2017年重点中学八年级下学期数学期末冲刺试卷两套汇编五内附答案解析

合集下载

【冲刺卷】八年级数学下期末模拟试卷(带答案)

【冲刺卷】八年级数学下期末模拟试卷(带答案)

【冲刺卷】八年级数学下期末模拟试卷(带答案)一、选择题1.一次函数y kx b =+的图象如图所示,点()3,4P 在函数的图象上.则关于x 的不等式4kx b +≤的解集是( )A .3x ≤B .3x ≥C .4x ≤D .4x ≥2.下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形 ③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有( )个. A .4B .3C .2D .13.三角形的三边长为22()2a b c ab +=+,则这个三角形是( ) A .等边三角形B .钝角三角形C .直角三角形D .锐角三角形4.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表: 每天锻炼时间(分钟) 20 40 60 90 学生数2341则关于这些同学的每天锻炼时间,下列说法错误的是( ) A .众数是60 B .平均数是21C .抽查了10个同学D .中位数是505.4133的结果为( ). A .32 B .23C 2D .26.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b .若8ab =,大正方形的面积为25,则小正方形的边长为( )A.9B.6C.4D.37.计算12(75+313﹣48)的结果是()A.6B.43C.23+6D.128.若正比例函数的图象经过点(,2),则这个图象必经过点().A.(1,2)B.(,)C.(2,)D.(1,)9.二次根式()23-的值是()A.﹣3B.3或﹣3C.9D.310.某商场对上周某品牌运动服的销售情况进行了统计,如下表所示:颜色黄色绿色白色紫色红色数量(件)12015023075430经理决定本周进货时多进一些红色的,可用来解释这一现象的统计知识的()A.平均数B.中位数C.众数D.平均数与众数11.如图,将四边形纸片ABCD沿AE向上折叠,使点B落在DC边上的点F处.若AFDV的周长为18,ECFV的周长为6,四边形纸片ABCD的周长为()A.20B.24C.32D.4812.如图,已知△ABC中,AB=10 ,AC=8 ,BC = 6 ,DE是AC的垂直平分线,DE交AB于点D ,交AC于点E ,连接CD ,则CD的长度为()A.3B.4C.4.8D.5二、填空题13.如图,在▱ABCD中,E为CD的中点,连接AE并延长,交BC的延长线于点G,BF ⊥AE ,垂足为F ,若AD =AE =1,∠DAE =30°,则EF =_____.14.如图,过矩形ABCD 的对角线BD 上一点K 分别作矩形两边的平行线MN 与PQ ,那么图中矩形AMKP 的面积S 1与矩形QCNK 的面积S 2的大小关系是S 1_____S 2;(填“>”或“<”或“=”)15.函数y =21xx -中,自变量x 的取值范围是_____. 16.一次函数的图象过点()1,3且与直线21y x =-+平行,那么该函数解析式为__________.17.如图,在平行四边形ABCD 中,AB =3,BC =5,∠B 的平分线BE 交AD 于点E ,则DE 的长为____________.18.若一个多边形的内角和是900º,则这个多边形是 边形.19.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需______米.20.某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y 米与时间x 小时(0≦x ≦5)的函数关系式为___三、解答题21.如图,在平行四边形ABCD 中,点E 为AD 的中点,延长CE 交BA 的延长线于点F .(1)求证:AB =AF ;(2)若BC =2AB ,∠BCD =100°,求∠ABE 的度数.22.如图所示,在△ABC中,点O是AC上的一个动点,过点O作直线MN∥BC,设MN 交∠BCA的平分线于E,交∠BCA的外角平分线于F.(1)请猜测OE与OF的大小关系,并说明你的理由;(2)点O运动到何处时,四边形AECF是矩形?写出推理过程;(3)点O运动到何处且△ABC满足什么条件时,四边形AECF是正方形?(写出结论即可)23.有一块矩形木板,木工采用如图的方式,在木板上截出两个面积分别为18dm2和32dm2的正方形木板.(1)求剩余木料的面积.(2)如果木工想从剩余的木料中截出长为1.5dm,宽为ldm的长方形木条,最多能截出块这样的木条.24.为了从甲、乙两名选手中选拔出一个人参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表.甲、乙射击成绩统计表平均数(环)中位数(环)方差命中10环的次数甲70乙1甲、乙射击成绩折线统计图(1)请补全上述图表(请直接在表中填空和补全折线图); (2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由;(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?25.如图,在菱形ABCD 中,AB=2,∠DAB=60°,点E 是AD 边的中点,点M 是AB 边上的一个动点(不与点A 重合),延长ME 交CD 的延长线于点N ,连接MD ,AN .(1)求证:四边形AMDN 是平行四边形.(2)当AM 的值为何值时,四边形AMDN 是矩形,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】观察函数图象结合点P 的坐标,即可得出不等式的解集. 【详解】解:观察函数图象,可知:当3x ≤时,4kx b +≤. 故选:A . 【点睛】考查了一次函数与一元一次不等式以及一次函数的图象,观察函数图象,找出不等式4kx b +≤的解集是解题的关键. 2.C解析:C 【解析】【分析】 【详解】∵四边相等的四边形一定是菱形,∴①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误; ∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;其中正确的有2个,故选C .考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.3.C解析:C 【解析】 【分析】利用完全平方公式把等式变形为a 2+b 2=c 2,根据勾股定理逆定理即可判断三角形为直角三角形,可得答案. 【详解】∵22()2a b c ab +=+, ∴a 2+2ab+b 2=c 2+2ab , ∴a 2+b 2=c 2,∴这个三角形是直角三角形, 故选:C . 【点睛】本题考查了勾股定理的逆定理,如果一个三角形的两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形,最长边所对的角为直角.4.B解析:B 【解析】 【分析】根据众数、中位数和平均数的定义分别对每一项进行分析即可. 【详解】解:A 、60出现了4次,出现的次数最多,则众数是60,故A 选项说法正确; B 、这组数据的平均数是:(20×2+40×3+60×4+90×1)÷10=49,故B 选项说法错误; C 、调查的户数是2+3+4+1=10,故C 选项说法正确;D 、把这组数据从小到大排列,最中间的两个数的平均数是(40+60)÷2=50,则中位数是50,故D 选项说法正确; 故选:B . 【点睛】此题考查了众数、中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.5.D解析:D 【解析】 【分析】根据二次根式的除法法则进行计算即可. 【详解】原式2===. 故选:D. 【点睛】本题考查二次根式的除法,掌握二次根式的除法法则是解答本题的关键.6.D解析:D 【解析】 【分析】由题意可知:中间小正方形的边长为:-a b ,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长. 【详解】解:由题意可知:中间小正方形的边长为:-a bQ 每一个直角三角形的面积为:118422ab =⨯= 214()252ab a b ∴⨯+-=2()25169a b ∴-=-=3a b ∴-= 故选:D 【点睛】本题考查勾股定理的运用,稍有难度;利用大正方形与小正方形、直角三角形面积之间的等量关系是解答本题的关键.7.D解析:D 【解析】 【分析】 【详解】12===.故选:D.8.D解析:D【解析】设正比例函数的解析式为y=kx(k≠0),因为正比例函数y=kx的图象经过点(-1,2),所以2=-k,解得:k=-2,所以y=-2x,把这四个选项中的点的坐标分别代入y=-2x中,等号成立的点就在正比例函数y=-2x的图象上,所以这个图象必经过点(1,-2).故选D.9.D解析:D【解析】【分析】本题考查二次根式的化简,(0)(0)a aa a⎧=⎨-<⎩….【详解】|3|3=-=.故选D.【点睛】本题考查了根据二次根式的意义化简.a≥0a;当a≤0a.10.C解析:C【解析】试题解析:由于销售最多的颜色为红色,且远远多于其他颜色,所以选择多进红色运动装的主要根据众数.故选C.考点:统计量的选择.11.B解析:B【解析】【分析】根据折叠的性质易知矩形ABCD的周长等于△AFD和△CFE的周长的和.【详解】由折叠的性质知,AF=AB,EF=BE.所以矩形的周长等于△AFD和△CFE的周长的和为18+6=24cm.故矩形ABCD的周长为24cm.故答案为:B.【点睛】本题考查了折叠的性质,解题关键是折叠前后图形的形状和大小不变,对应边和对应角相等.12.D解析:D【解析】【分析】【详解】已知AB=10,AC=8,BC=8,根据勾股定理的逆定理可判定△ABC为直角三角形,又因DE为AC边的中垂线,可得DE⊥AC,AE=CE=4,所以DE为三角形ABC 的中位线,即可得DE=12BC=3,再根据勾股定理求出CD=5,故答案选D.考点:勾股定理及逆定理;中位线定理;中垂线的性质.二、填空题13.﹣1【解析】【分析】首先证明△ADE≌△GCE推出EG=AE=AD=CG=1再求出F G即可解决问题【详解】∵四边形ABCD是平行四边形∴AD∥BGAD=BC∴∠DAE=∠G=30°∵DE=EC∠AE1【解析】【分析】首先证明△ADE≌△GCE,推出EG=AE=AD=CG=1,再求出FG即可解决问题.【详解】∵四边形ABCD是平行四边形,∴AD∥BG,AD=BC,∴∠DAE=∠G=30°,∵DE=EC,∠AED=∠GEC,∴△ADE≌△GCE,∴AE=EG=AD=CG=1,在Rt△BFG中,∵∴,-1.【点睛】本题考查平行四边形的性质、全等三角形的判定和性质、锐角三角函数等知识,解题的关键是熟练掌握基本知识.14.=【解析】【分析】利用矩形的性质可得△ABD 的面积=△CDB 的面积△MBK 的面积=△QKB 的面积△PKD 的面积=△NDK 的面积进而求出答案【详解】解:∵四边形ABCD 是矩形四边形MBQK 是矩形四边形解析:= 【解析】 【分析】利用矩形的性质可得△ABD 的面积=△CDB 的面积,△MBK 的面积=△QKB 的面积,△PKD 的面积=△NDK 的面积,进而求出答案. 【详解】解:∵四边形ABCD 是矩形,四边形MBQK 是矩形,四边形PKND 是矩形, ∴△ABD 的面积=△CDB 的面积,△MBK 的面积=△QKB 的面积,△PKD 的面积=△NDK 的面积,∴△ABD 的面积﹣△MBK 的面积﹣△PKD 的面积=△CDB 的面积﹣△QKB 的面积=△NDK 的面积, ∴S 1=S 2. 故答案为:=. 【点睛】本题考查了矩形的性质,熟练掌握矩形的性质定理是解题关键.15.x≠1【解析】【分析】根据分式有意义的条件即可解答【详解】函数y =中自变量x 的取值范围是x ﹣1≠0即x≠1故答案为:x≠1【点睛】本题考查了函数自变量的取值范围当函数表达式是分式时要注意考虑分式的分解析:x ≠1 【解析】 【分析】根据分式有意义的条件即可解答. 【详解】 函数y =21xx -中,自变量x 的取值范围是x ﹣1≠0,即x ≠1, 故答案为:x ≠1. 【点睛】本题考查了函数自变量的取值范围,当函数表达式是分式时,要注意考虑分式的分母不能为0.16.【解析】【分析】根据两直线平行可设把点代入即可求出解析式【详解】解:∵一次函数图像与直线平行∴设一次函数为把点代入方程得:∴∴一次函数的解析式为:;故答案为:【点睛】本题考查了一次函数的图像和性质解 解析:25y x =-+【解析】根据两直线平行,可设2y x b =-+,把点()1,3代入,即可求出解析式.【详解】解:∵一次函数图像与直线21y x =-+平行,∴设一次函数为2y x b =-+,把点()1,3代入方程,得:213b -⨯+=,∴5b =,∴一次函数的解析式为:25y x =-+;故答案为:25y x =-+.【点睛】本题考查了一次函数的图像和性质,解题的关键是掌握两条直线平行,则斜率相等. 17.2【解析】【分析】根据平行四边形的性质可得出AD ∥BC 则∠AEB =∠CBE 再由∠ABE =∠CBE 则∠AEB =∠ABE 则AE =AB 从而求出DE 【详解】解:∵四边形ABCD 是平行四边形∴AD ∥BC ∴∠A解析:2【解析】【分析】根据平行四边形的性质,可得出AD ∥BC ,则∠AEB =∠CBE ,再由∠ABE =∠CBE ,则∠AEB =∠ABE ,则AE =AB ,从而求出DE .【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AEB =∠CBE ,∵∠B 的平分线BE 交AD 于点E ,∴∠ABE =∠CBE ,∴∠AEB =∠ABE ,∴AE =AB ,∵AB =3,BC =5,∴DE =AD -AE =BC -AB =5-3=2.故答案为2.【点睛】本题考查了平行四边形的性质、角平分线的定义,解题的关键是掌握平行四边形的性质:对边相等.18.七【解析】【分析】根据多边形的内角和公式列式求解即可【详解】设这个多边形是边形根据题意得解得故答案为【点睛】本题主要考查了多边形的内角和公式熟记公式是解题的关键【解析】【分析】n-⋅︒,列式求解即可.根据多边形的内角和公式()2180【详解】设这个多边形是n边形,根据题意得,()2180900n-⋅︒=︒,n=.解得7故答案为7.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.19.2+2【解析】【分析】地毯的竖直的线段加起来等于BC水平的线段相加正好等于AC即地毯的总长度至少为(AC+BC)【详解】在Rt△ABC中∠A=30°BC=2m ∠C=90°∴AB=2BC=4m∴AC=解析:2+23【解析】【分析】地毯的竖直的线段加起来等于BC,水平的线段相加正好等于AC,即地毯的总长度至少为(AC+BC).【详解】在Rt△ABC中,∠A=30°,BC=2m,∠C=90°,∴AB=2BC=4m,∴2223-=m,AB BC∴3(m).故答案为:3【点睛】本题主要考查勾股定理的应用,解此题的关键在于准确理解题中地毯的长度为水平与竖直的线段的和.20.y=6+03x【解析】试题分析:根据题意可得:水库的水位=初始水位高度+每小时上升的速度×时间即y=6+03x考点:一次函数的应用解析:y=6+0.3x【解析】试题分析:根据题意可得:水库的水位=初始水位高度+每小时上升的速度×时间,即y=6+0.3x.考点:一次函数的应用.三、解答题21.(1)证明见解析;(2)∠ABE =40°.【解析】【分析】(1)由四边形ABCD 是平行四边形,点E 为AD 的中点,易证得△DEC ≌△AEF (AAS ),继而可证得DC =AF ,又由DC =AB ,证得结论;(2)由(1)可知BF =2AB ,EF =EC ,然后由∠BCD =100°求得BE 平分∠CBF ,继而求得答案.【详解】证明:(1)∵四边形ABCD 是平行四边形,∴CD =AB ,CD ∥AB ,∴∠DCE =∠F ,∠FBC+∠BCD =180°,∵E 为AD 的中点,∴DE =AE .在△DEC 和△AEF 中,DCE F DEC AEF DE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△DEC ≌△AEF (AAS ).∴DC =AF .∴AB =AF ;(2)由(1)可知BF =2AB ,EF =EC ,∵∠BCD =100°,∴∠FBC =180°﹣100°=80°,∵BC =2AB ,∴BF =BC ,∴BE 平分∠CBF ,∴∠ABE =12∠FBC =12×80°=40° 【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质以及等腰三角形的性质,证得△DEC ≌△AEF 和△BCF 是等腰三角形是关键.22.(1)猜想:OE=OF ,理由见解析;(2)见解析;(3)见解析.【解析】【分析】(1)猜想:OE=OF,由已知MN∥BC,CE、CF分别平分∠BCO和∠GCO,可推出∠OEC=∠OCE,∠OFC=∠OCF,所以得EO=CO=FO.(2)由(1)得出的EO=CO=FO,点O运动到AC的中点时,则由EO=CO=FO=AO,所以这时四边形AECF是矩形.(3)由已知和(2)得到的结论,点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,则推出四边形AECF是矩形且对角线垂直,所以四边形AECF是正方形.【详解】(1)猜想:OE=OF,理由如下:∵MN∥BC,∴∠OEC=∠BCE,∠OFC=∠GCF,又∵CE平分∠BCO,CF平分∠GCO,∴∠OCE=∠BCE,∠OCF=∠GCF,∴∠OCE=∠OEC,∠OCF=∠OFC,∴EO=CO,FO=CO,∴EO=FO.(2)当点O运动到AC的中点时,四边形AECF是矩形.∵当点O运动到AC的中点时,AO=CO,又∵EO=FO,∴四边形AECF是平行四边形,∵FO=CO,∴AO=CO=EO=FO,∴AO+CO=EO+FO,即AC=EF,∴四边形AECF是矩形.(3)当点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.∵由(2)知,当点O运动到AC的中点时,四边形AECF是矩形,已知MN∥BC,当∠ACB=90°,则∠AOF=∠CO E=∠COF=∠AOE=90°,∴AC⊥EF,∴四边形AECF是正方形.【点睛】此题考查的知识点是正方形和矩形的判定及角平分线的定义,解题的关键是由已知得出EO=FO,然后根据(1)的结论确定(2)(3)的条件.23.(1)剩余木料的面积为6dm2;(2)2.【解析】【分析】(1)先确定两个正方形的边长,然后结合图形解答即可;(2)估算322的大小,结合题意解答即可.【详解】解:(1)∵两个正方形的面积分别为18dm2和32dm2,∴这两个正方形的边长分别为2dm和2dm,∴剩余木料的面积为(2﹣2)×2=6(dm2);(2)4<2<4.5,12<2,∴从剩余的木料中截出长为1.5dm,宽为ldm的长方形木条,最多能截出2块这样的木条,故答案为:2.【点睛】本题考查的是二次根式的应用,掌握无理数的估算方法是解答本题的关键.24.(1)补图见解析;(2)甲胜出,理由见解析;(3)见解析.【解析】【分析】(1)根据折线统计图列举出乙的成绩,计算出甲的中位数,方差,以及乙平均数,中位数及方差,补全即可;(2)计算出甲乙两人的方差,比较大小即可做出判断;(3)希望乙胜出,修改规则,使乙获胜的概率大于甲即可.【详解】(1)根据折线统计图得乙的射击成绩为2,4,6,8,7,7,8,9,9,10, 则平均数为1(24687789910)710⨯+++++++++=(环),中位数为7.5环, 方差为22222221(27)(47)(67)(87)(77)(77)(87)10⎡-+-+-+-+-+-+-⎣222(97)(97)(107) 5.4⎤+-+-+-=⎦.由图和表可得甲的射击成绩为9,6,7,6,2,7,7,8,9,平均数为7环.则甲第8次成绩为710(967627789)9⨯-++++++++=(环).所以甲的10次成绩为2,6,6,7,7,7,8,9,9,9,中位数为7环,方差为22222221(97)(67)(77)(67)(27)(77)(77)10⎡-+-+-+-+-+-+-⎣222(97)(87)(97)4⎤+-+-+-=⎦.补全表格如下:甲、乙射击成绩统计表平均数(环)中位数(环) 方差 命中10环的次数 甲7 4 0 乙 7 5.4 1(2)甲应胜出因为甲的方差小于乙的方差,甲的成绩比较稳定,故甲胜出.(3)制定的规则不唯一,如:如果希望乙胜出,应该制定的评判规则为平均成绩高的胜出;如果平均成绩相同,则随着比赛的进行,发挥越来越好者或命中满环(10环)次数多者胜出.因为甲、乙的平均成绩相同,乙只有第5次射击比第4次射击少命中1环,且命中1次10环,而甲第2次比第1次第4次比第3次、第5次比第4次、第9次比第8次命中环数都低,且命中10环的次数为0,即随着比赛的进行,乙的射击成绩越来越好,故乙胜出.【点睛】本题考查折线统计图,中位数,方差,平均数,以及统计表,读懂统计图,熟练掌握中位数,方差,平均数的计算是解本题的关键.25.(1)证明见解析;(2)AM=1.理由见解析.【解析】【分析】【详解】解:(1)∵四边形ABCD是菱形,∴ND∥AM,∴∠NDE=∠MAE,∠DNE=∠AME,∵点E是AD中点,∴DE=AE,在△NDE和△MAE中,NDE MAEDNE AME DE AE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△NDE≌△MAE(AAS),∴ND=MA,∴四边形AMDN是平行四边形;(2)解:当AM=1时,四边形AMDN是矩形.理由如下:∵四边形ABCD是菱形,∴AD=AB=2,∵平行四边形AMDN是矩形,∴DM⊥AB,即∠DMA=90°,∵∠DAB=60°,∴∠ADM=30°,∴AM=12AD=1.【点睛】本题考查矩形的判定;平行四边形的判定;菱形的性质.。

