南昌大学通信原理实验七 PSK、DPSK调制、解调原理实训

合集下载

七FSK调制与解调实验-通信原理实验多媒体课件

七FSK调制与解调实验-通信原理实验多媒体课件

解调器的设计和构成
解调器是七FSK信号解调的关键,其构成要素包括多路解调器、滤波器、A/D转换器等。
解调器原理
通过特定的解调算法,将多路调制信号分离并输出相应的数字信号。
滤波器作用
通过滤波器将多路信号分离,留下特定的频率信号,以保证数字信号的准确性。
A/D转换器
由于数字信号是以模拟信号的形式进行传输,需要通过A/D转换器将模拟信号还原为数字信 号。
该调制技术的实现需要使用到特定的调制器,实验 将使用锁相环调制器进行信号的处理。
七FSK调制需要将数字信号分为七个不同的频率,这 对载波信号的要求比较高。
七FSK的调制原理较为复杂,需要将多路信号分离, 并进行相应的解调还原工作。
实验器材和传输线路的设置
本实验需要使用到锁相环调制器、信号发生器、示波器、运放等各种设备,还需要设置传输线路以实现信号的 传输和接收。
解决可靠性问题的关键在于,将实验反馈结合专业 理论知识和工程经验,进行创新的改进和完善。
实验数据的图示与解释
实验数据的清晰呈现和解释,对于理解实验结果和优化实验方案十分重要。
在数据可视化方面,我们可以使用简单、明了的图 表展示实验数据,如线性图、柱状图等。
同时,也需要对数据进行分析和解释,分别从数据 趋势、偏移度、有效性等方面进行评估。
类型
常见的FSK调制技术包括两 FSK、四FSK、八FSK等。其 中七FSK作为一种较少使用 的技术,将通过实验来深入 了解。
应用
FSK调制技术广泛应用于数 字广播、移动通信、数据采 集等领域。
七FSK调制原理介绍
七FSK调制技术是将数字信号分为七个不同的频率,通过一定的调制方法来实现信号的传输。
展望
期望在通信原理和相关领域继 续深入学习,并将所学知识应 用到实际工作和项目中,提高 工程实践效率和质量。

通信原理-DPSK调制解调实验

通信原理-DPSK调制解调实验

DPSK调制解调实验一、实验任务利用卷积编码、DPSK调制和前导码等技术构建通信系统,学习其发射机结构和工作原理,学习其接收机结构,实现接收机代码,完成接收信号的滤波、DPSK 解调、定时同步和卷积码译码。

通过该DPSK系统实验,能对通信系统的一般流程与模块功能有更清晰的认识,同时掌握差分编解码方法和基于前导码的定时同步方法。

二、实验基本原理2.1 发射机结构DPSK通信系统发射机如图1所示,具体步骤如下:图 1 发射机结构(1)随机信源比特从指定数据文件中读取。

(2)对二进制序列进行卷积编码,编码器参数是[171,133],编码约束长度是7,编码前在信息比特的末尾添加6个0作为结尾比特。

(3)在编码比特之前插入前导码,前导码由16个固定比特组成,用于接收机的定时同步。

(4)差分编码用于对比特流进行处理,以避免接收端的相位模糊。

(5)差分编码结果映射为BPSK码元,注意: 0映射为+1,1映射为-1。

(6)对BPSK码元上采样,从码元速率Rs上采样到系统采样率Fs。

(7)脉冲成型用平方根升余弦滚降滤波。

(8)最后将信号送往发射电路发射。

2.2 接收机结构DPSK通信系统接收机如图2所示,具体步骤如下:图 2 接收机结构(1)首先对来自接收电路的信号进行匹配滤波。

(2)然后进行DPSK差分相干解调。

(3)通过搜索前导码,确定第一个数据码元的时间位置。

(4)对解调信号进行抽样,得到码元抽样序列。

(5)送入卷积码译码器译码,得到接收比特序列,译码采用matlab函数vitdec, 译码结果要去掉6个尾比特。

2.3 关键信号SendBit:发送的信源比特序列SendBpsk:差分编码后的BPSK码元SendSig: DPSK已调信号RecvSigFiltered:接收信号匹配滤波RecvDpskDemod:DPSK解调信号RecvCorr:前导码相关搜索结果RecvSymbolSampled:码元抽样RecvBit:恢复的数据比特2.4 关键参数系统参数(不可更改):Fs = 200kHz,系统采样率Rs = 10k码元/秒,码元速率SigLen = 200k,发射信号SendSig的采样点数信道参数:Amax = 1,最大信号幅度Pmax = pi,最大相位偏差Fmax = 16,最大频率偏差,单位HzTmax = 0.005,最大时间偏差,单位秒SNR = 0,信噪比三、模块设计与实现3.1 发射机模块1、参数设置,随机信源比特从指定数据文件中读取,获取其长度。

