二次函数知识点及题型归纳总结
二次函数知识点总结和题型总结(1)
二次函数知识点总结和题型总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函 数,叫做二次函数。
这里需要强调:①a ≠ 0 ②最高次数为2 ③代数式一定是整式2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 例题:例1、已知函数y=(m -1)x m2 +1+5x -3是二次函数,求m 的值。
练习、若函数y=(m 2+2m -7)x 2+4x+5是关于x 的二次函数,则m 的取值范围 为 . 二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小.2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4。
()2y a x h k =-+的性质:(技法:如果解析式为顶点式y=a(x -h)2+k ,则最值为k;如果解析式为一般式y=ax 2+bx+c 则最值为4ac-b24a )1.抛物线y=2x 2+4x+m 2-m 经过坐标原点,则m 的值为 。
2.抛物y=x 2+bx+c 线的顶点坐标为(1,3),则b = ,c = . 3.抛物线y =x 2+3x 的顶点在( )A.第一象限B.第二象限C.第三象限 D 。
第四象限4.若抛物线y =ax 2-6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( ) A5.若直线y =ax +b 不经过二、四象限,则抛物线y =ax 2+bx +c( ) A.开口向上,对称轴是y 轴 B.开口向下,对称轴是y 轴 C.开口向下,对称轴平行于y 轴 D.开口向上,对称轴平行于y 轴 6.已知二次函数y=mx 2+(m -1)x+m -1有最小值为0,则m = 。
(完整版)二次函数知识点总结和题型总结
二次函数知识点总结和题型总结
一、二次函数概念:
1.二次函数的概念:一般地,形如2
y ax bx c =++(a b c ,
,是常数,0a ≠)的函 数,叫做二次函数。
这里需要强调:①a ≠ 0 ②最高次数为2 ③代数式一定是整式
2. 二次函数
2
y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.
⑵ a b c ,
,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 例题:
例1、已知函数y=(m -1)x m2 +1+5x -3是二次函数,求m 的值。
练习、若函数y=(m 2+2m -7)x 2+4x+5是关于x 的二次函数,则m 的取值范围 为 。
二、二次函数的基本形式
1. 二次函数基本形式:2
y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质: 上加下减。
3. ()2
y a x h =-的性质:
左加右减。
4. ()2
y a x h k =-+的性质:
(技法:如果解析式为顶点式y=a(x -h)2+k ,则最值为k ;如果解析式为一般式
y=ax 2
+bx+c 则最值为4ac-b 24a
)
1.抛物线y=2x 2+4x+m 2-m 经过坐标原点,则m 的值为 。
2.抛物y=x 2+bx+c 线的顶点坐标为(1,3),则b = ,c = . 3.抛物线y =x 2+3x 的顶点在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限。
二次函数中考题型总结
二次函数常考知识点总结整理一、函数定义与表达式1.一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2.顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3.交点式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化二、函数图像的性质——抛物线(1)开口方向——二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;(2)抛物线是轴对称图形,对称轴为直线一般式:2bx a=-对称轴顶点式:x=h一般式:2424b ac b aa ⎛⎫-- ⎪⎝⎭,顶点式:(h、k)顶点坐标y=-2x 2两根式:x=221x x +(3)对称轴位置一次项系数b 和二次项系数a 共同决定对称轴的位置。
(“左同右异”)a 与b 同号(即ab >0)对称轴在y 轴左侧a 与b 异号(即ab <0)对称轴在y 轴右侧(4)增减性,最大或最小值当a>0时,在对称轴左侧(当2bx a<-时),y 随着x 的增大而减少;在对称轴右侧(当2bx a<-时),y 随着x 的增大而增大;当a<0时,在对称轴左侧(当2bx a<-时),y 随着x 的增大而增大;在对称轴右侧(当2bx a<-时),y 随着x 的增大而减少;当a>0时,函数有最小值,并且当x=a b2-,2min 44ac b y a -=;当a<0时,函数有最大值,并且当x=ab2-,2max 44ac b y a -=;(5)常数项c常数项c 决定抛物线与y 轴交点。
(完整版)初中二次函数知识点汇总(史上最全)
二次函数知识点一、基本概念:1.二次函数的概念:一般地,形如2y ax bx c=++(a b ca≠)的函数,叫做二次函数。
,,是常数,0这里需要强调:和一元二次方程类似,二次项系数0a≠,而b c,可以为零.二次函数的定义域是全体实数.2. 二次函数2=++的结构特征:y ax bx c⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、基本形式1. 二次函数基本形式:2=的性质:y axa 的绝对值越大,抛物线的开口越小。
2. 2y ax c=+的性质:(上加下减)3. ()2y a x h =-的性质:(左加右减)4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法1:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法2:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k=-+与2y axbx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba -<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba ->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )y y y y1 10 x o-1 x 0 x 0 -1 x A B C D3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
二次函数全部知识点及典型例题(全)
二次函数一.复习1.函数的概念:一般地,在一个变化过程中,如果有两个变量x,y,对于自变量x在某一范围内的每一个确定值,y都有惟一确定的值与它对应,那么就说y是x的函数.对于自变量x在可以取值范围内的一个确定的值a,函数y有惟一确定的对应值,这个对应值叫做当x=a时函数的值,简称函数值. 要点诠释:对于函数的概念,应从以下几个方面去理解:(1)函数的实质,揭示了两个变量之间的对应关系;(2)判断两个变量之间是否有函数关系,要看对于x允许取的每一个值,y是否都有惟一确定的值与它相对应;(3)函数自变量的取值范围,应要使函数表达式有意义,在解决实际问题时,还必须考虑使实际问题有意义.2.函数的三种表示方法表示函数的方法,常见的有以下三种:(1)解析法:用来表示函数关系的数学式子叫做函数的表达式,(或解析式),用数学式子表示函数的方法称为解析法.(2)列表法:用一个表格表达函数关系的方法.(3)图象法:用图象表达两个变量之间的关系的方法.要点诠释:函数的三种表示方法各有不同的长处.解析式法能揭示出变量之间的内在联系,但较抽象,不是所有的函数都能列出解析式;列表法可以清楚地列出一些自变量和函数值的对应值,这会对某些特定的数值带来一目了然的效果,例如火车的时刻表,平方表等;图象法可以直观形象地反映函数的变化趋势,而且对于一些无法用解析式表达的函数,图象可以充当重要角色.对照表如下:二.二次函数的概念一般地,形如y=ax2+bx+c(a, b, c是常数,a≠0)的函数叫做x的二次函数.若b=0,则y=ax2+c;若c=0,则y=ax2+bx;若b=c=0,则y=ax2.以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c(a≠0)是二次函数的一般式.要点诠释:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.例1.下列函数一定是二次函数的是__________.①;②;③;④;⑤y=(x-3)2-x 2 例2.若是221(3)2a a y a x --=--二次函数,则a=__________例 3.中的二次项系数=__________,一次项系数=__________,常数项=__________.例4.边长为12 cm 的正方形铁片,中间剪去一个边长x cm 的小正方形铁片,剩下的四方框铁片的面积y(cm 2)与x(cm)之间的函数关系式为_______________.例 6.某地绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在当地收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.(1)若存放x 天后,将这批香菇一次性出售,设这批香菇的销售总金额为y 元,试写出y 与x 之间的函数关系式.(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额-收购成本-各种费用)c bx ax y ++=2xy 3-=1342+-=x x y c bx x m y ++-=2)1(2y =(2x -1)-6a b c练习:1.下列函数中是二次函数的有( )个.(1)1y x x=+;(2)y=3(x-1)2+2;(3)y=(x+3)2-2x 2;(4) 21y x x =+ A.4 B.3 C.2 D.1 2.当m= 时,函数y=(m ﹣1)x |m|+1是二次函数.3.若267(1)m m y m x-+=-是二次函数,则m 的值是( ).A.5B.1C.1或5D.以上都不对.4.将化成二次函数的一般式是:________________.5.一个圆柱的高与底面直径相等,试写出它的表面积S 与底面半径r 之间的函数关系式___________________.6.(2014秋·温岭市校级月考) 已知某商品的进价为每件40元,售价是每件60元,每周可卖出300件.市场调查反映:如调整价格,每涨价1元,每周要少卖出10件.假设涨价x 元,求每周的利润y (元)与涨价x 之间的函数关系式,并写出自变量的取值范围.(23)(1)3y x x =+--三.二次函数的图像及性质:二次函数y=ax2(a≠0)的图象与性质二次函数y=ax2(a≠0)的图象:二次函数y=ax2的图象(如图),是一条关于y轴对称的曲线,这样的曲线叫做抛物线.抛物线y=ax2(a≠0)的对称轴是y轴,它的顶点是坐标原点.当a> 0时,抛物线的开口向上,顶点是它的最低点;当a<0时,抛物线的开口向下,顶点是它的最高点.二次函数y=ax2(a≠0)的图象的画法——描点法描点法画图的基本步骤:列表、描点、连线.(1)列表:选择自变量取值范围内的一些适当的x的值,求出相应的y值,填入表中.(自变量x的值写在第一行,其值从左到右,从小到大.)(2)描点:以表中每对x和y的值为坐标,在坐标平面内准确描出相应的点.一般地,点取的越多,图象就越准确.(3)连线:按照自变量的值由小到大的顺序,把所描的点用平滑的曲线连结起来. 要点诠释:(1)用描点法画二次函数y=ax 2(a≠0)的图象时,应在顶点的左、右两侧对称地选取自变量x 的值,然后计算出对应的y 值. (2)二次函数y=ax 2(a≠0)的图象,是轴对称图形,对称轴是y 轴.y=ax 2(a≠0)是最简单的二次函数.(3)画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.二次函数y=ax 2(a ≠0)的图象的性质x y要点诠释:顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. │a │相同,抛物线的开口大小、形状相同.│a │越大,开口越小,图象两边越靠近y 轴,│a │越小,开口越大,图象两边越靠近x 轴二次函数y=ax 2+c(a ≠0)的图象关于二次函数的性质,主要从抛物线的开口方向、顶点、对称轴、函数值的增减性以及函数的最大值或最小值等方面来研究.下面结合图象,将其性质列表归纳如下:a 2(0)y ax c a =+≠例1.二次函数y=ax2与直线y=2x﹣1的图象交于点P(1,m)(1)求a,m的值;(2)写出二次函数的表达式,并指出x取何值时该表达式y随x的增大而增大?(3)写出该抛物线的顶点坐标和对称轴.例2.