利润最大?最大利润是多少?15.如图1,排球场长为18m,宽为9m,网高为2.24m,队员站在底线O点处发球,球从点O的正上方1.9m的C点发出,运动路线是抛物线的一部分,当球运动到最高点A时,高度为2.88m,即BA=2.88m,这时水平距离OB=7m,以直线OB为x轴,直线OC为y轴,建立平面直角坐标系,如图2.(1)若球向正前方运动(即x轴垂直于底线),求球运动的高度y(m)与水平距离x(m)之间的函数关系式(不必写出x取值范围).并判断这次发球能否过网?是否出界?说明理由.(2)若球过网后的落点是对方场地①号位内的点P(如图1,点P距底线1m,边线0.5m),问发球点O在底线上的哪个位置?(参考数据:√2取1.4)16.已知抛物线经过A(-1,0)、B(0、3)、C(3,0)三点,O为坐标原点,抛物线交正方形OBDC的边BD于点E,点M为射线BD上一动点,连接OM,交BC于点F(1)求抛物线的表达式;(2)求证:∠BOF=∠BDF:(3)是否存在点M使△MDF为等腰三角形?若不存在,请说明理由;若存在,求ME的长COD=60°,且OD=OC.(1)A点坐标为,B点坐标为;(3)点M在抛物线的对称轴上,点N在抛物线上,若以M、N、O、D为顶点的四边参考答案1.B2.B3.C4.D5.D6.A7.B8.B9.2510.y =−x 2+10 11.y 3>y 1>y 2 12.213.(−4,0)14.(1)设甲、乙两种商品的进货单价分别是a 、b 元/件,由题意得:{3a +2b =602a +3b =65解得:{a =10b =15.∴甲、乙两种商品的进货单价分别是10、15元/件.(2)设y 与x 之间的函数关系式为y =k 1x +b 1,将(11,18),(19,2)代入得: {11k 1+b 1=1819k 1+b 1=2,解得:{k 1=−2b 1=40. ∴y 与x 之间的函数关系式为y =﹣2x +40(11≤x ≤19). (3)由题意得: w =(﹣2x +40)(x ﹣10)=﹣2x 2+60x ﹣400=﹣2(x ﹣15)2+50(11≤x ≤19). ∴当x =15时,w 取得最大值50.∴当甲商品的销售单价定为15元/件时,日销售利润最大,最大利润是50元.15.(1)设抛物线的表达式为:y =a (x ﹣7)2+2.88 将x =0,y =1.9代入上式并解得:a =−150故抛物线的表达式为:y =−150(x ﹣7)2+2.88; 当x =9时,y =−150(x ﹣7)2+2.88=2.8>2.24 当x =18时,y =−150(x ﹣7)2+2.88=0.46>0故这次发球过网,但是出界了;(2)如图,分别过点作底线、边线的平行线PQ 、OQ 交于点Q在Rt △OPQ 中,OQ =18﹣1=17当y =0时,y =−150(x ﹣7)2+2.88=0,解得:x =19或﹣5(舍去﹣5) ∴OP =19,而OQ =17故PQ =6√2=8.4 ∵9﹣8.4﹣0.5=0.1∴发球点O 在底线上且距右边线0.1米处. 16.(1)设抛物线的表达式为2(0)y ax bx c a =++≠ 将A (-1,0)、B (0、3)、C (3,0)代入得03093a b cc a b c =-+⎧⎪=⎨⎪=++⎩,解得123a b c =-⎧⎪=⎨⎪=⎩ ∴抛物线的表达式为2y x 2x 3=-++;(2)四边形OBDC 是正方形 ,BO BD OBC DBC ∴=∠=∠ BF BF =()OBF DBF SAS ∴≅BOF BDF ∴∠=∠; (3)存在,理由如下:当点M 在线段BD 的延长线上时,此时90FDM ∠>︒ ∴ DF DM = 设(,3)M m设直线OM 的解析式为(0)y kx k =≠ 3km ∴=解得3k m=∴直线OM 的解析式为3y x m=设直线BC 的解析式为11(0)y k x b k =+≠把B (0、3)、 C (3,0)代入,得1303bk b =⎧⎨=+⎩解得131b k =⎧⎨=-⎩∴直线BC 的解析式为3y x =-+令33x x m =-+,解得33m x m =+,则93y m =+ 39(,)33m F m m ∴++ 四边形OBDC 是正方形 3BO BD OC CD ∴====(3,3)D222222239981(3)(3),(3)33(3)m m DF DM m m m m +∴=-+-==-+++ 222981(3)(3)m m m +∴=-+ 222981(9)m m ∴+=-解得0m =或33m =33m =-点M 为射线BD 上一动点 0m ∴> 33m ∴=33BM ∴=当2323y x x ==-++时,解得0x =或2x =2BE ∴=332ME BM BE ∴=-=.当点M 在线段BD 上时,此时 90DMF ∠>︒MF DM ∴=MFD MDF ∴∠=∠2BMO MFD MDF MDF ∴∠=∠+∠=∠ 由(2)得BOF BDF ∠=∠ 四边形OBDC 是正方形 90OBD ∴∠=︒90BOM BMO ∴∠+∠=︒ 390BOM ∴∠=︒ 30BOM ∴∠=︒ 3OB =3tan 33BM BOM OB ∴=∠⋅==2,3BE BD ==1DE =∴33123ME BD BM DE ∴=--==综上,ME 的长为332或2317.解:(1)y =23735322x x -+,令y =0,解得:x =2或5 故A 点坐标为:(2,0)、B 点坐标为(5,0);(2)连接CD 、BD由(1)知:OA =2,AB =3,等边三角形ABC 的边长为3 ∵△ABC 为等边三角形∴AC =BC ,∠ACB =60°=∠CAB ,∴∠CAO =120° ∵∠COD =60°,且OD =OC ,则△OCD 为等边三角形 ∴OD =CD =CO ,则∠OCD =60°=∠OCA+∠ACD 而∠ACB =60°=∠ACD+∠DCB ∴∠OCA =∠DCB 而CO =CD ,CA =CB∴△OAC ≌△DBC (SAS )∴BD =OA =2,∠CBD =∠CAO =120°,而∠CBO =60° ∴∠OBD =60°,则y D =﹣BDsin ∠OBD =﹣2×32=﹣3 故点D 的坐标为(4,﹣3)当x =4时,y =23735322x x -+=﹣3 故点D 在抛物线上;(3)抛物线的对称轴为:x =72设点M (72,s ),点N (m ,n )n =32m 2﹣732m+53①当OD 是平行四边形的边时 当点N 在对称轴右侧时点O 向右平移4个单位,向下平移3个单位得到D 同样点M 向右平移4个单位,向下平移3个单位得到N即:72+4=m ,s ﹣3=n ,而n =32m 2﹣732m+53解得:s=633 8则点M(72,6338);当点N在对称轴左侧时同理可得:点M(72,2738);②当OD是平行四边形的对角线时则4=72+m3n+s,而n=3m2733解得:s=73则点M(72,73)故点M的坐标为:(72,633)或(72,273)或(72,73).。
中考复习专题二次函数分类讲解复习以及练习题含答案