重点中学八级下学期期末数学试卷两套汇编九附解析答案

重点中学八级下学期期末数学试卷两套汇编九附解析答案

2017年重点中学八年级下学期期末数学试卷两套汇编九附解析答案八年级〔下〕期末数学试卷一、选择题〔本大题含10个小题,每小题3分,共30分〕1.若分式无意义,则x的值为〔〕A.x=﹣1 B.x=1 C.x=1 D.x=22.下列图形中,既是轴对称图形又是中心对称图形的是〔〕A.等边三角形B.等腰梯形 C.正方形D.平行四边形3.一个不等式组中两个不等式的解集在同一数轴上的表示如图所示,这个不等式组的解集为〔〕A.x<﹣1 B.x≤1 C.﹣1<x≤1 D.x≥14.如图,将三角尺ABC的一边AC沿位置固定的直尺推移得到△DEF,下列结论不一定正确的是〔〕A.DE∥AB B.四边形ABED是平行四边形C.AD∥BE D.AD=AB5.如图,平行四边形ABCD中,对角线AC与BD相交于点O,且AC⊥AB,垂足为点A,若AB=4,AC=6,则BD的长为〔〕A.5 B.8 C.10 D.126.如图,∠1,∠2,∠3,∠4,∠5分别是五边形ABCDE个顶点处的一个外角,则∠1+∠2+∠3+∠4+∠5的度数是〔〕A.90°B.180°C.270°D.360°7.下列各式从左向右的变形正确的是〔〕A.=B.=C.= D.=8.如图,△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC,垂足为点E,若∠BAD=15°,则∠CBE的度数为〔〕A.15°B.30°C.45°D.60°9.如图,小明用四张长方形或正方形纸片拼成一个大长方形,小亮根据小明的拼图过程,写出多项式x2+3x+2因式分解的结果为〔x+1〕〔x+2〕,这个解题过程体现的数学思想主要是〔〕A.分类讨论 B.数形结合 C.公理化D.演绎10.利用一次函数y=ax+b的图象解关于x的不等式ax+b<0,若它的解集是x>﹣2,则一次函数y=ax+b的图象为〔〕A.B.C.D.二、填空题〔本大题含6个小题,每题3分,共18分〕把答案填在题中横线上11.多项式x2﹣6x+9因式分解的结果为______.12.如图,△ABC是等边三角形,AB=6,若点D与点E分别是AB,AC的中点,则DE的长等于______.13.不等式组的最大整数解为______.14.如图,四边形ABCD的对角线AC与BD相交于点O,AD∥BC,若要使四边形是平行四边形,则需要添加的一个条件是______.〔只写出一种情况即可〕15.在一项居民住房节能改造工程中,某社区计划用a天完成建筑面积为1000平方米的居民住房节能改造任务,若实际比计划提前b天完成改造任务,则代数式""表示的意义为______.16.如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是______.三、解答题〔本大题含8个小题,共52分〕解答应写出必要的文字说明、演算步骤和推理过程.17.因式分解:〔1〕2x2﹣2〔2〕xy〔x﹣y〕+y〔x﹣y〕2.18.先化简,在求值:÷﹣,其中a=﹣3.19.解分式方程:20.已知:如图,在平行四边形ABCD中,AE⊥BC,CF⊥AD,垂足分别为点E,点F.〔1〕求证:BE=DF.〔2〕求证:四边形AECF是平行四边形.21.阅读下面材料,并解决相应的问题:在数学课上,老师给出如下问题,已知线段,求作线段的垂直平分线.AB AB小明的作法如下:同学们对小明的作法提出质疑,小明给出了这个作法的证明如下:连接AC,BC,AD,BD由作图可知:,AC=BC,AD=BD∴点C,点D在线段的垂直平分线上〔依据1:______〕∴直线就是线段的垂直平分线〔依据2:______〕〔1〕请你将小明证明的依据写在横线上;〔2〕将小明所作图形放在如图的正方形网格汇总,点A,B,C,D恰好均在格点上,依次连接A,C,B,D,A各点,得到如图所示的"箭头状"的基本图形,请在网格中添加若干个此基本图形,使其各顶点也均在格点上,且与原图形组成的新图形是中心对称图形.22.开学初,学校要补充部分体育器材,从超市购买了一些排球和篮球.其中购买排球的总价为1000元,购买篮球的总价为1600元,且购买篮球的数量是购买排球数量的2倍.已知购买一个排球比一个篮球贵20元.〔1〕求购买排球和篮球的单价各是多少元;〔2〕为响应"足球进校园"的号召,学校计划再购买50个足球.恰逢另一超市对A、B两种品牌的足球进行降价促销,销售方案如表所示.如果学校此次购买A、B两种品牌足球的总费用不超过5000元.则最多可购买多少个品牌足球?种类标价优惠方案A品牌足球150元/个八折B品牌足球100元/个九折23.课堂上,小明与同学们讨论下面五边形中的问题:如图1,在五边形中ABCDE,AB=BC=CD,∠ABC=∠BCD=120°,∠EAB=∠EDC,小明发现图1中AE=DE;小亮在图1中连接AD后,得到图3,发现AD=2BC.请在下面的、两题中任选一题解答.A:为证明AE=DE,小明延长EA,ED分别交直线BC与点M、点N,如图2.请利用小明所引的辅助线证明AE=DE=B:请你借助图3证明AD=2BC我选择______题.24.如图1,已知∠MON=90°,点A、B分别是∠MON的边OM,ON上的点.且OA=OB=1,将线段OA绕点O顺时针旋转α〔0°<α<180°〕得到线段OC,∠AOC的角平分线OP与直线BC相交于点P,点D是线段BC的中点,连接OD.〔1〕若α=30°,如图2,∠P的度数为______°;〔2〕若0°<α<90°,如图1,求∠P的度数;〔3〕在下面的A、B两题中任选一题解答.A:在〔2〕的条件下,在图1中连接PA,求PA2+PB2的值.B:如图3,若90°<α<180°,其余条件都不变.请在图3中画出相应的图形,探究下列问题:①直接写出此时∠P的度数;②求此时PC2+PB2的值.我选择______题.参考答案与试题解析一、选择题〔本大题含10个小题,每小题3分,共30分〕1.若分式无意义,则x的值为〔〕A.x=﹣1 B.x=1 C.x=1 D.x=2[考点]分式有意义的条件.[分析]根据分式无意义的条件,说明分母x﹣2=0,解得x的值即可.[解答]解:依题意得x﹣2=0,解得x=2.故选D.2.下列图形中,既是轴对称图形又是中心对称图形的是〔〕A.等边三角形B.等腰梯形 C.正方形D.平行四边形[考点]中心对称图形;轴对称图形.[分析]根据轴对称图形和中心对称图形的概念,即可求解.[解答]解:A、B都只是轴对称图形;C、既是轴对称图形,又是中心对称图形;D、只是中心对称图形.故选C.3.一个不等式组中两个不等式的解集在同一数轴上的表示如图所示,这个不等式组的解集为〔〕A.x<﹣1 B.x≤1 C.﹣1<x≤1 D.x≥1[考点]在数轴上表示不等式的解集.[分析]本题可根据数轴的性质,实心圆点包括该点用"≥","≤"表示,空心圆圈不包括该点用"<",">"表示,大于向右,小于向左.观察相交的部分即为不等式的解集.[解答]解:数轴上表示解集的线的条数与不等式的个数一样的部分是﹣1左边的部分,则不等式解集为:x<﹣1.故选A.4.如图,将三角尺ABC的一边AC沿位置固定的直尺推移得到△DEF,下列结论不一定正确的是〔〕A.DE∥AB B.四边形ABED是平行四边形C.AD∥BE D.AD=AB[考点]平移的性质;平行四边形的判定.[分析]由平移性质可得AD∥BE,且AD=BE,即可知四边形ABED是平行四边形,再根据平行四边形性质可得DE∥AB,从而可得答案.[解答]解:由平移性质可得AD∥BE,且AD=BE,∴四边形ABED是平行四边形,∴DE∥AB,故A、B、C均正确,故选:D.5.如图,平行四边形ABCD中,对角线AC与BD相交于点O,且AC⊥AB,垂足为点A,若AB=4,AC=6,则BD的长为〔〕A.5 B.8 C.10 D.12[考点]平行四边形的性质.[分析]利用平行四边形的性质和勾股定理易求BO的长,进而可求出BD的长.[解答]解:∵▱ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=CO=AC=3,∵AB⊥AC,AB=4,∴BO==5,∴BD=2BO=10,故选:C.6.如图,∠1,∠2,∠3,∠4,∠5分别是五边形ABCDE个顶点处的一个外角,则∠1+∠2+∠3+∠4+∠5的度数是〔〕A.90°B.180°C.270°D.360°[考点]多边形内角与外角.[分析]根据多边形的外角和定理即可求解.[解答]解:根据多边形外角和定理得到:∠1+∠2+∠3+∠4+∠5=360°.故选:D.7.下列各式从左向右的变形正确的是〔〕A.=B.=C.= D.=[考点]分式的基本性质.[分析]分式的分子与分母同乘〔或除以〕一个不等于0的整式,分式的值不变,据此判断即可.[解答]解:〔A〕分子、分母都减去2,分式的值改变,故〔A〕错误;〔B〕分子、分母都乘上﹣2,分式的值不变,故〔B〕正确;〔C〕分子、分母都加上2,分式的值改变,故〔C〕错误;〔D〕分子、分母都平方,分式的值改变,故〔D〕错误.故选:〔B〕8.如图,△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC,垂足为点E,若∠BAD=15°,则∠CBE的度数为〔〕A.15°B.30°C.45°D.60°[考点]等腰三角形的性质.[分析]根据三角形三线合一的性质可得∠CAD=∠BAD,根据同角的余角相等可得:∠CBE=∠CAD,再根据等量关系得到∠CBE=∠BAD=15°.[解答]证明:∵AB=AC,AD是BC边上的中线,∴∠CAD=∠BAD=15°,AD⊥BC,∵BE⊥AC,∴∠CBE+∠C=∠CAD+∠C=90°,∴∠CBE=∠CAD=15°,∴∠CBE=∠BAD=15°.故选A.9.如图,小明用四张长方形或正方形纸片拼成一个大长方形,小亮根据小明的拼图过程,写出多项式x2+3x+2因式分解的结果为〔x+1〕〔x+2〕,这个解题过程体现的数学思想主要是〔〕A.分类讨论 B.数形结合 C.公理化D.演绎[考点]因式分解的应用.[分析]根据图形,可知长方形面积有两种表达方式,依此得出多项式x2+3x+2因式分解的结果为〔x+1〕〔x+2〕,这个解题过程体现的数学思想主要是数形结合.[解答]解:小明用四张长方形或正方形纸片拼成一个大长方形,小亮根据小明的拼图过程,写出多项式x2+3x+2因式分解的结果为〔x+1〕〔x+2〕,这个解题过程体现的数学思想主要是数形结合.故选B.10.利用一次函数y=ax+b的图象解关于x的不等式ax+b<0,若它的解集是x>﹣2,则一次函数y=ax+b的图象为〔〕A.B.C.D.[考点]一次函数与一元一次不等式;一次函数的图象.[分析]根据不等式ax+b<0的解集是x>﹣2即可得出结论.[解答]解:∵不等式ax+b<0的解集是x>﹣2,∴当x>﹣2时,函数y=ax+b的图象在x轴下方.故选A.二、填空题〔本大题含6个小题,每题3分,共18分〕把答案填在题中横线上11.多项式x2﹣6x+9因式分解的结果为〔x﹣3〕2.[考点]因式分解-运用公式法.[分析]原式利用完全平方公式分解即可.[解答]解:原式=〔x﹣3〕2,故答案为:〔x﹣3〕212.如图,△ABC是等边三角形,AB=6,若点D与点E分别是AB,AC的中点,则DE的长等于3.[考点]等边三角形的性质.[分析]直接利用等边三角形的性质得出BC的长,再利用三角形中位线的性质得出答案.[解答]解:∵△ABC是等边三角形,AB=6,∴BC=6,∵点D与点E分别是AB,AC的中点,∴DE=BC=3.故答案为:3.13.不等式组的最大整数解为2.[考点]一元一次不等式组的整数解.[分析]先求出不等式组的解集,即可求得该不等式组的最大整数解.[解答]解:由①得,x≤2,由②得,x>﹣2.所以不等式组的解集为﹣2<x≤2,该不等式组的最大整数解为2.故答案为2.14.如图,四边形ABCD的对角线AC与BD相交于点O,AD∥BC,若要使四边形是平行四边形,则需要添加的一个条件是AD=BC.〔只写出一种情况即可〕[考点]平行四边形的判定.[分析]根据一组对边平行且相等的四边形是平行四边形可知:添加AD=BC可以使四边形ABCD是平行四边形.[解答]解:添加AD=BC,∵AD=BC,AD∥BC,∴四边形ABCD是平行四边形,故答案为:AD=BC.15.在一项居民住房节能改造工程中,某社区计划用a天完成建筑面积为1000平方米的居民住房节能改造任务,若实际比计划提前b天完成改造任务,则代数式""表示的意义为实际每天完成的改造任务.[考点]代数式.[分析]根据计划完成建筑面积为1000平方米的居民住房节能改造任务需要a天,实际提前b 天,可知实际完成需要〔a﹣b〕天,从而可以得到代数式""表示的意义.[解答]解:∵计划完成建筑面积为1000平方米的居民住房节能改造任务需要a天,实际提前b天,∴实际完成需要〔a﹣b〕天,∴代数式""表示的意义是实际每天完成的改造任务,故答案为:实际每天完成的改造任务.16.如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是+1.[考点]旋转的性质;全等三角形的判定与性质;角平分线的性质;等边三角形的判定与性质;等腰直角三角形.[分析]如图,连接AM,由题意得:CA=CM,∠ACM=60°,得到△ACM为等边三角形根据AB=BC,CM=AM,得出BM垂直平分AC,于是求出BO=AC=1,OM=CM•sin60°=,最终得到答案BM=BO+OM=1+.[解答]解:如图,连接AM,由题意得:CA=CM,∠ACM=60°,∴△ACM为等边三角形,∴AM=CM,∠MAC=∠MCA=∠AMC=60°;∵∠ABC=90°,AB=BC=,∴AC=2=CM=2,∵AB=BC,CM=AM,∴BM垂直平分AC,∴BO=AC=1,OM=CM•sin60°=,∴BM=BO+OM=1+,故答案为:1+.三、解答题〔本大题含8个小题,共52分〕解答应写出必要的文字说明、演算步骤和推理过程.17.因式分解:〔1〕2x2﹣2〔2〕xy〔x﹣y〕+y〔x﹣y〕2.[考点]提公因式法与公式法的综合运用.[分析]〔1〕先提取公因式2,再对余下的多项式利用平方差公式继续分解因式即可;〔2〕提取公因式y〔x﹣y〕整理即可.[解答]解:〔1〕2x2﹣2,=2〔x2﹣1〕,=2〔x+1〕〔x﹣1〕;〔2〕xy〔x﹣y〕+y〔x﹣y〕2,=y〔x﹣y〕〔x+x﹣y〕,=y〔x﹣y〕〔2x﹣y〕.18.先化简,在求值:÷﹣,其中a=﹣3.[考点]分式的化简求值.[分析]先算除法,再算加减,最后把a=3代入进行计算即可.[解答]接:原式=•﹣=﹣=,当a=﹣3时,原式==.19.解分式方程:[考点]解分式方程.[分析]因为x﹣2=﹣〔2﹣x〕,所以有,然后按照解分式方程的步骤依次完成.[解答]解:原方程可化为,方程两边同乘以〔2﹣x〕,得x﹣1=1﹣2〔2﹣x〕,解得:x=2.检验:当x=2时,原分式方程的分母2﹣x=0.∴x=2是增根,原分式方程无解.20.已知:如图,在平行四边形ABCD中,AE⊥BC,CF⊥AD,垂足分别为点E,点F.〔1〕求证:BE=DF.〔2〕求证:四边形AECF是平行四边形.[考点]平行四边形的判定与性质.[分析]〔1〕根据平行四边形的性质可得AB=CD,∠B=∠D,然后利用AAS定理证明△ABE≌△CFD可得BE=DF;〔2〕根据平行四边形的性质可得AD∥BC,AD=BC,再利用等式的性质证明AF=EC,根据一组对边平行且相等的四边形是平行四边形可得结论.