已知y=(m+1)x 2m m +是二次函数且其图象开口向上,求m 的值和函数解析式例3.求下列抛物线的解析式:(1)与抛物线形状相同,开口方向相反,顶点坐标是(0,-5)的抛物线;(2)顶点为(0,1),经过点(3,-2)并且关于y 轴对称的抛物线.例4.在同一直角坐标系中,画出和的图象,并根据图象回答下列问题.2132y x =-+2y x =-21y x =-+(1)抛物线向________平移________个单位得到抛物线;(2)抛物线开口方向是________,对称轴为________,顶点坐标为________;(3)抛物线,当x________时,随x 的增大而减小;当x________时,函数y 有最________值,其最________值是________. 练习:1.下列函数中,当x <0时,y 值随x 值的增大而增大的是( ) A. B. C. D.2.在同一坐标系中,作出,,的图象,它们的共同点是( ).A .关于y 轴对称,抛物线的开口向上B .关于y 轴对称,抛物线的开口向下21y x =-+2y x =-21y x =-+21y x =-+25y x =212y x =-2y x =213y x =22y x =22y x =-212y x =C .关于y 轴对称,抛物线的顶点都是原点D .关于原点对称,抛物线的顶点都是原点3.抛物线y=2x 2+1的对称轴是( ) A .直线x=B.直线x=﹣ C .y 轴 D . x轴4.已知抛物线的解析式为y =-3x 2,它的开口向________,对称轴为________,顶点坐标是________,当x >0时,y 随x 的增大而________.5.函数,、的图象大致如图所示,则图中从里向外的三条抛物线对应的函数关系式是_____________________.6.抛物线与的形状相同,其顶点坐标为(0,1),则其解析式为 .7.已知直线与x 轴交于点A ,抛物线的顶点平移后与点A 重合.(1)求平移后的抛物线C 的解析式;2y x =212y x =23y x=2y ax c =+23y x =1y x =+22y x =-(2)若点B(,),C(,)在抛物线C 上,且,试比较,的大小.8.(2014春·牙克石市校级月考)函数y=ax 2 (a ≠0)的图象与直线y=2x-3交于点(1,b). (1)求a 和b 的值;(2)求抛物线y=ax 2的解析式,并求顶点坐标和对称轴; (3)x 取何值时,y 随x 的增大而增大?(4)求抛物线与直线y=-2的两个交点及其顶点所构成的三角形的面积.函数2()(0)y a x h a =-≠与函数2()(0)y a x h k a =-+≠的图象与性质 1.函数2()(0)y a x h a =-≠的图象与性质1x 1y 2x 2y 1212x x -<<1y 2y2.函数2()(0)y a x h k a =-+≠的图象与性质要点诠释:二次函数的图象常与直线、三角形、面积问题结合在一起,借助它的图象与性质.运用数形结合、函数、方程思想解决问题.要点二、二次函数的平移 1.平移步骤:2()+(0y a x h k a =-≠)⑴ 将抛物线解析式转化成顶点式,确定其顶点坐标;⑵ 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下:2.平移规律:在原有函数的基础上“值正右移,负左移;值正上移,负下移”.概括成八个字“左加右减,上加下减”. 要点诠释:⑴沿轴平移:向上(下)平移个单位,变成(或)⑵沿x 轴平移:向左(右)平移个单位,变成(或例1.将抛物线作下列移动,求得到的新抛物线的解析式.(1)向左平移2个单位,再向下平移3个单位;()2y a x h k =-+()h k ,2y ax =()h k,h k c bx ax y ++=2y m c bx ax y ++=2m c bx ax y +++=2m c bx ax y -++=2c bx ax y ++=2m c bx ax y ++=2c m x b m x a y ++++=)()(2c m x b m x a y +-+-=)()(222(1)3y x =-+(2)顶点不动,将原抛物线开口方向反向; (3)以x 轴为对称轴,将原抛物线开口方向反向.例2.二次函数的图象可以看作是二次函数的图象向 平移4个单位,再向 平移3个单位得到的.例3.将抛物线y=x 2﹣6x+5向上平移2个单位长度,再向右平移1个单位长度后,抛物线解析式为______________.例4.已知抛物线向上平移2个单位长度,再向右平移1个单位长度得到抛物线; (1)求出a ,h ,k 的值;(2)在同一直角坐标系中,画出与的图象; (3)观察的图象,当________时,y 随x 的增大而增大;当________时,函数y 有最________值,最________值是________;(4)观察的图象,你能说出对于一切的值,函数y 的取值范围吗?21(3)42y x =-+212y x=212y x =-2()y a x h k =-+2()y a x h k =-+212y x =-2()y a x h k =-+x x y =2()y a x h k =-+x例5.二次函数y 1=a (x ﹣2)2的图象与直线y 2交于A (0,﹣1),B (2,0)两点.(1)确定二次函数与直线AB 的解析式.(2)如图,分别确定当y 1<y 2,y 1=y 2,y 1>y 2时,自变量x 的取值范围.练习:1.抛物线的顶点坐标是( )A .(2,-3)B .(-2,3)C .(2,3)D .(-2,-3) 2.函数y=x 2+2x+1写成y=a(x -h)2+k 的形式是( )A.y=(x -1)2+2 B.y=(x -1)2+ C.y=(x -1)2-3 D.y=(x+2)2-1 3.抛物线y=x 2向左平移3个单位,再向下平移2个单位后,所得的抛物线表达式是( )2(2)3y x =-+-21212121212121A.y=(x+3)2-2 B.y=(x -3)2+2 C.y=(x -3)2-2 D.y=(x+3)2+2 4.把二次函数配方成顶点式为( )A .B .C .D .5.由二次函数,可知( )A .其图象的开口向下B .其图象的对称轴为直线C .其最小值为1D .当时,y 随x 的增大而增大6.(2015•泰安)在同一坐标系中,一次函数y=﹣mx+n 2与二次函数y=x 2+m 的图象可能是( ).A. B. C. D.7. 把二次函数的图象先向左平移2个单位,再向上平移4个单位,得到二次函数的图象.(1)试确定a 、h 、k 的值;(2)指出二次函数的开口方向,对称轴和顶点坐标,分析函数的增减性.21212121122--=x x y 2)1(-=x y 2)1(2--=x y 1)1(2++=x y 2)1(2-+=x y 22(3)1y x =-+3x =-3x <2()y a x h k =-+21(1)12y x =-+-2()y a x h k =-+二次函数与之间的相互关系:1.顶点式化成一般式从函数解析式我们可以直接得到抛物线的顶点(h ,k),所以我们称为顶点式,将顶点式去括号,合并同类项就可化成一般式. 2.一般式化成顶点式.对照,可知,.∴ 抛物线的对称轴是直线,顶点坐标是. 要点诠释:1.抛物线的对称轴是直线,顶点坐标是2(0)y ax bx c a =++≠=-+≠2()(0)y a x h k a 2()y a x h k =-+2()y a x h k =-+2()y a x h k =-+2y ax bx c =++2222222b b b b y ax bx c a x x c a x x c a a a a ⎡⎤⎛⎫⎛⎫⎛⎫=++=++=++-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦22424b ac b a x a a -⎛⎫=++ ⎪⎝⎭2()y a x h k =-+2b h a=-244ac b k a -=2y ax bx c =++2bx a=-24,24b ac b a a ⎛⎫-- ⎪⎝⎭2y ax bx c =++2bx a=-,可以当作公式加以记忆和运用. 2.求抛物线的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.二次函数的图象的画法1.一般方法:列表、描点、连线;2.简易画法:五点定形法. 其步骤为:(1)先根据函数解析式,求出顶点坐标和对称轴,在直角坐标系中描出顶点M ,并用虚线画出对称轴.(2)求抛物线与坐标轴的交点,当抛物线与x 轴有两个交点时,描出这两个交点A 、B 及抛物线与y 轴的交点C ,再找到点C 关于对称轴的对称点D ,将A 、B 、C 、D 及M 这五个点按从左到右的顺序用平滑曲线连结起来. 要点诠释:当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D ,由C 、M 、D 三点可粗略地画出二次函数图象的草图;如果需要画出比较精确的图象,可再描出一对对称点A 、B ,然后顺次用平滑曲线连结五点,画出二次函数的图象,24,24b ac b a a ⎛⎫-- ⎪⎝⎭2y ax bx c =++2(0)y ax bx c a =++≠2y ax bx c =++二次函数的图象与性质2(0)=++≠y ax bx c aa<a>02.二次函数图象的特征与a 、b 、c 及b 2-4ac 的符号之间的关系20()y ax bx c a =++≠要点四、求二次函数的最大(小)值的方法如果自变量的取值范围是全体实数,那么函数在顶点处取得最大(或最小)值,即当时,.要点诠释:如果自变量的取值范围是x 1≤x ≤x 2,那么首先要看是否在自变量的取值范围x 1≤x ≤x 2内,若在此范围内,则当时,,若不在此范围内,则需要考虑函数在x 1≤x ≤x 2范围内的增减性,如果在此范围内,y 随x 的增大而增大,则当x =x 2时,;当x =x 1时,,如果在此范围内,y 随x 的增大而减小,则当x =x 1时,211=ax +bx +y c 最大值;当x =x 2时,222=ax +bx +y c 最小值,如果在此范围内,y 值有增有减,则需考察x =x 1,x =x 2,时y 值的情况.例1.求抛物线的对称轴和顶点坐标.例2.把一般式化为顶点式.2(0)y ax bx c a =++≠2b x a =-244ac b y a-=最值2ba-2bx a=-244ac b y a-=最值222y ax bx c =++最大值211y ax bx c =++最小值2bx a=-2142y x x =-+-2286y x x =-+-(1)写出其开口方向、对称轴和顶点D 的坐标;(2)分别求出它与y 轴的交点C ,与x 轴的交点A 、B 的坐标.例3.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b ;③抛物线与x 轴的另一个交点为(3,0);④abc >0.其中正确的结论是 (填写序号).例4.求二次函数的最小值.例5.已知二次函数的图象过点P(2,1).(1)求证:; (2)求bc 的最大值.例6. 抛物线与y 轴交于(0,3)点:211322y x x =++21y x bx c =+++24c b =--2(1)y x m x m =-+-+(1)求出m 的值并画出这条抛物线; (2)求它与x 轴的交点和抛物线顶点的坐标; (3)x 取什么值时,抛物线在x 轴上方? (4)x 取什么值时,y 的值随x 值的增大而减小练习:1. 将二次函数化为的形式,结果为( ).A .B .C .D . 2.已知二次函数的图象,如图所示,则下列结论正确的是( ).A .B .C .D . 3.若二次函数配方后为,则b 、k 的值分别为( ).A .0,5B .0,1C .-4,5D .-4,14.抛物线的图象向右平移2个单位长度,再向下平移3个单位长度,所得图象的解析式为,则b 、c 的值为( ). A .b=2,c=2 B . b=2,c=0 C . b= -2,c= -1 D . b= -3,c=25.已知抛物线y=ax 2+bx+c 的对称轴为x=2,且经过点(3,0),则a+b+223y x x =-+2()y x h k =-+2(1)4y x =++2(1)4y x =-+2(1)2y x =++2(1)2y x =-+2y ax bx c =++0a >0c <240b ac -<0a b c ++>25y x bx =++2(2)y x k =-+2y x bx c =++223y x x =--的值( )A. 等于0B.等于1C. 等于-1D. 不能确定6.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q 两点,则函数y=ax2+(b﹣1)x+c的图象可能是()A. B. C. D.7.如图二次函数y=ax2+bx+c的图象开口向上,图象经过点(-1,2)和(1,0)且与y轴交于负半轴.第①问:给出四个结论:①a>0;②b>0;③c>0;④a+b+c=0其中正确的结论的序号是__________第②问:给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1,其中正确的结论的序号是_________8.如图,在平面直角坐标系中,正方形OABC 的边长为4,顶点A 、C 分别在x 轴、y 轴的正半轴,抛物线y=﹣x 2+bx+c 经过B 、C 两点,点D 为抛物线的顶点,连接AC 、BD 、CD . (1)求此抛物线的解析式.