1、二次函数的定义定义: y=ax2 + bx + c a 、 b 、 c 是常数, a ≠ 0 定义要点:①a ≠ 0 ②最高次数为2 ③代数式一定是整式练习:1、y=-x2,y=2x2-2/x,y=100-5 x2,y=3 x2-2x3+5,其中是二次函数的有____个;2.当m_______时,函数y=m+1χ - 2χ+1 是二次函数2、二次函数的图像及性质例2:已知二次函数1求抛物线开口方向,对称轴和顶点M 的坐标;2设抛物线与y 轴交于C 点,与x 轴交于A 、B 两点,求C,A,B 的坐标;抛物线 顶点坐标 对称轴 位置 开口方向 增减性 最值y=ax2+bx+ca>0y=ax 2+bx+ca<0由a,b 和c 的符号确定由a,b 和c 的符号确定 a>0,开口向上a<0,开口向下在对称轴的左侧,y 随着x 的增大而在对称轴的左侧,y 随着x 的增大而⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22abx 2-=直线abx 2-=直线23212-+=x x y3x为何值时,y随的增大而减少,x为何值时,y有最大小值,这个最大小值是多少4x为何值时,y<0x为何值时,y>03、求抛物线解析式的三种方法1、一般式:已知抛物线上的三点,通常设解析式为________________y=ax2+bx+ca≠02,顶点式:已知抛物线顶点坐标h, k,通常设抛物线解析式为_______________求出表达式后化为一般形式.y=ax-h2+ka≠03,交点式:已知抛物线与x 轴的两个交点x1,0、x2,0,通常设解析式为_____________求出表达式后化为一般形式.y=ax-x1x-x2 a≠0练习:根据下列条件,求二次函数的解析式;1、图象经过0,0, 1,-2 , 2,3 三点;2、图象的顶点2,3, 且经过点3,1 ;3、图象经过0,0, 12,0 ,且最高点的纵坐标是3 ;例1已知二次函数y=ax2+bx+c的最大值是2,图象顶点在直线y=x+1上,并且图象经过点3,-6;求a、b、c;解:∵二次函数的最大值是2∴抛物线的顶点纵坐标为2又∵抛物线的顶点在直线y=x+1上∴当y=2时,x=1∴顶点坐标为 1 , 2∴设二次函数的解析式为y=ax-12+2又∵图象经过点3,-6∴-6=a 3-12+2 ∴a=-2∴二次函数的解析式为y=-2x-12+2即: y=-2x2+4x4、a,b,c符号的确定抛物线y=ax2+bx+c的符号问题:1a的符号:由抛物线的开口方向确定2C的符号:由抛物线与y轴的交点位置确定.3b的符号:由对称轴的位置确定4b2-4ac的符号:由抛物线与x轴的交点个数确定5a+b+c的符号:因为x=1时,y=a+b+c,所以a+b+c的符号由x=1时,对应的y值决定;当x=1时,y>0,则a+b+c>0当x=1时,y<0,则a+b+c<0当x=1时,y=0,则a+b+c=06a-b+c的符号:因为x=-1时,y=a-b+c,所以a-b+c的符号由x=-1时,对应的y值决定;当x=-1,y>0,则a-b+c>0当x=-1,y<0,则a-b+c<0当x=-1,y=0,则a-b+c=0练习1、二次函数y=ax2+bx+ca≠0的图象如图所示,则a、b、c的符号为A、a<0,b>0,c>0B、a<0,b>0,c<0C、a<0,b<0,c>0D、a<0,b<0,c<02、二次函数y=ax2+bx+ca≠0的图象如图所示,则a、b、c的符号为A、a>0,b>0,c=0B、a<0,b>0,c=0C、a<0,b<0,c<0D、a>0,b<0,c=03、二次函数y=ax2+bx+ca≠0的图象如图所示,则a、b、c 、△的符号为A、a>0,b=0,c>0,△>0B、a<0,b>0,c<0,△=0C、a>0,b=0,c<0,△>0D、a<0,b=0,c<0,△<0熟练掌握a,b, c,△与抛物线图象的关系上正、下负左同、右异4.抛物线y=ax2+bx+ca≠0的图象经过原点和二、三、四象限,判断a、b、c的符号情况:a 0,b 0,c 0.5.抛物线y=ax2+bx+ca≠0的图象经过原点,且它的顶点在第三象限,则a、b、c满足的条件是:a 0,b 0,c 0.6.二次函数y=ax2+bx+c中,如果a>0,b<0,c<0,那么这个二次函数图象的顶点必在第象限先根据题目的要求画出函数的草图,再根据图象以及性质确定结果数形结合的思想7.已知二次函数的图像如图所示,下列结论;⑴a+b+c=0 ⑵a-b+c﹥0 ⑶abc ﹥0 ⑷b=2a其中正确的结论的个数是A 1个B 2个C 3个D 4个要点:寻求思路时,要着重观察抛物线的开口方向,对称轴,顶点的位置,抛物线与x轴、y轴的交点的位置,注意运用数形结合的思想;5、抛物线的平移左加右减,上加下减 练习⑴二次函数y=2x2的图象向 平移 个单位可得到y=2x2-3的图象; 二次函数y=2x2的图象向 平移 个单位可得到y=2x-32的图象; ⑵二次函数y=2x2的图象先向 平移 个单位,再向 平移 个单位可得到函数y=2x+12+2的图象;引申:3由二次函数y=x2的图象经过如何平移可以得到函数y=x2-5x+6的图象.y=x2-5x+66二次函数与一元二次方程的关系一元二次方程根的情况与b2-4ac 的关系我们知道:代数式b2-4ac 对于方程的根起着关键的作用.二次函数y=ax2+bx +c 的图象和x 轴交点的横坐标,便是对应的一元二次方程ax2+bx +c=0的解;二次函数y=ax2+bx+c 的图象和x 轴交点有三种情况: 1有两个交点b2 – 4ac > 0 2有一个交点b2 – 4ac= 0 3没有交点 b2 – 4ac< 0若抛物线y=ax2+bx+c 与x 轴有交点,则b2 – 4ac ≥0例1如果关于x 的一元二次方程 x2-2x+m=0有两个相等的实数根,则m=____,此时抛物线 y=x2-2x+m 与x 轴有____个交点.2已知抛物线 y=x2 – 8x +c 的顶点在 x 轴上,则c=____.y=x 24125(2--=x y .2422,1aacb b x -±-=∴3一元二次方程 3 x2+x-10=0的两个根是x1= -2 ,x2=5/3, 那么二次函数y= 3 x2+x-10与x轴的交点坐标是____.7二次函数的综合运用1.已知抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同,顶点在直线x=1上,且顶点到x轴的距离为5,请写出满足此条件的抛物线的解析式.解:抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同a=1或-1又顶点在直线x=1上,且顶点到x轴的距离为5,顶点为1,5或1,-5所以其解析式为:1 y=x-12+52 y=x-12-53 y=-x-12+54 y=-x-12-5 展开成一般式即可.2.若a+b+c=0,a0,把抛物线y=ax2+bx+c 向下平移 4个单位,再向左平移5个单位所到的新抛物线的顶点是-2,0,求原抛物线的解析式. 分析:1由a+b+c=0可知,原抛物线的图象经过1,0 2 新抛物线向右平移5个单位, 再向上平移4个单位即得原抛物线练习题1.直线y =3 x -1与y =x -k 的交点在第四象限,则k 的范围是………………A k <31 B 31<k <1 C k >1 D k >1或k <1 提示由⎩⎨⎧-=-=k x y x y 13,解得⎪⎪⎩⎪⎪⎨⎧-=-=.23121k y k x 因点在第四象限,故21k ->0,231k -<0.∴ 31<k <1.答案B .点评本题应用了两函数图象交点坐标的求法,结合了不等式组的解法、象限内点的坐标符号特征等.2.二次函数y =ax 2+bx +c 的图象如图,则下列各式中成立的个数是…………1abc <0; 2a +b +c <0; 3a +c >b ; 4a <-2b . A1 B2 C3 D4 提示由图象知a <0,-ab2>0,故b >0,而c >0,则abc <0.当x =1时,y >0,即a +c -b >0;当x =-1时,y <0,即a +c -b <0. 答案B .点评本题要综合运用抛物线性质与解析式系数间的关系.因a <0,把4a <-2b 两边同除以a ,得1>-ab 2,即-a b 2<1,所以4是正确的;也可以根据对称轴在x =1的左侧,判断出-a b 2<1,两边同时乘a ,得a <-2b ,知4是正确的.3.