[解答]证明〔1〕∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,∵AE⊥BC,CF⊥AD,∴∠AEB=∠CFD=90°,在△ABE和△CDF中,∴△ABE≌△CFD〔AAS〕,∴BE=DF;〔2〕∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,由〔1〕得:BE=DF,∴AD﹣DF=BC﹣BE,∴AF=CE,∵AF∥CE,∴四边形AECF是平行四边形.21.阅读下面材料,并解决相应的问题:在数学课上,老师给出如下问题,已知线段,求作线段的垂直平分线.AB AB小明的作法如下:同学们对小明的作法提出质疑,小明给出了这个作法的证明如下:连接AC,BC,AD,BD由作图可知:,AC=BC,AD=BD∴点C,点D在线段的垂直平分线上〔依据1:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上〕∴直线就是线段的垂直平分线〔依据2:两点确定一条直线〕〔1〕请你将小明证明的依据写在横线上;〔2〕将小明所作图形放在如图的正方形网格汇总,点A,B,C,D恰好均在格点上,依次连接A,C,B,D,A各点,得到如图所示的"箭头状"的基本图形,请在网格中添加若干个此基本图形,使其各顶点也均在格点上,且与原图形组成的新图形是中心对称图形.[考点]利用旋转设计图案.[分析]〔1〕直接利用线段垂直平分线的性质以与直线的性质进而得出答案;〔2〕直接里中心对称图形的性质得出符合题意的图形.[解答]解:〔1〕连接AC,BC,AD,BD由作图可知:AC=BC,AD=BD∴点C,点D在线段的垂直平分线上〔依据1:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上〕,∴直线就是线段的垂直平分线〔依据2:两点确定一条直线〕;故答案为:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上,两点确定一条直线.〔2〕如图所示:答案不唯一.22.开学初,学校要补充部分体育器材,从超市购买了一些排球和篮球.其中购买排球的总价为1000元,购买篮球的总价为1600元,且购买篮球的数量是购买排球数量的2倍.已知购买一个排球比一个篮球贵20元.〔1〕求购买排球和篮球的单价各是多少元;〔2〕为响应"足球进校园"的号召,学校计划再购买50个足球.恰逢另一超市对A、B两种品牌的足球进行降价促销,销售方案如表所示.如果学校此次购买A、B两种品牌足球的总费用不超过5000元.则最多可购买多少个品牌足球?种类标价优惠方案A品牌足球150元/个八折B品牌足球100元/个九折[考点]分式方程的应用;一元一次不等式的应用.[分析]〔1〕设购买一个蓝球x元,购买一个排球x+20元,根据购买篮球的数量是购买排球数量的2倍,列方程求解;〔2〕设购买m个该品牌的足球,则排球的个数为50﹣m个,根据购买篮球和排球的总费用不超过5 000元,列不等式求解.[解答]解:〔1〕设购买一个蓝球x元,购买一个排球x+20元,由题意得,,解得:x=80,经检验x=80是方程的解,答:购买一个篮球80元,购买一个排球100元;〔2〕设购买m个该品牌的足球,则排球的个数为〔50﹣m〕个,由题意得,150×0.8m+100×0.9〔50﹣m〕≤5000,解得:m≤.因为取整数,所以m的最大整数值为16,答:最多可购买16个该品牌的足球.23.课堂上,小明与同学们讨论下面五边形中的问题:如图1,在五边形中ABCDE,AB=BC=CD,∠ABC=∠BCD=120°,∠EAB=∠EDC,小明发现图1中AE=DE;小亮在图1中连接AD后,得到图3,发现AD=2BC.请在下面的、两题中任选一题解答.A:为证明AE=DE,小明延长EA,ED分别交直线BC与点M、点N,如图2.请利用小明所引的辅助线证明AE=DE=B:请你借助图3证明AD=2BC我选择A或B题.[考点]全等三角形的判定与性质.[分析]〔1〕如图2中,延长EA、ED分别交直线BC于点M、点N,只要证明△ABM≌△DCN,EM=EN即可解决问题.〔2〕如图3中,延长AB、DC交于点P,只要证明△PBC是等边三角形,再根据三角形中位线的性质即可解决问题.[解答]A题:证明:如图2中,延长EA、ED分别交直线BC于点M、点N.∵∠ABM+∠ABC=180°,∠DCN+∠BCD=180°,∠ABC=∠BCD,∴∠ABM=∠DCN,在△ABM和△DCN中,,∴△ABM≌△DCN,∴AM=DN,∠M=∠N,∴EM=EN,∴EM﹣AM=EN﹣DN,即AE=DE.B题:证明:如图3中,延长AB、DC交于点P,∵∠ABC=∠BCD=120°,∠ABC+∠1=180°,∠BCD+∠2=180°,∴∠1=∠2=60°,∴∠P=60°,∴△BCP是等边三角形,∴PB=PC=BC,∵AB=CD=BC,∴PB=AB=PC=CD,∴BC是△PAD的中位线,∴AD=2BC.24.如图1,已知∠MON=90°,点A、B分别是∠MON的边OM,ON上的点.且OA=OB=1,将线段OA绕点O顺时针旋转α〔0°<α<180°〕得到线段OC,∠AOC的角平分线OP与直线BC相交于点P,点D是线段BC的中点,连接OD.〔1〕若α=30°,如图2,∠P的度数为45°;〔2〕若0°<α<90°,如图1,求∠P的度数;〔3〕在下面的A、B两题中任选一题解答.A:在〔2〕的条件下,在图1中连接PA,求PA2+PB2的值.B:如图3,若90°<α<180°,其余条件都不变.请在图3中画出相应的图形,探究下列问题:①直接写出此时∠P的度数;②求此时PC2+PB2的值.我选择A或B题.[考点]三角形综合题;全等三角形的判定与性质;等腰三角形的性质;等边三角形的判定与性质;勾股定理;等腰直角三角形;旋转的性质.[分析]〔1〕先根据旋转30°,求得∠COP的度数,再判定△BOC是等边三角形,求得∠OCB的度数,最后根据三角形外角性质,求得∠P的度数;〔2〕先根据等腰三角形BOC,利用三线合一,求得∠COD的度数为〔90°﹣α〕,再根据OP 平分∠AOC,求得∠POC=α,最后根据∠POD=∠POC+∠COD,求得∠POD为45°,进而根据∠P与∠POD互余,求得∠P的度数;〔3〕选择A题,先判定△AOP≌△COP〔SAS〕,得出∠APB=90°,再根据勾股定理得到:PA2+PB2=AB2=OA2+OB2,根据OA=OB=1,进行计算即可.选择B题,先判定△ODP为等腰直角三角形,求得∠P的度数,再根据PC2+PB2=〔PD+BD〕2+〔PD﹣BD〕2进行推导即可得出结论.[解答]解:〔1〕如图2,若α=30°,则∠COP=∠AOC=15°,∠BOC=60°,∵CO=AO=BO,∴△BOC是等边三角形,∴∠OCB=60°,∴∠P的度数为:60°﹣15°=45°,故答案为:45°;〔2〕证明:由旋转得,OA=OC,∠AOC=α,∵OA=OB,∴OC=OB,∵点D是线段BC的中点,∴OD⊥BC,∠COD=∠BOD=∠BOC,∵∠AOB=90°,∴∠COD=〔90°﹣α〕,∵OP平分∠AOC,∴∠POC=α,∴∠POD=∠POC+∠COD=45°,∵∠ODP=90°,∴∠P=90°﹣45°=45°;〔3〕选择A题.如图1,连接AB、AP,∵OP平分∠AOC,∴∠AOP=∠COP,在△AOP和△COP中,,∴△AOP≌△COP〔SAS〕,∴∠APO=∠CPO=45°,∴∠APB=90°,∴在Rt△APB中,由勾股定理得,PA2+PB2=AB2,∵在Rt△AOB中,由勾股定理得,AB2=OA2+OB2=12+12=2,∴PA2+PB2=2.选择B题.①∠P=45°.理由:如图3,根据旋转可得,OC=OA=OB,∵D是BC中点,∴OD⊥BC,即∠ODP=90°,且OD平分∠BOC,又∵OP平分∠AOC,∴∠DOP=∠COP﹣∠COD=∠AOC﹣∠BOC=∠AOB=×90°=45°,∴Rt△ODP中,∠P=45°;②PC2+PB2的值为2.理由:∵OD⊥BC,∠P=45°,∴△OPD是等腰直角三角形,∴PD=OD,∵PC=PD+BD,PB=PD﹣BD,∴PC2+PB2=〔PD+BD〕2+〔PD﹣BD〕2=2PD2+2BD2=2〔PD2+BD2〕=2〔OD2+BD2〕=2×OB2=2×12=2故PC2+PB2的值为2.八年级〔下〕期末数学试卷一.选择题〔本题有10个小题,每小题3分,满分30分,下面每小题给出的四个选项中,只有一个是正确的.〕1.下列二次根式中不能再化简的二次根式的是〔〕A.B.C.D.2.由线段a,b,c组成的三角形不是直角三角形的是〔〕A.a=15,b=8,c=17 B.a=12,b=14,c=15C.a=,b=4,c=5 D.a=7,b=24,c=253.如图,在四边形ABCD中,对角线AC与BD相交于点O,不能判断四边形ABCD是平行四边形的是〔〕A.AB∥DC,AD=BC B.AB∥DC,AD∥BC C.AB=DC,AD=BC D.OA=OC,OB=OD 4.已知一次函数y=kx+1,y随x的增大而减小,则该函数的图象一定经过〔〕A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限5.菱形和矩形一定都具有的性质是〔〕A.对角线相等B.对角线互相垂直C.对角线互相平分且相等 D.对角线互相平分6.如图,△ABC中,AC的垂直平分线分别交AC、AB于点D、F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是〔〕A.2 B.3C.4 D.47.下列各曲线中不能表示y是x的函数的是〔〕A.B.C.D.8.某学习小组7位同学,为##地重灾区捐款,捐款金额分别为:5元,10元,6元,6元,7元,8元,9元,则这组数据的中位数与众数分别为〔〕A.6,6 B.7,6 C.7,8 D.6,89.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为〔〕A.1 B.C.2 D. +110.如图,在我省某高速公路上,一辆轿车和一辆货车沿相同的路线从M地到N地,所经过的路程y〔千米〕与时间x〔小时〕的函数关系图象如图所示,轿车比货车早到〔〕A.1小时B.2小时C.3小时D.4小时二.填空题〔本大题共8小题,每小题3分,共24分〕11.直线y=x﹣3与直线y=﹣x+7的交点坐标为.12.计算:=.13.若二次根式有意义,则x的取值范围是.14.如图,在直角三角形ABC中,∠C=90°,AB=10,AC=8,点E.F分别为AC和AB的中点,则EF=.15.正方形的面积是2cm2,则其对角线长为cm.16.如图,在正方形ABCD的外侧,作等边三角形ADE,则∠AEB=度.17.已知甲、乙两支仪仗队各有10名队员,这两支仪仗队队员身高的平均数都是178cm,方差分别为0.6和1.2,则这两支仪仗队身高更整齐的是仪仗队.18.根据图中的程序,当输入x=3时,输出的结果y=.三.解答题:〔本题有6个小题,共36分,解答要求写出文字说明,证明过程或计算步骤〕19.如图,已知直线y=kx﹣3经过点M,求此直线与x轴,y轴的交点坐标.20.如图所示,已知AD是△ABC的角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F, 求证:AD⊥EF.21.如图所示,△ABC中,∠B=45°,∠C=30°,AB=求:AC的长.22.如图,在▱ABCD中,对角线AC,BD相交于点O,且OA=OB.〔1〕求证:四边形ABCD是矩形;〔2〕若AD=4,∠AOD=60°,求AB的长.23.某公司招聘职员,对甲、乙两位候选人进行了面试和笔试,面试中包括形体和口才,笔试中包括专业水平和创新能力考察,他们的成绩〔百分制〕如下表:候选人面试笔试形体口才专业水平创新能力甲86 90 96 92乙92 88 95 93若公司根据经营性质和岗位要求认为:形体、口才、专业水平、创新能力按照5:5:4:6的比确定,请计算甲、乙两人各自的平均成绩,看看谁将被录取?24.某城市对居民用水实行阶梯收费,每户每月用水量如果未超过20吨.按每吨1.9元收费;每户每月用水量如果超过20吨,未超过的部分仍按每吨1.9元收费,超过的部分则按每吨2.8元收费.设某户每月的用水量为x吨,应收水费为y元〔1〕分别写出每月用水量未超过20吨和超过20吨,y与x间的函数关系式.〔2〕若该城市某户居民5月份水费平均为每吨2.2元,问该户居民5月份用水多少吨?四.解答题〔本题有3个小题,解答要求写出文字说明,证明过程或计算步骤〕25.计算:〔1〕〔2〕.26.如图,在平面直角坐标系xOy中,正比例函数y=x的图象与一次函数y=kx﹣k的图象的交点坐标为A〔m,2〕.〔1〕求m的值和一次函数的解析式;〔2〕设一次函数y=kx﹣k的图象与y轴交于点B,求△AOB的面积;〔3〕直接写出使函数y=kx﹣k的值大于函数y=x的值的自变量x的取值范围.27.如图,在直角坐标系中,已知点A的坐标为〔6,0〕,点B〔x,y〕在第一象限内,且满足x+y=8,设△AOB的面积是S.〔1〕写出S与x的函数关系式,并写出x的取值范围;〔2〕当S=18时,求出点B的坐标;〔3〕点B在何处时,△AOB是等腰三角形?参考答案与试题解析一.选择题〔本题有10个小题,每小题3分,满分30分,下面每小题给出的四个选项中,只有一个是正确的.〕1.下列二次根式中不能再化简的二次根式的是〔〕A.B.C.D.[考点]最简二次根式.[分析]根据最简二次根式中被开方数不含分母可对A、B进行判断;根据被开方数中不含开得尽方的因数对C进行判断;根据最简二次根式的定义对D进行判断.[解答]解:A、=,被开方数含分母,故A选项错误;B、中被开方数含分母,故B选项错误;C、=3,故C选项错误;D、是最简二次根式,故D选项正确.故选:D.2.由线段a,b,c组成的三角形不是直角三角形的是〔〕A.a=15,b=8,c=17 B.a=12,b=14,c=15C.a=,b=4,c=5 D.a=7,b=24,c=25[考点]勾股定理的逆定理.[分析]先根据已知a、b、c的值求出两小边的平方和,求出大边的平方,看看是否相等即可.[解答]解:A、∵a=15,b=8,c=17,∴a2+b2=c2,∴线段a,b,c组成的三角形是直角三角形,故本选项错误;B、∵a=12,b=14,c=15,∴a2+b2≠c2,∴线段a,b,c组成的三角形不是直角三角形,故本选项正确;C、∵a=,b=8,c=17,∴b2+c2=a2,∴线段a,b,c组成的三角形是直角三角形,故本选项错误;D、∵a=7,b=24,c=25,∴a2+b2=c2,∴线段a,b,c组成的三角形是直角三角形,故本选项错误;故选B.3.如图,在四边形ABCD中,对角线AC与BD相交于点O,不能判断四边形ABCD是平行四边形的是〔〕A.AB∥DC,AD=BC B.AB∥DC,AD∥BC C.AB=DC,AD=BC D.OA=OC,OB=OD [考点]平行四边形的判定.[分析]根据平行四边形的判定定理分别进行分析即可.[解答]解:A、"一组对边平行,另一组对边相等"是四边形也可能是等腰梯形,故本选项符合题意;B、根据"两组对边分别平行的四边形是平行四边形"可判定四边形ABCD为平行四边形,故此选项不符合题意;C、根据"两组对边分别相等的四边形是平行四边形"可判定四边形ABCD为平行四边形,故此选项不符合题意;D、根据"对角线互相平分的四边形是平行四边形"可判定四边形ABCD为平行四边形,故此选项不符合题意;故选:A.4.已知一次函数y=kx+1,y随x的增大而减小,则该函数的图象一定经过〔〕A.第一、二、三象限 B.第一、二、四象限。

