二次函数题型分类复习总结(打印版)

合集下载

二次函数题型分类总结

二次函数题型分类总结

二次函数题型分类总结一、顶点在坐标轴上的二次函数方程当二次函数的顶点坐标为(0,a)或(b,0)时,可以得到以下两种形式的二次函数方程。

1. 顶点在y轴上的二次函数方程:y = ax^2这种形式的二次函数方程对称轴为y轴,开口向上或向下。

当a > 0时,抛物线开口向上;当a < 0时,抛物线开口向下。

2. 顶点在x轴上的二次函数方程:y = a(x-b)^2这种形式的二次函数方程对称轴为x = b,开口向上或向下。

当a > 0时,抛物线开口向上;当a < 0时,抛物线开口向下。

二、顶点不在坐标轴上的二次函数方程当二次函数的顶点坐标为(h,k)时,可以得到以下两种形式的二次函数方程。

1. 一般形式的二次函数方程:y = ax^2 + bx + c这种形式的二次函数方程对称轴为x = -b/2a,开口向上或向下。

根据a的正负值可知抛物线的开口方向。

2. 完全平方形式的二次函数方程:y = a(x-h)^2 + k这种形式的二次函数方程对称轴为x = h,开口向上或向下。

根据a的正负值可知抛物线的开口方向。

三、特殊形式的二次函数方程除了以上分类外,还存在一些特殊形式的二次函数方程。

1. 平移后的二次函数方程:y = a(x-p)(x-q)在一般形式的二次函数方程中,平移抛物线的顶点至(p,q)处即可得到平移后的二次函数方程。

2. 平方差公式:y = (x-h)^2 - k^2这种形式的二次函数方程本质上是一个完全平方公式,可利用平方差公式进行求解。

其对称轴为x = h,开口向上或向下。

四、应用题型除了基本形式的二次函数方程外,还存在一些应用题型,需要根据题目给出的条件进行分析和求解。

1. 求最值问题:通过求二次函数的极值点来解决。

2. 求交点问题:将两个二次函数方程相等,解方程得到交点坐标。

3. 求解区间问题:通过对二次函数方程进行开口方向和对称轴的分析,确定函数的定义域或值域。

二次函数各种题型汇总

二次函数各种题型汇总

二次函数各种题型汇总一、利用函数的对称性解题(一)用对称比较大小例1、已知二次函数y=x2-3x-4,若x2-3/2>3/2-x1>0,比较y1与y2的大小解:抛物线的对称轴为x=3/2,且3/2-x1>0,x2-3/2>0,所以x1在对称轴的左侧,x2在对称轴的右侧,由已知条件x2-3/2>3/2-x1>0,得:x2到对称轴的距离大于x1到对称轴的距离,所以y2>y1(二)用对称求解析式例1、已知抛物线y=ax2+bx+c的顶点坐标为(-1,4),与x轴两交点间的距离为6,求此抛物线的解析式。

解:因为顶点坐标为(-1,4),所以对称轴为x=-1,又因为抛物线与x轴两交点的距离为6,所以两交点的横坐标分别为:x 1=-1-3=-4,x2=-1+3=2 则两交点的坐标为(-4,0)、(2,0);设抛物线的解析式为顶点式:ya(x+1)+4,把(2,0)代入得a=-4/9。

所以抛物线的解析式为y=-4/9(x+1)2+4(三)用对称性解题例1:关于x的方程x2+px+1=0(p>0)的两根之差为1,则p等于()A. 2B. 4C. 3D. 5解:设方程x2+px+1=0(p>0)的两根为x1、x2,则抛物线y=x2+px+1与x轴两交点的坐标为(x1,0),(x2,0)。

因为抛物线的对称轴为x=-p/2,所以x1=-p/2-1/2,x2=-p/2+1/2,因为x1x2=1。

所以(-p/2-1/2)(-p/2+1/2=1,p2=5 因为p>0,所以p=5例2、如图,已知抛物线y=x2 +bx+c的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为()A.(2,3) B.(3,2) C.(3,3) D.(4,3)解:由点A,B均在抛物线上,且AB与x轴平行可知,点A,B关于x=2对称。

设点B的横坐标为xB,∵点A的坐标为(0,3),所以,(0+xB)/2=2,xB=4∴B点坐标为(4,3)例2 (2010,山东日照)如图2是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是多少解析:由抛物线的对称性可知,抛物线与x轴的另一交点为(-1,0),ax2+bx+c<0的解集就是抛物线落在x轴下方的部分所对应的x的取值,不等式ax2+bx+c<0的解集是-1<x<3.例3、(2010,浙江金华)若二次函数y=-x2+2x+k的部分图象如图3所示,则关于x的一元二次方程-x2+2x+k=0的一个解x1=3,另一个解x2是多少;解:依题意得二次函数y=-x2+2x+k的对称轴为x=1,与x轴的一个交点为(3,0),∴抛物线与x轴的另一个交点横坐标为1-(3-1)=-1,∴交点坐标为(-1,0)∴关于x的一元二次方程-x2+2x+k=0的解为x1=3或x2=-1.故填空答案:x1=-1例4:如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a-b+c的值为() A. 0 B. -1 C. 1 D. 2解法1:将P代入得:9a+3b+c=0由对称轴得:-b/2a=1, 得b=-2a 9a+3b+c=3a+c=0即a+2a+c=0 则 a-b+c=0解法2:由抛物线的对称轴:x=1,及点P(3,0),可求出抛物线上点P关于对称轴x=1的对称点的坐标为Q(-1,0),由于Q在抛物线上,有(-1,0)满足关系式,因为点p,Q在x轴上所以a-b+c=0,故选A.例5、抛物线y=ax2+bx+c经过点A(-2,7),B(6,7),C(3,-8),则该抛物线上纵坐标为-8的另一点的坐标是_______________解析:由点A(-2,7),B(6,7)的纵坐标相同,可知A、B关于抛物线的对称轴对称,且对称轴方程为x=(-2+6)/2=2,于是设该抛物线上纵坐标为–8的另一点的坐标为(x2,-8),则有2=(3+x2)/2,从而得x2=1,故答案为(1,-8).例6、已知抛物线上有不同的两点E(k+3,-k2+1)和F(-k-1,-k2+1).求抛物线的解析式.分析:关键是确定一次项系数b.观察抛物线上不同的两点E(k+3,-k2+1)和F(-k-1,-k2+1).纵坐标相同,因此判断得点E和点F关于抛物线对称轴对称.解:的对称轴为x=-b÷(-1/2×2)=b因为抛物线上不同的两点E(k+3,-k2+1)和F(-k-1,-k2+1).纵坐标相同,∴点E和点F关于抛物线对称轴对称,则b=[(k+3)+(-k-1)]÷2=1,∴抛物线的解析式为y=1/2x2+x+4例7(2010,山东聊城)如图5,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.(1)求这条抛物线所对应的函数关系式;(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求此时点M的坐标;.分析:(1)由点C (0,-3)知c =-3,只需求得a 、b 两个未知的系数,根据点A (-1,0)和对称轴x=1,利用待定系数法可求解;(2)由抛物线的对称性知,直线x=1是AB 的垂直平分线,因此MA =MB ,要使得MA+MC 最小,只要MC+MB 最小,所以点M 就是直线BC 与抛物线对称轴的交点.解:(1)∵抛物线经过点C (0,-3)∴c =-3,∴y =ax2+bx-3。

二次函数各知识点、考点、典型例题及对应练习(超全)

二次函数各知识点、考点、典型例题及对应练习(超全)