psk调制与解调实验报告

psk调制与解调实验报告

psk调制与解调实验报告Title: PSK Modulation and Demodulation Experiment ReportIntroductionIn the field of communication, modulation and demodulation are essential processes for transmitting and receiving signals. Phase Shift Keying (PSK) is a popular modulation technique that is widely used in various communication systems. In this experiment, we aimed to understand the principles of PSK modulation and demodulation and to demonstrate its application in a practical setting.Experimental SetupThe experimental setup consisted of a signal generator, a PSK modulator, a transmission medium, a PSK demodulator, and an oscilloscope. The signal generator was used to generate the carrier signal, while the PSK modulator was used to modulate the input data onto the carrier signal using phase shift keying. The modulated signal was then transmitted through the transmission medium, and the demodulator was used to recover the original data from the received signal. The oscilloscope was used to visualize and analyze the modulated and demodulated signals.Experimental ProcedureFirst, we set up the signal generator to produce a carrier signal at a specific frequency. We then connected the output of the signal generator to the input of the PSK modulator. Next, we inputted a digital data stream into the modulator,which modulated the data onto the carrier signal using PSK. The modulated signal was then transmitted through the transmission medium to the PSK demodulator. The demodulator recovered the original data from the received signal using PSK demodulation. The modulated and demodulated signals were observed and analyzed using the oscilloscope.Results and AnalysisThe experiment successfully demonstrated the process of PSK modulation and demodulation. The modulated signal exhibited distinct phase shifts corresponding to the input data, which was clearly visible on the oscilloscope. The demodulator was able to accurately recover the original data from the received signal, confirming the effectiveness of PSK demodulation. The experiment also highlighted the robustness of PSK modulation and demodulation in the presence of noise and interference, as the demodulator was able to reliably recover the data even under adverse conditions. ConclusionIn conclusion, the PSK modulation and demodulation experiment provided valuable insights into the principles and applications of phase shift keying in communication systems. The experiment demonstrated the effectiveness of PSK modulation and demodulation in transmitting and recovering digital data, and highlighted its robustness in noisy environments. Overall, the experiment was a success in achieving its objectives and deepening our understanding of PSK modulation and demodulation.。

通信原理实验报告

通信原理实验报告

通信原理实验报告引言:通信原理是现代通信技术的基础,通过实验可以更深入地理解通信原理的各个方面。

本次实验主要涉及到调制解调和频谱分析。

调制解调是将原始信号转换成适合传输的信号形式,频谱分析则是对信号的频域特性进行研究。

通过这些实验,我们可以进一步了解调制解调原理、频谱分析技术以及其在通信领域中的应用。

实验一:调制解调实验调制解调是将信息信号转换为适合传输的信号形式的过程。

在实验中,我们使用了模拟调制技术。

首先,我们通过声卡输入一个带通信号,并将其调制成调幅信号。

接着,通过示波器观察和记录调制信号的波形,并利用解调器将其还原为原始信号。

实验二:频谱分析实验频谱分析是对信号在频域上的特性进行研究。

在实验中,我们使用了频谱分析仪来观察信号的频谱分布情况。

首先,我们输入一个具有特定频率和幅度的正弦信号,并使用频谱分析仪来观察其频谱。

然后,我们改变信号的频率和幅度,继续观察和记录频谱的变化情况。

实验三:应用实验在实际通信中,调制解调和频谱分析技术有着广泛的应用。

通过实验三,我们可以了解到这些技术在通信领域中的具体应用。

例如,我们可以模拟调制解调技术在调制解调器中的应用,观察和分析不同调制方式下的信号特性。

同样,我们可以使用频谱分析仪来研究和理解不同信号在传输过程中的频谱分布。

这些实验将帮助我们更好地理解通信系统中的调制解调和频谱分析技术,从而为实际应用提供支持。

结论:通过本次实验,我们对通信原理中的调制解调和频谱分析技术有了更深入的了解。

调制解调是将信息信号转换为适合传输的信号形式,而频谱分析则是对信号的频域特性进行研究。

这些技术在通信领域中有着广泛的应用,对于实际通信系统的设计和优化非常重要。

通过实验的学习和实践,我们能够更好地掌握调制解调和频谱分析的原理和应用,从而提高我们在通信领域中的能力和技术水平。

总结:通过本次实验,我们对通信原理中的调制解调和频谱分析技术进行了学习和实践。

通过实验的过程,我们深入了解了这些技术的原理和应用,并通过观察和记录不同信号的波形和频谱特征,加深了我们对通信原理的理解。

通信原理教案 实验六 二相 BPSK DOSK 调制解调实验

通信原理教案 实验六  二相 BPSK DOSK 调制解调实验

实验六二相BPSK、DPSK调制解调实验(理论课:教材第七章P188)实验内容1.二相BPSK调制解调实验2.二相DPSK调制解调实验3.PSK解调载波提取实验实验目的1.掌握二相BPSK(DPSK)调制解调的工作原理及电路组成。

2.了解载频信号的产生方法。

3.掌握二相绝对码与相对码的码变换方法。

一、二相BPSK、DPSK调制实验(一)、重点概念回顾关于调制的概念,所谓调制,就是把信号转换成适合在信道中传输的形式的一种过程。

广义的调制分为基带调制和带通调制(也成为载波调制)在无线通信中和其他场合,调制一词均指载波调制。

载波调制,就是用调制信号去控制载波的参数的过程,使载波的某一个或某几个参数按照调制信号的规律而变化。

调制信号是指来自信息源的消息信号(基带信号)这些信号可以是模拟的,也可以是数字的。

未受调制的周期性振荡信号称为载波,它可以是正弦波,也可以是非正弦波(如周期性脉冲序列)。

载波调制后称为已调信号,它含有调制信号的全部特征。

解调(也称检波)则是调制的逆过程,其作用是将已调信号中的调制信号恢复出来。

1调制方式有很多,主要分两大类:连续波调制和脉冲调制。

连续波调制包括三类有:线性调制,非线性调制,数字调制。

1、线性调制里有:AM常规双边带调制、DSB双边带调制、SSB单边带调制、VSB残留边带调制。

2、非线性调制里有:FM频率调制、PM相位调制两种3、数字调制里有:ASK振幅键控、FSK频率键控和PSK、DPSK、QPSK 相移键控。

脉冲调制方式里有两大类:脉冲模拟调制和脉冲数字调制、1、脉冲模拟调制有三种:PAM脉冲幅度调制、PDM(PWM)脉冲宽度调制和PPM脉位调制2、脉冲数字调制有四种:PCM脉码调制、增量调制、DPCM差分脉码调制和ADOCM其它话音编码方式。

本节课程主要讲的是数字调制里的相移键控调制PSK DPSK方式。

首先几个名词介绍:1、绝对移相调制(BPSK):二相绝对移相调制(PSK或BPSK):是采用直接调相法来实现的,就是用基带信号直接控制载波相位的变化来实现相位调制的。