2017年重点中学八年级下学期数学期末冲刺试卷两套汇编二内附答案解析

2017年重点中学八年级下学期数学期末冲刺试卷两套汇编二内附答案解析

2017年重点中学八年级下学期数学期末冲刺试卷两套汇编二内附答案解析八年级(下)期末数学试卷一、选择题:本大题共16个小题,1-10小题,每小题3分;11-16小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知某书店印刷了5000本中学生科普书,为了检测这批书的质量情况,王店长随机抽取了300本书检测它们的质量,则这次抽样调查中的总体是()A.该书店5000本中学生科普书的质量情况B.该书店300本中学生科普书的质量情况C.该书店4700本中学生科普书的质量情况D.该书店5300本中学生科普书的质量情况2.河北新闻网报道,2016年3月29日,石家庄南栗学校各中队开展了以“节约用水”为主题的活动课,该活动课让队员们了解了节水的重要性,丰富了节水知识,某校教导处随机调查了该校200名学生的家庭一个月的用水情况,并将结果进行分组,将分组后的结果绘制成如图所示的扇形统计图张浩调查统计了他们家5月份每次打电话的通话时长,并将统计结果进行分组若点M(x+2,﹣3)在第三象限,则点N(x,5)的坐标可能为()A.(0,5) B.(2,﹣3)C.(﹣2,﹣3) D.(﹣5,5)5.已知在平面直角坐标系中,点A的坐标为(3,0),点B的坐标为(0,4),连接AB,现将线段AB进行平移,平移后得到点B的对应点D的坐标为(1,5),则点A的对应点C的坐标为()A.(3,0) B.(4,1) C.(2,﹣1)D.(0,5)6.圆的面积公式为s=πr2,其中变量是()A.s B.πC.r D.s和r7.1﹣6个月的婴儿生长发育得非常快,出生体重为4000克的婴儿,他们的体重y(克)和月龄x (月)之间的关系如表所示,则6个月大的婴儿的体重为()月龄/(月) 1 2 3 4 5体重/(克)4700 5400 6100 6800 7500A.7600克B.7800克C.8200克D.8500克8.王亮家与姥姥家相距25km,王亮早上提前从家出发,骑自行车(匀速)去姥姥家,妈妈随后从家出发,乘车沿相同路线去姥姥家,王亮和妈妈的行进路程s(km)与王亮的行进时间t(h)之间的函数关系式的图象如图所示,则下列说法正确的是()A.王亮骑自行车的速度是12.5km/hB.王亮比妈妈提前0.5h出发C.妈妈比王亮先到姥姥家D.妈妈从家到姥姥家共用了2h9.已知一次函数y=(b﹣9)x+b+4的图象经过第一、二、四象限,则b的值不可能为()A.﹣3 B.0 C.7 D.1210.已知一次函数y=kx+b的图象经过点(﹣2,﹣6),(0,4),则当y=0时,x的值为()A.B.C.D.11.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如表所示的优惠.例如:购买A类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数多于60次时,则最省钱的方式为()会员年卡类型办卡费用(元)每次游泳收费(元)A 类50 25B 类200 20C 类400 15A.购买A类会员年卡 B.购买B类会员年卡C.购买C类会员年卡 D.不购买会员年卡12.直线l是以二元一次方程8x﹣4y=5的解为坐标所构成的直线,则该直线不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限13.如图,已知在四边形ABCD中,AB∥CD,AB=CD,E为AB上一点,过点E作EF∥BC,交CD于点F,G为AD上一点,H为BC上一点,连接CG,AH.若GD=BH,则图中的平行四边形有()A.2个B.3个C.4个D.6个14.如图,已知在四边形ABCD中,AB=DC,AD=BC,连接AC,BD,AC与BD交于点O,若AO=BO,AD=3,AB=2,则四边形ABCD的面积为()A.4 B.5 C.6 D.715.已知菱形ABCD在平面直角坐标系中的位置如图所示,∠DAO=30°,点D的坐标为(0,2),动点P从点A出发,沿A→B→C→D→A→B→…的路线,以每秒1个单位长度的速度在菱形ABCD的边上移动,当移动到第2016秒时,点P的坐标为()A.(﹣2,0)B.(0,﹣2)C.(2,0)D.(0,2)16.如图,现有一张矩形纸片(即矩形ABCD),若沿虚线剪去∠C,则∠1+∠2的度数为()A.180°B.240°C.270°D.330°二、填空题:本大题共4小题,每小题3分,共12分,把答案写在题中横线上.17.张老师对本班60名学生的血型作了统计,并将统计结果绘制成如图所示的条形统计图,则该班血型的人数最多.18.函数y=自变量的取值范围是.19.如图,已知在平行四边形ABCD中,对角线AC与BD交于点O,且BD⊥CD,若AD=13,CD=5,则BO的长度为.20.如图,已知在正方形ABCD中,连接BD并延长至点E,连接CE,F、G分别为BE,CE的中点,连接FG,若AB=6,则FG的长度为.三、解答题:本大题共6小题,共66分,解答应写出文字说明、证明过程或演算步骤.21. 2016年5月3日燕赵晚报报道,五一期间来石家庄动物园的游客达到12万余人次,其中5月1日游客最多,约6.6万人次,已知该动物园的成人门票为50元/张,设该动物园每天成人门票的总收入为y(元),每天来动物园参观的人数量为x(人).(1)求y关于x的函数关系式,并写出x的取值范围;(2)若5月2日成人游客的数量为2.5万人,求这天该动物园成人门票的总收入.22.如图,在平面直角坐标系中,点A的坐标为(﹣2,2),点B与点A关于x轴对称,点B先向右平移4个单位长度,再向上平移2个单位长度得到点C.(1)描出点B和点C,并依次连接AB、BC、CA,得到△ABC;(2)先将(1)中的△ABC的各顶点的横坐标和纵坐标都乘,得到点A的对应点A1,点B的对应点B1,点C的对应点C1,写出A1、B1、C1的坐标,并在平面直角坐标系中描出点A1、B1、C1,得到△A1B1C1.23.冰箱是家庭中必不可少的一件家电,某家电商场的会计对2016年1﹣5月份的冰箱销售情况进行了统计,并将统计结果绘制成如图1、2所示的不完整的统计图.(1)补全折线统计图和扇形统计图;(2)求2016年1﹣5月份中,该家电商场销售冰箱最多的月份;(3)求图2所示的扇形统计图中1月份对应的扇形的圆心角的度数.24.已知y关于x的一次函数y=(2m2﹣32)x3﹣(n﹣3)x2+(m﹣n)x+m+n.(1)若该一次函数的y值随x的值的增大而增大,求该一次函数的表达式,并在如图所示的平面直角坐标系中画出该一次函数的图象;(2)若该一次函数的图象经过点(﹣2,13),求该函数的图象与坐标轴围成的三角形的面积.25.现有甲、乙两个容器,分别装有进水管和出水管,且两容器各自的进水速度不变、出水速度不变.甲、乙两容器的进水管和出水管均关闭.现先打开乙容器的进水管,2分钟后再打开甲容器的进水管,又过2分钟关闭甲容器的进水管,再过4分钟同时打开甲容器的进、出水管,直到12分钟时,同时关闭两容器的进、出水管,打开和关闭水管的时间忽略不计.甲、乙两容器中各自的水量y(升)与乙容器注水时间x(分钟)之间的函数关系的图象如图所示.(1)求甲容器的进、出水速度;(2)在乙容器打开进水管到乙容器关闭进水管的12分钟内,是否存在甲、乙两容器的水量相等的情况,若存在,求出此时的时间和乙容器中的水量.26.如图1,已知在四边形ABCD中,AD∥BC,AB∥CD,BE平分∠ABC,交AD于点E,过点E作EF ∥AB,交BC于点F,O是BE的中点,连接OF,OC,OD.(1)求证:四边形ABFE是菱形;(2)若∠ABC=90°,如图2所示:①求证:∠ADO=∠BCO;②若∠EOD=15°,求∠OCD的度数.参考答案与试题解析一、选择题:本大题共16个小题,1-10小题,每小题3分;11-16小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知某书店印刷了5000本中学生科普书,为了检测这批书的质量情况,王店长随机抽取了300本书检测它们的质量,则这次抽样调查中的总体是()A.该书店5000本中学生科普书的质量情况B.该书店300本中学生科普书的质量情况C.该书店4700本中学生科普书的质量情况D.该书店5300本中学生科普书的质量情况【考点】总体、个体、样本、样本容量.【分析】总体是指考查的对象的全体,据此判断即可.【解答】解:∵书店印刷了5000本中学生科普书,为了检测这批书的质量情况,王店长随机抽取了300本书检测它们的质量,∴这次抽样调查中的总体是:该书店5000本中学生科普书的质量情况.故选(A)【点评】本题主要考查了总体、个体、样本、样本容量的定义,解题时要区分具体问题中的总体、个体与样本,关键是明确考查的对象范围的不同.2.河北新闻网报道,2016年3月29日,石家庄南栗学校各中队开展了以“节约用水”为主题的活动课,该活动课让队员们了解了节水的重要性,丰富了节水知识,某校教导处随机调查了该校200名学生的家庭一个月的用水情况,并将结果进行分组,将分组后的结果绘制成如图所示的扇形统计图张浩调查统计了他们家5月份每次打电话的通话时长,并将统计结果进行分组若点M(x+2,﹣3)在第三象限,则点N(x,5)的坐标可能为()A.(0,5) B.(2,﹣3)C.(﹣2,﹣3) D.(﹣5,5)【考点】点的坐标.【分析】根据第三象限内点的横坐标小于零,纵坐标小于零,求出x的求值范围,即可解答.【解答】解:∵点M(x+2,﹣3)在第三象限,∴x+2<0,∴x<﹣2,故选:D.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.已知在平面直角坐标系中,点A的坐标为(3,0),点B的坐标为(0,4),连接AB,现将线段AB进行平移,平移后得到点B的对应点D的坐标为(1,5),则点A的对应点C的坐标为()A.(3,0) B.(4,1) C.(2,﹣1)D.(0,5)【考点】坐标与图形变化-平移.【分析】根据平移的性质,结合已知点A,B的坐标,知点B的横坐标加上了1,纵坐标加1,则A 的坐标的变化规律与B点相同,即可得到答案.【解答】解:∵B(0,4)平移后得到点B的对应点D的坐标为(1,5),∴点A的横坐标加上了1,纵坐标加1,∵点A的坐标为(3,0),∴点A的对应点C的坐标(4,1)故选:B.【点评】此题主要考查了点的平移规律与图形的平移,关键是掌握平移规律,左右移,纵不变,横减加,上下移,横不变,纵加减.6.圆的面积公式为s=πr2,其中变量是()A.s B.πC.r D.s和r【考点】常量与变量.【分析】根据常量与变量的定义进行判断即可.【解答】解:S=πR2中,S是圆的面积,R是圆的半径,S随R的变化而变化,∴π是常量,S和R是变量.故选D.【点评】本题主要考查了常量与变量的确认,一般情况下,数值不发生变化的量是常量,数值发生变化的量是变量,是基础题,比较简单.7.1﹣6个月的婴儿生长发育得非常快,出生体重为4000克的婴儿,他们的体重y(克)和月龄x (月)之间的关系如表所示,则6个月大的婴儿的体重为()月龄/(月) 1 2 3 4 5体重/(克)4700 5400 6100 6800 7500A.7600克B.7800克C.8200克D.8500克【考点】函数的表示方法.【分析】婴儿出生体重为4000克,从表格上看:1月体重为4700克,所以每月增长的体重为700克,再由表格依次计算其他月份的体重得出结论.【解答】解:∵婴儿每月增长的体重相同为700克,∴6个月大的婴儿的体重为:700+7500=8200,故选C.【点评】本题考查了函数的表示方法﹣列表法,列表法能具体地反映自变量与函数的数值对应关系,根据这个对应关系解决问题.8.王亮家与姥姥家相距25km,王亮早上提前从家出发,骑自行车(匀速)去姥姥家,妈妈随后从家出发,乘车沿相同路线去姥姥家,王亮和妈妈的行进路程s(km)与王亮的行进时间t(h)之间的函数关系式的图象如图所示,则下列说法正确的是()A.王亮骑自行车的速度是12.5km/hB.王亮比妈妈提前0.5h出发C.妈妈比王亮先到姥姥家D.妈妈从家到姥姥家共用了2h【考点】一次函数的应用.【专题】探究型.【分析】根据函数图象,可以分别判断各选项是否正确,本题得以解决.【解答】解:由图象可知,王亮骑自行车的速度是:25÷2=12.5km/h,故选项A正确;王亮比妈妈提前1h出发,故选项B错误;妈妈和王亮同时到姥姥家,故选项C错误;妈妈从家到姥姥家用了1h,故选项D错误;故选A.【点评】本题考查一次函数的应用,解题的关键是明确题意,利用数形结合的思想解答问题.9.已知一次函数y=(b﹣9)x+b+4的图象经过第一、二、四象限,则b的值不可能为()A.﹣3 B.0 C.7 D.12【考点】一次函数图象与系数的关系.【分析】根据一次函数的图象经过第一、二、四象限判断出b的符号,再找出符合条件的b的可能值即可.【解答】解:∵一次函数的图象经过第一、二、四象限,b﹣9<0,b+4>0∴﹣4<b<9,∴四个选项中只有D不符合条件.故选D.【点评】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当b<0时,函数图象与y轴相交于负半轴.10.已知一次函数y=kx+b的图象经过点(﹣2,﹣6),(0,4),则当y=0时,x的值为()A.B.C.D.【考点】一次函数图象上点的坐标特征.【分析】根据一次函数y=kx+b的图象经过点(﹣2,﹣6),(0,4),用待定系数法可求出函数关系式中b,k的值.【解答】解:根据题意可得:,解得:,所以解析式为:y=5x+4,把y=0代入解析式可得:5x+4=0,解得:x=﹣,故选B【点评】本题要注意利用一次函数的特点,列出方程组,求出未知数.11.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如表所示的优惠.例如:购买A类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数多于60次时,则最省钱的方式为()会员年卡类型办卡费用(元)每次游泳收费(元)A 类50 25B 类200 20C 类400 15A.