(2)求此抛物线顶点D 的坐标和四边形ABCD 的面积.用待定系数法求二次函数解析式1.二次函数解析式常见有以下几种形式 :(1)一般式:2y ax bx c =++(a ,b ,c 为常数,a ≠0);(2)顶点式:2()y a x h k =-+(a ,h ,k 为常数,a ≠0); (3)交点式:12()()y a x x x x =--(1x ,2x 为抛物线与x 轴交点的横坐标,a ≠0).2.确定二次函数解析式常用待定系数法,用待定系数法求二次函数解析式的步骤如下第一步,设:先设出二次函数的解析式,如2y ax bx c =++或2()y a x h k =-+,或12()()y a x x x x =--,其中a ≠0;第二步,代:根据题中所给条件,代入二次函数的解析式中,得到关于解析式中待定系数的方程(组);第三步,解:解此方程或方程组,求待定系数; 第四步,还原:将求出的待定系数还原到解析式中. 要点诠释:在设函数的解析式时,一定要根据题中所给条件选择合适的形式:①当已知抛物线上的三点坐标时,可设函数的解析式为2y ax bx c =++;②当已知抛物线的顶点坐标或对称轴或最大值、最小值时.可设函数的解析式为2()y a x h k =-+;③当已知抛物线与x 轴的两个交点(x 1,0),(x 2,0)时,可设函数的解析式为12()()y a x x x x =--.例1. 已知抛物线c bx ax y 2++=经过A ,B ,C 三点,当x ≥0时,其图象如图所示.求抛物线的解析式,写出顶点坐标.例2. 形状与抛物线y=2x 2﹣3x +1的图象形状相同,但开口方向不同,顶点坐标是(0,﹣5)的抛物线的关系式为 . 例3. 已知抛物线c bx ax y 2++=的顶点坐标为(-1,4),与x 轴两交点间的距离为6,求此抛物线的函数关系式.例4.已知二次函数的图象如图所示,根据图中的数据,(1)求二次函数的解析式;(2)设此二次函数的顶点为P,求△ABP的面积.练习:1.已知二次函数的图象过(-1,-9)、(1,-3)和(3,-5)三点,求此二次函数的解析式.2.已知抛物线的顶点坐标为M(1,﹣2),且经过点N(2,3),求此二次函数的解析式.3.(2016•丹阳市校级模拟)抛物线的图象如图,则它的函数表达式是.当x时,y>0.4.已知抛物线经过(3,5),A(4,0),B(-2,0),且与y轴交于点C.(1)求二次函数解析式;(2)求△ABC的面积.5.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标.。
最新二次函数知识点总结和题型总结
二次函数知识点总结和题型总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函 数,叫做二次函数。
这里需要强调:①a ≠ 0 ②最高次数为2 ③代数式一定是整式2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 例题:例1、已知函数y=(m -1)x m2 +1+5x -3是二次函数,求m 的值。
练习、若函数y=(m 2+2m -7)x 2+4x+5是关于x 的二次函数,则m 的取值范围 为 。
二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:(技法:如果解析式为顶点式y=a(x -h)2+k ,则最值为k ;如果解析式为一般式y=ax 2+bx+c 则最值为4ac-b24a )1.抛物线y=2x 2+4x+m 2-m 经过坐标原点,则m 的值为 。
2.抛物y=x 2+bx+c 线的顶点坐标为(1,3),则b = ,c = . 3.抛物线y =x 2+3x 的顶点在( )A.第一象限B.第二象限C.第三象限D.第四象限4.若抛物线y =ax 2-6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( )5.若直线y =ax +b 不经过二、四象限,则抛物线y =ax 2+bx +c( ) A.开口向上,对称轴是y 轴 B.开口向下,对称轴是y 轴 C.开口向下,对称轴平行于y 轴 D.开口向上,对称轴平行于y 轴 6.已知二次函数y=mx 2+(m -1)x+m -1有最小值为0,则m = 。
(完整版)二次函数知识点与题型总结.doc
二次函数知识点一、平面直角坐标系1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
注意: x 轴和y轴上的点,不属于任何象限。
2、点的坐标的概念点的坐标用a, b 表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
平面内点的坐标是有序实数对,当 a b 时,a,b和b, a是两个不同点的坐标。
知识点二、函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x 与y,如果对于 x 的每一个值,y都有唯一确定的值与它对应,那么就说 x 是自变量,y 是x的函数。
2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法把自变量 x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
知识点三、概念总结及基本性质1、二次函数的概念:一般地,形如y ax2bx c( a ,b ,c 是常数, a 0 )的函数,叫做二次函数。
二次函数的定义域是全体实数.2. 、二次函数y ax2bx c 的结构特征:⑴ 等号左边是函数,右边是关于自变量⑵ a ,b ,c 是常数, a 是二次项系数,x 的二次式,x 的最高次数是b 是一次项系数,c 是常数项.2.3、二次函数的基本形式(平移规律:左加右减,上加下减)(1) y ax2的性质: a 的绝对值越大,抛物线的开口越小。
二次函数知识点汇总(全)
二次函数知识点一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2.2y ax c=+的性质: 上加下减。
3.()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”.方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异”总结:3. 常数项cc>时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正;⑴当0c=时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0;⑵当0c<时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负.⑶当0总结起来,c决定了抛物线与y轴交点的位置.,,都确定,那么这条抛物线就是唯一确定的.总之,只要a b c二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于x轴对称2=---;y ax bx cy ax bx c=++关于x轴对称后,得到的解析式是2()2y a x h ky a x h k=---;=-+关于x轴对称后,得到的解析式是()22. 关于y轴对称2=-+;y ax bx cy ax bx c=++关于y轴对称后,得到的解析式是2()2y a x h k=++;=-+关于y轴对称后,得到的解析式是()2y a x h k3. 关于原点对称2=-+-;y ax bx cy ax bx c=++关于原点对称后,得到的解析式是2()2=-+-;y a x h ky a x h k=-+关于原点对称后,得到的解析式是()24. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:图像参考:y=-2x22y=3(x+4)22y=3x2y=-2(x-3)22-32十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )A B C D3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x,求这条抛物线的解析式。
初中二次函数知识点汇总(史上最全)
二次函数知识点一、根本概念:1.二次函数的概念:一般地,形如2y ax bx c =++〔a b c ,,是常数,0a ≠〕的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、根本形式1. 二次函数根本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质:〔上加下减〕3. ()2y a x h =-的性质:〔左加右减〕4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法1:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的根底上“h 值正右移,负左移;k 值正上移,负下移〞.概括成八个字“左加右减,上加下减〞. 方法2:⑴c bx ax y ++=2沿y 轴平移:向上〔下〕平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2〔或m c bx ax y -++=2〕⑵c bx ax y ++=2沿轴平移:向左〔右〕平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2〔或c m x b m x a y +-+-=)()(2〕四、二次函数()2y a x h k =-+与2y ax bx c =++的比拟从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴与顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以与()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,〔假设与x 轴没有交点,那么取两组关于对称轴对称的点〕.画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1.当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a =-时,y 有最大值244ac b a-. 七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++〔a ,b ,c 为常数,0a ≠〕;2. 顶点式:2()y a x h k =-+〔a ,h ,k 为常数,0a ≠〕;3. 两根式:12()()y a x x x x =--〔0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标〕. 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1.二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边那么0>ab ,在y 轴的右侧那么0<ab ,概括的说就是“左同右异〞 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式确实定:根据条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 抛物线上三点的坐标,一般选用一般式;2. 抛物线顶点或对称轴或最大〔小〕值,一般选用顶点式;3. 抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 抛物线上纵坐标一样的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-;()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;4. 关于顶点对称〔即:抛物线绕顶点旋转180°〕2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原那么,选择适宜的形式,习惯上是先确定原抛物线〔或表达式的抛物线〕的顶点坐标与开口方向,再确定其对称抛物线的顶点坐标与开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系〔二次函数与x 轴交点情况〕:一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:①当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-②当0∆=时,图象与x 轴只有一个交点; ③当0∆<时,图象与x 轴没有交点.1'当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵求二次函数的最大〔小〕值需要利用配方法将二次函数由一般式转化为顶点式;⑶根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷二次函数的图象关于对称轴对称,可利用这一性质,求和一点对称的点坐标,或与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,提醒二次函数、二次三项式和一元二次方程之间的在联系:二次函数考察重点与常见题型1. 考察二次函数的定义、性质,有关试题常出现在选择题中,如:以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 那么m 的值是2. 综合考察正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系考察两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限,那么函数12-+=bx kx y 的图像大致是〔 〕3. 考察用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:一条抛物线经过(0,3),(4,6)两点,对称轴为35=x,求这条抛物线的解析式。