BPSK(DPSK)调制解调实验指导书

BPSK(DPSK)调制解调实验指导书

电子科技大学通信学院《二相BPSK(DPSK)调制解调实验指导书》二相BPSK(DPSK)调制解调实验班级学生学号教师二相BPSK(DPSK)调制解调实验指导书二相BPSK(DPSK)调制解调实验一、实验目的1、掌握二相BPSK(DPSK)调制解调的工作原理。

2、掌握二相绝对码与相对码的变换方法。

3、熟悉BPSK(DPSK)调制解调过程中各个环节的输入与输出波形。

4、了解载波同步锁相环的原理与构成,观察锁相环各部分工作波形。

5、了解码间串扰现象产生的原因与解决方法,能够从时域和频域上分析经过升余弦滚降滤波器前后的信号。

6、掌握Matlab软件的基本使用方法,学会Simulink环境的基本操作与应用。

二、实验原理数字信号载波调制有三种基本的调制方式:幅移键控(ASK),频移键控(FSK)和相移键控(PSK)。

它们分别是用数字基带信号控制高频载波的参数如振幅、频率和相位,得到数字带通信号。

PSK调制在数字通信系统中是一种极重要的调制方式,它的抗干扰噪声性能及通频带的利用率均优于ASK幅移键控和FSK频移键控。

由于PSK调制具有恒包络特性,频带利用率比FSK高,并在相同的信噪比条件下误码率比FSK低。

同时PSK调制的实现也比较简单。

因此,PSK技术在中、高数据传输中得到了十分广泛的应用。

BPSK是利用载波相位的变化来传递数字信息,而振幅和频率保持不变。

在BPSK中,通常用初始相位0和π分别表示二进制“1”和“0”。

其调制原理框图如图1所示,解调原理框图如图2所示。

图1 BPSK的模拟调制方式由于在BPSK 信号的载波恢复过程中存在着载波相位0 和180 的不确定性反向,所以在实际的BPSK 通信系统设计中,往往采用差分编解码的方法克服这个问题。

差分编解码是利用前后信号相位的跳变来承载信息码元,不再是以载波的绝对相位传输码元信息。

差分编解码的原理可用下式描述。

1n n n d b d -=⊕ 1ˆˆˆn n n b d d -=⊕ 其中第一个公式为差分编码原理,第二个公式为差分解码原理。

psk调制解调实验报告

psk调制解调实验报告

psk调制解调实验报告PSK调制解调实验报告引言:在现代通信系统中,调制解调是一项重要的技术,它能够将数字信号转化为模拟信号以便在信道中传输,并在接收端将模拟信号恢复为数字信号。

相位移键控(Phase Shift Keying,PSK)调制解调技术是一种常用的数字调制技术,本实验旨在通过实际操作,加深对PSK调制解调原理的理解。

实验目的:1. 了解PSK调制解调原理;2. 掌握PSK调制解调的实验操作;3. 分析调制解调过程中的误码率。

实验装置:1. 信号发生器;2. 调制解调器;3. 示波器;4. 计算机。

实验步骤:1. 搭建实验装置,将信号发生器与调制解调器相连,调制解调器再与示波器相连;2. 设置信号发生器的频率和幅度,选择合适的PSK调制方式;3. 通过调制解调器将数字信号转化为模拟信号,并通过示波器观察调制后的波形;4. 将调制后的信号输入到解调器中,通过示波器观察解调后的波形;5. 通过计算机对解调后的信号进行误码率分析。

实验结果:在实验中,我们选择了二进制相位键控(Binary Phase Shift Keying,BPSK)调制方式进行实验。

通过调制解调器将数字信号转化为模拟信号后,我们观察到示波器上出现了两种不同相位的波形,即0°和180°相位差。

这符合BPSK调制的特点,即将二进制数字0和1分别映射为不同的相位。

在解调过程中,我们将调制后的信号输入到解调器中,通过示波器观察到解调后的波形与原始数字信号一致。

这表明解调器能够正确恢复出原始的数字信号。

通过计算机对解调后的信号进行误码率分析,我们发现在理想情况下,误码率为0。

然而,在实际通信系统中,由于信道噪声等因素的影响,误码率往往不为0。

因此,我们需要采取一定的纠错编码技术来提高系统的可靠性。

实验结论:本实验通过实际操作,加深了对PSK调制解调原理的理解。

通过观察调制解调过程中的波形变化和分析误码率,我们了解到PSK调制解调技术在数字通信系统中的重要性。

通信原理实验报告

通信原理实验报告

通信原理实验报告七实验十六:眼图实验——2014xxxxxx 许子涵一、实验目的1、了解眼图与信噪比、码间干扰之间的关系及其实际意义;2、掌握眼图观测的方法并记录研究二、实验内容1、观测眼图并记录分析。

三、实验器材1、信号源模块一块2、③号模块一块3、④号模块一块4、 20M 双踪示波器一台四、实验数据1、ASK调制解调眼图ASK-DOUT TH2FSK眼图PSK/DPSK眼图五、分析眼图是通过用示波器观察接收端的基带信号波形,从而估计和调整系统性能的一种方法。