二次函数各知识点、考点、典型例题及对应练习专题一:二次函数的图象与性质本专题涉及二次函数概念,二次函数的图象性质,抛物线平移后的表达式等.试题多以填空题、选择题为主,也有少量的解答题出现.考点1.二次函数图象的对称轴和顶点坐标二次函数的图象是一条抛物线,它的对称轴是直线x=-2b a ,顶点坐标是(-2b a ,244ac b a-).例 1 已知,在同一直角坐标系中,反比例函数5y x=与二次函数22y x x c =-++的图像交于点(1)A m -,.(1)求m 、c 的值;(2)求二次函数图像的对称轴和顶点坐标.考点2.抛物线与a 、b 、c 的关系抛物线y=ax 2+bx+c 中,当a>0时,开口向上,在对称轴x=-2ba的左侧y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a<0时,开口向下,在对称轴的右侧,y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小.例2 已知2y ax bx =+的图象如图1所示,则y ax b =-的图象一定过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限考点3.二次函数的平移当k>0(k<0)时,抛物线y=ax 2+k (a ≠0)的图象可由抛物线y=ax 2向上(或向下)平移|k|个单位得到;当h>0(h<0)时,抛物线y=a (x-h )2(a ≠0)的图象可由抛物线y=ax 2向右(或向左)平移|h|个单位得到.例3 把抛物线y=3x 2向上平移2个单位,得到的抛物线是( ) A.y=3(x+2)2 B.y=3(x-2)2 C.y=3x 2+2 D.y=3x 2-2 专题练习一 1.对于抛物线y=13-x 2+103x 163-,下列说法正确的是( ) A.开口向下,顶点坐标为(5,3) B.开口向上,顶点坐标为(5,3)图1C.开口向下,顶点坐标为(-5,3)D.开口向上,顶点坐标为(-5,3) 2.若抛物线y=x 2-2x+c 与y 轴的交点为(0,-3),则下列说法不正确的是( ) A.抛物线开口向上 B.抛物线的对称轴是x=1 C.当x=1时,y 的最大值为-4D.抛物线与x 轴交点为(-1,0),(3,0)3.将二次函数y=x 2的图象向左平移1个单位长度,再向下平移2个单位长度后,所得图象的函数表达式是________.4.小明从图2所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有_______.(填序号)专题复习二:二次函数表达式的确定本专题主要涉及二次函数的三种表示方法以及根据题目的特点灵活选用方法确定二次函数的表达式.题型多以解答题为主.考点1.根据实际问题模型确定二次函数表达式例1 如图1,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD ,设AB 边长为x 米,则菜园的面积y (单位:米2)与x (单位:米)的函数关系式为 (不要求写出自变量x 的取值范围).考点2.根据抛物线上点的坐标确定二次函数表达式1.若已知抛物线上三点的坐标,则可用一般式:y=ax 2+bx+c (a ≠0);2.若已知抛物线的顶点坐标或最大(小)值及抛物线上另一个点的坐标,则可用顶点式:y=a (x-h )2+k (a ≠0);3.若已知抛物线与x 轴的两个交点坐标及另一个点,则可用交点式:y=a (x-x 1)(x-x 2)(a ≠0). 例2 已知抛物线的图象以A (-1,4)为顶点,且过点B (2,-5),求该抛物线的表达式.例3 已知一抛物线与x 轴的交点是A (-2,0)、B (1,0),且经过点C (2,8). (1)求该抛物线的解析式; (2)求该抛物线的顶点坐标.图2ABCD图1菜园墙专项练习二1.由于世界金融危机的不断蔓延,世界经济受到严重冲击.为了盘活资金,减少损失,某电器商场决定对某种电视机连续进行两次降价.若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数表达式为( )A.y=2a (x-1) B.y=2a (1-x ) C.y=a (1-x 2) D.y=a (1-x )22.如图2,在平而直角坐标系xOy 中,抛物线y=x 2+bx+c 与x 轴交于A 、B 两点,点A 在x 轴负半轴,点B 在x 轴正半轴,与y 轴交于点C ,且tan ∠ACO=12,CO=BO ,AB=3,则这条抛物线的函数解析式是 .3.对称轴平行于y 轴的抛物线与y 轴交于点(0,-2),且x=1时,y=3;x=-1时y=1, 求此抛物线的关系式.4.推理运算:二次函数的图象经过点(03)A -,,(23)B -,,(10)C -,. (1)求此二次函数的关系式;(2)求此二次函数图象的顶点坐标;(3)填空:把二次函数的图象沿坐标轴方向最少..平移 个单位,使得该图象的顶点在原点. 专题三:二次函数与一元二次方程的关系本专题主要涉及根据二次函数的图象求一元二次方程的近似根,由图象判断一元二次方程根的情况,由一元二次方程根的情况判断抛物线与x 轴的交点个数等,题型主要填空题、选择题和解答题.考点1.根据二次函数的自变量与函数值的对应值,确定方程根的范围一元二次方程ax 2+bx+c=0就是二次函数y=ax 2+bx+c 当函数y 的值为0时的情况.例1 根据下列表格中二次函数y=ax 2+bx+c 的自变量x 与函数值y 的对应值,判断方程ax 2+bx+c=0(a ≠0,a,b,c,为常数)的一个解x 的范围是( )A.6 6.17x <<B.6.17 6.18x << C.6.18 6.19x<<D.6.19 6.20x <<考点2.根据二次函数的图象确定所对应的一元二次方程的根.二次函数y=ax 2+bx+c 的图象与x 轴的交点有三种情况:有两个交点、一个交点、没有交点;当二次函数y=ax 2+bx+c 的图象与x 轴有交点时,交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax 2+bx+c=0的根.例2 已知二次函数y=-x 2+3x+m 的部分图象如图1所示,则关于x 的一元二次方程-x 2+3x+m=0的解为________.图2图1考点3.抛物线的交点个数与一元二次方程的根的情况当二次函数y=ax 2+bx+c 的图象与x 轴有两个交点时,则一元二次方程ax 2+bx+c=0有两个不相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴有一个交点时,则一元二次方程ax 2+bx+c=0有两个相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴没有交点时,则一元二次方程ax 2+bx+c=0没有实数根.反之亦然.例3 在平面直角坐标系中,抛物线21y x =-与x 轴的交点的个数是( ) A.3B.2C.1D.0专项练习三1.抛物线y=kx 2-7x-7的图象和x 轴有交点,则k 的取值范围是________.2.已知二次函数22y x x m =-++的部分图象如图2所示,则关于x 的一元二次方程220x x m -++=的解为 .3.已知函数2y ax bx c =++的图象如图3所示,那么关于x 的方程220ax bx c +++= 的根的情况是( )A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根4. 二次函数2(0)y ax bx c a =++≠的图象如图4所示,根据图象解答下列问题:(1)写出方程20ax bx c ++=的两个根.(2)写出不等式20ax bx c ++>的解集.(3)写出y 随x 的增大而减小的自变量x 的取值范围.(4)若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围.专题四:利用二次函数解决实际问题本专题主要涉及从实际问题中建立二次函数模型,根据二次函数的最值解决实际问题,能根据图象学习建立二次函数模型解决实际问题.解决实际问题的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展等.例某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?专题训练四1.小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)当x是多少时,矩形场地面积S最大?最大面积是多少?2.某旅行社有客房120间,每间客房的日租金为50元,每天都客满.旅社装修后要提高租金,经市场调查发现,如果每间客房的日租金每增加5元时,则客房每天出租数就会减少6间,不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?3.一座拱桥的轮廓是抛物线型(如图1所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图2所示),求抛物线的解析式;(2)求支柱EF的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.x图1。

九年级数学上册第二十二章二次函数知识点总结归纳完整版(带答案)

九年级数学上册第二十二章二次函数知识点总结归纳完整版(带答案)