二次函数知识点汇总(全)
二次函数知识点一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a -=-=,.五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.② 当0∆=时,图象与x 轴只有一个交点;③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的在联系:图像参考:y=-2x 22y=3(x+4)22y=3x2y=-2(x-3)2十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型2-321. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系考查两个函数的图像,试题类型为选择题,如:如图,如果函数b kx y +=的图像在第一、二、三象限,那么函数12-+=bx kx y 的图像大致是( )y y y y1 10 x o-1 x 0 x 0 -1 x A B C D3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x,求这条抛物线的解析式。
二次函数知识点及例题详解最终
二次函数知识点及例题详解最终文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]二次函数知识点总结及经典习题一、二次函数概念:1.二次函数的概念:一般地,形如y ax bx c (a,b,c是常数,a 0 )的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数a 0 ,而b ,c 可以为零.二次函数的定义域是全体实数.2. 二次函数y ax bx c 的结构特征:⑴等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是 2.⑵a ,b ,c 是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1.二次函数基本形式:y ax的性质:2.y ax c 的性质:上加下减。
3.y a x h的性质:左加右减。
4.y a x h k的性质:三、二次函数图象的平移1.平移步骤:⑴将抛物线解析式转化成顶点式y a x h k,确定其顶点坐标h,k;⑵保持抛物线y ax的形状不变,将其顶点平移到h ,k 处,具体平移方法如下:2.平移规律在原有函数的基础上“ h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.四、二次函数y a x h k与y ax bx c的比较从解析式上看,y a x h k与y ax bx c是两种不同的表达形式,后者通过配方可以得到前者,即y a(x+b2a )24ac− b24a,其中h= -b2a,k4ac− b24a五、二次函数y ax bx c 的性质当a 0 时,抛物线开口向上,对称轴为x2a ,顶点坐标为(−b2a,4ac− b24a).当x-b2a时,y随x的增大而减小;当x b2a时,y随x的增大而增大;当x= b2a 时,y有最小值4ac− b24a.当时,抛物线开口向下,对称轴为x-b2a , 顶点坐标为(−b2a,4ac− b24a).当x- b 2a时, y 随 x 的大而增大y;当随 x b 2a时,y 随 x 的增大而减小;当x = b2a时 , y 有最大值4ac − b 24a.六、二次函数解析式的表示方法1.一般式:y ax bx c(a,b,c为常数,a0);2.顶点式:y a(x h)k(a,h,k为常数,a0);3.两根式(交点式):y a(x x)(x x)(a0,x,x是抛物线与x轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即b 4ac 0 时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1.二次项系数a⑴当a 0 时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;⑵当a 0 时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.2.一次项系数b在二次项系数a确定的前提下,b决定了抛物线的对称轴.(同左异右b为0对称轴为y轴)3.常数项c⑴当c 0 时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;⑵当c 0 时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0 ;⑶当c 0 时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来,c 决定了抛物线与y 轴交点的位置.八、二次函数与一元二次方程:1.二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程ax bx c 0 是二次函数y ax bx c 当函数值y 0 时的特殊情况. 图象与x 轴的交点个数:①当b 4ac 0 时,图象与x 轴交于两点Ax1,0,B x2,0(x1x2) ,其中的x1,x 2是一元二次方程ax bx c 0a 0的两根.②当 0 时,图象与x 轴只有一个交点;③当 0 时,图象与x 轴没有交点.1' 当a 0 时,图象落在x 轴的上方,无论x 为任何实数,都有y 0 ;2 ' 当a 0 时,图象落在x 轴的下方,无论x 为任何实数,都有y 0 .2.抛物线y ax bx c 的图象与y 轴一定相交,交点坐标为(0 ,c) ;中考题型例析1. 二次函数解析式的确定例 1 求满足下列条件的二次函数的解析式 (1)图象经过 A(-1,3)、B(1,3)、C(2,6); (2)图象经过 A(-1,0)、B(3,0),函数有最小值-8; (3)图象顶点坐标是(-1,9),与 x 轴两交点间的距离是 6.分析:此题主要考查用待定系数法来确定二次函数解析式.可根据已知条件中的不同条件分别设出函数解析式,列出方程或方程组来求解.(1)解:设解析式为 y=ax 2+bx+c,把 A(-1,3)、B(1,3)、C(2,6)各点代入上式得{3=a −b +c3=a +b +c 6=4a +2b +c 解得 {a =1b =0c =2∴解析式为 y=x 2+2.(2)解法1:由 A(-1,0)、B(3,0)得抛物线对称轴为 x=1,所以顶点为(1,-8). 设解析式为 y=a(x-h)2+k,即 y=a(x-1)2-8.把 x=-1,y=0 代入上式得 0=a(-2)2-8, ∴a=2. 即解析式为 y=2(x-1)2-8,即 y=2x 2-4x-6.解法2:设解析式为 y=a(x+1)(x-3),确定顶点为(1,-8)同上, 把 x=1,y=-8 代入上式得-8=a(1+1)(1-3).解得 a=2, ∴解析式为 y=2x 2-4x-6. 解法 3:∵图象过 A(-1,0),B(3,0)两点,可设解析式为:y=a(x+1)(x-3)=ax 2-2ax-3a. ∵函数有最小值-8.∴4a (−3a )−(2a)24a=-8.又∵a≠0,∴a=2.∴解析式为 y=2(x+1)(x-3)=2x 2-4x-6.(3)解:由顶点坐标(-1,9)可知抛物线对称轴方程是 x=-1, 又∵图象与 x 轴两交点的距离为 6,即 AB=6.由抛物线的对称性可得 A 、B 两点坐标分别为 A(-4,0),B(2,0), 设出两根式 y=a(x-x 1)·(x -x 2),将 A(-4,0),B(2,0)代入上式求得函数解析式为 y=-x 2-2x+8.点评:一般地,已知三个条件是抛物线上任意三点(或任意 3 对 x,y 的值)可设表达式为y=ax 2+bx+c,组成三元一次方程组来求解; 如果三个已知条件中有顶点坐标或对称轴或最值,可选用 y=a(x-h)2+k 来求解;若三个条件中已知抛物线与 x 轴两交点坐标,则一般设解析式为 y=a(x-x 1)(x-x 2). 2. 二次函数的图象例 2 y=ax 2+bx+c(a≠0)的图象如图所示,则点 M(a,bc)在( ).A.第一象限B.第二象限C.第三象限D.第四象限分析:由图可知: 抛物线开口向上 a>0.抛物线与y 轴负半轴相交 c 0b bc>0. 对称轴x2a在y 轴右侧 b 0∴点 M(a,bc)在第一象限. 答案:A.点评:本题主要考查由抛物线图象会确定 a 、b 、c 的符号.例 3 已知一次函数 y=ax+c 二次函数 y=ax 2+bx+c(a≠0),它们在同一坐标系中的大致图象是(). 分析:一次函数 y=ax+c,当 a>0 时,图象过一、三象限;当 a<0 时,图象过二、 四象限;c>0 时, 直线交 y 轴于正半轴; 当 c<0 时, 直线交 y 轴于负半轴; 对于二次函数y= ax 2+bx+c(a≠0)来讲:开口上下决定a 的正负左同右异(即对称轴在y 轴左侧,b 的符号与a 的符号相同;)来判别b 的符号抛物线与y 轴的正半轴或负半轴相交确定c 的正负解:可用排除法,设当 a>0 时,二次函数 y=ax 2+bx+c 的开口向上,而一次函数 y= ax+c 应过一、三象限,故排除 C;当 a<0 时,用同样方法可排除 A;c 决定2 直线与 y 轴交点;也在抛物线中决定抛物线与y 轴交点,本题中c 相同则两函数图象在y 轴上有相同的交点,故排除B.答案:D. 3. 二次函数的性质例 4 对于反比例函数 y=- 2x与二次函数 y=-x 2+3, 请说出他们的两个相同点:①, ②; 再说出它们的两个不同点:① ,②.分析:本小题是个开放性题目,可以从以下几点性质来考虑①增减性②图象的形状③ 最值④自变量取值范围⑤交点等.解:相同点:①图象都是曲线,②都经过(-1,2)或都经过(2,-1); 不同点:①图象形状不同,②自变量取值范围不同,③一个有最大值,一个没有最大值. 点评:本题主要考查二次函数和反比例函数的性质,有关函数开放性题目是近几年命 题的热点.4. 二次函数的应用例 5 已知抛物线 y=x 2+(2k+1)x-k 2+k,(1)求证:此抛物线与 x 轴总有两个不同的交点.(2)设 x 1、x 2 是此抛物线与 x 轴两个交点的横坐标,且满足x 12+x 2=-2k 2+2k+1. ①求抛物线的解析式.②设点 P (m 1,n 1)、Q(m 2,n 2)是抛物线上两个不同的点, 且关于此抛物线的对称轴对称. 求 m+m 的值.分析:(1)欲证抛物线与 x 轴有两个不同交点,可将问题转化为证一元二次方程有两个不相等实数根,故令 y=0,证△>0 即可.(2)①根据二次函数的图象与x 轴交点的横坐标即是一元二次方程的根.由根与系数的关系,求出 k 的值,可确定抛物线解析式;②由 P 、Q 关于此抛物线的对称轴对称得 n 1=n 2, 由 n 1=m 12+m 1,n 2=m 22+m 2得 m 12+m 1=m 22+m 2,即(m 1-m 2)(m 1+m 2+1)=0 可求得 m 1+m 2= - 1.解:(1)证明:△=(2k+1)2-4(-k 2+k)=4k 2+4k+1+4k 2-4k=8k 2+1.2 2 ∵8k 2+1>0,即△>0,∴抛物线与 x 轴总有两个不同的交点.(2) ①由题意得 x 1+x 2=-(2k+1), x 1· x 2=-k 2+k. ∵x 1 2+x 2 2=-2k 2+2k+1,∴(x 1+x 2)2-2x 1x 2=- 2k 2+2k+1, 即(2k+1)2-2(-k 2+k)=-2k 2+k+1, 4k 2+4k+1+2k 2-2k= - 2k 2+2k+1. ∴8k 2=0, ∴k=0,∴抛物线的解析式是 y=x 2+x.②∵点 P 、Q 关于此抛物线的对称轴对称, ∴n 1=n 2.又 n 1=m 12+m 1,n2=m 2+m 2. ∴m 12+m 1=m 2+m 2,即(m 1-m 2)(m 1+m 2+1)=0. ∵P 、Q 是抛物上不同的点, ∴m 1≠m 2,即 m 1-m 2≠0. ∴m 1+m 2+1=0 即 m 1+m 2=-1.点评:本题考查二次函数的图象(即抛物线)与 x 轴交点的坐标与一元二次方程根与系数的关系.二次函数经常与一元二次方程相联系并联合命题是中考的热点.二次函数对应练习试题一、选择题1. 二次函数 y x 24x 7 的顶点坐标是()A.(2,-11)B.(-2,7)C.(2,11)D. (2,-3)2. 把抛物线 y 2x 2 向上平移 1 个单位,得到的抛物线是()A. y 2(x 1)2B. y 2(x 1)2C. y 2x2 1D. y 2x2 13.函数y kx2 k 和y k(k 0) 在同一直角坐标系中图象可能是图中的( ) x4.已知二次函数y ax2 bx c(a 0) 的图象如图所示,则下列结论: ①a,b 同号;②当x1和x 3时,函数值相等;③4a b 0 ④当y 2时, x 的值只能取 0.其中正确的个数是( )个个 C. 3 个个5.已知二次函数y ax2 bx c(a 0) 的顶点坐标(-1,)及部分图象(如图),由图象可知关于x 的一元二次方程ax2 bx c 0 的两个根分别是x1和x2()A.已知二次函数y ax2 bx c 的图象如图所示,则点(ac, bc) 在()A.第一象限B.第二象限C.第三象限D.第四象限7.方程2x x2=2x的正根的个数为()个个个. 3 个8.已知抛物线过点 A(2,0),B(-1,0),与y 轴交于点 C,且 OC=2.则这条抛物线的解析式为A. y x2 x 2B. y x2 x 2C. y x2 x 2 或y x2 x 2D. y x2 x 2 或y x2 x 2二、填空题9.二次函数y x2 bx 3 的对称轴是x 2 ,则b 。