具体做法是:用一个示波器跨接在抽样判决器的输入端,然后调整示波器水平扫描周期,使其与接收码元的周期同步。

这样就可以从示波器上显示的波形来观察码间串扰和信道噪声等因素影响的情况,从而估计系统系能的优劣。

如果存在码间串扰,示波器的扫描迹线就不完全重合,“眼睛”的线迹会显得杂乱,而且张开的较小;如果码间串扰小到可以忽略,则眼图将会是标准的“大眼睛”。

当存在噪声时,眼图的线迹就变成比较模糊的带状的线,噪声越大,线条越粗越模糊,“眼睛”张开得越小。

同时我们还可以利用眼图来找到最佳判决门限,求出噪声容限,改善系统性能。

接收二进制双极性波形时,在一个码元周期内只能看到一只眼睛;若是M进制的双极性波形,则在一个码元周期内可以看到纵向显示的(M-1)只眼睛。

若接收的是经过码型变换后得到的AMI码或HDB3码,眼图中间将会出现一根代表0的水平线,因为它们的波形都具有三电平。

六、思考题思考信噪比、码间干扰是如何在眼图中体现的?答:眼图的“眼睛”张开的大小反映着码间串扰的强弱。

“眼睛”张的越大,且眼图越端正,表示码间串扰越小;反之表示码间串扰越大。

当存在噪声时,噪声将叠加在信号上,观察到的眼图的线迹会变得模糊不清。

若同时存在码间串扰,“眼睛”将张开得更小。

与无码间串扰时的眼图相比,原来清晰端正的细线迹,变成了比较模糊的带状线,而且不很端正。

噪声越大,线迹越宽,越模糊;码间串扰越大,眼图越不端正。

试验7PSKDPSK调制解调试验

试验7PSKDPSK调制解调试验

实验7 PSK DPSK调制解调实验、、实验目的1.掌握PSK DPSK调制解调的工作原理及性能要求;2.进行PSK DPSK调制、解调实验,掌握电路调整测试方法;3.掌握二相绝对码与相对码的码变换方法。

二、实验仪器1.信道编码与ASK、FSK、PSK、QPSK调制,位号:A、B位2. PSK/QPSK解调模块,位号:C位3.时钟与基带数据发生模块,位号:G位4.复接/解复接、同步技术模块,位号:I位5. 100乂双踪示波器1台6.信号连接线6根三、实验原理(一) PSK、DPSK调制电路工作原理PSK和QPSK采用了和FSK相同的实验模块:“信道编码与ASK、FSK、PSK、QPSK调制”模块,该模块由于采用了可编程的逻辑器件,因此通过切换内部的编程单元,即可输出不同的调制内容,PSK, DPSK调制电路原理框图如下如所示:图4-1中,基带数据时钟和数据,通过JCLK和JD两个铆孔输入到可编程逻辑器件中,由可编程逻辑器件根据设置的工作模式,完成PSK和DPSK的调制,因为可编程逻辑器件为纯数字运算器件,因此调制后输出需要经过D/A器件,完成数字到模拟的转换,然后经过模拟电路对信号进行调整输出,加入跟随器,完成了整个调制系统。

PSK/DPSK调制系统中,默认输入信号应该为32K的时钟信号,在时钟与基带数据发生模块有32K的M 序列输出,可供该实验使用,可以通过连线将时钟和数据送到JCLK和」口输入端。

标有PSK.DPSK个输出铆孔为调制信号的输出测量点,可以通过按动模块上的SW01按钮,切换PSK.DPSK铆孔输出信号为PSK或DPSK,同时LED指示灯会指示当前输出内容的工作状态。

2.相位键控解调电路工作原理二相PSK(DPSK)解调器电路采用科斯塔斯环(Constas环)解调,其原理如图7—2所4-2 解调器原理方框图1)解调信号输入电路输入电路由晶体三极管跟随器和运算放大器38U01组成的整形放大器构成,采用跟随器是为了发送(调制器)和接收(解调器)电路之间的隔离,从而使它们工作互不影响。

实验报告书PSK(DPSK)调制与解调实验

实验报告书PSK(DPSK)调制与解调实验

电子信息学院实验报告书课程名:《通信原理》题目:PSK(DPSK)调制与解调实验评语:成绩:指导教师:杨宇批阅时间:年月日1、实验目的1、掌握绝对码、相对码的概念以及它们之间的变换关系和变换方法。

2、掌握产生PSK(DPSK)信号的方法。

3、掌握PSK(DPSK)信号的频谱特性。

2、实验内容1、观察绝对码和相对码的波形。

2、观察PSK(DPSK)信号波形。

3、观察PSK(DPSK)信号频谱。

4、观察PSK(DPSK)相干解调器各点波形。

3、实验原理1、2PSK(2DPSK)调制原理2PSK 信号是用载波相位的变化表征被传输信息状态的,通常规定0相位载波和π相位载波分别代表传1和传0,其时域波形示意图如图13-1所示。

设二进制单极性码为a n ,其对应的双极性二进制码为b n ,则2PSK 信号的一般时域数学表达式为: t nT t g b t S c n s n PSK ωcos )()(2⎥⎦⎤⎢⎣⎡-=∑(13-1)其中: ⎩⎨⎧=-=P a Pa b n n n -时,概率为=当+时,概率为当11101则(13-1)式可变为:()()⎪⎪⎩⎪⎪⎨⎧=+⎥⎦⎤⎢⎣⎡-=+⎥⎦⎤⎢⎣⎡-∑∑10cos )(0cos )(2n c ns n c n s PSK a t nT t g a t nT t g t S 当当)=(ωπω (13-2) 图13-1 2PSK 信号的时域波形示意图由(13-1)式可见,2PSK 信号是一种双边带信号,其双边功率谱表达式与2ASK 的几乎相同,即为: +⎥⎦⎤⎢⎣⎡-++-=222)()()1()(c f f G c f f G P P f f P s PSK [])()()0()1(41222c c s f f f f G P f -++-ζζ (13-3)2PSK 信号的谱零点带宽与2ASK 的相同,即 s s s c s c PSK T R R f R f B /22)()(2==--+=(Hz ) (13-4)我们知道,2PSK 信号是用载波的不同相位直接去表示相应的数字信号而得出的,在这种绝对移相的方式中,由于发送端是以某一个相位作为基准的,因而在接收系统也必须有这样一个固定基准相位作参考。