若一元二次方程x 2-2 x -m =0无实数根,则一次函数y =m +1x +m -1的图象不经过………………………………………………………………………………… A 第一象限 B 第二象限 C 第三象限 D 第四象限提示由=4+4 m <0,得m +1<0,则m -1<0,直线过第二、三、四象限. 答案A .点评本题综合运用了一元二次方程根的判别式及一次函数图象的性质.注意,题中问的是一次函数图象不经过的象限.4.如图,已知A ,B 是反比例函数y =x2的图象上两点,设矩形APOQ 与矩形MONB 的面积为S 1,S 2,则……………………………………………………………… A S 1=S 2 B S 1>S 2 C S 1<S 2 D 上述A 、B 、C 都可能 提示因为S APOQ =|k |=2,S MONB =2,故S 1=S 2. 答案A .点评本题可以推广为:从双曲线上任意一点向两坐标轴引垂线,由这点及两个垂足和原点构成的矩形的面积都等于|k |.5.若点A 1,y 1,B 2,y 2,C ,y 3在反比例函数y =-xk 12+的图象上,则A y 1=y 2=y 3B y 1<y 2<y 3C y 1>y 2>y 3D y 1>y 3>y 2提示因-k 2+1<0,且-k 2+1=y 1=2 y 2=y 3,故y 1<y 2<y 3.或用图象法求解,因-k 2+1<0,且x 都大于0,取第四象限的一个分支,找到在y 轴负半轴上y 1,y 2,y 3 的相应位置即可判定. 答案B .点评本题是反比例函数图象的性质的应用,图象法是最常用的方法.在分析时应注意本题中的-k 2+1<0.6.直线y =ax +c 与抛物线y =ax 2+bx +c 在同一坐标系内大致的图象是……A B C D提示两个解析式的常数项都为c ,表明图象交于y 轴上的同一点,排除A,B .再从a 的大小去判断. 答案D .点评本题综合运用了一次函数、二次函数的性质.B 错误的原因是由抛物线开口向上,知a >0,此时直线必过第一、三象限.7.已知函数y =x 2-1840 x +1997与x 轴的交点是m ,0n ,0,则m 2-1841 m +1997n 2-1841 n +1997的值是…………………………………………… A1997 B1840 C1984 D1897提示抛物线与x 轴交于m ,0n ,0,则m ,n 是一元二次方程x 2-1840 x +1997=0的两个根.所以m 2-1840 m +1997=0,n 2-1840 n +1997=0,mn =1997.原式=m 2-1840 m +1997-mn 2-1840 n +1997-n =mn =1997. 答案A .点评本题揭示了二次函数与一元二次方程间的联系,应用了方程的根的定义、根与系数的关系等知识点,并要灵活地把所求代数式进行适当的变形. 8.某乡的粮食总产量为aa 为常数吨,设这个乡平均每人占有粮食为y 吨,人口数为x ,则y 与x 之间的函数关系为……………………………………………A B C D 提示粮食总产量一定,则人均占有粮食与人口数成反比,即y =xa.又因为人口数不为负数,故图象只能是第一象限内的一个分支. 答案D .点评本题考查反比例函数图象在实际问题中的应用.A 错在画出了x <0时的图象,而本题中x 不可能小于0. 二填空题每小题4分,共32分9.函数y =12-x +11-x 的自变量x 的取值范围是____________. 提示由2 x -1≥0,得x ≥21;又x -1≠0,x ≠1.综合可确定x 的取值范围.答案x ≥21,且x ≠1.10.若点Pa -b ,a 位于第二象限,那么点Qa +3,ab 位于第_______象限. 提示由题意得a >0,a -b <0,则b >0.故a +3>0,ab >0. 答案一.11.正比例函数y =kk +112--k k x 的图象过第________象限.提示由题意得k 2-k -1=1,解得k 1=2,k 2=-1舍去,则函数为y =6 x . 答案一、三.点评注意求出的k =-1使比例系数为0,应舍去.12.已知函数y =x 2-2m +4x +m 2-10与x 轴的两个交点间的距离为22,则m =___________.提示抛物线与x 轴两交点间距离可应用公式||a ∆来求.本题有∆=)10(4)42(22--+m m =5616+m =22,故m =-3. 答案-3.点评抛物线与x 轴两交点间距离的公式为||a ∆,它有着广泛的应用.13.反比例函数y =xk的图象过点Pm ,n ,其中m ,n 是一元二次方程x 2+kx +4=0的两个根,那么P 点坐标是_____________.提示Pm ,n 在双曲线上,则k =xy =mn ,又mn =4,故k =4. 答案-2,-2.点评本题是反比例函数、一元二次方程知识的综合应用.由题意得出k =mn =4是关键.14.若一次函数y =kx +b 的自变量x 的取值范围是-2≤x ≤6,相应函数值y 的范围是-11≤y ≤9,则函数解析式是___________.提示当k >0时,有⎩⎨⎧+=+-=-b k b k 69211,解得⎪⎩⎪⎨⎧-==.625b k当k <0时,有⎩⎨⎧+-=+=-b k b k 29611,解得⎪⎩⎪⎨⎧=-=.425b k答案y =25x -6或y =-25x +4.点评因k 是待定字母,而k 的不同取值,导致线段分布象限不一样,自变量的取值与函数取值的对应关系也就不同.故本例要分k >0时自变量最大值对应函数最大值,与k <0时自变量最大值对应函数最小值两种情形讨论. 15.公民的月收入超过800元时,超过部分须依法缴纳个人收入调节税,当超过部分不足500元时,税率即所纳税款占超过部分的百分数相同.某人本月收入1260元,纳税23元,由此可得所纳税款y 元与此人月收入x 元(800<x <1300)间的函数关系为____________. 提示因1260-800=460,46023=5%,故在800<x <1300时的税率为5%. 答案y =5%x -800.点评本题是与实际问题相关的函数关系式,解题时应注意并不是每个人月收入的全部都必须纳税,而是超过800元的部分才纳税,故列函数式时月收入x 须减去800. 16.某种火箭的飞机高度h 米与发射后飞行的时间t 秒之间的函数关系式是h =-10 t 2+20 t ,经过_________秒,火箭发射后又回到地面.提示火箭返回地面,即指飞行高度为0,则-10 t 2+20 t =0,故t =0或t =20. 答案20.点评注意:t =0应舍去的原因是此时火箭虽在地面,但未发射,而不是返回地面. 三解答题17.6分已知y =y 1+y 2,y 1 与x 成正比例,y 2 与x 成反比例,并且x =1时y =4,x =2时y =5,求当x =4时y 的值.解设y 1=k 1x ,y 2=xk 2,则y =k 1x +xk 2.把x =1时y =4,x =2时y =5分别代入上式,得⎪⎩⎪⎨⎧+=+=22542121k k k k ,解得∴ 函数解析式为y =2 x +x 2. 当x =4时,y =2×4+42=217.∴ 所求的y 值为217.点评本题考查用待定系数法求函数解析式.关键在于正确设出y 1,y 2 与x 的函数解析式.注意两个比例系数应分别用k 1,k 2 表示出来,而不能仅用一个k 值表示.18.6分若函数y =kx 2+2k +1x +k -1与x 轴只有一个交点,求k 的值. 提示本题要分k =0,k ≠0两种情况讨论.解当k =0时,y =2 x -1,是一次函数,此时,直线与x 轴必有一个交点.当k ≠0时,函数为二次函数,此时,=4k +12-4 kk -1=12 k +4=0.