二次函数知识点总结——题型分类总结
二次函数知识点总结——题型分类总结一、二次函数的定义(考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式) 1、下列函数中,是二次函数的是 .①y=x 2-4x+1; ②y=2x 2; ③y=2x 2+4x ; ④y=-3x ; ⑤y=-2x -1; ⑥y=mx 2+nx+p ; ⑦y =(4,x) ; ⑧y=-5x 。
2、在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为s=5t 2+2t ,则t =4秒时,该物体所经过的路程为 。
3、若函数y=(m 2+2m -7)x 2+4x+5是关于x 的二次函数,则m 的取值范围为 。
[4、若函数y=(m -2)x m-2+5x+1是关于x 的二次函数,则m 的值为 。
6、已知函数y=(m -1)x m2 +1+5x -3是二次函数,求m 的值。
二、二次函数的对称轴、顶点、最值}记忆:如果解析式为顶点式:y=a(x -h)2+k ,则对称轴为: ,最值为: ;如果解析式为一般式:y=ax 2+bx+c ,则对称轴为: ,最值为: ; 如果解析式为交点式:y=(x-x 1)(x-x 2), 则对称轴为: ,最值为: 。
1.抛物线y=2x 2+4x+m 2-m 经过坐标原点,则m 的值为 。
2.抛物y=x 2+bx+c 线的顶点坐标为(1,3),则b = ,c = . 3.抛物线y =x 2+3x 的顶点在( )A.第一象限B.第二象限C.第三象限D.第四象限 (4y =ax 2-6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( )5.若直线y =ax +b 不经过二、四象限,则抛物线y =ax 2+bx +c( ) A.开口向上,对称轴是y 轴 B.开口向下,对称轴是y 轴 C.开口向下,对称轴平行于y 轴 D.开口向上,对称轴平行于y 轴6.已知抛物线y =x 2+(m -1)x -14 的顶点的横坐标是2,则m 的值是_ . 7.抛物线y=x 2+2x -3的对称轴是 。
二次函数知识点总结及相关题型
二次函数知识点总结及相关典型题目第一部分基础知识1.定义:一般地,如果 y =ax 2+bx+c(a,b,c 是常数,a#0)2.二次函数y=ax 2的性质(1)抛物线y = ax 2的顶点是坐标原点,对称轴是 y 轴.(2)函数y =ax 2的图像与a 的符号关系.①当a>0时u 抛物线开口向上 u 顶点为其最低点; ②当a <0时u 抛物线开口向下 u 顶点为其最局点. (3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为3.二次函数 y =ax 2 +bx + c 的图像是对称轴平行于(包括重合)4.二次函数y=ax 2+bx+c 用配方法可化成:y = a(x —h ,+k 的形式,其中h =, k = 4ac -b2a4a5.二次函数由特殊到一般, 可分为以下几种形式:①y = ax 2 ;②y=ax 2+k ;③y = a(x - h )2 ;④y = a(x - h f + k ;⑤ y = ax 2 bx c .6. 抛物线的三要素:开口方向、对称轴、顶点①a 的符号决定抛物线的开口方向:当 a >0时,开口向上;当 a<0时,开口向下;相等,抛物线的开口大小、形状相同②平行于y 轴(或重合)的直线记作 x = h .特别地,y 轴记作直线x = 0. 7. 顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.8.求抛物线的顶点、对称轴的方法(2) 配方法:运用配方的方法,将抛物线的解析式化为(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对那么y 叫做x 的二次函数.y 轴的抛物线.(1)公式法:y = ax 2 + bx + c = a x2 2b 4ac - b …口/ + — I + -------- ,.顶点是(-2a 4a2a 4ab 4ac - b 2、,,——; -- ),对称轴是直线 x2ay = a(x — hf + k 的形式,得到顶点为(h , k ),对称轴是直线称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失^9.抛物线y =ax2 +bx + c中,a,b, c的作用(1) a决定开口方向及开口大小,这与y=ax2中的a完全一样.(2) b和a共同决定抛物线对称轴的位置 .由于抛物线y = ax2+ bx十c的对称轴是直线x = —2,故:①b = 0时,对称轴为y轴;②->0 (即a、b同号)时,对称轴在y轴左侧;③-< 0 (即a、2a a a b异号)时,对称轴在y轴右侧.(3) c的大小决定抛物线y=ax2+bx+c与y轴交点的位置.当x=0时,y=c, ■抛物线y=ax2+bx+c与y轴有且只有一个交点(0, c ):①c=0,抛物线经过原点;②c>0,与y轴交于正半轴;③ c<0,与y轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y轴右侧,贝U - <0.a11. 用待定系数法求二次函数的解析式(1) 一般式:y =ax2 +bx+c.已知图像上三点或三对x、y的值,通常选择一般式.(2) 顶点式:y =a(x -h 2 + k.已知图像的顶点或对称轴,通常选择顶点式.(3) 交点式:已知图像与x轴的交点坐标x〔、x2,通常选用交点式:y = a(x - x1 (x -x2).12. 直线与抛物线的交点(1) y轴与抛物线y=ax2+bx+ c得交点为(0, c).(2) 与y 轴平行的直线x = h 与抛物线y=ax 1 2+bx+ c 有且只有一个交点(h , ah 2 +bh+c ). (3) 抛物线与x 轴的交点二次函数y = ax 2 +bx + c 的图像与x 轴的两个交点的横坐标 x 1、x 2,是对应一元二次方程 ax 2 + bx + c = 0的两 个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定: ① 有两个交点 = A 〉0u 抛物线与x 轴相交;② 有一个交点(顶点在 x 轴上)=A = 0u 抛物线与x 轴相切; ③ 没有交点 u A < 0 u 抛物线与x 轴相离.(4) 平行于x 轴的直线与抛物线的交点同(3) 一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为 k ,则横坐标是ax 2 +bx + c =k 的两个实数根.(5) 一次函数y=kx+ n(k 。
二次函数知识点汇总(全)
二次函数知识点(第一讲)一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c=++(a b ca≠)的函数,叫做二次函数。
,,是常数,0这里需要强调:和一元二次方程类似,二次项系数0a≠,而b c,可以为零.二次函数的定义域是全体实数.2. 二次函数2=++的结构特征:y ax bx c⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的基本形式1. 二次函数基本形式:2=的性质:y axa 的绝对值越大,抛物线的开口越小。
2. 2y ax c=+的性质:(上加下减)3. ()2y a x h =-的性质:(左加右减)4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k=-+与2y axbx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba -<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba ->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )y y y y1 10 x o-1 x 0 x 0 -1 x A B C D3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
二次函数知识点及题型归纳总结
二次函数知识点及题型归纳总结知识点精讲一、二次函数解析式的三种形式及图像 1. 二次函数解析式的三种形式(1)一般式:2()(0)f x ax bx c a =++≠;(2)顶点式:2()()(0)f x a x m n a =-+≠;其中,(,)m n 为抛物线顶点坐标,x m =为对称轴方程. (3)零点式:12()()()(0)f x a x x x x a =--≠,其中,12,x x 是抛物线与x 轴交点的横坐标. 2.二次函数的图像二次函数2()(0)f x ax bx c a =++≠的图像是一条抛物线,对称轴方程为2bx a=-,顶点坐标为24(,)24b ac b a a--. (1) 单调性与最值①当0a >时,如图2-8所示,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2ba-+∞上递增,当2b x a =-时, 2min 4()4ac b f x a -=;②当0a <时,如图2-9所示,抛物线开口向下,函数在(,]2ba -∞-上递增,在[,)b -+∞上递减,当bx =-时,;24()4ac b f x a -=.(2) 当240b ac ∆=->时,二次函数2()(0)f x ax bx c a =++≠的图像与x 轴有两个交点11(,0)M x 和22(,0)M x ,1212||||||M M x x a =-==. 二、二次函数在闭区间上的最值闭区间上二次函数最值的取得一定是在区间端点或顶点处.对二次函数2()(0)f x ax bx c a =++≠,当0a >时,()f x 在区间[,]p q 上的最大值是M ,最小值是m ,图2-9令02p qx +=: (1) 若2bp a-≤,则(),()m f p M f q ==;(2) 若02b p x a <-<,则(),()2bm f M f q a =-=;(3) 若02b x q a ≤-<,则(),()2bm f M f p a =-=;(4) 若2bq a-≥,则(),()m f q M f p ==.三、一元二次方程与二次函数的转化1.实系数一元二次方程20(0)ax bx c a ++=≠的实根符号与系数之间的关系(1)方程有两个不等正根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=->⎨⎪⎪=>⎪⎩(2)方程有两个不等负根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=-<⎨⎪⎪=>⎪⎩(3)方程有一正根和一负根,设两根为12,x x ⇔120c x x a=< 2.一元二次方程20(0)ax bx c a ++=≠的根的分布问题一般情况下需要从以下4个方面考虑:(1) 开口方向;(2)判别式;(3)对称轴2bx a=-与区间端点的关系;(4)区间端点函数值的正负. 设12,x x 为实系数方程20(0)ax bx c a ++=>的两根,则一元二次20(0)ax bx c a ++=>的根的分布与其限定条件如表2-5所示.四、二次不等式转化策略1. 二次不等式的解集与系数的关系若二次不等式2()0f x ax bx c =++≤的解集是0(,][,)a b a c a αβαβαβ⎧⎪<⎪⎪-∞+∞⇔+=-⎨⎪⎪⋅=⎪⎩二次不等式解集的构成是与二次函数图像的开口方向及与x 轴交点横坐标有关的.2. 二次函数恒大于零或恒小于零的转化策略已知二次函数2()(0)f x ax bx c a =++≠.()0f x >恒成立00a >⎧⇔⎨∆<⎩;()0f x <恒成立00a <⎧⇔⎨∆<⎩.