通信原理psk和Dpsk实验报告

通信原理psk和Dpsk实验报告

五、实验步骤与结果:
1、如下图所示,通道一是PSK调制输出信号,通道二十基带信号。

基带信号为高电平时是一种相位,基带信号为低电平时是反向相位,在基带信号突变处,可以看出PSK发生方向。

2、通道一是绝对码,通道二是相对码,当绝对码是高电平时,相对码发生变化,但是会有一定的延时。

3、如下图,通道一是绝对码,通道二是DPSK,当绝对码为“1”时,DPSK发生相位改变,如下图右半部分连续三个“1”,DPSK连续变化3次。

4、下图是PSK解调输出,可以看到2个“倒pi”现象。

5下图是DPSK解调输出,消除了“倒pi”现象。

通信141-实验7 PSK DPSK调制解调实验

通信141-实验7 PSK DPSK调制解调实验

信息工程学院实验报告课程名称: 通信原理实验项目名称:时分复用解复用(TDM )实验 实验时间:2016.12.13 班级: 姓名: 学号:一、实验目的1. 掌握PSK DPSK 调制解调的工作原理及性能要求;2. 进行PSK DPSK 调制、解调实验,掌握电路调整测试方法;3. 掌握二相绝对码与相对码的码变换方法。

二、实验仪器1.信道编码与ASK 、FSK 、PSK 、QPSK 调制,位号:A 、B 位 2.PSK/QPSK 解调模块,位号:C 位 3.时钟与基带数据发生模块,位号: G 位 4.复接/解复接、同步技术模块,位号:I 位 5.100M 双踪示波器1台 6.信号连接线6根三、实验步骤1.插入有关实验模块在关闭系统电源的情况下,按照下表放置实验模块:对应位号可见底板右上角的“实验模块位置分布表”,注意模块插头与底板插座的防呆口一致。

2.信号线连接使用专用导线按照下表进行信号线连接:3.加电打开系统电源开关,底板的电源指示灯正常显示。

若电源指示灯显示不正常,请立即关闭电源,查找异常原因。

4.实验内容设置拨码器“4SW02”(G)设置为“00001”,4P01产生32K的15位m序列输出;按动SW01(AB)按钮,使“L01”指示灯亮,“PSK DPSK”输出为PSK调制;将“PSK QPSK解调模块”两个跳线(38K01和38K02)开关插到左侧,选择PSK解调模式。

(一)PSK调制/解调实验1.PSK调制信号观测用示波器通道1接JD(AB),用示波器通道2接“PSK DPSK”(AB),分别观测32K基带信号数据和PSK调制信号,记录实验结果。

分析PSK调制的相位情况。

2.PSK解调后信号观测:●无噪声PSK解调观测(1)调节3W01(E),使3TP01信号幅度为0,即传输的PSK调制信号不加入噪声。

(2)用示波器分别观测JD(AB)和38P02(C),对比调制前基带数据和解调后基带数据。

dpsk调制解调原理

dpsk调制解调原理

dpsk调制解调原理DPSK调制解调原理。

DPSK(Differential Phase Shift Keying)是一种相位调制技术,它在数字通信系统中被广泛应用。

相对于传统的PSK(Phase Shift Keying)调制技术,DPSK具有一定的优势和特点。

本文将介绍DPSK调制解调的原理,以及其在通信系统中的应用。

DPSK调制是一种差分相位调制技术,它通过在相邻的两个符号之间的相位差来传输数字信息。

在DPSK调制中,相位的变化表示数字信息的改变,而不是绝对相位的取值。

这使得DPSK调制对相位漂移和噪声有一定的鲁棒性,能够在一定程度上提高通信系统的性能。

DPSK调制的原理可以简单描述为,首先将数字信号分割成不同的符号,然后计算相邻符号之间的相位差,最后将相位差作为调制信号传输。

在接收端,解调器会检测相邻符号之间的相位差,从而恢复传输的数字信息。

DPSK调制的优点之一是其相对简单的硬件实现。

由于DPSK调制不需要精确地恢复绝对相位,因此在实际应用中可以采用简单的解调器结构。

这降低了通信系统的成本,并提高了系统的可靠性。

此外,DPSK调制还具有一定的抗多径干扰的能力。

在无线通信系统中,多径效应会导致信号的传输路径不唯一,从而引入相位失真和干扰。

DPSK调制通过相对相位变化来传输数字信息,相对于PSK调制来说,对多径干扰有一定的抵抗能力。

在实际应用中,DPSK调制被广泛应用于数字通信系统中,特别是在卫星通信、无线通信和光纤通信中。

由于其简单的硬件实现和良好的抗干扰能力,DPSK调制成为了一种重要的调制技术。

总之,DPSK调制是一种重要的数字调制技术,它通过相对相位的变化来传输数字信息,具有简单的硬件实现和良好的抗干扰能力。

在数字通信系统中,DPSK调制发挥着重要的作用,为通信系统的性能提升和成本降低做出了贡献。

通信原理实验:二相BPSK调制解调、FSK调制解调实验

通信原理实验:二相BPSK调制解调、FSK调制解调实验

实验七二相BPSK调制解调、FSK调制解调实验实验日期班级学号姓名实验环境Commsim通信仿真软件1 实验目的(1)掌握二相BPSK(DPSK)调制解调的工作原理及电路组成。

(2)了解载频信号的产生方法。

(3)掌握二相绝对码与相对码的码变换方法。

(4)理解FSK调制的工作原理及电路组成。

(5)理解利用锁相环解调FSK的原理和实现方法。

2 实验内容2.1 二相BPSK(DPSK)调制解2.1.1 实验原理(一)调制实验:在本实验中,绝对移相键控(PSK)是采用直接调相法来实现的,也就是用输入的基带信号直接控制已输入载波相位的变化来实现相位键控。