购买A类会员年卡 B.购买B类会员年卡C.购买C类会员年卡 D.不购买会员年卡【考点】有理数的混合运算.【分析】设一年内在该游泳馆游泳的次数为x次,消费的钱数为y元,根据题意得:y A=50+25x,y B=200+20x,y C=400+15x,当60≤x时,确定y的范围,进行比较即可解答.【解答】解:设一年内在该游泳馆游泳的次数为x次,消费的钱数为y元,根据题意得:y A=50+25x,y B=200+20x,y C=400+15x,当60≤x时,1550≤y A;1400≤y B;1300≤y C;由此可见,C类会员年卡消费最低,所以最省钱的方式为购买C类会员年卡.故选:C【点评】本题考查了一次函数的应用,解决本题的关键是根据题意,列出函数关系式,并确定函数值的范围.12.直线l是以二元一次方程8x﹣4y=5的解为坐标所构成的直线,则该直线不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】一次函数与二元一次方程(组).【分析】先用含x的代数式表示y可得一次函数解析式,再根据一次函数图象与系数的关系即可求解.【解答】解:∵8x﹣4y=5,∴y=2x﹣,∵k=2>0,b=﹣<0,∴图象经过第一、三、四象限,即不经过第二象限.故选B.【点评】此题考查了一次函数与二元一次方程,任何一个二元一次方程都可以化成一个一次函数.同时考查了一次函数图象与系数的关系.13.如图,已知在四边形ABCD中,AB∥CD,AB=CD,E为AB上一点,过点E作EF∥BC,交CD于点F,G为AD上一点,H为BC上一点,连接CG,AH.若GD=BH,则图中的平行四边形有()A.2个B.3个C.4个D.6个【考点】平行四边形的判定.【分析】根据AB∥CD,AB=CD,判定四边形ABCD是平行四边形,再结合EF∥BC,判定四边形AEFD、四边形BCFE均为平行四边形,最后AG=CH,AG∥CH,判定四边形AHCG、四边形AMNG、四边形MNCH 均为是平行四边形.【解答】解:∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,又∵EF∥BC,∴四边形AEFD、四边形BCFE均为平行四边形,∵GD=BH,AD=BC,∴AG=CH,又∵AG∥CH,∴四边形AHCG是平行四边形,又∵EF∥BC,∴四边形AMNG、四边形MNCH均为平行四边形,∴共有6个平行四边形,故选(D)【点评】本题主要考查了平行四边形的判定,两组对边分别平行的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形.14.如图,已知在四边形ABCD中,AB=DC,AD=BC,连接AC,BD,AC与BD交于点O,若AO=BO,AD=3,AB=2,则四边形ABCD的面积为()A.4 B.5 C.6 D.7【考点】矩形的判定与性质.【分析】首先判断四边形为矩形,然后利用矩形的面积的求法求得其面积即可.【解答】解:∵AB=DC,AD=BC,∴四边形ABCD为平行四边形,∴AO=OC,BO=DO,∵AO=BO,∴AC=BD,∴四边形ABCD为矩形,∵AD=3,AB=2,∴四边形ABCD的面积为:AD•AB=2×3=6,故选C.【点评】本题考查了矩形的判定与性质,解题的关键是能够首先判定四边形ABCD为矩形,难度不大.15.已知菱形ABCD在平面直角坐标系中的位置如图所示,∠DAO=30°,点D的坐标为(0,2),动点P从点A出发,沿A→B→C→D→A→B→…的路线,以每秒1个单位长度的速度在菱形ABCD的边上移动,当移动到第2016秒时,点P的坐标为()A.(﹣2,0)B.(0,﹣2)C.(2,0)D.(0,2)【考点】菱形的性质;坐标与图形性质.【专题】规律型.【分析】先求出求出菱形的边长,再根据点P的运动速度求出沿A→B→C→D→A所需的时间,进而可得出结论.【解答】解:在RT△AOD中,∵∠AOD=90°,∠DAO=30°,OD=2,∴AD=2OD=4,OA==2,∵点P的运动速度为1米/秒,∴从点A到点B所需时间==4秒,∴沿A→B→C→D→A所需的时间=4×4=16秒.∵=126,∴移动到第2016秒和第16秒的位置相同,当P运动到第16秒时点P在点A处,∴移动到第2016秒时,点P的坐标为(﹣2,0).故选A.【点评】本题考查的是菱形的性质、直角三角形30度角所对的直角边等于斜边的一半、勾股定理等知识,根据题意得出点P运动一周所需的时间是解答此题的关键,记住速度、时间、路程之间的关系,属于中考选择题中的压轴题.16.如图,现有一张矩形纸片(即矩形ABCD),若沿虚线剪去∠C,则∠1+∠2的度数为()A.180°B.240°C.270°D.330°【考点】多边形内角与外角.【分析】在△EFC中利用三角形的外角等于不相邻的两个内角的和以及三角形的内角和定理即可求解.【解答】解:∵∠1=∠EFC+∠C,∠2=∠FEC+∠C,∴∠1+∠2=∠EFC+∠FEC+∠C+∠C,又∵△EFC中,∠EFC+∠FEC+∠C=180°,∠C=90°,∴∠1+∠2=180°+90°=270°.故选C.【点评】本题考查了三角形的外角的性质以及三角形的内角和定理,正确理解运用定理是关键.二、填空题:本大题共4小题,每小题3分,共12分,把答案写在题中横线上.17.张老师对本班60名学生的血型作了统计,并将统计结果绘制成如图所示的条形统计图,则该班O 血型的人数最多.【考点】条形统计图.【分析】根据条形统计图可知,小长方形的高表示人数,则该班O血型的人数最多.【解答】解:由图可知,该班A血型的有10人,B血型的有15人,AB血型的有15人,O血型的有20人,所以该班O血型的人数最多.故答案为O.【点评】本题考查了条形统计图,条形图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.18.函数y=自变量的取值范围是x>0 .【考点】函数自变量的取值范围.【分析】根据分式有意义的条件和二次根式有意义的条件列出不等式组,求解即可.【解答】解:∵x≥0且x≠0,∴x>0,故答案为x>0.【点评】本题考查了函数自变量的取值范围问题,掌握分式有意义的条件和二次根式有意义的条件是解题的关键.19.如图,已知在平行四边形ABCD中,对角线AC与BD交于点O,且BD⊥CD,若AD=13,CD=5,则BO的长度为 6 .【考点】平行四边形的性质.【分析】根据平行四边形性质得出BC=AD=13,BO=BD,根据勾股定理求出BD,即可求出BO的长度.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD=5,BO=BD,∵BD⊥CD,∴∠BDC=90°∴在Rt△BDC中,由勾股定理得:BD==12,∴BO=6.故BO的长度为6.故答案为:6.【点评】本题考查了勾股定理和平行四边形的性质的应用,注意:平行四边形的对角线互相平分,平行四边形的对边相等.20.如图,已知在正方形ABCD中,连接BD并延长至点E,连接CE,F、G分别为BE,CE的中点,连接FG,若AB=6,则FG的长度为 3 .【考点】正方形的性质;三角形中位线定理.【分析】根据正方形的性质得到FG∥BC,而FF、G分别为BE,CE的中点,则可得到FG为△BCE的中位线.【解答】解:∵正方形ABCD,∴AB=BC=6,∵F、G分别为BE,CE的中点,∴FG=3,故答案为:3【点评】本题考查了正方形的性质,三角形的中位线定理:三角形的中位线平行于底边,并且等于底边的一半.三、解答题:本大题共6小题,共66分,解答应写出文字说明、证明过程或演算步骤.21.2016年5月3日燕赵晚报报道,五一期间来石家庄动物园的游客达到12万余人次,其中5月1日游客最多,约6.6万人次,已知该动物园的成人门票为50元/张,设该动物园每天成人门票的总收入为y(元),每天来动物园参观的人数量为x(人).(1)求y关于x的函数关系式,并写出x的取值范围;(2)若5月2日成人游客的数量为2.5万人,求这天该动物园成人门票的总收入.【考点】一次函数的应用.【分析】(1)根据:每天成人门票的总收入=成人票单价×人数,列式即可;(2)将x=25000代入(1)中解析式可求得.【解答】解:(1)根据题意,y=50x(x≥0,且x为整数);(2)当x=25000时,y=50×25000=1250000=125(万元),答:这天该动物园成人门票的总收入为125万元.【点评】本题主要考查一次函数的应用,审请题意找到所需数量是解题关键.22.如图,在平面直角坐标系中,点A的坐标为(﹣2,2),点B与点A关于x轴对称,点B先向右平移4个单位长度,再向上平移2个单位长度得到点C.(1)描出点B和点C,并依次连接AB、BC、CA,得到△ABC;(2)先将(1)中的△ABC的各顶点的横坐标和纵坐标都乘,得到点A的对应点A1,点B的对应点B1,点C的对应点C1,写出A1、B1、C1的坐标,并在平面直角坐标系中描出点A1、B1、C1,得到△A1B1C1.【考点】作图-位似变换;作图-轴对称变换;作图-平移变换.【分析】(1)由轴对称得点B坐标,将点B平移得点C,连接可得△ABC;(2)将(1)中点A、B、C横坐标和纵坐标都乘得点A1、B1、C1坐标,连接可得△A1B1C1.【解答】解:(1)如图,△ABC即为所求作三角形;(2)由(1)知,点A(﹣2,2)、点B(﹣2,﹣2)、点C(2,0),则点A1(﹣3,3)、点B1(﹣3,﹣3)、点C1(3,0),如图,△A1B1C1即为所求作三角形.【点评】本题主要考查轴对称变换、平移变换、位似变换的作图,熟练掌握它们的定义是解题的根本.23.冰箱是家庭中必不可少的一件家电,某家电商场的会计对2016年1﹣5月份的冰箱销售情况进行了统计,并将统计结果绘制成如图1、2所示的不完整的统计图.(1)补全折线统计图和扇形统计图;(2)求2016年1﹣5月份中,该家电商场销售冰箱最多的月份;(3)求图2所示的扇形统计图中1月份对应的扇形的圆心角的度数.【考点】折线统计图;扇形统计图.【分析】(1)根据5月份销售额及半分比求得销售总额,销售总额减去1、3、4、5销售额可得2月销售额,将2、3、4销售额÷销售总额×100%可得百分比;(2)由折线统计图可知;(3)1月的百分比乘以360°即可.【解答】解:(1)1﹣5月销售总额为20÷40%=50(万元),则2月销售额为50﹣12.5﹣5﹣5﹣20=7.5(万元),2月份百分比为×100%=15%,3、4月份所占百分比为×100%=10%,补全图形如下:(2)2016年1﹣5月份中,该家电商场销售冰箱最多的月份是5月;(3)1月份对应的扇形的圆心角的度数为360°×25%=90°.【点评】本题主要考查折线统计图和扇形统计图,根据题意从不同统计图中获取所需信息是解题关键.24.(11分)已知y关于x的一次函数y=(2m2﹣32)x3﹣(n﹣3)x2+(m﹣n)x+m+n.(1)若该一次函数的y值随x的值的增大而增大,求该一次函数的表达式,并在如图所示的平面直角坐标系中画出该一次函数的图象;(2)若该一次函数的图象经过点(﹣2,13),求该函数的图象与坐标轴围成的三角形的面积.【考点】一次函数的性质;一次函数图象上点的坐标特征;待定系数法求一次函数解析式.【分析】(1)直接利用一次函数增减性结合一次函数的定义得出m,n的值进而画出图象;(2)利用一次函数图象上点的坐标特征得出一次函数解析式,进而求出图象与坐标轴围成的三角形的面积.【解答】解:(1)∵y关于x的一次函数y=(2m2﹣32)x3﹣(n﹣3)x2+(m﹣n)x+m+n,∴2m2﹣32=0,n﹣3=0,解得:m=±4,n=3,又∵该一次函数的y值随x的值的增大而增大,∴m﹣n>0,则m=4,n=3,∴该一次函数的表达式为:y=x+7,如图所示:;(2)∵该一次函数的图象经过点(﹣2,13),∴y=﹣7x﹣1,如图所示:,当x=0,则y=﹣1,当y=0,则x=﹣,故该函数的图象与坐标轴围成的三角形的面积为:×1×=.【点评】此题主要考查了一次函数的定义以及一次函数的性质和一次函数图象上点的坐标特征,正确得出m的值是解题关键.25.(11分)现有甲、乙两个容器,分别装有进水管和出水管,且两容器各自的进水速度不变、出水速度不变.甲、乙两容器的进水管和出水管均关闭.现先打开乙容器的进水管,2分钟后再打开甲容器的进水管,又过2分钟关闭甲容器的进水管,再过4分钟同时打开甲容器的进、出水管,直到12分钟时,同时关闭两容器的进、出水管,打开和关闭水管的时间忽略不计.甲、乙两容器中各自的水量y(升)与乙容器注水时间x(分钟)之间的函数关系的图象如图所示.(1)求甲容器的进、出水速度;(2)在乙容器打开进水管到乙容器关闭进水管的12分钟内,是否存在甲、乙两容器的水量相等的情况,若存在,求出此时的时间和乙容器中的水量.【考点】一次函数的应用.【分析】(1)根据“进水速度=进水量÷进水时间”即可算出甲容器的进水速度,再根据“出水速度=进水速度﹣水量增大速度”即可算出甲容器的出水速度;(2)根据函数图象上给出的点的坐标,利用待定系数法可求出y甲关于x的函数关系式,代入x=3,求出y甲值,再根据该点的坐标利用待定系数法求出y乙关于x的函数关系式,分段令y甲=y乙求出x 值,再将其代入y乙关于x的函数关系式中求出y乙的值,此题得解.【解答】解:(1)甲容器的进水速度为:10÷(4﹣2)=5(升/分),甲容器的出水速度为:5﹣(18﹣10)÷(12﹣8)=3(升/分).答:甲容器的进水速度为5升/分,出水速度为3升/分.(2)设甲容器中各自的水量y甲(升)与乙容器注水时间x(分钟)之间的函数关系式为y甲=kx+b,当2≤x≤4时,有,解得:,此时y甲=5x﹣10;当4<x≤8时,y甲=10;当8<x≤12时,有,解得:,此时y甲=2x﹣6.综上可知:y甲=.当x=3时,y甲=5×3﹣10=5(升).设乙容器中各自的水量y乙(升)与乙容器注水时间x(分钟)之间的函数关系式为y乙=ax+2,将(3,5)代入y乙=ax+2中,得:5=3a+2,解得:a=1,∴y乙=x+2.。