注 若表述为“已知函数2()f x ax bx c =++”,并未限制为二次函数,则应有()0f x >恒成立00a >⎧⇔⎨∆<⎩或00a b c ==⎧⎨>⎩;()0f x <恒成立00a <⎧⇔⎨∆<⎩或00a b c ==⎧⎨<⎩. 五、二次函数有关问题的求解方法与技巧有关二次函数的问题,关键是利用图像.(1) 要熟练掌握二次函数在某区间上的最值或值域的求法,特别是含参数的两类问 题——动轴定区间和定轴动区间,解法是抓住“三点一轴”,三点指的是区间两个端点和区间中点,一轴指对称轴.即注意对对称轴与区间的不同位置关系加以分类讨论,往往分成:①轴处在区间的左侧;②轴处在区间的右侧;③轴穿过区间内部(部分题目还需讨论轴与区间中点的位置关系),从而对参数值的范围进行讨论.(2) 对于二次方程实根分布问题,要抓住四点,即开口方向、判别式、对称轴位置及区间端点函数值正负.题型归纳及思路提示题型1 二次函数、一元二次方程、二次不等式的关系思路提示 二次函数、二次方程、二次不等式都是利用二次函数的图像及性质进行解答,利用数形结合思想进行分析.例2.41 “0a <”是“方程2210ax x ++=至少有一个负数根”的( )A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件解析 由于0a <,则方程2210ax x ++=的判别式440a ∆=->,设12,x x 为方程的两根,则12122010x x ax x a ⎧+=->⎪⎪⎨⎪=<⎪⎩,故12,x x 异号,因此方程有一个负数根;但反之,若方程2210ax x ++=有负数根,当0a =时,即210x +=有负数根12x =-,那么方程2210ax x ++=有负数根⇒0a <.因此“0a <”是方程“2210ax x ++=至少有一个负数根”的充分不必要条件.故选B.变式1 已知函数2()f x ax bx c =++,且a b c >>,0a b c ++=,集合{|()0}A m f m =<,则( ). A. m A ∀∈ ,都有(3)0f m +> B. m A ∀∈ ,都有(3)0f m +<C. 0m A ∃∈,使得0(3)0f m +=D. 0m A ∃∈,使得0(3)0f m +<变式2 已知函数2()24(03)f x ax ax a =++<<,若12x x <,121x x a +=-,则( ).A. 12()()f x f x <B. 12()()f x f x =C. 12()()f x f x >D. 1()f x 与2()f x 的大小不能确定例 2.42 (2012江苏13)已知函数2()(,)f x x ax b a b R =++∈的值域为[0,)+∞,若关于x 的不等式()f x c <的解集为(,6)m m +,则实数c 的值为_____________. 解析 将二次不等式转化为二次方程求解.由题意知2()f x x ax b =++的值域为[0,)+∞,得240a b ∆=-=.不等式()f x c < ()0f x c ⇔-<,即20x ax b c ++-<的解集为(,6)m m +,设方程20x ax b c ++-=的两根为12,x x ,则1212x x ax x b c +=-⎧⎨=-⎩,12||x x -==6==,得9c =.评注 本题的关键在于将二次不等式转化为二次方程求解.即不等式2x ax b c ++<的解集为(,6)m m +与方程2x ax b c ++=的实根12,x x 之间的联系,即12||6x x -=.变式1 (2012浙江理17)设a R ∈,若0x >时均有2[(1)1](1)0a x x ax ----≥,则______a =. 变式2 (2012北京理14)已知()(2)(3),()22x f x m x m x m g x =-++=-,若同时满足条件:①,()0x R f x ∀∈<或()0g x <;②(,4),()()0x f x g x ∃∈-∞-<,则m 的取值范围是________. 题型2 二次方程20(0)ax bx c a ++=≠的实根分布及条件思路提示 结合二次函数2()f x ax bx c =++的图像分析实根分布,得到其限定条件,列出关于参数的不等式,从而解不等式求参数的范围.例2.43 已知,αβ是方程2(21)420x m x m +-+-=的两个根,且2αβ<<,求实数m 的取值范围. 分析 根据二次方程根的分布结合图像求解.解析 根据题意,如图2-10所示,对于2()(21)42f x x m x m =+-+-,由图像知2αβ<<,得(2)0f <,故2(2)2(21)2420f m m =+-⨯+-<,解得3m <-,所以m 的取值范围是(,3)-∞-.图2-10评注 利用图像法研究二次方程根的分布问题,会起到事半功倍的效果.变式1 关于x 的方程22(1)210m x mx -+-=的两个根,一个小于0,一个大于1.求实数m 的取值范围. 变式2 已知二次函数2()2(,)f x x bx c b c R =++∈满足(1)0f =,且关于x 的方程()0f x x b ++=的两个实数根分别在区间(3,2)--和(0,1)内,求实数b 的取值范围.例2.44 已知方程32230(,,)x ax bx c a b cR +++=∈的三个实根可分别作为一个椭圆、一个双曲线、一个).A. )+∞ B.)+∞ C.)+∞ D. )+∞ 解析 由方程32230(,,)x ax bx c a b c R +++=∈有三个实根123,,x x x ,且满足12301,1,1x x x <<=>.则231a b c ++=-,得123c a b =---.32232310x ax bx a b ++---=, (*)由1x =是方程的根,可知方程(*)可写成:2(1)[(231)]0x x mx a b -++++=,展开并与方程(*)对照系数可得21m a =+.所以2(21)(231)0x a x a b +++++=. 令2()(21)(231)f x x a x a b =+++++,(0)2310(1)4330f a b f a b =++>⎧⎨=++<⎩,如图2-11,(,)a b 所在的区域如阴影部分所示,点1(1,)3A -)+∞.故选A.图2-11变式1 设直线2y x m =-+与y 轴相交于点P ,与曲线22:33(1)C x y x -=≥相交于Q ,R ,且|PQ|<|PR |,求||||PR PQ 的取值范围. 题型3 二次函数“动轴定区间”、“定轴动区间”问题思路提示 根据二次函数图像,分析对称轴与区间的位置关系.例2.45 函数2()23f x x ax =--在区间[1,2]上是单调函数,则( ). A. (,1)a ∈-∞ B. (2,)a ∈+∞ C. [1,2) D. (,1][2,)a ∈-∞+∞ 分析 利用区间[1,2]在对称轴的左侧和右侧分别作图.解析 作出函数在[1,2]上符合单调区间的图像,如图2-12(a ),(b)所示的情况均满足要求.故选D.图2-12(b)(a)x评注 在处理“动轴定区间”问题时,首先应确定不定量,即区间一定,然后根据题目要求分类讨论对称轴与区间的相对位置关系,求解参数的范围.变式1 函数2()23f x x kx =-+在[1,)-+∞上是增函数,求实数k 的取值范围. 例2.46 求函数2()21f x x ax =--在[0,2]上的值域.分析 解答本题可结合二次函数的图像及对称轴与区间的位置关系. 解析 2()21f x x ax =--,抛物线()y f x =开口向上,对称轴x a =.(1) 当0a ≤时,函数在区间[0,2]上为增函数,故min max (0)1,(2)34y f y f a ==-==-,所以函数的值域为[1,34]a --.(2) 当2a ≥时,函数在区间[0,2]上为减函数,故min max (2)34,(0)1y f a y f ==-==-,所以函数的值域为[34,1]a --.(3) 当01a <≤时,函数在区间[0,]a 上为减函数,在区间[,2]a 上为增函数,故2min max ()(1),(2)34y f a a y f a ==-+==-,所以函数的值域为2[(1),34]a a -+-.(4) 当12a <≤时,函数在区间[0,]a 上为减函数,在区间[,2]a 上为增函数,故2min max ()(1),(0)1y f a a y f ==-+==-,所以函数的值域为2[(1),1]a -+-.评注 在求二次函数的最值时,要注意定义域是R 还是区间[,]m n ,若是区间[,]m n ,最大(小)值不一定在对称轴处取得,而应该看对称轴是在区间[,]m n 内还是在 区间的左边或右边.在区间的某一边时,应该利用函数的单调性求解,最值不在对称轴处取得,而在区间的端点处取得.变式1 已知函数22()4422f x x ax a a =-+-+在区间[0,2]上有最小值3,求实数a 的值.例2.47 已知二次函数2()23f x x x =--,若()f x 在[,1]t t +上的最小值为()g t ,求()g t 的表达式. 分析 本题考查“定轴动区间”问题,求给定的二次函数在动区间上的最值,利用数形结合及分类讨论思想求解.解析 根据二次函数的解析式知1x =为其对称轴,分析对称轴与区间的位置关系,如图2-13所示.(b)(c)图2-13(a )x(1) 当1t >时,如图2-13(a )所示,2()()23g t f t t t ==--;(2) 当11t +<,即0t <时,如图2-13(b )所示,2()(1)4g t f t t =+=-; (3) 当11t t ≤≤+,即01t ≤≤时,如图2-13(c )所示,()(1)4g t f ==-.因此224(0)()4(01)23(1)t t g t t t t t ⎧-<⎪=-≤≤⎨⎪-->⎩.变式1 已知二次函数()f x 满足(1)(1)f x f x +=-,且(0)0,(1)1f f ==,若()f x 在区间[,]m n 上的值域是[,]m n ,求,m n 的值.变式2 (2012北京东城期末理8)已知函数2()1f x x =+的定义域为[,]()a b a b <,值域为[1,5],则在平面直角坐标系内,点(,)a b 的运动轨迹与两坐标轴围成的图形面积为A.8B.6C.4D.2最有效训练1.函数2263,[1,1]y x x x =-+∈-,则y 的最小值是( ).A. 32-B. 3C. 1-D.不存在 2.已知,,a b c 成等比数列,则函数2y ax bx c =++的图像与x 轴的交点个数为( ). A. 0 B. 1 C. 2 D. 0或13. 函数y =x 2+mx +1的图像关于直线x =1对称的充要条件是( ). A. m =-2 B. m =2 C. m =-1 D. m =14. 已知函数ƒ(x )=ax 2+bx +c ,且a >b >c ,a +b +c =0,则( ). A. ∀x ∈(0,1),都有ƒ(x )>0 B. ∀x ∈(0,1),都有ƒ(x )<0 C. ∃x 0∈(0,1),都有ƒ(x 0)=0 D. ∃x 0∈(0,1),都有ƒ(x 0)>05. 已知点A(0,2),B(2,0),若点C在函数y=x2的图像上,则使得∆ABC的面积为2的点C的个数为( ).A. 4B. 3C. 2D. 16. 已知函数ƒ(x)=2x2+(4-m)x+4-m,g(x)=mx,若对于任意实数x,ƒ(x)与g(x)的值至少有一个为正数,则实数m的取值范围是( ).A. [-4,4]B. (-4,4)C. (-∞,4)D. (-∞,-4)7. 若函数ƒ(x)=x2+(a+2)x+b(x∈[a,b])的图像关于直线x=1对称,则ƒ(x)max=________.8. 关于x的方程2x2+ax-5-2a=0的两实根可分别作为一个椭圆与一个双曲线的离心率,则实数a的取值范围是________.9. 当x∈[0,2]时,函数ƒ(x)=ax2+4(a-1)x-3在x=2时取得最大值,则a的取值范围是________.10.已知二次函数ƒ(x)=ax2-x+c(x∈R)的值域为[0,+∞),则c aa c+++22的最小值为________.11.已知定义域为R的函数ƒ(x)满足ƒ(ƒ(x)-x2+x)=ƒ(x)-x2+x.(1)若ƒ(2)=3,求ƒ(1),又若ƒ(0)=a,求ƒ(a);(2)设有且仅有一个实数x0,使得ƒ(x0)=x0,求函数ƒ(x)的解析式.12.已知二次函数ƒ(x)=x2+mx+1(x∈Z),且关于x的方程ƒ(x)=2在区间(-3,12)内有两个不同的实根.(1)求ƒ(x)的解析式;(2)若x∈[1,t](t>1)时,总有ƒ(x-4)≤4x成立,求t的最大值.。
二次函数专题知识点 常考(典型)题型 重难点题型(含详细答案)
二次函数和基本性质专题知识点+常考题型+重难点题型(含详细答案)一、目录一、目录 (1)二、基础知识点 (2)1.二次函数的概念 (2)2.二次函数y=ax2的图像和性质 (2)3.二次函数y=a(x-h)2+k(a≠0)的性质 (4)4,用配方法求y=ax2+bx+c(a≠0) (6)5.二次函数图像性质总结 (7)6.二次函数解析式的求法 (7)7.二次函数图像的平移 (9)三、重难点题型 (11)1.由抛物线的位置确定系数的符号 (11)2.用待定系数法求二次函数的解析式 (13)3.运用抛物线的对称性解题 (17)4.用二次函数解决最值问题 (18)5.二次函数的图像 (20)6.二次函数与应用问题 (21)二、基础知识点1.二次函数的概念形如y=ax2+bx+c(a≠0)的函数叫作二次函数。