九年级数学上册第二十二章二次函数知识点总结归纳完整版单选题1、已知实数a ,b 满足b −a =1,则代数式a 2+2b −6a +7的最小值等于( )A .5B .4C .3D .2答案:A分析:由已知得b =a +1,代入代数式即得a 2-4a +9变形为(a -2)2+5,再根据二次函数性质求解. 解:∵b -a =1,∴b =a +1,∴a 2+2b -6a +7=a 2+2(a +1)-6a +7=a 2-4a +9=(a -2)2+5,∵(a -2)2≥0,∴当a =2时,代数式a 2+2b -6a +7有最小值,最小值为5,故选:A .小提示:本题考查二次函数的最值,通过变形将代数式化成(a -2)2+5是解题的关键.2、点A (m -1,y 1),B (m ,y 2)都在二次函数y =(x -1)2+n 的图象上.若y 1<y 2,则m 的取值范围为()A .m >2B .m >32C .m <1D .32<m <2答案:B分析:根据y 1<y 2列出关于m 的不等式即可解得答案.解:∵点A (m -1,y 1),B (m ,y 2)都在二次函数y =(x -1)2+n 的图象上,∴y 1=(m -1-1)2+n =(m -2)2+n ,y 2=(m -1)2+n ,∵y 1<y 2,∴(m -2)2+n <(m -1)2+n ,∴(m-2)2-(m-1)2<0,即-2m+3<0,∴m>3,2故选:B.小提示:本题考查了二次函数图象上点的坐标特征,解题的关键是根据已知列出关于m的不等式.3、抛物线y=x2−x−1经过点(m,3),则代数式m2−m−1的值为()A.0B.1C.2D.3答案:D分析:将点(m,3)代入代数式中即可得到结果.解:将点(m,3)代入m2−m−1中得,m2−m−1=3,故代数式m2−m−1的值为3,故选:D.小提示:本题考查代数式的值,根据函数图象经过的点求函数解析式,能够掌握属性结合思想是解决本题的关键.4、小明在研究抛物线y=−(x−ℎ)2−ℎ+1(h为常数)时,得到如下结论,其中正确的是()A.无论x取何实数,y的值都小于0B.该抛物线的顶点始终在直线y=x−1上C.当−1<x<2时,y随x的增大而增大,则ℎ≥2D.该抛物线上有两点A(x1,y1),B(x2,y2),若x1<x2,x1+x2<2ℎ,则y1>y2答案:C分析:根据二次函数的对称轴、二次函数图象上点的坐标特征、二次函数的性质,判断即可.解:A.∵y=−(x−ℎ)2−ℎ+1,∴当x=ℎ时,y max=−ℎ+1,当ℎ<1时,y max=−ℎ+1>0,故错误;B.∵抛物线y=−(x−ℎ)2−ℎ+1的顶点坐标为(ℎ,−ℎ+1),当x=ℎ时,y=−ℎ−1≠−ℎ+1,故错误;C.∵抛物线开口向下,当−1<x<2时,y随x的增大而增大,∴ℎ≥2,故正确;D.∵抛物线上有两点A(x1,y1),B(x2,y2),若x1<x2,x1+x2<2ℎ,∴x1+x2<ℎ,∴点A到对称轴的距离大2于点B到对称轴的距离,∴y1<y2,故错误.故选C.小提示:本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.5、根据表格中二次函数y=ax2+bx+c的自变量x与函数值y的对应值,可以判断方程ax2+bx+c=0的一个解x 的范围是()C.1<x<1.5D.1.5<x<2答案:B分析:利用二次函数和一元二次方程的性质.解:观察表格可知:当x=0.5时,y=-0.5;当x=1时,y=1,∴方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是0.5<x<1.故选:B.小提示:本题考查了用图象法求一元二次方程的近似根,解题的关键是找到y由正变为负时,自变量的取值即可.6、某种产品按质量分为10个档次,生产最低档次产品,每件获利润8元,每提高一个档次,每件产品利润增加2元,用同样工时,最低档次产品每天可生产60件,提高一个档次将减少3件.如果用相同的工时生产,总获利润最大的产品是第k档次(最低档次为第一档次,档次依次随质量增加),那么k等于()A.5B.8C.9D.10答案:C分析:第k档次产品比最低档次产品提高了(k−1)个档次,则数量在60的基础上减少了3(k−1),每件产品利润在8的基础上增加2(k−1),据此可求出总利润关系,求出最值即可.解:设总利润为y元,∵第k档次产品比最低档次产品提高了(k−1)个档次,∴每天利润为y=[60−3(k−1)][8+2(k−1)]=−6(k−9)2+864,∴当k=9时,产品利润最大,每天获利864元,故选C.小提示:本题考查了二次函数的实际应用,借助二次函数解决实际问题是本题的关键.7、已知抛物线y=x2+bx+c与x轴的两个交点之间的距离为6,对称轴为x=3,则抛物线的顶点P关于x轴对称的点P′的坐标是()A.(3,9)B.(3,−9)C.(−3,9)D.(−3,−9)答案:A分析:根据抛物线y=x2+bx+c与x轴两个交点间的距离为6.对称轴为直线x=3,可以得到b、c的值,然后即可得到该抛物线的解析式,再将函数解析式化为顶点式,即可得到点P的坐标,然后根据关于x轴对称的点的特点横坐标不变,纵坐标互为相反数,即可得到点P关于x轴的对称点的坐标.解:设抛物线y=x2+bx+c与x轴两个交点坐标为(x1,0),(x2,0),∵抛物线y=x2+bx+c与x轴两个交点间的距离为6,对称轴为直线x=3,∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=36,−b=3,2×1∴(﹣b)2﹣4×c=36,b=﹣6,解得:c=0,∴抛物线的解析式为y=x2﹣6x=(x﹣3)2﹣9,∴顶点P的坐标为(3,﹣9),∴点P关于x轴的对称点的坐标是(3,9),故选:A.小提示:本题考查抛物线与x轴的交点、二次函数的性质、关于x轴对称的点的坐标特点,解答本题的关键是求出点P的坐标,利用二次函数的性质解答.8、已知a是不为0的常数,函数y=ax和函数y=﹣ax2+a在同一平面直角坐标系内的图象可以是()A.B.C.D.答案:C分析:根据题意分a>0,a<0两种情况讨论,结合函数图象即可求解.解:A.正比例函数中a<0,二次函数开口向上,−a>0,与y轴的交点在y轴正半轴,则a>0,矛盾,故A 不正确;B.正比例函数中a>0,二次函数开口向上,−a>0,与y轴的交点在y轴正半轴,则a>0,矛盾,故B不正确;C.正比例函数中a>0,二次函数开口向下,−a<0,与y轴的交点在y轴正半轴,则a>0,故C正确;D. .正比例函数中a<0,二次函数开口向下,−a<0,与y轴的交点在y轴正半轴,则a>0,矛盾,故D不正确;故选C小提示:本题考查了正比例函数与二次函数的图象的性质,掌握正比例函数与二次函数的图象的性质是解题的关键.9、二次函数y=ax2+bx+c(a≠0)的图像如图所示,则关于x的一元二次方程ax2+bx+c=0的根的情况描述正确的是()A.有两个相等的实数根B.有两个异号的实数根C.有两个同号的实数根D.有两个无法确定符号的实数根答案:B分析:根据二次函数的图像判断与x轴有两个交点,且在原点两侧,故关于x的一元二次方程ax2+bx+c= 0有两个异号的实数根.解:∵二次函数的图像与x轴有两个交点,且在原点两侧,∴关于x的一元二次方程ax2+bx+c=0有两个异号的实数根,故选:B.小提示:本题考查二次函数图像与一元二次方程根的关系,掌握二次函数y=ax2+bx+c(a≠0)的图像与x 轴有交点的横坐标即为关一元二次方程ax2+bx+c=0的根是解答本题的关键.10、已知抛物线y=2(x−3)2−5,其对称轴是()A.直线x=−3B.直线x=3C.直线x=−5D.直线x=5答案:B分析:直接根据抛物线的顶点式进行解答即可.解:∵y=2(x−3)2−5,∴抛物线对称轴为直线x=3.故选:B.小提示:本题考查二次函数的性质,解题关键是掌握二次函数图像与系数的关系.填空题11、已知二次函数y=(x−1)2+3,当x=_______时,y取得最小值.答案:1分析:根据抛物线的顶点坐标和开口方向即可得出答案.解:∵y=(x−1)2+3,∴该抛物线的顶点坐标为(1,3),且开口方向向上,∴当x=1时,y取得最小值,所以答案是:1.小提示:本题考查二次函数的最值,求二次函数最大值或最小值有三种方法:第一种可有图象直接得出,第二种是配方法,第三种是公式法.12、如图,过点D(1,3)的抛物线y=-x2+k的顶点为A,与x轴交于B、C两点,若点P是y轴上一点,则PC+PD的最小值为____.答案:3√2分析:由两点之间线段最短可知,当D、P、B在同一直线上时就可使PC+PD的值最小,解答即可.解:连接PB,对于抛物线y=-x2+k,对称轴是y轴,∴PC=PB,∴当D、P、B在同一直线上时,PC+PD的值最小,最小值为BD的长,∵抛物线y=-x2+k过点D(1,3),∴把x=1,y=3代入y=-x2+k,解得:k=4,把y=0代入y=-x2+4,解得:x=2或x=-2,所以点B的坐标为(-2,0),所以BD=√(−2−1)2+32=3√2,所以答案是:3√2.小提示:本题考查了抛物线与x轴的交点,轴对称-最短路线问题,找到P点是本题的关键.13、已知实数a、b满足a-b2=4,则代数式a2-3b2+a-14的最小值是________.答案:6分析:根据a-b2=4得出b2=a−4,代入代数式a2-3b2+a-14中,通过计算即可得到答案.∵a-b2=4∴b2=a−4将b2=a−4代入a2-3b2+a-14中得:a2-3b2+a-14=a2−3(a−4)+a−14=a2−2a−2a2−2a−2=a2−2a+1−3=(a−1)2−3∵b2=a−4≥0∴a≥4当a=4时,(a−1)2−3取得最小值为6∴a2−2a−2的最小值为6∵a2-3b2+a-14=a2−2a−2∴a2-3b2+a-14的最小值6所以答案是:6.小提示:本题考查了代数式的知识,解题的关键是熟练掌握代数式的性质,从而完成求解.14、已知二次函数y =−x 2−2x +3,当a ⩽x ⩽12时,函数值y 的最小值为1,则a 的值为_______. 答案:−1−√3##−√3−1分析:先把函数解析式化为顶点式可得当x <−1时,y 随x 的增大而增大,当x >−1时,y 随x 的增大而减小,然后分两种情况讨论:若a ≥−1;若a <−1,即可求解.解:y =−x 2−2x +3=−(x +1)2+4,∴当x <−1时,y 随x 的增大而增大,当x >−1时,y 随x 的增大而减小,若a ≥−1,当a ⩽x ⩽12时,y 随x 的增大而减小, 此时当x =12时,函数值y 最小,最小值为74,不合题意,若a <−1,当x =a 时,函数值y 最小,最小值为1,∴−a 2−2a +3=1,解得:a =−1−√3或−1+√3(舍去);综上所述,a 的值为−1−√3.所以答案是:−1−√3小提示:本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.15、已知二次函数y =ax 2+bx +c(a ≠0)的图像的顶点为(2,−2),与x 轴交于点(1,0)、(3,0),根据图像回答下列问题:当x _______时,y 随x 的增大而减小:方程ax 2+bx +c =0的两个根是___________.答案: x <2 x 1=1,x 2=3分析:利用开口向上和对称轴以及二次函数与一元二次方程的联系即可得到答案.解(1)∵二次函数图像与x轴的两个交点坐标为(1,0)、(3,0),∴二次函数的对称轴为直线x=2,∵抛物线的开口向上,∴当x<2时,y随x的增大而减小;(2)∵二次函数图像与x轴的两个交点坐标为(1,0)、(3,0),∴方程ax2+bx+c=0的两个根是x1=1,x2=3.小提示:本题考查了二次函数的图像与性质以及二次函数与一元二次方程的联系,属于常考题型.解答题16、在一条笔直的滑道上有黑、白两个小球同向运动,黑球在A处开始减速,此时白球在黑球前面70cm处.小聪测量黑球减速后的运动速度v(单位:cm/s)、运动距离y(单位:cm)随运动时间t(单位:s)变化的数据,整理得下表.y与运动时间t之间成二次函数关系.(1)直接写出v关于t的函数解析式和y关于t的函数解析式(不要求写出自变量的取值范围)(2)当黑球减速后运动距离为64cm时,求它此时的运动速度;(3)若白球一直..以2cm/s的速度匀速运动,问黑球在运动过程中会不会碰到白球?请说明理由.答案:(1)v=−12t+10,y=−14t2+10t(2)6cm/s(3)黑、白两球的最小距离为6cm,大于0,黑球不会碰到白球分析:(1)根据黑球的运动速度v与运动时间t之间成一次函数关系,设表达式为v=kt+b,代入两组数值求解即可;根据运动距离y与运动时间t之间成二次函数关系,设表达式为y=at2+bt+c,代入三组数值求解即可;(2)当黑球减速后运动距离为64cm时,代入(1)式中y关于t的函数解析式求出时间t,再将t代入v关于t的函数解析式,求得速度v即可;(3)设黑白两球的距离为w cm,得到w=70+2t−y=14t2−8t+70,化简即可求出最小值,于是得到结论.(1)根据黑球的运动速度v与运动时间t之间成一次函数关系,设表达式为v=kt+b,代入(0,10),(1,9.5)得,{10=b 9.5=k+b ,解得{k=−12b=10,∴v=−12t+10,根据运动距离y与运动时间t之间成二次函数关系,设表达式为y=at2+bt+c,代入(0,0),(1,9.75),(2,19)得{0=c9.75=a+b19=4a+2b,解得{a=−14b=10c=0,∴y=−14t2+10t;(2)依题意,得−14t2+10t=64,∴t2−40t+256=0,解得,t1=8,t2=32;当t1=8时,v=6;当t2=32时,v=−6(舍);答:黑球减速后运动64cm时的速度为6cm/s.(3)设黑白两球的距离为w cm,w=70+2t−y=14t2−8t+70=14(t−16)2+6,∵14>0,∴当t=16时,w的值最小为6,∴黑、白两球的最小距离为6cm,大于0,黑球不会碰到白球.小提示:本题考查一次函数和二次函数的实际应用,待定系数法求解析式,解决本题的关键是明确题意求出函数表达式.17、已知抛物线y=ax2−4ax+3(a≠0)的图象经过点A(−2,0),过点A作直线l交抛物线于点B(4,m).(1)求抛物线的函数表达式和顶点坐标.(2)将抛物线向下平移n(n>0)个单位,使顶点落在直线l上,求m,n的值.答案:(1)y=−14x2+x+3;(2,4)(2)3;2分析:(1)把点A(−2,0)代入y=ax2−4ax+3(a≠0),求出a的值即可;再运用顶点坐标公式求出顶点坐标即可;(2)把C(4,m)代入y=−14x2+x+3可求出m的值;再运用待定系数法求出直线AB的解析式,从而可求出平移后押物线的顶点坐标,进一步可得结论.(1)将A(−2,0)代入y=ax2−4ax+3得:0=4a+8a+3,解得a=−14,∴抛物线的函数表达式为y=−14x2+x+3,∵−b2a =−12×(−14)=2,4ac−b24a=4×(−14)×3−124×(−14)=4,∴顶点坐标为(2,4);(2)把C(4,m)代入y=−14x2+x+3得,m =−4+4+3=3,设直线AB 的解析式为y =kx +b ,将A (−2,0),B (4,3)代入y =kx +b 得{0=−2k +b 3=4k +b, 解得{k =12b =1, ∴直线AB 的解析式为y =12x +1, ∵顶点的横坐标为2,∴把x =2代入y =12x +1得:y =2,∴n =4−2=2.小提示:本题主要考查了运用待定系数法求函数关系式以及二次函数图象的平移,正确理解题意是解答本题的关键.18、戴口罩是阻断呼吸道病毒传播的重要措施之一,某商家对一款成本价为每盒50元的医用口罩进行销售,如果按每盒70元销售,每天可卖出20盒.通过市场调查发现,每盒口罩售价每降低1元,则日销售量增加2盒(1)若每盒售价降低x 元,则日销量可表示为_______盒,每盒口罩的利润为______元.(2)若日利润保持不变,商家想尽快销售完该款口罩,每盒售价应定为多少元?(3)当每盒售价定为多少元时,商家可以获得最大日利润?并求出最大日利润.答案:(1)(20+2x )盒,(20-x ) 元(2)每盒售价应定为60元(3)每盒售价应定为65元时,最大日利润是450元分析:(1)根据题意列出代数式即可;(2)设每盒售价x 元,则每件的销售利润为(x −50)元,日销售量为[20+2(70−x )]件,即可得出关于x 的一元二次方程,解之即可得出x 的值,再结合商家想尽快销售完该款商品,即可求解;(3)设日利润为y ,由(2)列出函数关系式,根据二次函数的性质即可求解.(1)设每盒售价降低x 元,则日销量可表示为(20+2x )盒,每盒口罩的利润为70−50−x =20−x (元)所以答案是:(20+2x);(20−x)(2)设每盒售价x元,则每件的销售利润为(x−50)元,日销售量为[20+2(70−x)]件,根据题意得,(x−50)[20+2(70−x)]=(70−50)×20解得x1=70,x2=60又∵商家想尽快销售完该款商品,∴x=60.答:每件售价应定为60元;(3)设日利润为y,则y=(x−50)[20+2(70−x)]=−2x2+260x−8000=−2(x−65)2+450∴x=65时,y的最大值为450,即每盒售价应定为65元时,最大日利润是450元.小提示:本题考查了一元二次方程的应用,二次函数的应用,根据题意列出方程和函数关系式是解题的关键.。