∴ k =-31. ∴ 所求的k 值为0或-31. 点评注意,当问题中未指明函数形式,而最高次项系数含字母时,要注意这个系数是否为0.函数图象与x 轴有一个交点包括两种情形:当函数是一次函数时,直线与x 轴必只有一个交点;当函数是二次函数时,在=0的条件下,图象与x 轴只有一个交点.19.8分已知正比例函数y =4 x ,反比例函数y =xk.1当k 为何值时,这两个函数的图象有两个交点k 为何值时,这两个函数的图象没有交点2这两个函数的图象能否只有一个交点若有,求出这个交点坐标;若没有,请说明理由. 解由y =4 x 和y =xk ,得 4 x 2-k =0,=16 k .1当>0,即k >0时,两函数图象有两个交点;当<0,即k <0时,两函数图象没有交点;2∵ 比例系数k ≠0,故≠0.∴ 两函数图象不可能只有一个交点.20.8分如图是某市一处十字路口立交桥的横断面在平面直角坐标系中的一个示意图,横断面的地平线为x 轴,横断面的对称轴为y 轴,桥拱的D ′GD 部分为一段抛物线,顶点G 的高度为8米,AD 和AD ′是两侧高为米的立柱,OA 和OA ′为两个方向的汽车通行区,宽都为15米,线段CD 和CD ′为两段对称的上桥斜坡,其坡度为1∶4.1求桥拱DGD ′所在抛物线的解析式及CC ′的长.2BE 和B ′E ′为支撑斜坡的立柱,其高都为4米,相应的AB 和A ′B ′为两个方向的行人及非机动车通行区,试求AB 和A ′B ′的宽.3按规定,汽车通过桥下时,载货最高处和桥拱之间的距离不可小于米,今有一大型运货汽车,装载上大型设备后,其宽为4米,车载大型设备的顶部与地面的距离为7米,它能否从OAOA ′安全通过请说明理由.分析欲求函数的解析式,关键是求出三个独立的点的坐标,然后由待定系数法求之.所以关键是由题中线段的长度计算出D 、G 、D ′的坐标,当然也可由对称轴x =0解之.至于求CC ′、AB 、A ′B ′的数值,则关键是由坡度的定义求解之;到底能否安全通过,则只需在抛物线的解析式中令x =4,求出相应的y 值,即可作出明确的判断.解1由题意和抛物线的对称轴是x =0,可设抛物线的解析式为y =ax 2+c .由题意得G 0,8,D 15,∴ ⎩⎨⎧=+=.5.52258c a c∴ ⎪⎩⎪⎨⎧=-=.8901c a∴ y =2901x -+8.又 AC AD =41且AD =, ∴ AC =×4=22米.∴ CC ′=2C =2×OA +AC =2×15+22=74米.∴ CC ′的长是74米.2∵ BC EB =41,BE =4, ∴ BC =16.∴ AB =AC -BC =22-16=6米.A ′B ′=AB =6米.3此大型货车可以从OAOA ′区域安全通过.在y =2901x -+8中,当x =4时,y =-901×16+8=45377,而 45377-7+=4519>0, ∴ 可以从OA 区域安全通过. 21.8分已知二次函数y =ax 2+bx +c 的图象抛物线G 经过-5,0,0,25,1,6三点,直线l 的解析式为y =2 x -3.1求抛物线G 的函数解析式;2求证抛物线G 与直线l 无公共点;3若与l 平行的直线y =2 x +m 与抛物线G 只有一个公共点P ,求P 点的坐标.分析1略;2要证抛物线G 与直线l 无公共点,就是要证G 与l 的解析式组成的方程无实数解;3直线y =2 x +m 与抛物线G 只有一个公共点,就是由它们的解析式组成的二元二次方程组有一个解,求出这组解,就得P 点的坐标.解1∵ 抛物线G 通过-5,0,0,25,1,6三点, ∴ ⎪⎪⎩⎪⎪⎨⎧++==--=cb ac c b a 6255250,解得 ⎪⎪⎩⎪⎪⎨⎧===.25321c b a∴ 抛物线G 的解析式为y =21x 2+3 x +25. 2由⎪⎩⎪⎨⎧++=-=25321322x x y x y , 消去y ,得21x 2+x +211=0, ∵ =12-4×21×211=-10<0, ∴ 方程无实根,即抛物线G 与直线l 无公共点.3由⎪⎩⎪⎨⎧++=+=2532122x x y m x y ,消去y ,得21x 2+x +25-m =0. ① ∵ 抛物线G 与直线y =2 x +m 只有一个公共点P ,∴ =12-4×21×25-m =0. 解得m =2. 把m =2代入方程①,解得x =-1. 把x =-1代入y =21x 2+3 x +25,得y =0. ∴ P -1,0.点评本题综合运用了二次函数解析式的求法.抛物线与直线的交点等知识,其关键是把函数问题灵活转化为方程知识求解.。
初三物理二次函数专题训练(含答案)-
初三物理二次函数专题训练(含答案)-一、选择题:1、二次函数图象上有一点(-1,0) ,则此二次函数的解析式是()A、y=x²-1B、y=x²+1C、y=x²-2x+1D、y=x²+2x-1答案:C2、已知二次函数 y=ax²+bx+c 的顶点为 (1,-2),则 a+b+c=()A、1B、-1C、-2D、2答案:-23、已知二次函数 y=ax²+bx+c 的图象过点 (1,2),则 a+b+c=()A、3B、-3C、2D、4答案:44、用平移法求 y=x²-4x+3 的解析式,正确的是()A、y=(x-2)²-5B、y=(x-1)²-2C、y=(x-3)²-4D、y=x²-4x-3答案:A5、下列二次函数中,其图象与 y=x²的图象关于 y 轴对称的是()A、y=x²B、y=-x²C、y=x²+1D、y=2x²答案:B6、设二次函数 y=ax²+bx+c 的图象与 y=-\frac{1}{2}x²+a 的图象相交于点(1,-\frac{5}{2}),则 b+c=()A、-2B、-1C、0D、1答案:B7、把 y=x²的图象上每个点的纵坐标都减去 1 ,所得新图象的解析式是()A、y=x²-1B、y=x²+1C、y=x²-2x+1D、y=x²+2x-1答案:A二、填空题:1、把 y=x²的图象上每个点的横坐标都减去 1 ,所得新图象的解析式是()答案:y=(x-1)²2、设二次函数 y=ax²+bx+c 的图象上的点 (2,5) ,则 a=___,b=___,c=___答案:a=1,b=2,c=13、已知二次函数 y=ax²+bx+c 的图象过点 (2,5),则 a=___,b=___,c=___答案:a=\frac{1}{2},b=2,c=\frac{9}{2}4、已知二次函数 y=ax²+bx+c 的顶点为 (0,1),且 a<0 ,则其对称轴方程是 x=___答案:x=05、已知二次函数 y=ax²+bx+c 的图象过点 (-1,0),且a>0 ,则经过点 (1,0) 的直线方程是 y=___答案:y=-\frac{1}{4}x+\frac{1}{4}6、设二次函数 y=ax²+bx+c 的解析式中,a+b=c+1 ,则其顶点坐标为(____, ____ )答案:(-\frac{1}{2}, c+\frac{1}{4})7、可能是 y=2x²-4x+3 的几何意义是一个开口向下的抛物线,其中顶点为(___, ___)。
中考数学专项复习《二次函数的三种形式》练习题及答案