2017版人教版八年级数学下期末模拟试卷(二)有答案x

2017版人教版八年级数学下期末模拟试卷(二)有答案x

八年级下期末模拟试卷二(本试卷共五大题,26小题,满分150分)一、选择题(本题共8小题;每小题3分,共24分)1. n(n≠0)是关于x的方程x2+mx+2n=0的根,则m+n的值为 ( )A. x=1B. x=2C. x=−1D. x=−22. 若一个60∘的角绕顶点旋转15∘,则重叠部分的角的大小是 ( )A. 15∘B. 30∘C. 45∘D. 75∘3. 直线y=kx+b经过一、三、四象限,则直线y=bx−k的图象只能是图中的 ( )A. B.C. D.4. 如图1,在菱形ABCD中,∠BAD=60∘,AB=2,E是DC边上一个动点,F是AB边上一点,∠AEF=30∘.设DE=x,图中某条线段长为y,y与x满足的函数关系的图象大致如图 2 所示,则这条线段可能是图中的( )A. 线段ECB. 线段AEC. 线段EFD. 线段BF5. 已知:如图,在正方形ABCD外取一点E,连接AE,BE,DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=√5.下列结论:①△APD≌△AEB;②点B到直线AE的距离为√2;③EB⊥ED;④S△APD+S△APB=1+√6;=4+√6.⑤S正方形ABCD其中正确结论的序号是 ( )A. ①③④B. ①②⑤C. ③④⑤D. ①③⑤6. 如图,在平面直角坐标中,直线l经过原点,且与y轴正半轴所夹的锐角为60∘,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1,以A1B、BA为邻边作平行四边形ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1、B1A1为邻边作平行四边形A1B1A2C2;⋯;按此作法继续下去,则C n的坐标是 ( )A. (−√3×4n,4n)B. (−√3×4n−1,4n−1)C. (−√3×4n−1,4n)D. (−√3×4n,4n−1)7. 边长一定的正方形ABCD,Q是CD上一动点,AQ交BD于点M,过M作MN⊥AQ交BCBD;③于N点,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;②MP=12 BN+DQ=NQ;④AB+BN为定值.其中一定成立的是 ( )BMA. ①②③B. ①②④C. ②③④D. ①②③④8. 在锐角△ABC中,AB=5,BC=6,∠ACB=45∘(如图),将△ABC绕点B按逆时针方向旋转得到△AʹBCʹ(顶点A、C分别与Aʹ、Cʹ对应),当点Cʹ在线段CA的延长线上时,则ACʹ的长度为 ( )A. √2+√7B. 3√2−√7C. 3√2+√7D. 3−√7(6题图)(7题图)(8题图)二、填空题(本题共8小题;每小题3分,共24分)9. 如图,在笔直的铁路上A、B两点相距25km,C、D为两村庄,DA=10km,CB=15km,DA⊥AB于A,CB⊥AB于B,现要在AB上建一个中转站E,使得C、D两村到E站的距离相等.则E应建在距A km10. 在△ABC中,AB=AC,BD⊥AC于D,若BD=3,DC=1,则AD=.11. 如图,点D是等边△ABC内一点,如果△ABD绕点A逆时针旋转后能与△ACE重合,那么旋转了度.(9题图)(11题图)12. 一食堂需要购买盒子存放食物,盒子有A,B两种型号,单个盒子的容量和价格如表.现有15升食物需要存放且要求每个盒子要装满,由于A型号盒子正做促销活动:购买三个元,则购买盒子所需要最少费用为元.13. 如图1,△AB1C1AB1的中点C2,画等边三角形AB2C2;如图 3,取AB2的中点C3,画等边三角形AB3C3,连接B2B3;如图 4,取AB3的中点C4,画等边三角形AB4C4,连接B3B4,则B3B4的长为.若按照这种规律已知画下去,则B n B n+1的长为.(用含n的式子表示)14. 如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为cm.15. 正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则点B3的坐标是,点B n的坐标是.16. 方程(x3−3x2+x−2)⋅(x3−x2−4x+7)+6x2−15x+18=0全部相异实根是.(14题图)(15题图)三、解答题(本大题共4小题;其中17、18题、19各9分,20题12分,共39分)17. 设a,b,c是△ABC的三边,关于x的方程12x2+√bx+c−12a=0有两个相等的实数根,方程3cx+2b=2a的根为x=0.(1)试判断△ABC三边的关系;(2)若a,b为方程x2+mx−3m=0的两个根,求m的值.18. 如图,在正方形ABCD中,点G是CD上任意一点,连接BG,作AE⊥BG于点E,CF⊥BG于点F.(1)求证:BE=CF;,求EF的长.(2)若BC=2,CF=6519. 目前我市“校园手机”现象越来越受到社会关注,针对这种现象,我市某中学九年级数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的看法,统计整理并制作了如下的统计图:(1)这次调查的家长总数为.家长表示“不赞同”的人数为;(2)从这次接受调查的家长中随机抽查一个,恰好是“赞同”的家长的概率是;(3)求图 2 中表示家长“无所谓”的扇形圆心角的度数.20. 有这样一个问题:探究函数y=(x−1)(x−2)(x−3)的图象与性质.小东对函数y=(x−1)(x−2)(x−3)的图象与性质进行了探究.下面是小东的探究过程,请补充完成:函数y=(x−1)(x−2)(x−3)的自变量x的取值范围是全体实数;(1)下表是y与x的几组对应值.①m=;②若M(−7,−720),N(n,720)为该函数图象上的两点,则n=;(2)在平面直角坐标系xOy中,A(x A,y A),B(x B,y B)为该函数图象上的两点,且A为2≤x≤3范围内的最低点,A点的位置如图所示.①标出点B的位置;②画出函数y=(x−1)(x−2)(x−3)(0≤x≤4)的图象.四、解答题(本大题共3小题;其中21、22题各9分,23题10分,共28分)21. 小轿车从甲地出发驶往乙地,同时货车从相距乙地60km的入口处驶往甲地(两车均在甲、乙两地之间的公路上匀速行驶),如图是它们离甲地的路程y(km)与货车行驶时间x(ℎ)之间的函数的部分图象.(1)求货车离甲地的路程y(km)与它的行驶时间x(h)的函数表达式.(2)哪一辆车先到达目的地?说明理由.22. 菱形ABCD的边长为2,∠BAD=60∘,对角线AC,BD相交于点O,动点P在线段AC上从点A向点C运动,过P作PE∥AD,交AB于点E,过P作PF∥AB,交AD于点F,四边形QHCK与四边形PEAF关于直线BD对称.设菱形ABCD被这两个四边形盖住部分的面积为S1,AP=x:(1)对角线AC的长为;S菱形ABCD=;(直接写出答案)(2)用含x的代数式表示S1;(3)设点P在移动过程中所得两个四边形PEAF与QHCK的重叠部分面积为S2,当S2=1 2S菱形ABCD时,求x的值.23. 在△ABC中,a,b,c分别为∠A,∠B,∠C所对的边,我们称关于x的一元二次方程ax2+bx−c=0为“ △ABC的方程”.根据规定解答下列问题:(1)“ △ABC的方程” ax2+bx−c=0的根的情况是(填序号);A. 有两个相等的实数根B. 有两个不相等的实数根C. 没有实数根(2)如图,AD为圆O的直径,BC为弦,BC⊥AD于E,∠DBC=30∘,求“ △ABC的方程” ax2+bx−c=0的解;(3)若x=14c是“ △ABC的方程” ax2+bx−c=0的一个根,其中a,b,c均为整数,且ac−4b<0,求方程的另一个根.五、解答题(本大题共3小题;其中24题11分,25、26题各12分,共35分)24. 在平行四边形ABCD中,∠BAD、∠ABC、∠BCD、∠CDA平分线分别为AG、BE、CE、DG,BE与CE交于点E,AG与BE交于点F,AG与DG交于点G,CE与DG交于点H.(1)如图(1),已知AD=2AB,此时点E、G分别在边AD、BC上.①四边形EFGH是;A.平行四边形 B. 矩形 C. 菱形 D. 正方形②请判断EG与AB的位置关系和数量关系,并说明理由;(2)如图(2),分别过点E、G作EP∥BC、GQ∥BC,分别交AG、BE于点P、Q,连接PQ、EG.求证:四边形EPQG为菱形;(3)已知AD=nAB(n≠2),判断EG与AB的位置关系和数量关系(直接写出结论).25. 如图1,在△ABC中,∠ACB=90∘,∠BAC=60∘,点E是∠BAC角平分线上一点,过点E作AE的垂线,过点A作AB的线段,两垂线交于点D,连接DB,点F是BD的中点,DH⊥AC,垂足为H,连接EF,HF.(1)如图 1,若点H是AC的中点,AC=2√3,求AB,BD的长.(2)如图 1,求证:HF=EF.(3)如图2,连接CF,CE,猜想:△CEF是否是等边三角形?若是,请证明;若不是,请说明理由.26. 如图,在矩形ABCO中,点O为坐标原点,点B的坐标为(4,3),点A,C在坐标轴上,点P在BC边上,直线l1:y=2x+3,直线l2:y=2x−3.(1)分别求直线l1与x轴,直线l2与AB的交点坐标.(2)已知点M在第一象限,且是直线l2上的点,若△APM是等腰直角三角形,求点M的坐标.(3)我们把直线l1和直线l2上的点所组成的图形称为图形F.已知矩形ANPQ的顶点N在图形F上,Q是坐标平面内的点,且N点的横坐标为x,请直接写出....x的取值范围(备用图)答案第一部分1. D 【解析】∵n(n≠0)是关于x的方程x2+mx+2n=0的根,∴n2+mn+2n=0,即n+m+2=0.∴m+n=−2.2. C 【解析】∠AOBʹ=∠AOB−∠BʹOB=45∘.3. C 【解析】∵直线y=kx+b经过第一、三、四象限,∴k>0,b<0,∴−k<0,∴直线y=bx−k经过第二、三、四象限.4. B5. D【解析】① ∵∠EAB+∠BAP=90∘,∠PAD+∠BAP=90∘,∴∠EAB=∠PAD.又∵AE=AP,AB=AD,∴△APD≌△AEB(故①正确);③ ∵△APD≌△AEB,∴∠APD=∠AEB.又∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,∴∠BEP=∠PAE=90∘.∴EB⊥ED(故③正确);②过B作BF⊥AE,交AE的延长线于F,∵AE=AP,∠EAP=90∘,∴∠AEP=∠APE=45∘.又∵③中EB⊥ED,BF⊥AF,∴∠FEB=∠FBE=45∘,又∵BE=√BP2−PE2=√5−2=√3,∴BF=EF=√62(故②不正确);④如图,连接BD,在Rt△AEP中,∵AE=AP=1,∴EP=√2,又∵PB=√5,∴BE=√3.∵△APD≌△AEB,∴PD=BE=√3.∴S△ABP+S△ADP=S△ABD−S△BDP=12S正方形ABCD−12×DP×BE=12×(4+√6)−12×√3×√3=12+√62.(故④不正确).⑤ ∵EF=BF=√62,AE=1,∴在Rt△ABF中,AB2=(AE+EF)2+BF2=4+√6,∴S正方形ABCD=AB2=4+√6(故⑤正确);6. C 【解析】∵直线l经过原点,且与y轴正半轴所夹的锐角为60∘,∴直线l的解析式为y=√33x.∵AB⊥y轴,点A(0,1),∴可设B点坐标为(x,1),将B(x,1)代入y=√33x,解得x=√3,∴B点坐标为(√3,1),AB=√3,在Rt△A1AB中,∠AA1B=90∘−60∘=30∘,∠A1AB=90∘,∴AA1=√3AB=3,OA1=OA+AA1=1+3=4,∵平行四边形ABA1C1中,A1C1=AB=√3,∴C1点的坐标为(−√3,4),即(−√3×40,41);由√33x=4,解得x=4√3,∴B1点坐标为(4√3,4),A1B1=4√3.在Rt△A2A1B1中,∠A1A2B1=30∘,∠A2A1B1=90∘,∴A1A2=√3A1B1=12,OA2=OA1+A1A2=4+12=16,∵平行四边形A1B1A2C2中,A2C2=A1B1=4√3,∴C2点的坐标为(−4√3,16),即(−√3×41,42);同理,可得C3点的坐标为(−16√3,64),即(−√3×42,43);以此类推,则C n的坐标是(−√3×4n−1,4n).7. D 【解析】作AU⊥NQ于U,连接AN,AC.∵∠AMN=∠ABC=90∘,∴A,B,N,M四点共圆.∴∠NAM=∠DBC=45∘,∠ANM=∠ABD=45∘.∴∠ANM=∠NAM=45∘.∴AM=MN.故①正确.由同角的余角相等知∠HAM=∠PMN,∴Rt△AHM≌Rt△MPN.∴MP=AH=12AC=12BD.故②正确.∵AB=AD,∠BAD=90∘,把△ADQ绕点A顺时针旋转90∘得△ABR.∴∠RAN=∠BAN+∠DAQ=∠QAN=45∘,DQ=BR,AR=AQ.∵AN=AN.∴△AQN≌△ARN.∴NR=NQ.∴BN+DQ=NQ.故③正确.作MS⊥AB,垂足为S,作MW⊥BC,垂足为W.∵点M是对角线BD上的点,∴四边形SMWB是正方形.∴MS=MW=BS=BW.∴△AMS≌△NMW.∴AS=NW.∴AB+BN=SB+BW=2BW.