二次函数题型分类总结(学生版)1

二次函数题型分类总结(学生版)1

二次函数的定义(考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式) 1、下列函数中,是二次函数的是 .①y=x 2-4x+1; ②y=2x 2; ③y=2x 2+4x ; ④y=-3x ;⑤y=-2x -1; ⑥y=mx 2+nx+p ; ⑦y =(4,x) ; ⑧y=-5x 。

2、在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为s=5t 2+2t ,则t =4秒时,该物体所经过的路程为 。

3、若函数y=(m 2+2m -7)x 2+4x+5是关于x 的二次函数,则m 的取值范围为 。

4、若函数y=(m -2)x m -2+5x+1是关于x 的二次函数,则m 的值为 。

6、已知函数y=(m -1)x m2 +1+5x -3是二次函数,求m 的值。

二次函数的对称轴、顶点、最值(技法:如果解析式为顶点式y=a(x -h)2+k ,则最值为k ;如果解析式为一般式y=ax 2+bx+c 则最值为4ac-b24a1.抛物线y=2x 2+4x+m 2-m 经过坐标原点,则m 的值为 。

2.抛物y=x 2+bx+c 线的顶点坐标为(1,3),则b = ,c = .3.抛物线y =x 2+3x 的顶点在( )A.第一象限B.第二象限C.第三象限D.第四象限4.若抛物线y =ax 2-6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( )5.若直线y =ax +b 不经过二、四象限,则抛物线y =ax 2+bx +c( ) A.开口向上,对称轴是y 轴 B.开口向下,对称轴是y 轴 C.开口向下,对称轴平行于y 轴 D.开口向上,对称轴平行于y 轴6.已知抛物线y =x 2+(m -1)x -14的顶点的横坐标是2,则m 的值是_ .7.抛物线y=x 2+2x -3的对称轴是 。

8.若二次函数y=3x 2+mx -3的对称轴是直线x =1,则m = 。

9.当n =______,m =______时,函数y =(m +n)x n+(m -n)x 的图象是抛物线,且其顶点在原点,此抛物线的开口________.10.已知二次函数y=x 2-2ax+2a+3,当a= 时,该函数y 的最小值为0. 11.已知二次函数y=mx 2+(m -1)x+m -1有最小值为0,则m = ______ 。

(完整版)二次函数知识点与题型总结.doc

(完整版)二次函数知识点与题型总结.doc

二次函数知识点一、平面直角坐标系1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

注意: x 轴和y轴上的点,不属于任何象限。

2、点的坐标的概念点的坐标用a, b 表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。

平面内点的坐标是有序实数对,当 a b 时,a,b和b, a是两个不同点的坐标。

知识点二、函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一变化过程中有两个变量x 与y,如果对于 x 的每一个值,y都有唯一确定的值与它对应,那么就说 x 是自变量,y 是x的函数。

2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

(2)列表法把自变量 x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图像法用图像表示函数关系的方法叫做图像法。

4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

知识点三、概念总结及基本性质1、二次函数的概念:一般地,形如y ax2bx c( a ,b ,c 是常数, a 0 )的函数,叫做二次函数。

二次函数的定义域是全体实数.2. 、二次函数y ax2bx c 的结构特征:⑴ 等号左边是函数,右边是关于自变量⑵ a ,b ,c 是常数, a 是二次项系数,x 的二次式,x 的最高次数是b 是一次项系数,c 是常数项.2.3、二次函数的基本形式(平移规律:左加右减,上加下减)(1) y ax2的性质: a 的绝对值越大,抛物线的开口越小。

二次函数(十二大题型综合归纳 )(学生版)--新九年级数学

二次函数(十二大题型综合归纳 )(学生版)--新九年级数学

二次函数(十二大题型综合归纳)题型1:二次函数的概念1以下函数式二次函数的是()A.y=ax2+bx+cB.y=2x-12-4x2C.y=ax2+bx+c a≠0D.y=x-1x-22二次函数y=2x x−3的二次项系数与一次项系数的和为()A.2B.-2C.-1D.-4题型2:二次函数的值3已知二次函数y=x2+2x-5,当x=3时,y=.4已知二次函数y=ax2+2c,当x=2时,函数值等于8,则下列关于a,c的关系式中,正确的是()A.a+2c=8B.2a+c=4C.a-2c=8D.2a-c=45二次函数y=ax2+bx-3a≠0的图象经过点2,-2,则代数式2a+b的值为.题型3:二次函数的条件6已知y=mx m-2+2mx+1是y关于x的二次函数,则m的值为()A.0B.1C.4D.0或47关于x的函数y=a-bx2+1是二次函数的条件是()A.a≠bB.a=bC.b=0D.a=0题型4:列二次函数关系式8已知有n个球队参加比赛,每两队之间进行一场比赛,比赛的场次数为m,则m关于n的函数解析式为.题型5:特殊二次函数的图像和性质9关于二次函数y =-34x 2-1的图像,下列说法错误的是()A.抛物线开口向下B.对称轴为直线x =0C.顶点坐标为0,-1D.当x <0时,y 随x 的增大而减小,当x >0时,y 随x 的增大而增大10抛物线y =34x 2与抛物线y =-34x 2+3的相同点是()A.顶点相同B.对称轴不相同C.开口方向一样D.顶点都在y 轴上11如果二次函数y =ax 2+m 的值恒大于0,那么必有()A.a >0,m 取任意实数B.a >0,m >0C.a <0,m >0D.a ,m 均可取任意实数12对于二次函数y =-3(x -2)2的图象,下列说法正确的是()A.开口向上B.对称轴是直线x =-2C.当x >-2时,y 随x 的增大而减小D.顶点坐标为2,013二次函数:①y =-13x 2+1;②y =12(x +1)2-2;③y =-12(x +1)2+2;④y =12x 2;⑤y =-12(x -1)2;⑥y =12(x -1)2.(1)以上二次函数的图象的对称轴为直线x =-1的是(只填序号);(2)以上二次函数有最大值的是(只填序号)﹔(3)以上二次函数的图象中关于x 轴对称的是(只填序号).14设函数y 1=x -a 12,y 2=x -a 22,y 3=x -a 3 2.直线x =b 的图象与函数y 1,y 2,y 3的图象分别交于点A b ,c 1,B b ,c 2 ,C b ,c 3,()A.若b <a 1<a 2<a 3,则c 2<c 3<c1B.若a 1<b <a 2<a 3,则c 1<c 2<c 3C.若a 1<a 2<b <a 3,则c 3<c 2<c 1 D.若a 1<a 2<a 3<b ,则c 3<c 2<c 115已知二次函数y =(x -m )2,当x ≤1时,y 随x 的增大而减小,则m 的取值范围是.16已知关于x 的一元二次方程x 2-(2m +1)x +m 2-1=0有实数根a ,b ,则代数式a 2-ab +b 2的最小值为.题型6:与特殊二次函数有关的几何知识17在平面直角坐标系中,点A是抛物线y=a x-42+k与y轴的交点,点B是这条抛物线上的另一点,且AB⎳x轴,则以AB为边的等边三角形ABC的周长为.18在平面直角坐标系内有线段PQ,已知P(3,1)、Q(9,1),若抛物线y=(x-a)2与线段PQ有交点,则a的取值范围是.19二次函数y=-x+3的图象上任意二点连线不与x轴平行,则t的取值范围2+h t≤x≤t+2为.题型7:二次函数y=ax2+bx+c的图像和性质20下列抛物线中,与抛物线y=x2-2x+8具有相同对称轴的是()A.y=4x2+2x+4B.y=x2-4xC.y=2x2-x+4D.y=-2x2+4x21若抛物线y=x2+ax+1的顶点在y轴上,则a的值为()A.2B.1C.0D.-222抛物线y=x-1x+5图象的开口方向是(填“向上”或“向下”).23当二次函数y=ax2+bx+c有最大值时,a可能是()A.1B.2C.-2D.324已知抛物线y=x2-2bx+b2-2b+1(b为常数)的顶点不在抛物线y=x2+c(c为常数)上,则c应满足()A.c≤2B.c<2C.c≥2D.c>225已知二次函数y=x2-2mx+m的图象经过A1,y1,B5,y2两个点,下列选项正确的是()A.若m<1,则y1>y2B.若1<m<3,则y1<y2C.若1<m<5,则y1>y2D.若m>5,则y1<y2题型8:二次函数y=ax2+bx+c的最值与求参数范围问题26已知直线y=2x+t与抛物线y=ax2+bx+c a≠0,且点B、B m,n有两个不同的交点A3,5是抛物线的顶点,当-2≤a≤2时,m的取值范围是.27已知抛物线y=x2+bx+c经过点(1,-2),(-2,13).(1)求抛物线解析式及对称轴.(2)关于该函数在0≤x<m的取值范围内,有最小值-3,有最大值1,求m的取值范围.28已知二次函数y=mx2-4m2x-3(m为常数,m>0).(1)若点(-2,9)在该二次函数的图象上.①求m的值:②当0≤x≤a时,该二次函数值y取得的最大值为18,求a的值;(2)若点P(x,y)是该函数图象上一点,当0≤x p≤4时,y p≤-3,求m的取值范围.题型9:根据二次函数y=ax2+bx+c的图像判断有关信息29函数y=ax2+bx+c a≠0与y=kx的图象如图所示,现有以下结论:①c=3;②k=3;③3b+c+6=0;④当1<x<3时,x2+b-1x+c<0.其中正确的为.(填写序号即可)30如图,已知二次函数y=ax2+bx+c a≠0的图象与x轴交于点A-1,0,与y轴的交点在0,-2和0,-1之间(不包括这两点),对称轴为直线x=1,下列结论:①4a+2b+c>0;②4ac-b2<8a;③13<a<23;④b>c;⑤直线y=k i(k i>0,i=1,2,3,⋯,2023)与抛物线所有交点的横坐标之和为4046;其中正确结论的个数有()A.2个B.3个C.4个D.5个题型10:二次函数的应用31如图,有一个截面边缘为抛物线型的水泥门洞.门洞内的地面宽度为8m ,两侧距地面4m 高处各有一盏灯,两灯间的水平距离为6m ,则这个门洞内部顶端离地面的距离为()A.7.5B.8C.649D.64732某炮兵部队实弹演习发射一枚炮弹,经x 秒后的高度为y 米,且时间x 与高度y 的关系为y =ax 2+bx .若此炮弹在第5秒与第16秒时的高度相等,则在下列哪一个时间段炮弹的高度达到最高.()A.第8秒B.第10秒C.第12秒D.第15秒33在2023年中考体育考试前,小康对自己某次实心球的训练录像进行了分析,发现实心球飞行路线是一条抛物线,若不考虑空气阻力,实心球的飞行高度y (单位:米)与飞行的水平距离x (单位:米)之间具有函数关系y =-116x 2+58x +32,则小康这次实心球训练的成绩为()A.14米B.12米C.11米D.10米34某池塘的截面如图所示,池底呈抛物线形,在图中建立平面直角坐标系,并标出相关数据(单位:m ).有下列结论:①AB =30m ;②池底所在抛物线的解析式为y =145x 2-5;③池塘最深处到水面CD 的距离为3.2m ;④若池塘中水面的宽度减少为原来的一半,则最深处到水面的距离变为1.2m .其中结论错误的是()A.①B.②C.③D.④35某建筑工程队借助一段废弃的墙体CD,CD长为18米,用76米长的铁栅栏围成两个相连的长方形仓库,为了方便取物,在两个仓库之间留出了1米宽的缺口作通道,在平行于墙的一边留下一个1米宽的缺口作小门,现有如下两份图纸(图纸1点A在线段DC的延长线上,图纸2点A在线段DC上),设AB =x米,图纸1,图纸2的仓库总面积分别为y1平方米,y2平方米.(1)分别写出y1,y2与x的函数关系式;(2)小红说:“y1的最大值为384.y2的最大值为507.”你同意吗?请说明理由.题型11:二次函数的解答证明题36已知二次函数y=-x2+bx+c.(1)当b=4,c=3时,①求该函数图象的顶点坐标.②当-1≤x≤3时,求y的取值范围.(2)当x≤0时,y的最大值为2;当x>0时,y的最大值为3,求二次函数的表达式.37如图,已知二次函数y=-12x2+bx+c的图象与x轴交于A1,0,B,与y轴交于点C0,-52.CD∥x轴交抛物线于点D.(1)求b,c的值.(2)已知点E在抛物线上且位于x轴上方,过E作y轴的平行线分别交AB,CD于点F,G,且GE= 2GD,求点E的坐标.38在直角坐标系中,设函数y=ax2+bx+c(a,b,c是常数,a≠0).(1)已知a=1.①若函数的图象经过0,3和-1,0两点,求函数的表达式;②若将函数图象向下平移两个单位后与x轴恰好有一个交点,求b+c的最小值.(2)若函数图象经过-2,m,-3,n和x0,c,且c<n<m,求x0的取值范围.题型12:二次函数压轴题39在平面直角坐标系中,抛物线y=-x2-4x+c与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,且点A的坐标为-5,0.(1)求点C的坐标;(2)如图1,若点P是第二象限内抛物线上一动点,求三角形ACP面积的最大值;(3)如图2,若点M是抛物线上一点,点N是抛物线对称轴上一点,是否存在点M使以A,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.。