中考数学专项复习《二次函数的三种形式》练习题及答案一、单选题1.抛物线y=x2﹣2x+3的顶点坐标是()A.(1,﹣2)B.(1,2)C.(﹣1,2)D.(﹣1,﹣2)2.把二次函数y=x2-4x+3化成y=a(x-h)2+k的形式是()A.y=(x-2)2-1B.y=(x+2)2-1C.y=(x-2)2+7D.y=(x+2)2+73.把二次函数y=x2﹣2x﹣1配方成顶点式为()A.y=(x﹣1)2B.y=(x+1)2﹣2C.y=(x+1)2+1D.y=(x﹣1)2﹣24.已知二次函数y=(x−1m)(mx−4m)(其中m>0),下列说法正确的是()A.当x>2时,都有y随着x的增大而增大B.当x<3时,都有y随着x的增大而减小C.若x<n时,都有y随着x的增大而减小,则n≥2+12mD.若x<n时,都有y随着x的增大而减小,则n≤2+12m5.将二次函数y=x2﹣2x﹣3化成y=(x﹣h)2+k形式,则h+k结果为()A.-5B.5C.3D.-36.用配方法将y=x2﹣8x+12化成y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+4B.y=(x﹣4)2﹣4C.y=(x﹣8)2+4D.y=(x﹣8)2﹣47.将二次函数y=x2-4x-1化为y=(x-h)2+k的形式,结果为()A.y=(x+2)2+5B.y=(x+2)2−5C.y=(x−2)2+5D.y=(x−2)2−5 8.将二次函数y=x2﹣2x﹣3化成y=(x﹣h)2+k形式,则h+k结果为()A.﹣5B.5C.3D.﹣39.抛物线y=(x+2)2−3的对称轴是()A.直线x=2B.直线x=-2C.直线x=-3D.直线x=310.抛物线y=(x−2)2的顶点坐标是()A.(2,0)B.(-2,0)C.(0,2)D.(0,-2)11.下列二次函数中,顶点坐标是(2,-3)的函数解析式为()A.y=(x-2)2+3B.y=(x+2)2+3C.y=(x-2)2-3D.y=(x+2)2-312.通过配方法将二次函数y=ax2+bx+c(a≠0)化成y=a(x﹣h)2+k的形式,此二次函数可变形为( )A .y=a (x+ b 2a )2+ 4ac−b 24aB .y=a (x ﹣ b 2a )2+ 4ac−b 24aC .y=a (x+ b 2a )2+ b 2−4ac 4aD .y=a (x ﹣ b 2a )2+ b 2−4ac 4a二、填空题13.关于x 的一元二次方程x 2+bx+c=0的两根为x 1=1,x 2=2,那么抛物线y=x 2+bx+c 的顶点坐标为 .14.如图,正方形ABCD 的顶点A ,B 与正方形EFGH 的顶点G ,H 同在一段抛物线上,且抛物线的顶点同时落在CD 和y 轴上,正方形边AB 与EF 同时落在x 轴上,若正方形ABCD 的边长为4,则正方形EFGH 的边长为15.抛物线y=x 2-2x+5化成y=a(x-h)2+k 的形式是 .16.将二次函数y=x 2﹣2x+3写成y=a (x ﹣h )2+k 的形式为 17.将二次函数y=x 2﹣2x+4化成y=(x ﹣h )2+k 的形式,则k=18.把二次函数的表达式y=x 2﹣6x+5化为y=a (x ﹣h )2+k 的形式,那么h+k=三、综合题19.把下列函数化为y=a (x+m )2+k 形式,并求出各函数图象的顶点坐标、对称轴、最大值或最小值:(1)y=x 2﹣2x+4; (2)y=100﹣5x 2.20.已知二次函数y=x 2﹣6x+8.(1)将解析式化成顶点式;(2)写出它的开口方向、对称轴和顶点坐标;(3)x 取什么值时,y 随x 的增大而增大;x 取什么值时,y 随x 增大而减小.21.如图,抛物线的顶点M 在x 轴上,抛物线与y 轴交于点N ,且OM=ON=4,矩形ABCD 的顶点A 、B 在抛物线上,C 、D 在x 轴上.(1)求抛物线的解析式;(2)设点A的横坐标为t(t>4),矩形ABCD的周长为l,求l与t之间函数关系式.22.已知二次函数y=x2−2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?23.如图,在平面直角坐标系xOy中,抛物线y=ax2+(2a﹣ma)x﹣2am(a<0)与x轴分别交于点A、C,顶点坐标为D.(1)当a=﹣1,m=1时.①求点D的坐标;②若F为线段AD上一动点,过点F作FH⊥x轴,垂足为H,交抛物线于点P,当PH+OH的值最大时,求点F的坐标.(2)当m=23时,若另一个抛物线y=ax2﹣(6a+ma)x+6am的顶点为E.试判断直线AD是否经过点E?请说明理由.24.对于二次函数y= 12x2﹣3x+4(1)配方成y=a(x﹣h)2+k的形式.(2)求出它的图象的顶点坐标和对称轴.(3)求出函数的最大或最小值.参考答案1.【答案】B2.【答案】A3.【答案】D4.【答案】D5.【答案】D6.【答案】B7.【答案】D8.【答案】D9.【答案】B10.【答案】A11.【答案】C12.【答案】A13.【答案】( 32,- 14)14.【答案】2 √5﹣215.【答案】y=(x-1)2+416.【答案】y=(x﹣1)2+217.【答案】318.【答案】﹣119.【答案】(1)解:y=x2﹣2x+4=x2﹣2x+1+3=(x﹣1)2+3.顶点坐标是(1,﹣1),对称轴为x=1,最小值为﹣1(2)解:y=100﹣5x2.顶点坐标是(0,100),对称轴为x=0,最大值为10020.【答案】(1)解:y=x2﹣6x+8=x2﹣6x+9﹣1=(x﹣3)2﹣1(2)解:开口向上,对称轴是x=3,顶点坐标是(3,﹣1)(3)解:x>3时,y随x的增大而增大;x<3时,y随x增大而减小21.【答案】(1)解:∵OM=ON=4∴M点坐标为(4,0),N点坐标为(0,4)设抛物线解析式为y=a(x﹣4)2把N(0,4)代入得16a=4,解得a= 1 4所以抛物线的解析式为y= 14(x﹣4)2= 14x2﹣2x+4(2)解:∵点A的横坐标为t∴DM=t﹣4∴CD=2DM=2(t﹣4)=2t﹣8把x=t代入y= 14x2﹣2x+4得y= 14t2﹣2t+4∴AD= 14t2﹣2t+4∴l=2(AD+CD)=2(14t2﹣2t+4+2t﹣8)= 12t2﹣8(t>4)22.【答案】(1)解:∵⊥=(﹣2m)2﹣4×1×(m2+3)=4m2﹣4m2﹣12=﹣12<0∴方程x2﹣2mx+m2+3=0没有实数解,即不论m为何值,该函数的图象与x轴没有公共点;(2)解:y=x2﹣2mx+m2+3=(x﹣m)2+3∴把函数y=x2﹣2mx+m2+3的图象沿y轴向下平移3个单位长度后,得到的函数的图象与x轴只有一个公共点.23.【答案】(1)解:①解:当a=-1,m=1时y=−x2−x+2= −(x+12)2+94∴点D的坐标为(−12,94)②∵y=−x2−x+2当y=0时解得:x1=−2∴点A的坐标为(−2,0)设直线AD的表达式为:y=kx+b(k≠0){0=−2k+b94=−12k+b解得{k=32b=3∴直线AD的表达式为:y=32x+3∵F为线段AD上一动点设点F的横坐标为t∵FH⊥x轴,垂足为H,交抛物线于点P∴点P的横坐标也为t,点P的纵坐标为−t2−t+2∴P (t,−t2−t+2),H(t,0)∴PH+OH= −t2−t+2+0−t= −t2−2t+2= −(t+1)2+3∴当t=−1时,PH+OH有最大值当t=−1时,y=32×(−1)+3= 32∴F(−1,3 2)(2)解:∵m= 2 3∴y=ax2+(2a−ma)x−2am= ax2+(2a−23a)x−43a= a(x+23)2−169a∴D (−23,−169a)∵y=ax2−(6a+ma)x+6am= ax2−(6a+23a)x+4a= a(x−103)2−649a∴E (103,−649a)∵y=ax2+(2a−23a)x−43a当y=0时,ax2+(2a−23a)x−43a=0解得x1=−2∴A(-2,0)设直线AD的表达式为:y=mx+n{−2m+n=0−23m+n=−169a解得{m=−43an=−83a∴直线AD的表达式为y=−43ax−83a当x=103,y=−43a⋅103−83a= −649a∴点E在直线AD上∴直线AD经过点E.24.【答案】(1)解:y= 12x2﹣3x+4 = 12(x2﹣6x)+4= 12[(x﹣3)2﹣9]+4= 12(x﹣3)2﹣12(2)解:由(1)得:图象的顶点坐标为:(3,﹣1 2)对称轴为:直线x=3(3)解:∵a= 12>0∴函数的最小值为:﹣1 2。