∵BW:BM=1:√2,∴AB+BN BM=2√2√2 故④正确.8. B 【解析】由旋转性质可得 ∠AʹCʹB =∠ACB =45∘,BC =BCʹ, ∴∠BCʹC =∠ACB =45∘,∴∠CBCʹ=180∘−∠BCʹC −∠ACB =90∘. ∵BC =6,∴CCʹ=√2BC =6√2.过点 A 作 AD ⊥BC 于点 D . ∵∠ACB =45∘,∴△ACD 是等腰直角三角形. 设 AD =x ,则 CD =x . ∴BD =BC −CD =6−x .在 Rt △ABD 中,AD 2+BD 2=AB 2, ∴x 2+(6−x )2=52, 解得 x 1=6+√142,x 2=6−√142(不合题意舍去). ∴AC =6+√142×√2=3√2+√7,∴ACʹ 的长度为:6√2−(3√2+√7)=3√2−√7.第二部分 9. 15 km【解析】设 AE =x ,则 BE =25−x .DE =CE =√102+x 2=√152+(25−x )2, x =15. 10. 4【解析】提示:设 AD =x ,则 AB =x +1.勾股定理可以求出 x 的值. 11. 60 12. 29【解析】设购买 A 种型号盒子 x 个,购买盒子所需要费用为 y 元,则购买 B 种盒子的个数为 15−2x3个, ①当 0≤x <3 时,y =5x +15−2x 3×6=x +30,∵k =1>0,∴y 随 x 的增大而增大,∴ 当 x =0 时,y 有最小值,最小值为 30 元; ②当 x ≥3 时,y =5x +15−2x 3×6−4=26+x ,∵k =1>0,∴y 随 x 的增大而增大,∴ 当 x =3 时,y 有最小值,最小值为 29 元;综合①②可得,购买盒子所需要最少费用为 29 元. 13. √38;√32n【解析】在 Rt △AB 2B 1 中,AB 2=12,B 1B 2=√3AB 2=√32; 在 Rt △AB 3B 2 中,AB 3=14,B 2B 3=√3AB 3=√34=√322; 在 Rt △AB 4B 3 中,AB 4=12,B 3B 4=√3AB 4=√38=√323;⋯所以 B n B n+1=√32n .14. 13【解析】∵PA =2×(4+2)=12,QA =5, ∴PQ =13.15. (7,4);(2n −1,2n−1)【解析】点 B 1(1,1);点 B 2(3,2),即 B 2(22−1,21); 点 B 3(7,4),即 B 3(23−1,22); ⋯所以点 B n (2n −1,2n−1). 16. 1,2,−2,1+√2,1−√2【解析】设 A =x 3−2x 2−32x +52 , B =x 2−52x +92.则原方程可变为 (A −B )(A +B )+6B −9=0 ,即 A 2−B 2+6B −9=0,A 2−(B −3)2=0 ∴ (A +B −3)(A −B +3)=0 , ∴ A +B =3 或 A −B =−3 .若 A +B =3 ,则 x 3−x 2−4x +7=3 ,解得 x =1 , ±2 ;若 A −B =−3 ,则 x 3−3x 2+x +1=0 ,解得 x =1 , x =1±√2 .第三部分17. (1) 方程有两个不相等的实数根, ∴Δ=(√b)2−4×12×(c −12a)=0.解得 a +b −2c =0.把 x =0 代入 3cx +2b =2a , 解得 2b =2a ,即 a =b . ∴2a −2c =0. ∴a =b =c .∴△ABC 三边相等.(2) 由 a ,b 为方程的两个根可得 (x −a )(x −b )=0. ∴x 2−(a +b )x +ab =0. ∴m =−a −b ,−3m =ab . ∴−3m =3a +3b =ab . ∴a =6. ∴m =−12.18. (1) ∵AE ⊥BG ,CF ⊥BG , ∴∠AEB =∠BFC =90∘.又 ∠ABE +∠FBC =90∘,∠ABE +∠BAE =90∘, ∴∠FBC =∠BAE . ∵AB =BC ,∴△ABE ≌△BCF . ∴BE =CF .(2) ∵CF ⊥BG ,BC =2,CF =65,∴BF =√BC 2−CF 2=√22−(65)2=85. 又 BE =CF =65,∴EF =BF −BE =85−65=25.19. (1) 600;80【解析】调查的家长总数为 360÷60%=600 人, 很赞同的人数 600×20%=120 人,不赞同的人数 600−120−360−40=80 人. (2) 60%(3) 表示家长“无所谓”的圆心角的度数为:40600×360∘=24∘. 20. (1) ① m =−60;② n =11; (2) 点 B 的位置如图.函数图象如图.【解析】① B与A关于点(2,0)对称 .21. (1)设货车离甲地的路程y(km)与行驶时间x(h)的函数表达式是y=kx+b.代入点(0,240),(1.5,150),得{240=b,150=1.5k+b.解得{k=−60,b=240.所以货车离甲地的路程y(km)与行驶时间x(h)的函数表达式是y=−60x+240.(2)解法一:设小轿车离甲地的路程y2(km)与行驶时间x(h)的函数表达式是y2=mx.代入点(1.5,150),得150=1.5m.解得m=100.所以小轿车离甲地的路程y2(km)与行驶时间x(h)的函数表达式是y2=100x.由(1)知,货车离甲地的路程y1(km)与行驶时间x(h)的函数表达式是y1=240−60x.当y1=0时,代入y1=−60x+240,得x1=4.当y2=300时,代入y2=100x,得x2=3,即小轿车先到达目的地.【解析】解法二:根据图象,可得小轿车的速度为150÷1.5=100(km/h).货车到达甲地用时240÷60=4(h).小轿车到达乙地用时300÷100=3(h),即小轿车先到达目的地.22. (1)AC=2√3;S菱形ABCD=2√3【解析】提示:由∠BAD=60∘,可知∠BAO=∠DAO=30∘.从而可得AO=√3BO,AB=2BO.∴AO=√32AB,即AC=√3AB.(2)当0≤x≤√3时:∵AP=x,得菱形PEAF的边长AE=EF=√33x,S菱形PEAF =12AP⋅EF=12x⋅√33x=√36x2,∴S1=2S菱形PEAF =√33x2.②当√3<x≤2√3时:如图S1等于大菱形ABCD减去未被遮盖的两个小菱形,由菱形PEAF的边长AE为√33x,∴BE=2−√33x.∴S菱形BEMH =2×√34(2−√33x)2=√36x2−2x+2√3.∴S1=2√3−2S菱形BEMH=2√3−2(√36x2−2x+2√3)=−√33x2+4x−2√3..(3)∵有重叠,∴√3<x≤2√3.此时OP=x−√3.∴重叠菱形QMPN的边长MP=MN=2√33x−2.∴S2=12PQ⋅MN=12×2(x−√3)(2√33x−2)=2√33x2−4x+2√3.令2√33x2−4x+2√3=√3,解得x=√3±√62,符合题意的是x=√3+√62.23. (1)②【解析】∵在△ABC中,a,b,c分别为∠A,∠B,∠C所对的边,关于x的一元二次方程ax2+bx−c=0为“ △ABC的★方程”,∴a>0,b>0,c>0.∴Δ=b2+4ac>0.∴方程有两个不相等的实数根.(2)∵AD为⊙O的直径,∴∠DBA=90∘.∵∠DBC=30∘,∴∠CBA=60∘.∵BC⊥AD于E,∠DBC=30∘,∴∠BDA=60∘.∴∠C=60∘.∴△ABC是等边三角形.∴a=b=c.∴“ △ABC的★方程” ax2+bx−c=0可以变为:ax2+ax−a=0.∵Δ=b2+4ac>0,∴x=−a±√a2+4a22a =−1±√52.即x1=−1+√52,x2=−1−√52.(3)将x=14c代入★方程中可得:ac216+bc4−c=0,方程两边同除以c>0可得:ac16+b4−1=0.化简可得:ac+4b−16=0.∵ac−4b<0,∴ac+ac−16<0.∴0<ac<8.∵a,b,c均为整数,ac+4b=16,∴ac能被4整除.又0<ac<8,∴ac=4,b=3.∵a,c为正整数,∴a=1,c=4(不能构成三角形,舍去)或者a=c=2,∴★方程为2x2+3x−2=0.解得:x1=12,x2=−2.∵14c>0,方程的另一个根是x=−2.24. (1)① B;② EG∥AB,EG=AB.∵四边形ABCD是平行四边形,∴AD∥BC .∴∠AEB=∠EBG.∵BE平分∠ABC,∴∠ABE=∠EBG,∴∠ABE=∠AEB,∴AB=AE.同理,BG=AB,∴AE=BG.∵AE∥BG,AE=BG,∴四边形ABGE是平行四边形.∴EG∥AB,EG=AB.(2)分别延长EP、GQ,交AB于点M、N,分别延长PE、QG,交CD于点Mʹ、Nʹ,∵四边形ABCD是平行四边形,∴AB∥DC,又PE∥BC,∴四边形MBCMʹ是平行四边形,∴MMʹ=BC,MB=MʹC.∵PE∥BC,∴∠MEB=∠EBC.∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠MEB=∠ABE,∴MB=ME.同理,MʹE=MʹC.∴ME=MʹE.∴ME=12MMʹ,又MMʹ=BC,∴ME=12BC.同理,NG=12BC.∴ME=NG.∵GQ∥BC,∴∠DAG=∠AGN.∵AG平分∠BAD,∴∠DAG=∠NAG,∴∠NAG=∠AGN,∴AN=NG.∵MB=ME,AN=NG,ME=NG,∴MB=AN.∴MB−MN=AN−MN,即BN=AM.∵PE∥BC,∴∠DAG=∠APM,又∠DAG=∠BAG,∴∠APM=∠BAG,∴AM=PM.同理,BN=QN.∴PM=QN.∵ME=NG,PM=QN,∴ME−PM=NG−QN,即PE=QG.∵EP∥BC,GQ∥BC,∴EP∥GG.又PE=QG,∴四边形EPQG是平行四边形.∵AG、BE分别平分∠BAD,∠ABC,∴∠BAG=12∠BAD,∠ABG=12∠ABC.∴∠BAG+∠ABG=12∠BAD+12∠ABC=12×180∘=90∘,∴∠AFB=90∘,即PG⊥EF.∴平行四边形EPQG是菱形.(3)① n>1时,EG∥AB且EG=(n−1)AB;② n<1时,EG∥AB且EG=(1−n)AB;③ n=1时,此四边形不存在.(此种情况不写不扣分)25. (1)∵∠ACB=90∘,∠BAC=60∘,∴∠ABC=30∘,∴AB=2AC=2×2√3=4√3.∵AD⊥AB,∠CAB=60∘,∴∠DAC=30∘,∵AH=12AC=√3,∴AD=AHcos30∘=2,∴BD=√AB2+AD2=2√13.(2)连接AF.由已知可得△DAE≌△ADH,∴DH=AE.∵∠EAF=∠EAB−∠FAB=30∘−∠FAB,∠FDH=∠FDA−∠HDA=∠FDA−60∘=(90∘−∠FBA)−60∘=30∘−∠FBA,∴∠EAF=∠FDH.∴△DHF ≌△AEF . ∴HF =EF .(3) △CEF 为等边三角形.理由如下: 取 AB 的中点 M ,连接 CM ,FM .在 Rt △ADE 中,AD =2AE ,FM 是 △ABD 的中位线, ∴AD =2FM , ∴FM =AE .∴△ACM 为等边三角形,∴AC =CM ,∠CAE =12∠CAB =30∘,∠CMF =∠AMF −∠AMC =30∘.∴△ACE ≌△MCF . ∴△CEF 为等边三角形.【解析】(法二)延长 DE 至点 N ,使 EN =DE ,连接 AN ;延长 BC 至点 M ,使 CB =CM ,连接 AM ;延长 BD 交 AM 于点 P ,连接 MD ,BN .易证:△ADE ≌△ANE ,△ABC ≌△AMC .易证:△ADM ≌△ANB (手拉手全等模型),故 DM =BN . CF 是 △BDM 的中位线,EF 是 △BDN 的中位线,故 EF =12BN =12DM =CF .∠CFE =∠CFD +∠DFE=∠MDP +∠DBN =∠MDP +∠DBA +∠ABN =∠MDP +∠DBA +∠AMD=∠DPA +∠DBA =180∘−∠PAB=180∘−2∠CAB =60∘,故 △CEF 为等边三角形.26. (1) 当 y =0 时,2x +3=0 . x =−32. ∴l 1 与 x 轴交于 (−32,0);当 y =3 时,2x −3=3 . x =3 . ∴ 直线 l 2 与 AB 的交点为 (3,3).(2) ①若点 A 为直角顶点时,点 M 在第一象限,连接 AC ,如图.∠APB >∠ACB >45∘,∴△APM不可能为等腰直角三角形,∴点M不存在.②若点P为直角顶点时,点M在第一象限,如图.过点M作MN⊥CB,交CB的延长线于点N,则Rt△ABP≌Rt△PNM,∴AB=PN=4,MN=BP .设M(x,2x−3),则MN=x−4 .∴2x−3=4+3−(x−4) .∴x=143.∴M(143,193).③若点M为直角顶点,点M在第一象限,如图. 设M1(x,2x−3) .过点M1作M1G1⊥OA于点G1,交BC于点H1 . 则Rt△AM1G1≌Rt△PM1H1 .∴AG1=M1H1=3−(2x−3) .∴x+3−(2x−3)=4 .∴x=2 .∴M1(2,1).设M2(x,2x−3),同理可得x+2x−3−3=4,∴x=103,∴M2(103,113).综上所述,点M的坐标可以为(143,193),(2,1),(103,113).(3)x的取值范围为−25≤x<0或0<x≤45或11+√315≤x≤185或11−√315≤x≤2.。