(完整版)中考数学二次函数压轴题题型归纳(最新整理)

(完整版)中考数学二次函数压轴题题型归纳(最新整理)

中考二次函数综合压轴题型归类一、常考点汇总1、两点间的距离公式: AB =2、中点坐标:线段 AB 的中点C 的坐标为:⎛ x A + x By A + y B ⎫, ⎪⎝22 ⎭直线 y = k 1 x + b 1 ( k 1 ≠ 0 )与 y = k 2 x + b 2 ( k 2 ≠ 0 )的位置关系:(1)两直线平行⇔ k 1 = k 2 且b 1 ≠ b 2(2)两直线相交⇔ k 1 ≠ k 2(3)两直线重合⇔ k 1 = k 2 且b 1 = b 23、一元二次方程有整数根问题,解题步骤如下:① 用∆ 和参数的其他要求确定参数的取值范围;(4) 两直线垂直⇔ k 1k 2 = -1② 解方程,求出方程的根;(两种形式:分式、二次根式)③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。

例:关于 x 的一元二次方程 x 2-2(m + 1)x + m 2=0 有两个整数根, m <5 且 m 为整数,求 m 的值。

4、二次函数与 x 轴的交点为整数点问题。

(方法同上)例:若抛物线 y = mx 2 + (3m +1)x + 3 与 x 轴交于两个不同的整数点,且 m 为正整数,试确定此抛物线的解析式。

5、方程总有固定根问题,可以通过解方程的方法求出该固定根。

举例如下:已知关于 x 的方程 mx 2 - 3(m -1)x + 2m - 3 = 0 ( m 为实数),求证:无论 m 为何值,方程总有一个固定的根。

解:当 m = 0 时, x = 1;当 m ≠ 0 时, ∆ = (m - 3)2≥ 0 , x =2m综上所述:无论 m 为何值,方程总有一个固定的根是 1。

, x 1= 2 - 3 、 x m 2= 1 ;6、函数过固定点问题,举例如下:已知抛物线 y = x 2 - mx + m - 2 ( m 是常数),求证:不论 m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。

二次函数知识点总结——题型分类总结

二次函数知识点总结——题型分类总结

二次函数知识点总结——题型分类总结一、二次函数的定义(考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式) 1、下列函数中,是二次函数的是 .①y=x 2-4x+1; ②y=2x 2; ③y=2x 2+4x ; ④y=-3x ; ⑤y=-2x -1; ⑥y=mx 2+nx+p ; ⑦y =(4,x) ; ⑧y=-5x 。

2、在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为s=5t 2+2t ,则t =4秒时,该物体所经过的路程为 。

3、若函数y=(m 2+2m -7)x 2+4x+5是关于x 的二次函数,则m 的取值范围为 。

[4、若函数y=(m -2)x m-2+5x+1是关于x 的二次函数,则m 的值为 。

6、已知函数y=(m -1)x m2 +1+5x -3是二次函数,求m 的值。

二、二次函数的对称轴、顶点、最值}记忆:如果解析式为顶点式:y=a(x -h)2+k ,则对称轴为: ,最值为: ;如果解析式为一般式:y=ax 2+bx+c ,则对称轴为: ,最值为: ; 如果解析式为交点式:y=(x-x 1)(x-x 2), 则对称轴为: ,最值为: 。

1.抛物线y=2x 2+4x+m 2-m 经过坐标原点,则m 的值为 。

2.抛物y=x 2+bx+c 线的顶点坐标为(1,3),则b = ,c = . 3.抛物线y =x 2+3x 的顶点在( )A.第一象限B.第二象限C.第三象限D.第四象限 (4y =ax 2-6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( )5.若直线y =ax +b 不经过二、四象限,则抛物线y =ax 2+bx +c( ) A.开口向上,对称轴是y 轴 B.开口向下,对称轴是y 轴 C.开口向下,对称轴平行于y 轴 D.开口向上,对称轴平行于y 轴6.已知抛物线y =x 2+(m -1)x -14 的顶点的横坐标是2,则m 的值是_ . 7.抛物线y=x 2+2x -3的对称轴是 。

(完整版),初中二次函数知识点及经典题型,文档

(完整版),初中二次函数知识点及经典题型,文档

二次函数的解析式二次函数的解析式有三种形式:2 bx c a b c a y ax 是常数,〔1〕一般一般式:( , , 0)2〔2〕两根当抛物线y ax bx c 与x轴有交点时,即对应二次好方程 2 bx c ax x1 x2有实根和存在时,依照二次三项式的分解因式2 bx c a x x x x 2ax y ax bx c( 1)( 2 ),二次函数可转变为两根式y a( x x1 x x2)( ) 。

若是没有交点,那么不能够这样表示。

a 的绝对值越大,抛物线的张口越小。

2 k a h k a y a x h是常数,〔3〕极点式:( ) ( , , 0)知识点八、二次函数的最值若是自变量的取值范围是全体实数,那么函数在极点处获取最大值〔或最小值〕2b 4ac bx y,即当时,。

最值2a 4ab 若是自变量的取值范围是x1 x x2 ,那么,第一要看可否在自变量取值范2a2b 4ac b围x1 x x2 内,假设在此范围内,那么当 x= 时,;假设不在此范围y最值2a 4a内,那么需要考虑函数在x1 x x2 范围内的增减性,若是在此范围内, y随x的增大而2 2增大,那么当x x2 时,y最大ax bx c,当x x1时,y ax bx1 c;如最小2 2 12果在此范围内, y随x的增大而减小,那么当x x1时,y ax bx1 c,当最大x x212时,y ax bx2 c。

最小2知识点九、二次函数的性质1 、二次函数的性质二次函数函数 2 bx c a b c ay ax ( , , 是常数,0)a>0 a<0yy图像0 x 0 x〔1〕抛物线张口向上,并向上无量延伸;〔1〕抛物线张口向下,并向下无量延伸;b b〔2〕对称轴是 x= ,极点坐标是〔2a 2ab〔2〕对称轴是 x= ,极点坐标是〔2a24ac b ,〕;4a2 b 4ac b,〕;2a 4a性b〔3〕在对称轴的左侧,即当 x< 时,y随2ab〔3〕在对称轴的左侧,即当 x< 时,y2a x的增大而减小;在对称轴的右侧,即当 x随x的增大而增大;在对称轴的右侧,质b b> 时,y随x的增大而增大,简记左即当x> 时,y随x的增大而减小,2a 2a减右增;简记左增右减;b 〔4〕抛物线有最低点,当 x= 时,y有最2ab 〔4〕抛物线有最高点,当 x= 时,y有2a小值,y最小值4ac4ab 2最大值,y最大值4ac4ab 22 bx c a b c a2、二次函数y ax ( , , 是常数, 0) 中,a、b、c 的含义:a a表示张口方向: >0 时,抛物线张口向上a <0 时,抛物线张口向下b b 与对称轴有关:对称轴为 x=2ac c表示抛物线与 y轴的交点坐标:〔 0,〕3、二次函数与一元二次方程的关系一元二次方程的解是其对应的二次函数的图像与 x轴的交点坐标。

(完整word版)九年级二次函数常考题型复习

(完整word版)九年级二次函数常考题型复习

九年级数学二次函数常考题型常考知识点总结:1、二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

注:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2、二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项 3、()2y a x h k =-+的性质:4、二次函数2y ax bx c =++的性质:(1) 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,;当2bx a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a =-时,y 有最小值244ac b a -.(2) 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,;当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -。

5、二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况: (1)已知抛物线上三点的坐标,一般选用一般式;(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; (3)已知抛物线与x 轴的两个交点的横坐标,一般选用两根式; 6、二次函数、二次三项式和一元二次方程之间的内在联系(0a >时):题型:根据图像,判断a 、b 、c 的关系问题。

1、已知二次函数y=ax 2+bx+c (a≠0)的图象如上图所示,•则下列结论:①a 、b 同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=-2时,x 的值只能取0.其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个2、小强从如图所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:(1)0a <;(2) 1c >;(3)0b >;(4) 0a b c ++>; (5)0a b c -+>;你认为其中正确信息的个数有( ) A .2个 B .3个 C .4个 D .5个3、已知=次函数y =ax 2+bx+c 的图象如右上图.则下列5个代数式: ac ,a+b+c ,4a -2b+c , 2a+b ,2a -b 中,其值大于0的个数为( ) A .2个 B .3个 C .4个 D .5个4、二次函数c bx ax y ++=2c b ++这3个式子中,值为正数的有 。

(完整版)中考数学二次函数压轴题题型归纳

(完整版)中考数学二次函数压轴题题型归纳

中考二次函数综合压轴题型归类一、常考点汇总1、两点间的距离公式:()()22B A B A x x y y AB -+-=2、中点坐标:线段AB 的中点C 的坐标为:⎪⎭⎫⎝⎛++22B A B A y y x x ,直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系:(1)两直线平行⇔21k k =且21b b ≠ (2)两直线相交⇔21k k ≠ (3)两直线重合⇔21k k =且21b b = (4)两直线垂直⇔121-=k k3、一元二次方程有整数根问题,解题步骤如下:① 用∆和参数的其他要求确定参数的取值范围;② 解方程,求出方程的根;(两种形式:分式、二次根式)③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。