二次函数综合题型分类训练
专题一 二次函数之面积、周长最值问题1、如图,抛物线cbx x 21-y 2++=与x 轴交于A 、B 两点,与y 轴交于点C ,且OA=2,OC=3. (1)求抛物线的解析式。
(2)若点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P ,使得△BDP 的周长最小,若存在,请求出点P 的坐标,若不存在,请说明理由.2、如图,已知抛物线y=-x 2+bx+c 与一直线相交于A (-1,0),C (2,3)两点,与y 轴交于点N .其顶点为D . (1)抛物线及直线AC 的函数关系式;(2)设点M 在对称轴上一点,求使MN+MD 的值最小时的M 的坐标;(3)若P 是抛物线上位于直线AC 上方的一个动点,求△APC 的面积的最大值.3、如图,已知抛物线y=ax 2+bx ﹣2(a ≠0)与x 轴交于A 、B 两点,与y 轴交于C 点,直线BD 交抛物线于点D ,并且D (2,3),tan ∠DBA=21.(1)求抛物线的解析式;(2)已知点M 为抛物线上一动点,且在第三象限,顺次连接点B 、M 、C 、A ,求四边形BMCA 面积的最大值;4、如图,在平面直角坐标系中,已知点A 的坐标是(4,0),并且OA=OC=4OB ,动点P 在过A ,B ,C 三点的抛物线上. (1)求抛物线的解析式;(2)是否存在点P ,使得△ACP 是以AC 为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,说明理由;(3)过动点P 作PE 垂直于y 轴于点E ,交直线AC 于点D ,过点D 作y 轴的垂线.垂足为F ,连接EF ,当线段EF 的长度最短时,求出点P 的坐标.5、如图12,已知二次函数cbx x 21-y 2++=的图象与x 轴的正半轴相交于点A 、B ,与y轴相交于点C ,且OC 2=OA ·OB .(1)求c 的值;(2)若△ABC 的面积为3,求该二次函数的解析式;(3)设D 是(2)中所确定的二次函数图象的顶点,试问在直线AC 上是否存在一点P 使△PBD 的周长最小?若存在,求出点P 的坐标;若不存在,请说明理由.6、如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB. (1)求点B 的坐标;(2)求经过A 、O 、B 三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由.(4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△PAB 是否有最大面积?若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由.专题二二次函数之等腰三角形问题1、如图,抛物线y=ax2-5ax+4经过ABC△的三个顶点,已知BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC.(1)求抛物线的对称轴;(2)写出A、B、C三点的坐标并求抛物线的解析式;(3)探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在PAB是等腰三角形.若存在,求出所有符合条件的点P坐标;不存在,请说明理由.2、如图,已知抛物线与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式;(2)设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;(3)点M是抛物线上一点,以B,C,D,M为顶点的四边形是直角梯形,试求出点M的坐标.3、在平面直角坐标系xOy中,抛物线y=x2﹣(m+n)x+mn(m>n)与x轴相交于A、B两点(点A位于点B的右侧),与y轴相交于点C.(1)若m=2,n=1,求A、B两点的坐标;(2)若A、B两点分别位于y轴的两侧,C点坐标是(0,﹣1),求∠ACB的大小;(3)若m=2,△ABC是等腰三角形,求n的值.4、如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;(3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S.5、如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=﹣1.(1)求抛物线对应的函数关系式;(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.①当t为何值时,四边形OMPQ为矩形;②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.6、如图,已知抛物线y=﹣41x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(﹣2,0).(1)求抛物线的解析式及它的对称轴方程;(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;(3)试判断△AOC与△COB是否相似?并说明理由;(4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若不存在,求出符合条件的Q点坐标;若不存在,请说明理由.7、已知Rt△ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系内,使其斜边AB与x轴重合(其中OA<OB),直角顶点在y轴正半轴上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数题型分析练习题型一:二次函数对称轴及顶点坐标的应用1.(2015?兰州)在下列二次函数中,其图象对称轴为x =﹣2的是( )A . y =(x +2)2B .y =2x 2﹣2C .y =﹣2x 2﹣2D .y =2(x ﹣2)2 2.(2014?浙江)已知点A (a ﹣2b ,2﹣4ab )在抛物线y =x 2+4x +10上,则点A 关于抛物线对称轴的对称点坐标为( )A.(﹣3,7)B.(﹣1,7)C.(﹣4,10)D.(0,10)3.在同一坐标系中,图像与y=2x 2的图像关于x 轴对称的函数是( ) A.212y x = B.212y x =- C.22y x =- D.2y x =-4.二次函数 y =y (y +y )2+y (y ≠0), 无论k 取何值,其图象的顶点都在( )A.直线 y =y 上B.直线 y =−y 上C.x 轴上D.y 轴上5.(2012?烟台)已知二次函数y=2(x ﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x <3时,y 随x 的增大而减小.则其中说法正确的有( )A .1个B .2个C .3个D .4个6.(2014?扬州)如图,抛物线y =ax 2+bx +c (a >0)的对称轴是过点(1,0)且平行于y 轴的直线,若点P (4,0)在该抛物线上,则4a ﹣2b +c 的值为 .7.已知二次函数 y =yy 2+y,当 y 取 y 1,y 2(y 1≠y 2)时,函数值相等,则当 y 取 y 1+y 2时,函数值为( )A.y +y B .y −y C.−y D.c8.如图所示,已知二次函数y =yy 2+yy +y 的图象经过(-1,0)和(0,-1)两点,则化简代数式√(y −1y )2+4+√(y +1y )2−4= .题型二:平移1.抛物线 y =−3(y −4)2向右平移3个单位长度得到的抛物线对应的函数关系式为( ) A. y =−3(y −7)2 B. y =−3(y −1)2 C. y =−3(y −3)2 D. y =−3(y +3)22.(2012上海)将抛物线y =x 2+x 向下平移2个单位,所得新抛物线的表达式是________3.二次函数()23212-+=x y 的图象是由函数221x y =的图象先向 (左、右)平移 个单位长度,再向 (上、下)平移 个单位长度得到的.4.把抛物线的图象先向右平移3 个单位长度,再向下平移2 个单位长度,所得图象的解析式是532+-=x x y ,则0=++c b a = .题型三:求未知数范围1.已知点()11y ,,()25.1y ,,()35.0y ,在函数2x y =图像上,则比较321y y y ,,的大小 。