图9-1是二相PSK(DPSK)调制器电路框图。

图9-2是它的电原理图。

PSK调制在数字通信系统中是一种极重要的调制方式,它的抗干扰噪声性能及通频带的利用率均优先于ASK移幅键控和FSK移频键控。

因此,PSK技术在中、高速数据传输中得到了十分广泛的应用。

下面对图9-2中的电路作一分析。

1.载波倒相器模拟信号的倒相通常采用运放作倒相器,电路由U304等组成,来自1.024MHz载波信号输入到U304的反相输入端2脚,在输出端即可得到一个反相的载波信号,即π相载波信号。

为了使0相载波与π相载波的幅度相等,在电路中加了电位器W302。

2.模拟开关相乘器对载波的相移键控是用模拟开关电路实现的。

0相载波与π相载波分别加到模拟开关1:U302:A的输入端(1脚)、模拟开关2:U302:B的输入端(11脚),在数字基带信号的信码中,它的正极性加到模拟开关1的输入控制端(13脚),它反极性加到模拟开关2的输入控制端(12脚)。

用来控制两个同频反相载波的通断。

当信码为“1”码时,模拟开关1的输入控制端为高电平,模拟开关1导通,输出0相载波,而模拟开关2的输入控制端为低电平,模拟开关2截止。

反之,当信码为“0”码时,模拟开关1的输入控制端为低电平,模拟开关1截止。

而模拟开关2的输入控制端却为高电平,模拟开关2导通。

通信原理实验八 PSK DPSK 调制、解调原理实训

通信原理实验八 PSK DPSK 调制、解调原理实训

实验八 PSK/DPSK 调制、解调原理实训一、实验目的1、掌握二相 BPSK(DPSK)调制解调的工作原理及电路组成;2、了解载频信号的产生方法;3、掌握二相绝对码与相对码的码变换方法。

图 8-1 PSK/DPSK 调制解调实验模块二、实验电路工作原理(一)调制实验:在本实验中,绝对移相键控(PSK)是采用直接调相法来实现的,也就是用输入的基带信号直接控制已输入载波相位的变化来实现相移键控。

本实验中PSK 调制二相PSK(DPSK)的载波为1.024MHz,数字基带信号有32Kbit/s 伪随机码、2KHz 方波、CVSD 编码信号等。

模拟信号1.024MHz 载波输入到载波倒相器的反相输入端,在输出端即可得到一个反相的载波信号,即π相载波信号。

调节电位器VR801 和VR802 可使0 相载波与π相载波的幅度相等。

对载波的相移键控是用模拟开关电路实现的。

0 相载波与π相载波分别加到两个模拟开关的输入端,在数字基带信号的信码中,它的正极性加到模拟开关1 的输入控制端,它反极性加到模拟开关2 的输入控制端,用来控制两个同频反相载波的通断。

当信码为“1”码时,模拟开关1 的输入控制端为高电平,开关1 导通,输出0 相载波;而模拟开关2 的输入控制端为低电平,开关2 截止。

反之,当信码为“0”码时,模拟开关1 的输入控制端为低电平,开关1 截止;而模拟开关2 的输入控制端却为高电平,开关2 导通,输出π相载波。

两个模拟开关的输出通过载波输出开关J801 合路叠加后输出为二相PSK 调制信号。

DPSK 是利用前后相邻码元对应的载波相对相移来表示数字信息的一种相移键控方式。

绝对码是以基带信号码元的电平直接表示数字信息的,如规定高电平代表“1”,低电平代表“0”。

相对码是用基带信号码元的电平与前一码元的电平有无变化来表示数字信息的,如规定:相对码中有跳变表示1,无跳变表示0。

(二)解调实验:该解调器由三部分组成:载波提取电路、位定时恢复电路与信码再生整形电路。

通信原理实验报告

通信原理实验报告

通信原理实验报告本次实验是关于通信原理的实验,学生需要通过实验掌握通信原理的基本知识和技能。

实验目的:通过实验了解调制、解调、信道编码和解码的原理和实现方法;通过实验了解不同调制方式的特点及其在不同场合下的应用;通过实验掌握信道编码和解码的基本知识和技能。

1.调制和解调调制是将信息信号与载波信号相互作用,使信息信号的某种特征随载波信号的某种特征而变化,以便在通信中传输信息信号。

解调是将调制好的信号传输后,再进行还原,恢复出原始的信号。

2.信道编码和解码信道编码是为了增加信道传输的可靠性而引入的方法。

信道编码器在将信息码变成接收端能够正确识别的码的同时,对信息码进行附加冗余编码,以容忍信道中出现的错误。

信道解码则是接收端对接收到的码进行校验,发现错误并进行纠正或重传。

实验内容:先通过MATLAB生成一个基带数字信号,然后分别采用ASK,FSK,PSK三种调制方式进行调制,并对调制后的信号进行解调,核实解调后音频信号是否与原始基带信号保持一致。

利用信号发生器和示波器进行调制和解调过程演示,实现调幅调频和调相调频的音频信号传输。

分别采用卷积码,RS码,Turbo码三种编码方式对信息进行编码,在发送端进行编码,接收端进行解码。

实验结果:在信号发生器上设置998Hz的音频信号,采用模拟调制调幅调频和调相调频两种方式传输音频信号。

在示波器上观测到调幅调频的信号波形和音频信号波形基本保持一致,调相调频的信号波形相位偏移后变化,但音频信号波形基本保持一致。

通过本次实验,学生掌握了调制、解调、信道编码和解码的基础知识和技能,通过实验了解不同调制方式的特点及其在不同场合下的应用,掌握卷积码,RS码和Turbo码三种编码方式的基本知识和技能。