注:①a、b、c为常数,且a≠0,即二次项必须有,一次项和常数项可以没有②二次函数为函数的一种,满足函数的所有性质。
即在定义域内,自变量x有且仅有唯一应变量y与之对应例1.下列各项中,y是x的二次函数的有:①y=√2x2−x+5;②y=(m−1)x2+x+1(m为常数);③y=2x2+4x−m(m为常数);④y=(2x+1)(3x−2)−6x2答案:①是二次函数,二次项系数不为0;②不应定,当m=1时,二次项为0,则不是二次函数;③是二次函数,二次项系数不为0;④化简得:-x-2,因此不是二次函数例2.已知y=(k+3)x k2+k−4是二次函数,求k的值。
答案:因为y=(k+3)x k2+k−4是二次函数所以{k+3≠0 k2+k−4=2解得:k=22.二次函数y=ax2的图像和性质y=ax2(a≠0,b=0,c=0,即一次项和常数项皆为0)的性质:①图形为抛物线形状②a>0,开口向上;a<0,开口向下③过原点(顶点),为最大值或最小值(由a的正负决定)④关于y轴对称,即关于x=0对称⑤|a|越大,开口越小,即上升或下降越快注:关于y轴对称的前提条件是:函数定义域关于y轴对称例1.求等边三角形面积S与边长a的函数关系式。
二次函数知识点汇总(全)
二次函数知识点(第一讲)一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c=++〔a b ca≠〕的函数,叫做二次函数。
,,是常数,0这里需要强调:和一元二次方程类似,二次项系数0a≠,而b c,可以为零.二次函数的定义域是全体实数.2. 二次函数2=++的结构特征:y ax bx c⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的根本形式1. 二次函数根本形式:2=的性质:y axa 的绝对值越大,抛物线的开口越小。
2. 2y ax c=+的性质:〔上加下减〕3. ()2y a x h =-的性质:〔左加右减〕4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的根底上“h 值正右移,负左移;k 值正上移,负下移〞.概括成八个字“左加右减,上加下减〞.方法二:⑴c bx ax y ++=2沿y 轴平移:向上〔下〕平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2〔或m c bx ax y -++=2〕⑵c bx ax y ++=2沿轴平移:向左〔右〕平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2〔或c m x b m x a y +-+-=)()(2〕四、二次函数()2y a x h k =-+与2y ax bx c =++的比拟从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,〔假设与x 轴没有交点,那么取两组关于对称轴对称的点〕.画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1.当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a =-时,y 有最大值244ac b a-. 七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++〔a ,b ,c 为常数,0a ≠〕;2. 顶点式:2()y a x h k =-+〔a ,h ,k 为常数,0a ≠〕;3. 两根式:12()()y a x x x x =--〔0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标〕.注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1.二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba -<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba ->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边那么0>ab ,在y 轴的右侧那么0<ab ,概括的说就是“左同右异〞 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式确实定:根据条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 抛物线上三点的坐标,一般选用一般式;2. 抛物线顶点或对称轴或最大〔小〕值,一般选用顶点式;3. 抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 抛物线上纵坐标一样的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-;()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;4. 关于顶点对称〔即:抛物线绕顶点旋转180°〕2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原那么,选择适宜的形式,习惯上是先确定原抛物线〔或表达式的抛物线〕的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系〔二次函数与x 轴交点情况〕:一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1'当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大〔小〕值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和一点对称的点坐标,或与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,提醒二次函数、二次三项式和一元二次方程之间的在联系:二次函数考察重点与常见题型1. 考察二次函数的定义、性质,有关试题常出现在选择题中,如:以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 那么m 的值是2. 综合考察正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系考察两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限,那么函数12-+=bx kx y 的图像大致是〔 〕y y y y1 10 x o-1 x 0 x 0 -1 x A B C D3. 考察用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
二次函数中考复习题型总结归纳
中考专题之二次函数考点一:二次函数解析式【知识点】三种解析式形式 1.一般式:2+y ax bx c =+(a ≠0).若已知条件是图象上的三个点,则设所求二次函数为2y ax bx c =++,将已知条件代入,求出a 、b 、c 的值.2.交点式(双根式):12()()(0)y a x x x x a =--≠.若已知二次函数图象与x 轴的两个交点的坐标为(x 1,0),(x 2,0),设所求二次函数为12()()y a x x x x =--,将第三点(m ,n)的坐标(其中m 、n 为已知数)或其他已知条件代入,求出待定系数,最后将解析式化为一般形式. 3.顶点式:2()(0)y a x h k a =-+≠.若已知二次函数图象的顶点坐标或对称轴方程与最大值(或最小值),设所求二次函数为2()y a x h k =-+,将已知条件代入,求出待定系数,最后将解析式化为一般形式. 【经典例题】例1 已知一条抛物线经过点 (0,0),(2,4),(4,0),求这个函数关系式。
【变式练习】1.已知二次函数的图象经过A (0,3)、B (1,3)、C (-1,1)三点,求该二次函数的解析式。
2.已知抛物线过A (1,0)和B (4,0)两点,交y 轴于C 点且BC =5,求该二次函数的解析式。
3.已知二次函数的图象的顶点坐标为(1,-6),且经过点(2,-8),求该二次函数的解析式。
4.已知二次函数的图象的顶点坐标为(1,-3),且经过点P(2,0)点,求二次函数的解析式。
5.二次函数的图象经过A(-1,0),B(3,0),函数有最小值-8,求该二次函数的解析式。
考点二:二次函数图像【知识点】一、各种形式的二次函数的图像性质如下表:1.抛物线c bx ax y ++=2中的系数c b a ,,(1)a 决定开口方向,几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.当0>a 时,抛物线开口向上,顶点为其最低点;当0<a 时,抛物线开口向下,顶点为其最高点. (2)b 和a 共同决定抛物线对称轴的位置:当0=b 时,对称轴为y 轴;当a 、b 同号时,对称轴在y 轴左侧;当a 、b 异号时,对称轴在y 轴右侧.(3)c 决定抛物线与y 轴交点位置:当0=c 时,抛物线经过原点; 当0>c 时,相交于y 轴的正半轴;当0<c 时,则相交于y 轴的负半轴. (4).抛物线与x 轴的交点设二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式来判定: (1)240b ac ->⇔抛物线与x 轴有两个交点;(2)240b ac -=⇔抛物线与x 轴有一个交点(顶点在x 轴上); (3)240b ac -<⇔抛物线与x 轴没有交点. 要点诠释:当x =1时,函数y =a+b+c ; 当x =-1时,函数y =a-b+c ; 当a+b+c >0时,x =1与函数图象的交点在x 轴上方,否则在下方; 当a-b+c >0时,x =-1与函数图象的交点在x 轴的上方,否则在下方. 2.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,顶点是),(ab ac a b 4422--,对称轴是直线ab x 2-=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数知识点及题型归纳总结知识点精讲一、二次函数解析式的三种形式及图像 1. 二次函数解析式的三种形式(1)一般式:2()(0)f x ax bx c a =++≠;(2)顶点式:2()()(0)f x a x m n a =-+≠;其中,(,)m n 为抛物线顶点坐标,x m =为对称轴方程. (3)零点式:12()()()(0)f x a x x x x a =--≠,其中,12,x x 是抛物线与x 轴交点的横坐标. 2.二次函数的图像二次函数2()(0)f x ax bx c a =++≠的图像是一条抛物线,对称轴方程为2bx a=-,顶点坐标为24(,)24b ac b a a--. (1) 单调性与最值①当0a >时,如图2-8所示,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2ba-+∞上递增,当2b x a =-时, 2min 4()4ac b f x a -=;②当0a <时,如图2-9所示,抛物线开口向下,函数在(,]2ba -∞-上递增,在[,)b -+∞上递减,当bx =-时,;24()4ac b f x a -=.(2) 当240b ac ∆=->时,二次函数2()(0)f x ax bx c a =++≠的图像与x 轴有两个交点11(,0)M x 和22(,0)M x ,1212||||||M M x x a =-==. 二、二次函数在闭区间上的最值闭区间上二次函数最值的取得一定是在区间端点或顶点处.对二次函数2()(0)f x ax bx c a =++≠,当0a >时,()f x 在区间[,]p q 上的最大值是M ,最小值是m ,图2-9令02p qx +=: (1) 若2bp a-≤,则(),()m f p M f q ==;(2) 若02b p x a <-<,则(),()2bm f M f q a =-=;(3) 若02b x q a ≤-<,则(),()2bm f M f p a =-=;(4) 若2bq a-≥,则(),()m f q M f p ==.三、一元二次方程与二次函数的转化1.实系数一元二次方程20(0)ax bx c a ++=≠的实根符号与系数之间的关系(1)方程有两个不等正根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=->⎨⎪⎪=>⎪⎩(2)方程有两个不等负根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=-<⎨⎪⎪=>⎪⎩(3)方程有一正根和一负根,设两根为12,x x ⇔120c x x a=< 2.一元二次方程20(0)ax bx c a ++=≠的根的分布问题一般情况下需要从以下4个方面考虑:(1) 开口方向;(2)判别式;(3)对称轴2bx a=-与区间端点的关系;(4)区间端点函数值的正负. 