2.已知函数y =(k -3)x 2+2x +1的图象与x 轴有交点,则k 的取值范围是( )A .k <4B .k ≤4C .k <4且k ≠3D .k ≤4且k ≠33.已知二次函数 y =y 2+y +y ,当 y 取任意实数时,都有y >0,则 y 的取值范围是( )A .41≥m B .41>m C .41≤m D .41<m4.(2015?益阳)若抛物线y =(x ﹣m )2+(m +1)的顶点在第一象限,则m 的取值范围为( )A . m >1B .m >0C .m >﹣1D .﹣1<m <0 5.(2015?常州)已知二次函数y =x 2+(m ﹣1)x +1,当x >1时,y 随x 的增大而增大,而m 的取值范围是( )A . m =﹣1B .m =3C .m ≤﹣1D .m ≥﹣1 6.(2014?株洲)如果函数()15312-+++-=a a x x a y 的图象经过平面直角坐标系的四个象限,那么a的取值范围是 .7.(2014?浙江)已知当x 1=a ,x 2=b ,x 3=c 时,二次函数y =x 2+mx 对应的函数值分别为y 1,y 2,y 3,若正整数a ,b ,c 恰好是一个三角形的三边长,且当a <b <c 时,都有y 1<y 2<y 3,则实数m 的取值范围是 .8.(2012?德阳)设二次函数y=x 2+bx+c ,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c 的取值范围是( )A .c=3B .c ≥3C .1≤c ≤3D .c ≤39.如图,四个二次函数的图像中,分别对应的是①2y ax =②2y bx =③2y cx =④2y dx =;则a 、b 、c、d的大小关系是()A.a b c d>>> B.a b d c>>> C.b a c d>>> D.a b d c>>>10.如图,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是( ) A.m=n,k>h B.m=n,k<h C.m>n,k=h D.m<n,k=h题型四:根据图形判断系数之间的关系1.(2015?梅州)对于二次函数y=﹣x2+2x.有下列四个结论:①它的对称轴是直线x=1;②设y1=﹣x12+2x1,y2=﹣x22+2x2,则当x2>x1时,有y2>y1;③它的图象与x轴的两个交点是(0,0)和(2,0);④当0<x<2时,y>0.其中正确的结论的个数为()A.1 B.2 C.3 D.42.(2015?深圳)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法正确的个数是()①a>0;②b>0;③c<0;④b2﹣4ac>0.A.1 B.2 C.3 D.43.(2015?南宁)如图,已知经过原点的抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣1,下列结论中:?①ab>0,②a+b+c>0,③当﹣2<x<0时,y<0.正确的个数是()A.0个B.1个C.2个D.3个4.(2015?安顺)如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为()A.1个B.2个C.3个D.4个5.(2015?咸宁)如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有()A.1个B.2个C.3个D.4个6.(2015?恩施州)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2,其中正确结论是()A.②④B.①④C.①③D.②③7.(2015?孝感)如图,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于A ,B 两点,与y 轴交于点C ,且OA =OC .则下列结论:①abc <0;②>0;③ac ﹣b +1=0;④OA ?OB =﹣.其中正确结论的个数是( )A . 4B . 3C . 2D . 18.(2015?日照)如图是抛物线y 1=ax 2+bx +c (a ≠0)图象的一部分,抛物线的顶点坐标A (1,3),与x 轴的一个交点B (4,0),直线y 2=mx +n (m ≠0)与抛物线交于A ,B 两点,下列结论:①2a +b =0;②abc >0;③方程ax 2+bx +c =3有两个相等的实数根;④抛物线与x 轴的另一个交点是(﹣1,0);⑤当1<x <4时,有y 2<y 1,其中正确的是( )A . ①②③B . ①③④C . ①③⑤D . ②④⑤9.(2014泰安)二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)中的x 与y 的部分对应值如下表:下列结论:(1)ac <0;(2)当x >1时,y 的值随x 值的增大而减小.X ﹣1 0 1 3y﹣1 3 5 3(3)3是方程ax2+(b﹣1)x+c=0的一个根;(4)当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的个数为()A.4个B.3个C.2个D.1个题型五:坐标系中,二次函数与其他函数共存的问题1.(2015?锦州)在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是()A.B.C.D.2.(2015?泉州)在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A.B.C.D.3.(2015?泰安)在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()A.B.C.D.4.(2015?安徽)如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣1)x+c的图象可能是()A.B.C.D.题型六:函数解析式的应用①求二次函数解析式1.已知某函数的图象如图所示,求这个函数的解析式.2.求下列二次函数解析式(1)图像过点(0,-1),(-2,0)和(1,0)2(2)图像以A(-1,4)为顶点,且过点B(2,-5)3.( 2014?安徽)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x的二次函数y1=2x2﹣4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A(1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值.4.