例:关于x 的一元二次方程()01222=-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。

4、二次函数与x 轴的交点为整数点问题。

(方法同上)例:若抛物线()3132+++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定此抛物线的解析式。

5、方程总有固定根问题,可以通过解方程的方法求出该固定根。

举例如下:已知关于x 的方程23(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。

解:当0=m 时,1=x ;当0≠m 时,()032≥-=∆m ,()m m x 213∆±-=,mx 321-=、12=x ;综上所述:无论m 为何值,方程总有一个固定的根是1。

6、函数过固定点问题,举例如下:已知抛物线22-+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个解:把原解析式变形为关于m 的方程()x m x y -=+-122;∴ ⎩⎨⎧=-=+-01 02 2x x y ,解得:⎩⎨⎧=-=1 1 x y ;∴ 抛物线总经过一个固定的点(1,-1)。

二次函数知识点总结和题型总结

二次函数知识点总结和题型总结

二次函数知识点总结和题型总结y=ax^2+bx+c,则最值为-(b^2-4ac)/(4a))二次函数是高中数学中的重要内容之一,它的基本形式为y=ax^2+bx+c。

其中,a、b、c均为常数,且a不等于0.二次函数的图像是一个抛物线,其开口方向和顶点坐标与a的符号有关。

当a大于0时,抛物线开口向上,顶点坐标为(-b/2a。

c-b^2/4a),对称轴为x=-b/2a;当a小于0时,抛物线开口向下,顶点坐标为(-b/2a。

c-b^2/4a),对称轴为x=-b/2a。

而最值则可以根据解析式直接求出。

除了基本形式外,二次函数还有其他形式,如y=a(x-h)^2+k和y=ax^2+c。

它们的图像形态、顶点坐标、对称轴和最值也有相应的规律。

对于二次函数的题目,需要根据题目中给出的条件确定函数的具体形式,然后再利用对称轴、顶点、最值等性质解决问题。

练时要多做一些不同形式的二次函数题目,熟练掌握各种形式的性质和解题方法。

同时,也要注意二次函数的概念、基本形式和常见变形的记忆,以便在解题时能够迅速确定函数的形式。

1.若二次函数y=ax^2+bx+c的最值为k,则a>0且最值点为(-b/2a,k)。

2.已知抛物线经过坐标原点,即y=0时,x=0,则代入抛物线方程可得m=0.3.抛物线y=x^2+3x的顶点坐标为(-3/2,-9/4),位于第二象限。

4.代入点(2,0)可得a=3/2,顶点坐标为(2/3,-1/4),距离原点的距离为14/3.5.若直线y=ax+b不经过二、四象限,则抛物线y=ax^2+bx+c开口向上,对称轴是y轴。

6.二次函数y=mx^2+(m-1)x+m-1的最小值为1/4,代入可得m=3/2.7.平移步骤:确定抛物线的顶点坐标,然后根据平移规律进行平移。

8.抛物线y=x^2+4x+9的对称轴为x=-2,开口向上,顶点坐标为(-2,1)。

9.抛物线y=2x^2-12x+25的开口向上,顶点坐标为(3,1)。

二次函数实际问题易考题型总结(全)

二次函数实际问题易考题型总结(全)

二次函数实际问题易考题型总结技巧1.二次函数的应用:(1)二次函数常用来解决最优化问题,这类问题实际上就是求函数的最大(小)值;(2)二次函数的应用包括以下方面:分析和表示不同背景下实际问题中变量之间的二次函数关系;运用二次函数的知识解决实际问题中的最大(小)值.注意:二次函数实际问题主要分为两个方面的问题,几何图形面积问题和经济问题。

解几何图形面积问题时要把面积公式中的各个部分分别用同一个未知数表示1,我们要用x分别把h,l表示出来。

经济问题:总利润=出来,如三角形S=hl2总销售额-总成本;总利润=单件利润×销售数量。

解最值问题时,一定要注意自变量的取值范围。

分为三类:①对称轴在取值范围内;②取值范围在对称轴左边;③取值范围在对称轴右边。

2.解决实际问题时的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展等.题型:一、利润最值问题1、某商店销售一种商品,每件的进价为2.50元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.50元时,销售量为500件,而单价每降低1元,就可以多售出200件.请你分析,销售单价多少时,可以获利最大.2.某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价y(元)与销售月份x (月)满足关系式1336 8y x=-+,而其每千克成本2y(元)与销售月份x(月)满足的函数关系如图所示.(1)试确定b,c的值;(2)求出这种水产品每千克的利润y(元)与销售月份x(月)之间的函数关系式;(3)“五一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?3、某食品零售店为食品厂供销一种面包,未售出的面包可退回厂家.经统计销售情况发现,当这种面包的单价定为7角时,每天卖出160个.在此基础上,这种面包的单价每提高1角时,该零售店每天就会少卖出20个.考虑了所有因素后该零售店每个面包的成本是5角.设这种面包的单价为x(角),零售店每天销售这种面包所获得的利润为y(角).⑴用含x的代数式分别表示出每个面包的利润与卖出的面包个数;⑵求y与x之间的函数关系式;⑶当面包单价定为多少时,该零售店每天销售这种面包获得的利润最大?最大利润为多少?二、面积最值问题1.蒋老师的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,蒋老师准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?2、小王家在农村,他家想利用房屋侧面的一面墙,围成一个矩形猪圈(以墙为长人现在已备足可以砌10米长的墙的材料.他想使猪圈的面积最大,你能帮他计算一下矩形的长和宽应当分别是多少米吗?此时猪圈的面积有多大?3.如图,把一张长10cm ,宽8cm 的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使长方体盒子的底面积为48cm 2,那么剪去的正方形的边长为多少?(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.三、图形问题1、学校要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA .O 恰好在水面中心,安置在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.且在过OA 的任意平面上的抛物线如图l -2-36所示,建立平面直角坐标系(如图l -2-37),水流喷出的高度y (m)与水面距离x (m)之间的函数关系式是25322y x x =-++,请回答下列问题: (1)花形柱子OA 的高度;(2)若不计其它因素,水池的半径至少要多少米,才能使喷出的水不至于落在池外?O 2.某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O 的一条抛物线(图中标出的数据为已知条件).在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面米,入水处距池边的距离为4米,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.(1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中完成规定的翻腾动作并调整好入水姿势时,距池边的水平距离为米,问此次跳水会不会失误?并通过计算说明理由.2103335四、图像问题(一)长度最值、平行四边形问题8.如图,抛物线1417452++-=x y 与y 轴交于A 点,过点A 的直线与抛物线交于另一点B ,过点B 作BC ⊥x 轴,垂足为点C(3,0).(1)求直线AB 的函数关系式;(2)动点P 在线段OC 上从原点出发以每秒一个单位的速度向C 移动,过点P 作PN ⊥x 轴,交直线AB 于点M ,交抛物线于点N. 设点P 移动的时间为t 秒,MN 的长度为s 个单位,求s 与t 的函数关系式,并写出t 的取值范围;(3)设在(2)的条件下(不考虑点P 与点O ,点C 重合的情况),连接CM ,BN ,当t 为何值时,四边形BCMN 为平行四边形?问对于所求的t 值,平行四边形BCMN 是否菱形?请说明理由.O xAMNBPC 题22图(二)周长与面积最值问题9.如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E 点的坐标.(三)等腰三角形问题10.如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =.(1)求抛物线的对称轴;(2)写出A B C ,,三点的坐标并求抛物线的解析式;(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.(四)直角三角形 如图,在平面直角坐标系中放置一直角三角板,其顶点为A (0,1),B (2,0),O (0,0),将此三角板绕原点O 逆时针旋转90°,得到△A′B′O.(1)一抛物线经过点A′、B′、B ,求该抛物线的解析式;(2)设点P 是在第一象限内抛物线上的一动点,是否存在点P ,使四边形PB′A′B 的面积是△A′B′O 面积4倍?若存在,请求出P 的坐标;若不存在,请说明理由.(3)在(2)的条件下,试指出四边形PB′A′B 是哪种形状的四边形?并写出四边形PB′A′B 的两条性质.A CB y x0 1 1(五)圆如图,半径为2的⊙C 与x 轴的正半轴交于点A ,与y 轴的正半轴交于点B ,点C 的坐标为(1,0).若抛物线23y x bx c =-++过A 、B 两点. (1)求抛物线的解析式;(2)在抛物线上是否存在点P ,使得∠PBO=∠POB?若存在,求出点P 的坐标;若不存在说明理由;(3)若点M 是抛物线(在第一象限内的部分)上一点,△MAB 的面积为S ,求S 的最大(小)值.(六)分段函数、累计二次函数问题11.启优学堂积极应对2018年世界金融危机,及时调整投资方向,瞄准光伏产业,建成了太阳能光伏电池生产线,由于新产品开发初期成本高,且市场占有率不高等因素的影响,产品投产上市一年来,公司经历了由初期的亏损到后来逐步盈利的过程(公司对经营的盈亏情况每月最后一天结算1次),公司累积获得的利润y(万元)与销售时间第x月之间的函数关系(即前x个月的利润总和y 与x之间的关系)对应的点都在如图所示的图象上,该图象从左至右,依次是线段OA、曲线AB和曲线BC,其中曲线AB为抛物线的一部分,点A为该抛物线的顶点,曲线BC为另一抛物线y=-5x2+205x-1230的一部分,且点A、B、C的横坐标分别为4、10、12。

(完整word版)二次函数知识点总结和题型总结

(完整word版)二次函数知识点总结和题型总结

二次函数知识点总结和题型总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:①a ≠ 0 ②最高次数为2 ③代数式一定是整式2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵a b c,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.例题:例1、已知函数y=(m -1)x m2 +1+5x -3是二次函数,求m 的值。

练习、若函数y=(m 2+2m -7)x 2+4x+5是关于x 的二次函数,则m 的取值范围 为 。

二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

c的性)2h的性4.()2y a x h k=-+的性质:二次函数的对称轴、顶点、最值如果解顶点式-则最值果解析般式y=ax2+bx+c则最值为4ac-b24a)1.抛物线y=2x2+4x+m2-m经过坐标原点,则m的值为。

2.抛物y=x 2+bx+c 线的顶点坐标为(1,3),则b = ,c = . 3.抛物线y =x 2+3x 的顶点在( )A.第一象限B.第二象限C.第三象限D.第四象限4.若抛物线y =ax 2-6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( )5.若直线y =ax +b 不经过二、四象限,则抛物线y =ax 2+bx +c( ) A.开口向上,对称轴是y 轴 B.开口向下,对称轴是y 轴 C.开口向下,对称轴平行于y 轴 D.开口向上,对称轴平行于y 轴6.已知二次函数y=mx 2+(m -1)x+m -1有最小值为0,则m = 。