设12,x x 为实系数方程20(0)ax bx c a ++=>的两根,则一元二次20(0)ax bx c a ++=>的根的分布与其限定条件如表2-5所示.四、二次不等式转化策略1. 二次不等式的解集与系数的关系若二次不等式2()0f x ax bx c =++≤的解集是0(,][,)a b a c a αβαβαβ⎧⎪<⎪⎪-∞+∞⇔+=-⎨⎪⎪⋅=⎪⎩二次不等式解集的构成是与二次函数图像的开口方向及与x 轴交点横坐标有关的.2. 二次函数恒大于零或恒小于零的转化策略已知二次函数2()(0)f x ax bx c a =++≠.()0f x >恒成立00a >⎧⇔⎨∆<⎩;()0f x <恒成立00a <⎧⇔⎨∆<⎩.注 若表述为“已知函数2()f x ax bx c =++”,并未限制为二次函数,则应有()0f x >恒成立00a >⎧⇔⎨∆<⎩或00a b c ==⎧⎨>⎩;()0f x <恒成立00a <⎧⇔⎨∆<⎩或00a b c ==⎧⎨<⎩. 五、二次函数有关问题的求解方法与技巧有关二次函数的问题,关键是利用图像.(1) 要熟练掌握二次函数在某区间上的最值或值域的求法,特别是含参数的两类问 题——动轴定区间和定轴动区间,解法是抓住“三点一轴”,三点指的是区间两个端点和区间中点,一轴指对称轴.即注意对对称轴与区间的不同位置关系加以分类讨论,往往分成:①轴处在区间的左侧;②轴处在区间的右侧;③轴穿过区间内部(部分题目还需讨论轴与区间中点的位置关系),从而对参数值的范围进行讨论.(2) 对于二次方程实根分布问题,要抓住四点,即开口方向、判别式、对称轴位置及区间端点函数值正负.题型归纳及思路提示题型1 二次函数、一元二次方程、二次不等式的关系思路提示 二次函数、二次方程、二次不等式都是利用二次函数的图像及性质进行解答,利用数形结合思想进行分析.例2.41 “0a <”是“方程2210ax x ++=至少有一个负数根”的( )A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件解析 由于0a <,则方程2210ax x ++=的判别式440a ∆=->,设12,x x 为方程的两根,则12122010x x ax x a ⎧+=->⎪⎪⎨⎪=<⎪⎩,故12,x x 异号,因此方程有一个负数根;但反之,若方程2210ax x ++=有负数根,当0a =时,即210x +=有负数根12x =-,那么方程2210ax x ++=有负数根⇒0a <.因此“0a <”是方程“2210ax x ++=至少有一个负数根”的充分不必要条件.故选B.变式1 已知函数2()f x ax bx c =++,且a b c >>,0a b c ++=,集合{|()0}A m f m =<,则( ). A. m A ∀∈ ,都有(3)0f m +> B. m A ∀∈ ,都有(3)0f m +<C. 0m A ∃∈,使得0(3)0f m +=D. 0m A ∃∈,使得0(3)0f m +<变式2 已知函数2()24(03)f x ax ax a =++<<,若12x x <,121x x a +=-,则( ).A. 12()()f x f x <B. 12()()f x f x =C. 12()()f x f x >D. 1()f x 与2()f x 的大小不能确定例 2.42 (2012江苏13)已知函数2()(,)f x x ax b a b R =++∈的值域为[0,)+∞,若关于x 的不等式()f x c <的解集为(,6)m m +,则实数c 的值为_____________. 解析 将二次不等式转化为二次方程求解.由题意知2()f x x ax b =++的值域为[0,)+∞,得240a b ∆=-=.不等式()f x c < ()0f x c ⇔-<,即20x ax b c ++-<的解集为(,6)m m +,设方程20x ax b c ++-=的两根为12,x x ,则1212x x ax x b c +=-⎧⎨=-⎩,12||x x -==6==,得9c =.评注 本题的关键在于将二次不等式转化为二次方程求解.即不等式2x ax b c ++<的解集为(,6)m m +与方程2x ax b c ++=的实根12,x x 之间的联系,即12||6x x -=.变式1 (2012浙江理17)设a R ∈,若0x >时均有2[(1)1](1)0a x x ax ----≥,则______a =. 变式2 (2012北京理14)已知()(2)(3),()22x f x m x m x m g x =-++=-,若同时满足条件:①,()0x R f x ∀∈<或()0g x <;②(,4),()()0x f x g x ∃∈-∞-<,则m 的取值范围是________. 题型2 二次方程20(0)ax bx c a ++=≠的实根分布及条件思路提示 结合二次函数2()f x ax bx c =++的图像分析实根分布,得到其限定条件,列出关于参数的不等式,从而解不等式求参数的范围.例2.43 已知,αβ是方程2(21)420x m x m +-+-=的两个根,且2αβ<<,求实数m 的取值范围. 分析 根据二次方程根的分布结合图像求解.解析 根据题意,如图2-10所示,对于2()(21)42f x x m x m =+-+-,由图像知2αβ<<,得(2)0f <,故2(2)2(21)2420f m m =+-⨯+-<,解得3m <-,所以m 的取值范围是(,3)-∞-.图2-10评注 利用图像法研究二次方程根的分布问题,会起到事半功倍的效果.变式1 关于x 的方程22(1)210m x mx -+-=的两个根,一个小于0,一个大于1.求实数m 的取值范围. 变式2 已知二次函数2()2(,)f x x bx c b c R =++∈满足(1)0f =,且关于x 的方程()0f x x b ++=的两个实数根分别在区间(3,2)--和(0,1)内,求实数b 的取值范围.例2.44 已知方程32230(,,)x ax bx c a b cR +++=∈的三个实根可分别作为一个椭圆、一个双曲线、一个).A. )+∞ B.)+∞ C.)+∞ D. )+∞ 解析 由方程32230(,,)x ax bx c a b c R +++=∈有三个实根123,,x x x ,且满足12301,1,1x x x <<=>.则231a b c ++=-,得123c a b =---.32232310x ax bx a b ++---=, (*)由1x =是方程的根,可知方程(*)可写成:2(1)[(231)]0x x mx a b -++++=,展开并与方程(*)对照系数可得21m a =+.所以2(21)(231)0x a x a b +++++=. 令2()(21)(231)f x x a x a b =+++++,(0)2310(1)4330f a b f a b =++>⎧⎨=++<⎩,如图2-11,(,)a b 所在的区域如阴影部分所示,点1(1,)3A -)+∞.故选A.图2-11变式1 设直线2y x m =-+与y 轴相交于点P ,与曲线22:33(1)C x y x -=≥相交于Q ,R ,且|PQ|<|PR |,求||||PR PQ 的取值范围. 题型3 二次函数“动轴定区间”、“定轴动区间”问题思路提示 根据二次函数图像,分析对称轴与区间的位置关系.例2.45 函数2()23f x x ax =--在区间[1,2]上是单调函数,则( ). A. (,1)a ∈-∞ B. (2,)a ∈+∞ C. [1,2) D. (,1][2,)a ∈-∞+∞ 分析 利用区间[1,2]在对称轴的左侧和右侧分别作图.解析 作出函数在[1,2]上符合单调区间的图像,如图2-12(a ),(b)所示的情况均满足要求.故选D.图2-12(b)(a)x评注 在处理“动轴定区间”问题时,首先应确定不定量,即区间一定,然后根据题目要求分类讨论对称轴与区间的相对位置关系,求解参数的范围.变式1 函数2()23f x x kx =-+在[1,)-+∞上是增函数,求实数k 的取值范围. 例2.46 求函数2()21f x x ax =--在[0,2]上的值域.分析 解答本题可结合二次函数的图像及对称轴与区间的位置关系. 解析 2()21f x x ax =--,抛物线()y f x =开口向上,对称轴x a =.(1) 当0a ≤时,函数在区间[0,2]上为增函数,故min max (0)1,(2)34y f y f a ==-==-,所以函数的值域为[1,34]a --.(2) 当2a ≥时,函数在区间[0,2]上为减函数,故min max (2)34,(0)1y f a y f ==-==-,所以函数的值域为[34,1]a --.(3) 当01a <≤时,函数在区间[0,]a 上为减函数,在区间[,2]a 上为增函数,故2min max ()(1),(2)34y f a a y f a ==-+==-,所以函数的值域为2[(1),34]a a -+-.(4) 当12a <≤时,函数在区间[0,]a 上为减函数,在区间[,2]a 上为增函数,故2min max ()(1),(0)1y f a a y f ==-+==-,所以函数的值域为2[(1),1]a -+-.评注 在求二次函数的最值时,要注意定义域是R 还是区间[,]m n ,若是区间[,]m n ,最大(小)值不一定在对称轴处取得,而应该看对称轴是在区间[,]m n 内还是在 区间的左边或右边.在区间的某一边时,应该利用函数的单调性求解,最值不在对称轴处取得,而在区间的端点处取得.变式1 已知函数22()4422f x x ax a a =-+-+在区间[0,2]上有最小值3,求实数a 的值.例2.47 已知二次函数2()23f x x x =--,若()f x 在[,1]t t +上的最小值为()g t ,求()g t 的表达式. 分析 本题考查“定轴动区间”问题,求给定的二次函数在动区间上的最值,利用数形结合及分类讨论思想求解.解析 根据二次函数的解析式知1x =为其对称轴,分析对称轴与区间的位置关系,如图2-13所示.(b)(c)图2-13(a )x(1) 当1t >时,如图2-13(a )所示,2()()23g t f t t t ==--;(2) 当11t +<,即0t <时,如图2-13(b )所示,2()(1)4g t f t t =+=-; (3) 当11t t ≤≤+,即01t ≤≤时,如图2-13(c )所示,()(1)4g t f ==-.因此224(0)()4(01)23(1)t t g t t t t t ⎧-<⎪=-≤≤⎨⎪-->⎩.变式1 已知二次函数()f x 满足(1)(1)f x f x +=-,且(0)0,(1)1f f ==,若()f x 在区间[,]m n 上的值域是[,]m n ,求,m n 的值.变式2 (2012北京东城期末理8)已知函数2()1f x x =+的定义域为[,]()a b a b <,值域为[1,5],则在平面直角坐标系内,点(,)a b 的运动轨迹与两坐标轴围成的图形面积为A.8B.6C.4D.2最有效训练1.函数2263,[1,1]y x x x =-+∈-,则y 的最小值是( ).A. 32-B. 3C. 1-D.不存在 2.已知,,a b c 成等比数列,则函数2y ax bx c =++的图像与x 轴的交点个数为( ). A. 0 B. 1 C. 2 D. 0或13. 函数y =x 2+mx +1的图像关于直线x =1对称的充要条件是( ). A. m =-2 B. m =2 C. m =-1 D. m =14. 已知函数ƒ(x )=ax 2+bx +c ,且a >b >c ,a +b +c =0,则( ). A. ∀x ∈(0,1),都有ƒ(x )>0 B. ∀x ∈(0,1),都有ƒ(x )<0 C. ∃x 0∈(0,1),都有ƒ(x 0)=0 D. ∃x 0∈(0,1),都有ƒ(x 0)>05. 已知点A(0,2),B(2,0),若点C在函数y=x2的图像上,则使得∆ABC的面积为2的点C的个数为( ).A. 4B. 3C. 2D. 16. 已知函数ƒ(x)=2x2+(4-m)x+4-m,g(x)=mx,若对于任意实数x,ƒ(x)与g(x)的值至少有一个为正数,则实数m的取值范围是( ).A. [-4,4]B. (-4,4)C. (-∞,4)D. (-∞,-4)7. 若函数ƒ(x)=x2+(a+2)x+b(x∈[a,b])的图像关于直线x=1对称,则ƒ(x)max=________.8. 关于x的方程2x2+ax-5-2a=0的两实根可分别作为一个椭圆与一个双曲线的离心率,则实数a的取值范围是________.9. 当x∈[0,2]时,函数ƒ(x)=ax2+4(a-1)x-3在x=2时取得最大值,则a的取值范围是________.10.已知二次函数ƒ(x)=ax2-x+c(x∈R)的值域为[0,+∞),则c aa c+++22的最小值为________.11.已知定义域为R的函数ƒ(x)满足ƒ(ƒ(x)-x2+x)=ƒ(x)-x2+x.(1)若ƒ(2)=3,求ƒ(1),又若ƒ(0)=a,求ƒ(a);(2)设有且仅有一个实数x0,使得ƒ(x0)=x0,求函数ƒ(x)的解析式.12.已知二次函数ƒ(x)=x2+mx+1(x∈Z),且关于x的方程ƒ(x)=2在区间(-3,12)内有两个不同的实根.(1)求ƒ(x)的解析式;(2)若x∈[1,t](t>1)时,总有ƒ(x-4)≤4x成立,求t的最大值.。