(2015?淄博)对于两个二次函数y1,y2,满足y1+y2=2x2+2x+8.当x=m时,二次函数y1的函数值为5,且二次函数y2有最小值3.请写出两个符合题意的二次函数y2的解析式(要求:写出的解析式的对称轴不能相同).5.(2015?龙岩)抛物线y=2x2﹣4x+3绕坐标原点旋转180°所得的抛物线的解析式是.6.(2015?资阳)已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为.7.如图,已知二次函数212y x bx c=++的图像经过A(2,0),B,0,-6)两点(1)求这个二次函数的解析式(2)设该二次函数的对称轴与x轴交于点C,连接BA,BC,求△ABC的面积②利用解析式及函数图像性质间的关系求解未知数的值1. ( 2014?福建)如图,已知二次函数y=a(x﹣h)2+的图象经过原点O(0,0),A(2,0).(1)写出该函数图象的对称轴;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否为该函数图象的顶点?2.已知抛物线的解析式为y=y2−(2y−1)y+y2−y.(1)求证:此抛物线与x轴必有两个不同的交点;(2)若此抛物线与直线y=y−3y+4的一个交点在y轴上,求m的值.3.已知:关于y的方程yy2−(1−3y)y+2y−1=0.(1)当y取何值时,二次函数y=yy2−(1−3y)y+2y−1的对称轴是y=−2;(2)求证:y取任何实数时,方程yy2−(1−3y)y+2y−1=0总有实数根.题型七:二次函数与一次函数综合1. 如图,二次函数的图象与x轴相交于A、B两点,与y轴相交于C点,点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)求D点的坐标;(2)求一次函数的表达式;(3)根据图象写出使一次函数值大于二次函数值的x的取值范围.2. 如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(-1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点. (1)求抛物线的解析式;(2)求点B、M的坐标;(3)求△MCB的面积.3.(2012珠海)如图,二次函数y =(x -2)2+m 的图象与y 轴交于点C ,点B 是点C 关于该二次函数图象的对称轴对称的点.已知一次函数y =kx +b 的图象经过该二次函数图象上点A (1,0)及点B .(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx +b ≥(x -2)2+m 的x 的取值范围.4.(2015?衢州)如图,已知直线y =﹣x +3分别交x 轴、y 轴于点A 、B ,P 是抛物线y =﹣x 2+2x +5的一个动点,其横坐标为a ,过点P 且平行于y 轴的直线交直线y =﹣x +3于点Q ,则当PQ =BQ 时,a 的值是 .5.(2012湖南)已知二次函数y =x 2-(m 2-2)x -2m 的图象与x 轴交于点A (x 1,0)和点B (x 2,0),x 1<x 2,与y 轴交于点C ,且满足211121=+x x(1)求这个二次函数的解析式;(2)探究:在直线y=x+3上是否存在一点P,使四边形PACB为平行四边形?如果有,求出点P的坐标;如果没有,请说明理由.题型八:函数解析式的应用①求二次函数解析式1.已知某函数的图象如图所示,求这个函数的解析式.2.求下列二次函数解析式(1)图像过点(0,-1),(-2,0)和(1,0)2(2)图像以A(-1,4)为顶点,且过点B(2,-5)3.( 2014?安徽)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x的二次函数y1=2x2﹣4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A(1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值.4.(2015?淄博)对于两个二次函数y1,y2,满足y1+y2=2x2+2x+8.当x=m时,二次函数y1的函数值为5,且二次函数y2有最小值3.请写出两个符合题意的二次函数y2的解析式(要求:写出的解析式的对称轴不能相同).5.(2015?龙岩)抛物线y=2x2﹣4x+3绕坐标原点旋转180°所得的抛物线的解析式是.6.(2015?资阳)已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为.7.如图,已知二次函数212y x bx c=++的图像经过A(2,0),B,(0,-6)两点(1)求这个二次函数的解析式(2)设该二次函数的对称轴与x轴交于点C,连接BA,BC,求△ABC的面积②利用解析式及函数图像性质间的关系求解未知数的值1. ( 2014?福建)如图,已知二次函数y=a(x﹣h)2+的图象经过原点O(0,0),A(2,0).(1)写出该函数图象的对称轴;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否为该函数图象的顶点?2.已知抛物线的解析式为()m m x m x y -+--=2212(1)求证:此抛物线与x 轴必有两个不同的交点;(2)若此抛物线与直线43+-=m x y 的一个交点在y 轴上,求m 的值.3.已知:关于y 的方程()012312=-+--a x a x a(1)当y 取何值时,二次函数()12312-+--=a x a x a y 的对称轴是2-=x ; (2)求证:y 取任何实数时,方程()012312=-+--a x a x a 总有实数根.题型九:二次函数与一次函数综合1. 如图,二次函数的图象与x 轴相交于A 、B 两点,与y 轴相交于C 点,点C 、D 是二次函数图象上的一对对称点,一次函数的图象过点B 、D .(1)求D 点的坐标;(2)求一次函数的表达式;(3)根据图象写出使一次函数值大于二次函数值的x的取值范围.2. 如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(-1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;(2)求点B、M的坐标;(3)求△MCB的面积.(4)3.(2012珠海)如图,二次函数y =(x -2)2+m 的图象与y 轴交于点C ,点B 是点C 关于该二次函数图象的对称轴对称的点.已知一次函数y =kx +b 的图象经过该二次函数图象上点A (1,0)及点B .(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx +b ≥(x -2)2+m 的x 的取值范围.4.(2015?衢州)如图,已知直线y =﹣x +3分别交x 轴、y 轴于点A 、B ,P 是抛物线y =﹣x 2+2x +5的一个动点,其横坐标为a ,过点P 且平行于y 轴的直线交直线y =﹣x +3于点Q ,则当PQ =BQ 时,a 的值是 .5.(2012湖南)已知二次函数y =x 2-(m 2-2)x -2m 的图象与x 轴交于点A (x 1,0)和点B (x 2,0),x 1<x 2,与y 轴交于点C ,且满足211121=+x x(1)求这个二次函数的解析式;(2)探究:在直线y=x+3上是否存在一点P,使四边形PACB为平行四边形?如果有,求出点P的坐标;如果没有,请说明理由.。