三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 函数y=ax 2+bx+c 的图象和性质例题:1.抛物线y=x 2+4x+9的对称轴是 。

(完整word版)九年级二次函数题型总结,推荐文档

(完整word版)九年级二次函数题型总结,推荐文档

.:.:增大而减小随在对称轴右侧,增大而增大;随在对称轴左侧,开口向下增大而增大随在对称轴右侧,增大而减小;随在对称轴左侧,开口向上x y x y x y x y 一、二次函数的定义1.下列函数中属于一次函数的是( ),属于反比例函数的是( ),属于二次函数的是( )A .y =x(x +1)B .xy =1C .y =2x 2-2(x +1)2D .132+=x y2.当m 时,函数y =(m -2)x 2+4x -5(m 是常数)是二次函数. 3.若1222)3(---=m mx m m y 是二次函数,则m = .4.若函数y =3x 2的图象与直线y=kx +3的交点为(2,b),则k= ,b = . 5.已知二次函数y =―4x 2-2mx+m 2与反比例函数24m y x+=的图象在第二象限内的一个交点的横坐标是―2,则m 的值是 .二、二次函数的图象与性质)(44)()(22),()44,2)(2222y x ab ac y ky h x a bx hx a bx k h ab ac a b a akh x a y c bx ax y 代入求或将值小最大值小最大时,最值:当时,最值:当对称轴:对称轴:顶点顶点(开口方向开口方向公式-===-==-=--↓↓+-=→----++=1.对于抛物线y =ax 2,下列说法中正确的是( )A .a 越大,抛物线开口越大B .a 越小,抛物线开口越大C .|a |越大,抛物线开口越大D .|a |越小,抛物线开口越大2.下列说法中错误的是( )A .在函数y =-x 2中,当x =0时,y 有最大值0B .在函数y =2x 2中,当x >0时,y 随x 的增大而增大C .抛物线y =2x 2,y =-x 2,221x y -=中,抛物线y =2x 2的开口最小,抛物线 y =-x 2的开口最大D .不论a 是正数还是负数,抛物线y =ax 2的顶点都是坐标原点3.二次函数 y=2(x -3)2+5的图象的开口方向、对称轴和顶点坐标分别为( ) A .开口向下,对称轴x=-3,顶点坐标为(3,5) B .开口向上,对称轴x =3,顶点坐标为(3,5)C .开口向上,对称轴x=-3,顶点坐标为(-3,5)D .开口向下,对称轴x=-3,顶点坐标为(-3,-5)4.已知抛物线的解析式为y=(x -2)2+1,则抛物线的顶点坐标是 ( )A .(-2,1)B .(2,1)C .(2,-1)D .(1,2) 5.已知二次函数y =x 2-4x +5的顶点坐标为( ) A .(-2,-1) B .(2,1) C .(2,-1) D .(-2,1)6.抛物线y=x 2+2x-1的对称轴是 ,当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小.7.抛物线c bx x y ++=23的顶点坐标为)0,32(,则b= ,c= .8.函数y =x 2―2x -l 的最小值是 ;函数y =-x 2+4x 的最大值是 . 9.已知抛物线9)2(2++-=x a x y 的顶点在坐标轴上,则a = .配方),1(3y C ),,2(),,1(21y B y A --二次函数的对称性二次函数)0(2≠++=a c bx ax y : (1)此函数的对称轴为直线ab x 2-=; (2)若函数与x 轴相交于点)0,(),0,(21x B x A ,则对称轴可表示为221x x x +=;(3)若函数与x 轴相交于点),(),,(21n x B n x A (特点是纵坐标相同),则对称轴可表示为221x x x +=.10.抛物线2)1(2++=x a y 的一部分图象如图所示,该抛物线在y 轴右侧部分与x 轴交点坐标是 .11.如图,抛物线的对称轴是x=1,与x 轴交于A 、B 两点,B 点坐标为)0,3(,则点A 的坐标是 .12.抛物线)0()1(2≠+-=a k x a y 与x 轴交于)0,3(),0,(1B x A 两点,则线段AB 的长 . 13.已知二次函数c x x y ++-=22,若点),(),,(2211y x B y x A 在此函数的图象上,且121<<x x ,则21,y y 的大小关系是 .14.已知二次函数c ax x y ++-=2的对称轴是直线1=x ,若点在此函数的图象上,则321,,y y y 的大小关系是15.已知二次函数c bx ax y ++=2中,其函数y 与自变量x 之间的部分对应值如下表:x …… 0 1 2 3 4 …… y……414……点),(),,(2211y x B y x A 在函数的图象上,则当211<<x ,432<<x 时,1y 与2y 的大小关系正确的是( )21212121....y y D y y C y y B y y A ≥≤<>三、二次函数的平移、旋转与对称1.把抛物线2y x =-向左平移一个单位,然后向上平移3个单位,则平移后抛物线的表达式( )3)1(.3)1(.3)1(.3)1(.2222-+-=---=++-=+--=x y D x y C x y B x y A2.抛物线2)1(32-+-=x y 经过平移得到抛物线23x y -=,平移的方法是 A .向左平移1个单位,再向下平移2个单位 B .向右平移1个单位,再向下平移2个单位 C .向左平移1个单位,再向上平移2个单位 D .向右平移1个单位,再向上平移2个单位3.在平面直角坐标系中,如果23x y =的图象不动,而把坐标轴分别向上平移2个单位,向右平移3个单位,那么新坐标系中此抛物线的解析式为 .4.将抛物线6422++-=x x y 的图象向左平移1个单位,再向下平移2个单位,平移后的解析式为 .5.将抛物线c bx x y ++=2的图象向右平移2个单位再向下平移2个单位,所得图象的关系式为322--=x x y ,则b= ,c= . 6.已知抛物线5422--=x x y ,(1)将其绕着顶点旋转180°后抛物线关系式是 .(2)关于y 轴对称的抛物线关系式是 ; (3)关于x 轴对称的抛物线关系式是 ;(4)关于原点对称的抛物线关系式是 .四、确定二次函数的表达式用待定系数法求二次函数的解析式:(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:()()21x x x x a y --=.已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式.1.顶点为(—1,—3),与y 轴交点为(0,—5).2.与x 轴交于A (—1,0)、B (1,0),并经过点M(0,1).3.图像经过点A(0,1)、B(1,2)、C(2,1).4.顶点坐标为(1,3)且在x 轴上截得的线段长为4.5.图象经过点(1,0)、(0,-3),且对称轴是直线x=1.6.已知抛物线c bx x y ++-=2如图所示,求它对应的表达式.五、二次函数的应用 知识铺垫:最值问题 (一)开口向上 1.当对称轴abx 2-=在所给范围内,必在顶点处取得最小值,在离对称轴较远端点处取得最大值; 2.当对称轴abx 2-=不在所给范围内,在离对称轴较远端点处取得最大值,离对称轴较近端点处取得最小值. (二)开口向下1.当对称轴a bx 2-=在所给范围内,必在顶点处取得最大值,在离对称轴较远端点处取得最小值; 2.当对称轴abx 2-=不在所给范围内,在离对称轴较远端点处取得最小值,离对称轴较近端点处取得最大值.1.当22≤≤-x 时,求函数322--=x x y 的最大值和最小值.30m2.当21≤≤x 时,求函数12+--=x x y 的最大值和最小值.3.当0≥x 时,求函数)2(x x y --=的最大值和最小值.几何问题4.在一个直角三角形的内部作一个矩形ABCD ,其中AB 和AD 分别在两直角边上. (1)如果设矩形的一边AB=x m,那么AD 边的长度如何表示?(2)设矩形的面积为y m 2,当x 取何值时,y 的值最大?最大值是多少? (3)若将矩形改为图2所示的位置,其他条件不变,那么矩形的最大面积是多少?5.用长为80 m 的栅栏,再借助外墙围城一个矩形羊圈ABCD ,已知房屋外墙长50 m ,设矩形ABCD 的边AB=x m ,面积为S m 2.(1)写出S 与x 之间的关系式,并指出x 的取值范围;(2)当AB,BC 分别为多少米时,羊圈的面积最大?最大面积是多少?6.有一座抛物线型拱桥,在正常水位时水面宽AB=20 m ,当水位上升3 m 时,水面宽CD=10 m.(1)按如图所示的直角坐标系,求此抛物线的函数表达式;(2)有一条船以5 km/h 的速度向此桥径直行来,当船距离此桥35 km 时,桥下水位正好在AB 处,之后水位每小时上涨0.25 m ,当水位达到CD 处时,将禁止船只通行.如果该船的速度不变,那么它能否安全通过此桥?C40mE40m30m最大利润问题7.某旅馆有客房120间,每间客房的日租金为160元,每天都客满,经市场调查,如果每间客房的日租金增加10元,那么客房每天出租数会减少6间。

二次函数中考复习题型总结归纳

二次函数中考复习题型总结归纳

中考专题之二次函数考点一:二次函数解析式【知识点】三种解析式形式 1.一般式:2+y ax bx c =+(a ≠0).若已知条件是图象上的三个点,则设所求二次函数为2y ax bx c =++,将已知条件代入,求出a 、b 、c 的值.2.交点式(双根式):12()()(0)y a x x x x a =--≠.若已知二次函数图象与x 轴的两个交点的坐标为(x 1,0),(x 2,0),设所求二次函数为12()()y a x x x x =--,将第三点(m ,n)的坐标(其中m 、n 为已知数)或其他已知条件代入,求出待定系数,最后将解析式化为一般形式. 3.顶点式:2()(0)y a x h k a =-+≠.若已知二次函数图象的顶点坐标或对称轴方程与最大值(或最小值),设所求二次函数为2()y a x h k =-+,将已知条件代入,求出待定系数,最后将解析式化为一般形式. 【经典例题】例1 已知一条抛物线经过点 (0,0),(2,4),(4,0),求这个函数关系式。

【变式练习】1.已知二次函数的图象经过A (0,3)、B (1,3)、C (-1,1)三点,求该二次函数的解析式。

2.已知抛物线过A (1,0)和B (4,0)两点,交y 轴于C 点且BC =5,求该二次函数的解析式。

3.已知二次函数的图象的顶点坐标为(1,-6),且经过点(2,-8),求该二次函数的解析式。

4.已知二次函数的图象的顶点坐标为(1,-3),且经过点P(2,0)点,求二次函数的解析式。

5.二次函数的图象经过A(-1,0),B(3,0),函数有最小值-8,求该二次函数的解析式。

考点二:二次函数图像【知识点】一、各种形式的二次函数的图像性质如下表:1.抛物线c bx ax y ++=2中的系数c b a ,,(1)a 决定开口方向,几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.当0>a 时,抛物线开口向上,顶点为其最低点;当0<a 时,抛物线开口向下,顶点为其最高点. (2)b 和a 共同决定抛物线对称轴的位置:当0=b 时,对称轴为y 轴;当a 、b 同号时,对称轴在y 轴左侧;当a 、b 异号时,对称轴在y 轴右侧.(3)c 决定抛物线与y 轴交点位置:当0=c 时,抛物线经过原点; 当0>c 时,相交于y 轴的正半轴;当0<c 时,则相交于y 轴的负半轴. (4).抛物线与x 轴的交点设二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式来判定: (1)240b ac ->⇔抛物线与x 轴有两个交点;(2)240b ac -=⇔抛物线与x 轴有一个交点(顶点在x 轴上); (3)240b ac -<⇔抛物线与x 轴没有交点. 要点诠释:当x =1时,函数y =a+b+c ; 当x =-1时,函数y =a-b+c ; 当a+b+c >0时,x =1与函数图象的交点在x 轴上方,否则在下方; 当a-b+c >0时,x =-1与函数图象的交点在x 轴的上方,否则在下方. 2.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,顶点是),(ab ac a b 4422--,对称轴是直线ab x 2-=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数考点分类复习知识点一:二次函数的定义考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式。