通信原理实验报告

通信原理实验报告

通信原理实验报告实验目的,通过本次实验,掌握数字通信原理的基本知识,了解数字信号的调制与解调原理,掌握数字通信系统的基本结构和工作原理。

实验仪器,数字信号发生器、示波器、频谱分析仪、数字通信系统实验箱等。

实验原理,数字通信是利用数字信号进行信息传输的通信方式。

在数字通信中,数字信号经过调制器调制成模拟信号,通过信道传输到接收端,再经过解调器解调为数字信号,最终恢复原始信号。

本次实验主要涉及到的调制方式有ASK、FSK和PSK。

实验步骤:1. 连接实验仪器,首先将数字信号发生器连接到示波器和频谱分析仪上,然后将示波器连接到数字通信系统实验箱的发送端,频谱分析仪连接到接收端。

2. 设置数字信号发生器,根据实验要求,设置数字信号发生器的频率、幅度和波形。

3. 进行调制实验,依次进行ASK、FSK和PSK的调制实验,观察发送端的波形和频谱,并记录相关数据。

4. 进行解调实验,将接收端连接到示波器上,依次进行ASK、FSK和PSK的解调实验,观察接收端的波形和频谱,并记录相关数据。

5. 数据分析,根据实验数据,分析不同调制方式的特点和性能,比较它们的优缺点。

实验结果:经过实验,我们得到了不同调制方式的波形和频谱图,通过数据分析,我们得出了以下结论:1. ASK调制适用于带宽较窄的通信系统,但抗干扰能力较差。

2. FSK调制适用于抗干扰能力要求较高的通信系统,但带宽较宽。

3. PSK调制适用于对频谱利用率要求较高的通信系统。

结论,本次实验通过实际操作,加深了对数字通信原理的理解,掌握了数字信号的调制与解调原理,对数字通信系统的基本结构和工作原理有了更深入的认识。

实验总结,数字通信技术是现代通信领域的重要组成部分,通过本次实验,我们对数字通信原理有了更加深入的了解,这对我们今后的学习和工作都具有重要意义。

通过本次实验,我们不仅学到了理论知识,还掌握了实际操作的技能,这对我们今后的学习和工作都具有重要意义。

希望在今后的实验中,我们能够继续努力,不断提高自己的实验能力,为今后的科研工作打下坚实的基础。

南昌大学通信原理综合设计实验FSK PSK调制与解调 实验报告

南昌大学通信原理综合设计实验FSK PSK调制与解调 实验报告

实验报告课程名称:通信原理综合设计实验指导老师:学生姓名:学号:专业班级:2016年06月16 日实验一 7位伪随机码1110010设计一、实验目的1、了解数字信号的波形特点2、掌握D触发器延时设计数字电路的原理及方;3、熟悉Multisim 13.0软件的使用二、设计要求设计7位伪随机码1110010,要求输出波形没有毛刺和抖动,波形稳定效果较好,可用于后续的综合设计实验。

三、实验原理与仿真电路及结果要求产生7位伪随机码,根据M=2n-1=7,所以n=3,需要3个D触发器,在32KHz正弦波或方波的时钟信号触发下,第三个D触发器输出端产生1110010的7位伪随机绝对码。

仿真电路及波形结果如下:图一、7位伪随机码1110010产生电路图二、7位伪随机码1110010波形观察结果波形发现,伪随机码波形频率较之信号源波形(32KHz)减小了,但幅值不变仍为5v.四、实验心得与体会本实验原理较为简单,在大二上学期的《数字电路与逻辑设计》课程中已经学习过,且实验前老师也给出了电路,故完成实验只需要简单的搭建仿真电路即可,产生正确的随机码波形也为后两个设计实验做好准备。

通过本次设计实验,我重新复习了数字电路逻辑设计中的D触发器产生特定数字序列的知识,同时也熟练了Multisim软件的使用,为后续综合设计实验打下基础。

实验二 2FSK调制、解调电路综合设计一、实验目的1、掌握2FSK调制和解调的工作原理及电路组成2、学会低通滤波器和放大器的设计3、掌握LM311设计抽样判决器的方法、判决门限的合理设定4、进一步熟悉Multisim13.0的使用二、设计要求设计2FSK调制解调电路,载波f1=128KHz,f2=256KHz,基带信号位7位伪随机绝对码(1110010)要求调制的信号波形失真小,不会被解调电路影响,并且解调出来的基带信号尽量延时小、判决准确。

三、实验电路与结果➢实验总电路图图一、FSK调制、解调总电路➢调制电路1)实验所用的128KHz和256KHz载波正弦信号由对应频率的方波通过高低通滤波得到,子电路如下:图二、128KHz正弦载波信号生成电路图三、256KHz正弦载波信号生成电路2)实验基带信号7位伪随机码子电路(同实验一)如下:图四、基带信号1110010生成子电路3)128KHz、256KHz载波信号、基带信号、已调信号波形:图五、载波、基带及已调信号波形➢解调电路1)解调部分电路如下:图六、FSK解调电路以上电路中,解调运用的仍是4066芯片的开关特性来实现:将已调信号接入4066中并分别用128 KHz 、256KHz的信号源方波“识别”出已调信号中的128 KHz 和256KHz 频率的正弦信号,然后经过两个相同的32KHz(生成伪随机码的信号源频率)的低通滤波器,滤出含有基带信号的“混合”波形,最后将这两路信号接入LM311比较器,根据课本知识,这一步实现的是两路信号的比较,谁大输出谁,最终输出解调信号。

PSK(DPSK)及QPSK 调制解调实验报告

PSK(DPSK)及QPSK 调制解调实验报告

实验4 PSK(DPSK)及QPSK 调制解调实验配置一:PSK(DPSK)模块一、实验目的1. 掌握二相绝对码与相对码的码变换方法;2. 掌握二相相位键控调制解调的工作原理及性能测试;3. 学习二相相位调制、解调硬件实现,掌握电路调整测试方法。

二、实验仪器1.时钟与基带数据发生模块,位号:G2.PSK 调制模块,位号A3.PSK 解调模块,位号C4.噪声模块,位号B5.复接/解复接、同步技术模块,位号I6.20M 双踪示波器1 台7.小平口螺丝刀1 只8.频率计1 台(选用)9.信号连接线4 根三、实验原理相位键控调制在数字通信系统中是一种极重要的调制方式,它具有优良的抗干扰噪声性能及较高的频带利用率。

在相同的信噪比条件下,可获得比其他调制方式(例如:ASK、FSK)更低的误码率,因而广泛应用在实际通信系统中。

本实验箱采用相位选择法实现相位调制(二进制),绝对移相键控(PSK 或CPSK)是用输入的基带信号(绝对码)选择开关通断控制载波相位的变化来实现。

相对移相键控(DPSK)采用绝对码与相对码变换后,用相对码控制选择开关通断来实现。

(一) PSK 调制电路工作原理二相相位键控的载波为1.024MHz,数字基带信号有32Kb/s 伪随机码、及其相对码、32KHz 方波、外加数字信号等。

相位键控调制解调电原理框图,如图6-1 所示。

1.载波倒相器模拟信号的倒相通常采用运放来实现。

来自1.024MHz 载波信号输入到运放的反相输入端,在输出端即可得到一个反相的载波信号,即π相载波信号。

为了使0 相载波与π相载波的幅度相等,在电路中加了电位器37W01 和37W02 调节。

2.模拟开关相乘器对载波的相移键控是用模拟开关电路实现的。

0 相载波与π相载波分别加到模拟开关A:CD4066 的输入端(1 脚)、模拟开关B:CD4066 的输入端(11 脚),在数字基带信号的信码中,它的正极性加到模拟开关A 的输入控制端(13 脚),它反极性加到模拟开关B 的输入控制端(12 脚)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验七 PSK/DPSK调制、解调原理实训
一、实验目的
1、掌握二相 BPSK(DPSK)调制解调的工作原理及电路组成;
2、了解载频信号的产生方法;
3、掌握二相绝对码与相对码的码变换方法。

二、实验电路工作原理
(一)调制实验:
在本实验中,绝对移相键控(PSK)是采用直接调相法来实现的,也就是用输入的基带信号直接控制已输入载波相位的变化来实现相移键控。

本实验中PSK 调制二相PSK(DPSK)的载波为1.024MHz,数字基带信号有
32Kbit/s 伪随机码、2KHz 方波、CVSD 编码信号等。

模拟信号1.024MHz 载波输入到载波倒相器的反相输入端,在输出端即可得到一个反相的载波信号,即π相载波信号。

调节电位器VR801 和VR802 可使0相载波与π相载波的幅度相等。

DPSK 是利用前后相邻码元对应的载波相对相移来表示数字信息的一种相移键控方式。

绝对码是以基带信号码元的电平直接表示数字信息的,如规定高电平代表“1”,低电平代表“0”。

相对码是用基带信号码元的电平与前一码元的电平有无变化来表示数字信息的,如规定:相对码中有跳变表示1,无跳变表示0。

(二)解调实验:
该解调器由三部分组成:载波提取电路、位定时恢复电路与信码再生整形电路。

提取载波原理:
①该解调环在载波恢复的同时,即可解调出数字信息;
②该解调环电路结构简单,整个载波恢复环路可用模拟和数字集成电路实现。

但该解调环路的缺点是:存在相位模糊。

三、实验内容
1、PSK 调制实验,调整好载波幅度,观察TP801~TP808 各测量点的波形;
2、PSK 解调实验,观察TP901~TP905 各测量点的波形;
3、PSK 解调载波提取实验,将PSK 的电路调整到最佳状态,逐一测量TP801~TP807 各点处的波形,画出波形图并作记录,注意相位、幅度之间的关系。

四、实验步骤及结果
1、打开实验箱右侧电源开关,电源指示灯亮;
2、连接SP113 与SP802,接入2KHz 的基带信号。

SP801 接入1024KHz 的方波信号;
3、连接SP804 和SP901,将调制好的载波信号输入到解调电路中;
4、将本实验电路调整到最佳状态,逐一测量调制电路TP801-TP808 各点处和解调电路TP901-TP905 各点处的波形,画出波形图并作记录,注意相位、幅度之间的关系。

TP801:1024KH 方波:如下图
载波1(TP802)和载波2 (TP803)的实际波形如下图
1.5、实验现象:TP801:1.024MHz 方波信号
图1 1.024MHz 方波信号
2.TP802:1.024MHZ载波正弦波信号
图2 1.024MHZ载波正弦波信号
3.TP803:1.024MHZ 载波正弦波信号
图3 1.024MHZ载波正弦波信号(反向)
4.TP804:作为数字基带信码信号输入波形,伪随机码32KB/s码型为
111100010011010 BPSK或其相对码DPSK或2KHz的方波
图4 128KHz方波
图5 32KHz伪随机码
5.TP807:PSK调制信号输出波形
图6 方波信号与对应PSK调制信号
图7 伪随机信号与对应PSK调制信号
6.TP902:压控振荡器输出2.048MHz的载波信号
7.TP903:频率为1.024MHz 的0 相载波输出信号
8.TP904:频率为1.024MHz 的π/2 相载波输出信号
图8 TP903与TP904对比
9.TP905:PSK 解调输出波形
图9 TP903与TP905(方波)
图10 TP903与TP905(伪随机)
五、软件仿真及输出波形(调制电路)
五、实验总结与体会:
本实验让我熟悉了DPSK调制和解调的功能和运用。

特别是在仿真花了很多功夫,但还是有收获的。

初步掌握了二相BPSK(DPSK)调制解调的工作原理及电路组成,在二相绝对码与相对码的码变换上,学会了利用选取参考码元的方法进行设计电路,采用异或利用延时的方式进行,对以后设计电路给予了很大帮助。

绝对码是以基带信号码元的电平直接表示数字信息的,如规定高电平代表“1”,低电平代表“0”。

相对码是用基带信号码元的电平与前一码元的电平有无变化来表示数字信息的,如规定:相对码中有跳变表示1,无跳变表示0。

相关文档
最新文档