备注:当b=c=0时,二次函数y=ax2是最简单的二次函数. 1、下列函数中,是二次函数的是 . ①y=x 2-4x+1; ②y=2x 2; ③y=2x 2+4x ;④y=-3x ;⑤y=-2x -1; ⑥y=mx 2+nx+p ; ⑦y =; ⑧y=-5x 。

2、在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为s=5t 2+2t ,则t =4秒时,该物体所经过的路程为 。

3、若函数y=(m 2+2m -7)x 2+4x+5是关于x 的二次函数,则m 的取值范围为 。

课后练习:(1)下列函数中,二次函数的是( )A .y=ax 2+bx+cB 。

2)1()2)(2(---+=x x x y C 。

xx y 12+= D 。

y=x(x —1) (2)如果函数1)3(232++-=+-mx x m y m m是二次函数,那么m 的值为知识点二:二次函数的对称轴、顶点、最值1、二次函数 c bx ax y ++=2,当0>a 时⇔抛物线开口向上⇔顶点为其最低点;当0<a 时⇔抛物线开口向下⇔顶点为其最高点2、对于y=ax 2+bx+c 而言,其顶点坐标为( ,).对于y=a (x -h )2+k 而言其顶点坐标为( , )。

二次函数c bx ax y ++=2用配方法或公式法(求h 时可用代入法)可化成:k h x a y +-=2)(的形式,其中h= ,k= 练习:1.抛物线y=2x 2+4x+m 2-m 经过坐标原点,则m 的值为 。

2.抛物y=x 2+bx+c 线的顶点坐标为(1,3),则b = ,c = . 3.抛物线y =x 2+3x 的顶点在( )A.第一象限B.第二象限C.第三象限D.第四象限4.已知抛物线y =x 2+(m -1)x -14 的顶点的横坐标是2,则m 的值是_ .5.若二次函数y=3x 2+mx -3的对称轴是直线x =1,则m = 。

6.当n =______,m =______时,函数y =(m +n)x n+(m -n)x 的图象是抛物线,且其顶点在原点,此抛物线的开口________.。

7.已知二次函数y=x 2-4x+m -3的最小值为3,则m = 。

知识点三:函数y=ax 2+bx+c 的图象和性质 1.抛物线y=x 2+4x+9的对称轴是 。

2.抛物线y=2x 2-12x+25的开口方向是 ,顶点坐标是 。

3.试写出一个开口方向向上,对称轴为直线x =-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 。

4.通过配方,写出下列函数的开口方向、对称轴和顶点坐标:(1)y=12 x 2-2x+1 ; (2)y=-3x 2+8x -2; (3)y=-14 x 2+x -4知识点四:函数y=a(x -h)2的图象与性质 1.填表:2.已知函数y=2x 2,y=2(x -4)2,和y=2(x+1)2。

(1)分别说出各个函数图象的开口方、对称轴和顶点坐标。

(2)分析分别通过怎样的平移。

可以由抛物线y=2x 2得到抛物线y=2(x -4)2和y=2(x+1)2?3.试写出抛物线y=3x 2经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标。

(1)右移2个单位;(2)左移23 个单位;(3)先左移1个单位,再右移4个单位。

4.试说明函数y=12 (x -3)2的图象特点及性质(开口、对称轴、顶点坐标、增减性、最值)。

知识点五:二次函数的增减性1.二次函数y=3x 2-6x+5,当x>1时,y 随x 的增大而 ;当x<1时,y 随x 的增大而 ;当x=1时,函数有最 值是 。

2.已知函数y=4x 2-mx+5,当x> -2时,y 随x 的增大而增大;当x< -2时,y 随x 的增大而减少;则x =1时,y 的值为 。

3.已知二次函数y=x 2-(m+1)x+1,当x ≥1时,y 随x 的增大而增大,则m 的取值范围是 .4.已知二次函数y=-12 x 2+3x+52 的图象上有三点A(x 1,y 1),B(x 2,y 2),C(x 3,y 3)且3<x 1<x 2<x 3,则y 1,y 2,y 3的大小关系为 . 知识点六:二次函数的平移技法:只要两个函数的a 相同,就可以通过平移重合。

将二次函数一般式化为顶点式y=a(x -h)2+k ,平移规律:左加右减,对x ;上加下减,直接加减6.抛物线y= -32x 2向左平移3个单位,再向下平移4个单位,所得到的抛物线的关系式为 。

7.抛物线y= 2x 2, ,可以得到y=2(x+4}2-3。

8.将抛物线y=x 2+1向左平移2个单位,再向下平移3个单位,所得到的抛物线的关系式为 。

知识点七:函数的交点11.抛物线y=x 2+7x+3与直线y=2x+9的交点坐标为 。

12.直线y=7x+1与抛物线y=x 2+3x+5的图象有 个交点。

知识点八:函数的的对称13.抛物线y=2x 2-4x 关于y 轴对称的抛物线的关系式为 。

14.抛物线y=ax 2+bx+c 关于x 轴对称的抛物线为y=2x 2-4x+3,则 a= b= c=知识点九:函数的图象特征与a 、b 、c 的关系①a 的符号判别---开口向上⇔ a 0;开口向下⇔ a 0; ②c 的符号判别---由抛物线的与Y 轴的交点来确定:若交点在y 轴的正半轴⇔c 0; 若交点在y 轴的负半轴⇔c 0; 若交点在原点⇔c 0;③b 的符号由对称轴来确定:(左同右异)对称轴在Y 轴的左侧⇔ a 、b 同号; 对称轴在Y 轴的右侧⇔a 、b 异号。

④a+b+c 的符号由x=1时的点的位置决定;a -b+c 的符号由x=-1时的点的位置决定 点(1,a+b+c )在x 轴上方⇔a+b+c 0点(1,a+b+c )在x 轴下方⇔a+b+c 0 点(-1,a-b+c )在x 轴上方⇔a-b+c 0点(-1,a-b+c )在x 轴下方⇔a-b+c 0⑤b+2a 的符号由对称轴与1的大小关系确定;b -2a 或2a-b 的符号由对称轴与-1的大小关系确定 ⑥△的符号由抛物线与x 轴的交点个数确定⎪⎩⎪⎨⎧0△< 个交点00 =△ 个交点1 0△> 个交点2轴有抛物线与x1.已知抛物线y=ax 2+bx+c 的图象如右图所示,则a 、b 、c 的符号为( ) A.a>0,b>0,c>0 B.a>0,b>0,c=0C.a>0,b<0,c=0D.a>0,b<0,c<02.抛物线y=ax 2+bx+c 中,b =4a ,它的图象如图3,有以下结论:①c>0; ②a+b+c> 0 ③a-b+c> 0 ④b 2-4ac<0 ⑤abc< 0 ;其中正确的为( ) A .①②B .①④C .①②③D .①③⑤3.当b<0是一次函数y=ax+b 与二次函数y=ax 2+bx+c 在同一坐标系内的图象可能是( )4、已知二次函数的图像如图所示,下列结论:⑴a+b+c ﹤0 ⑵a-b+c ﹥0 ⑶abc ﹥0 ⑷b=2a 其中正确的结论的个数是( )A 1B 2C 3D 4知识点十:二次函数与x 轴、y 轴的交点(二次函数与一元二次方程的关系) 知识点:二次函数与x 轴有交点,y=0,;与y 轴有交点,x=0.1. 如果二次函数y =x 2+4x +c 图象与x 轴没有交点,其中c 为整数,则c = (写一个即可) 2. 二次函数y =x 2-2x-3图象与x 轴交点之间的距离为 3. 抛物线y =-3x 2+2x -1的图象与x 轴交点的个数是( ) A.没有交点 B.只有一个交点 C.有两个交点 D.有三个交点4. 若二次函数y =(m+5)x 2+2(m+1)x+m 的图象全部在x 轴的上方,则m 的取值范围是 5. 二次函数2(0)y ax bx c a =++≠的图象如图所示,(1)根据图象写出方程20ax bx c ++=的两个根.(2) 根据图象写出不等式20ax bx c ++>的解集.(3) 若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围.6. 已知二次函数22y x x m =-++的部分图象如图所示,则关于x 的一元二次方程220x x m -++=的解为 .7. 已知函数2y ax bx c =++的图象如图所示,那么关于x 的方程220ax bx c +++=的根的情况是( )8. A .无实数根 B .有两个相等实数根 9. C .有两个异号实数根D .有两个同号不等实数根10. 已知二次函数y=x 2+x+m,当x 取任意实数时,都有y>0,则m 的取值范围是( ) 11. A.m≥14; B.m>14; C.m ≤14; D.m<1412. 已知关于x 的函数y =(m -1)x 2+2x +m 图像与坐标轴有且只有2个交点,则m =13. 已知抛物线m mx x y 222--=的图象与x 轴有两个交点为),0,(1x )0,(2x ,且52221=+x x ,m=-11yx y33 22 11 4 1- 1- 2-O14.已知抛物线y=-x2+mx-m+2.(1)若抛物线与x轴的两个交点A、B分别在原点的两侧,并且AB m的值;(2)设C为抛物线与y轴的交点,若抛物线上存在关于原点对称的两点M、N,并且△MNC的面积等于27,试求m的值.15.如图,抛物线的对称轴是直线x=1,它与x轴交于A、B两点,与y轴交于C点,点A、C的坐标分别是(-1,0)(0,1.5)(1)求此抛物线的函数关系式。

(2)若点P是此抛物线上位于x轴上方的一个动点,求三角形ABP面积的最大值。

(3)问:此抛物线位于x轴的下方是否存在一点Q,,使△ABQ的面积与△ABP的面积相等?如果有,求出该点坐标,如果没有请说明理由。

知识点十一:函数解析式的求法一、已知抛物线上任意三点时,通常设解析式为一般式y=ax2+bx+c,然后解三元方程组求解;1.已知二次函数的图象经过A(0,3)、B(1,3)、C(-1,1)三点,求该二次函数的解析式。

二、已知抛物线的顶点坐标,或抛物线上纵坐标相同的两点和抛物线上另一点时,通常设解析式为顶点式y=a(x-h)2+k 求解。

2.已知二次函数的图象的顶点坐标为(1,-6),且经过点(2,-8),求该二次函数的解析式。

三、已知抛物线与轴的交点的坐标时,通常设解析式为交点式y=a(x -x 1)(x -x 2)。

相关文档
最新文档