【期末冲刺2017】人教版 2017年 八年级数学下册 期末复习卷 一(含答案)

【期末冲刺2017】人教版 2017年 八年级数学下册 期末复习卷 一(含答案)

2017年八年级数学下册期末复习卷一、选择题:1.在函数y=中,自变量x的取值范围是()A.x≥﹣2且x≠0B.x≤2且x≠0C.x≠0D.x≤﹣22.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A.48B.60C.74D.803.如图,在平面直角坐标系中,以A(﹣1,0),B(2,0),C(0,1)为顶点构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是()A.(3,1)B.(﹣4,1)C.(1,﹣1)D.(﹣3,1)4.关于变量x,y有如下关系:①x﹣y=5;②y2=2x;③:y=|x|;④y=3x-1.其中y是x函数的是()A.①②③ B.①②③④ C.①③ D.①③④5.如图,矩形ABCD的两条对角线相交于点O,AOB=600,AB=2,则矩形的对角线AC的长是()D.A.2 B.4 C.6.下列说法中,错误的是()A.一组对边平行且相等的四边形是平行四边形B.两条对角线互相垂直且平分的四边形是菱形C.四个角都相等的四边形是矩形D.邻边相等的菱形是正方形7.若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是()A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形8.已知四边形ABCD是平行四边形,再从①AB=BC;②∠ABC=90°;③AC=BD;④AC⊥BD.四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④9.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为( )A.20 kgB.22kgC.18kgD.30 kg10.如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b<2x的解集为()A.x>0B.0<x<1C.1<x<2D.x>211.如图,E是边长为l的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BE于点R,则PQ+PR的值为()A. B. C. D.12.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()二、填空题:13.计算:( +)2﹣= .14.在Rt△ABC中,∠C=90°,(1)若a:b=3:4,c=10,则a=_______,b=_______;(2)若a=6,b=8,则斜边c上的高h=_______.15.如图,□ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC+BD=24厘米,△OAB 的周长是18厘米,则EF= 厘米.16.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加条件,才能保证四边形EFGH是矩形.17.矩形ANCD中,AD=5,CD=3,在直线BC上取一点E,使△ADE是以DE为底的等腰三角形,过点D作直线AE的垂线,垂足为点F,则EF= .18.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x秒后两车间的距离为y米,关于y与x的函数关系如图所示,则甲车的速度是米/秒.三、解答题:19.已知求代数式的值.20.如图,等腰△ABC中,AB=AC,BC=10,角平分线AD=12,点E是AC中点,求DE的长.21.已知□ABCD中,AE平分∠DAB交DC于E,BF平分∠ABC交DC于F,DC=8cm,AD=3cm,求EF的长.22.如图,矩形ABCD中,AD=6,DC=8,菱形EFGH的三个顶点E、G、H分別在矩形ABCD的边AB、CD、DA上,AH=2.(1)已知DG=6,求AE的长;(2)已知DG=2,求证:四边形EFGH为正方形.23.今年夏天,某地区遭受到罕见的水灾,“水灾无情人有情”,某单位给该地区某中学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各多少件?(2)现计划租用甲、乙两种型号的货车共8辆,一次性将这批饮用水和蔬菜全部运往受灾地区某中学,已知每辆甲型货车最多可装饮用水40件和蔬菜10件;每辆乙型货车最多可装饮用水和蔬菜各20件。

2017年人教版八年级下册期末数学试卷附答案解析【两套汇编二】

2017年人教版八年级下册期末数学试卷附答案解析【两套汇编二】

人教版2017年八年级下册期末数学试卷附答案解析【2套汇编二】2017年八年级(下)期末数学试卷一一、选择题(共10小题,每小题3分,满分30分)1.化简的结果是()A.B.±C.2 D.±22.有一个三角形两边长为3和4,要使三角形为直角三角形,则第三边长为()A.5 B.C.5或D.不确定3.下列命题中,是真命题的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是正方形4.有10个数,它们的平均数是45,将其中最小的4和最大的70这两个数去掉,则余下数的平均数为()A.45 B.46 C.47 D.485.已知一次函数y=kx+b的图象如图,则k、b的符号是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<06.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表:则关于这些同学的每天锻炼时间,下列说法错误的是()A.众数是60 B.平均数是21C.抽查了10个同学D.中位数是507.如图,在▱ABCD中,AB=5,AD=6,将▱ABCD沿AE翻折后,点B恰好与点C 重合,则折痕AE的长为()A.3 B. C. D.48.如图,在菱形ABCD中,AB=6,∠ABC=60°,M为AD中点,P为对角线BD 上一动点,连结PA和PM,则PA+PM的值最小是()A.3 B.2 C.3 D.69.小明从A地前往B地,到达后立刻返回,他与A地的距离y(千米)和所用时间x(小时)之间的函数关系如图所示,则小明出发4小时后距A地()A.100千米B.120千米C.180千米D.200千米10.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x ﹣5上时,线段BC扫过的面积为()A.80 B.88 C.96 D.100二、填空题(共6小题,每小题3分,满分18分)11.计算:(﹣)(+)=.12.如图,正比例函数y=kx(k≠0)和一次函数y=ax+4(a≠0)的图象相交于点A(1,1),则不等式kx≥ax+4的解集为.13.一个三角形的三边的比是3:4:5,它的周长是36,则它的面积是.14.已知x+=,那么x﹣=.15.已知一组数据x,y,8,9,10的平均数为9,方差为2,则xy的值为.16.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=6,则BC 的长为.三、解答题(共8小题,满分72分)17.(6分)计算:(1)(+)﹣(﹣)(2)(+)÷.18.(6分)如图,在边长为a的正方形ABCD中,M是CD的中点,N是BC上一点,且BN=BC.求△AMN的面积.19.(8分)如图,D是△ABC的边AB上一点,CE∥AB,DE交AC于点F,若FA=FC.(1)求证:四边形ADCE是平行四边形;(2)若AE⊥EC,EF=EC=1,求四边形ADCE的面积.20.(8分)已知关于x的一次函数y=(2a﹣5)x+a﹣2的图象与y轴的交点在x轴的下方,且y随x的增大而减小,求a的值.21.(8分)如图,在Rt△ABC中,∠B=90°,点D为AC的中点,以AB为一边向外作等边三角形ABE,连结DE.(1)证明:DE∥CB;(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.22.(11分)已知A、B两地相距80km,甲、乙两人沿同一公路从A地出发到B地,甲骑摩托车,乙骑电动车,图中直线DE,OC分别表示甲、乙离开A地的路程s(km)与时间t(h)的函数关系的图象.根据图象解答下列问题.(1)甲比乙晚出发几个小时?乙的速度是多少?(2)乙到达终点B地用了多长时间?(3)在乙出发后几小时,两人相遇?23.(12分)我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.24.(13分)已知:如图,已知直线AB的函数解析式为y=﹣2x+8,与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),作PE⊥x轴于点E,PF⊥y轴于点F,连接EF,问:①若△PAO的面积为S,求S关于m的函数关系式,并写出m的取值范围;②是否存在点P,使EF的值最小?若存在,求出EF的最小值;若不存在,请说明理由.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.化简的结果是()A.B.±C.2 D.±2【考点】二次根式的性质与化简.【分析】根据二次根式的性质化简,即可解答.【解答】解:=2,故选:C.【点评】本题考查了二次根式的性质,解决本题的关键是熟记二次根式的性质.2.有一个三角形两边长为3和4,要使三角形为直角三角形,则第三边长为()A.5 B.C.5或D.不确定【考点】勾股定理的逆定理.【分析】此题要分两种情况进行讨论:;①当3和4为直角边时;②当4为斜边时,再分别利用勾股定理进行计算即可.【解答】解;①当3和4为直角边时,第三边长为=5,②当4为斜边时,第三边长为:=,故选:C.【点评】此题主要考查了勾股定理的应用,关键是掌握勾股定理:直角三角形中,两直角边的平方和等于斜边的平方.3.下列命题中,是真命题的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是正方形【考点】命题与定理.【分析】根据特殊四边形的判定定理进行判断即可.【解答】解:A、对角线互相平分的四边形是平行四边形,正确;B、对角线相等的四边形是矩形,还可能是等腰梯形,错误;C、对角线互相垂直的四边形是菱形,还可能是梯形,错误;D、对角线互相垂直平分的四边形是菱形,错误;故选A.【点评】本题主要考查了命题与定理的知识,解题的关键是掌握特殊四边形的判定定理,此题难度不大.4.有10个数,它们的平均数是45,将其中最小的4和最大的70这两个数去掉,则余下数的平均数为()A.45 B.46 C.47 D.48【考点】算术平均数.【分析】根据已知条件列出算式,求出即可.【解答】解:余下数的平均数为(45×10﹣4﹣70)÷8=47,故选C.【点评】本题考查了算术平均数,能根据题意列出算式是解此题的关键.5.已知一次函数y=kx+b的图象如图,则k、b的符号是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【考点】一次函数图象与系数的关系.【分析】由图可知,一次函数y=kx+b的图象经过二、三、四象限,根据一次函数图象在坐标平面内的位置与k、b的关系作答.【解答】解:由一次函数y=kx+b的图象经过二、三、四象限,又有k<0时,直线必经过二、四象限,故知k<0,再由图象过三、四象限,即直线与y轴负半轴相交,所以b<0.故选D.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y 轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.6.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表:则关于这些同学的每天锻炼时间,下列说法错误的是()A.众数是60 B.平均数是21C.抽查了10个同学D.中位数是50【考点】众数;加权平均数;中位数.【分析】根据众数、中位数和平均数的定义分别对每一项进行分析即可.【解答】解:A、60出现了4次,出现的次数最多,则众数是60,故A选项说法正确;B、这组数据的平均数是:(20×2+40×3+60×4+90×1)÷10=49,故B选项说法错误;C、调查的户数是2+3+4+1=10,故C选项说法正确;D、把这组数据从小到大排列,最中间的两个数的平均数是(40+60)÷2=50,则中位数是50,故D选项说法正确;故选:B.【点评】此题考查了众数、中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.7.如图,在▱ABCD中,AB=5,AD=6,将▱ABCD沿AE翻折后,点B恰好与点C 重合,则折痕AE的长为()A.3 B. C. D.4【考点】翻折变换(折叠问题);平行四边形的性质.【分析】由点B恰好与点C重合,可知AE垂直平分BC,根据勾股定理计算AE 的长即可.【解答】解:∵翻折后点B恰好与点C重合,∴AE⊥BC,BE=CE,∵BC=AD=6,∴BE=3,∴AE==4,故选:D.【点评】本题考查了翻折变换,平行四边形的性质,勾股定理,根据翻折特点发现AE垂直平分BC是解决问题的关键.8.如图,在菱形ABCD中,AB=6,∠ABC=60°,M为AD中点,P为对角线BD 上一动点,连结PA和PM,则PA+PM的值最小是()A.3 B.2 C.3 D.6【考点】轴对称-最短路线问题;菱形的性质.【分析】首先连接AC,交BD于点O,连接CM,则CM与BD交于点P,此时PA+PM的值最小,由在菱形ABCD中,AB=6,∠ABC=60°,易得△ACD是等边三角形,BD垂直平分AC,继而可得CM⊥AD,则可求得CM的值,继而求得PA+PM 的最小值.【解答】解:连接AC,交BD于点O,连接CM,则CM与BD交于点P,此时PA+PM的值最小,∵在菱形ABCD中,AB=6,∠ABC=60°,∴∠ADC=∠ABC=60°,AD=CD=6,BD垂直平分AC,∴△ACD是等边三角形,PA=PC,∵M为AD中点,∴DM=AD=3,CM⊥AD,∴CM==3,∴PA+PM=PC+PM=CM=3.故选C.【点评】此题考查了最短路径问题、等边三角形的判定与性质、勾股定理以及菱形的性质.注意准确找到点P的位置是解此题的关键.9.小明从A地前往B地,到达后立刻返回,他与A地的距离y(千米)和所用时间x(小时)之间的函数关系如图所示,则小明出发4小时后距A地()A.100千米B.120千米C.180千米D.200千米【考点】函数的图象.【分析】4小时后已经在返回的路上,故求出返回时的速度,并求出1小时的行程即可.【解答】解:∵4小时后已经在返回的路上,而小明返回时240km的路程用时4小时,∴返回时的速度为:240÷4=60(km/h)∴1小时行程:1×60=60(km)∴240﹣60=180(km).答:小明出发4小时后距A地180千米.【点评】本题考查了函数图象及其应用,解题的关键是认真审题,获得必要的数据信息,难点就是能把函数图象与实际运动情况互相吻合.10.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x ﹣5上时,线段BC扫过的面积为()A.80 B.88 C.96 D.100【考点】一次函数图象与几何变换.【分析】根据题意结合勾股定理得出CA的长,进而得出平移后C点的横坐标,求出BC平移的距离,进而得出线段BC扫过的面积.【解答】解:∵点A、B的坐标分别为(2,0)、(8,0),∴AB=6,∵∠CAB=90°,BC=10,∴CA==8,∴C点纵坐标为:8,∵将△ABC沿x轴向右平移,当点C落在直线y=x﹣5上时,∴y=8时,8=x﹣5,解得:x=13,即A点向右平移13﹣2=11个单位,∴线段BC扫过的面积为:11×8=88.故选:B.【点评】此题主要考查了一次函数的图象与几何变换,根据题意得出C点平移后横坐标是解题关键.二、填空题(共6小题,每小题3分,满分18分)11.计算:(﹣)(+)=2.【考点】二次根式的混合运算.【分析】利用平方差公式计算.【解答】解:原式=()2﹣()2=7﹣5=2.故答案为2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.12.如图,正比例函数y=kx(k≠0)和一次函数y=ax+4(a≠0)的图象相交于点A(1,1),则不等式kx≥ax+4的解集为x≥1.【考点】一次函数与一元一次不等式.【分析】观察函数图象得到当x≥1时,直线y=ax+4不在直线y=kx的上方,于是可得到不等式kx≥ax+4的解集.【解答】解:当x≥1时,kx≥ax+4,所以不等式kx≥ax+4的解集为x≥1.故答案为x≥1.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.13.一个三角形的三边的比是3:4:5,它的周长是36,则它的面积是54.【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理得到三角形是直角三角形,然后根据三角形的面积公式即可得到结论.【解答】解:设三角形的三边是3x:4x:5x,∵(3x)2+(4x)2=(5x)2,∴此三角形是直角三角形,∵它的周长是36,∴3x+4x+5x=36,∴3x=9,4x=12,∴三角形的面积=×9×12=54,故答案为:54.【点评】本题考查了勾股定理的逆定理,三角形的面积的计算,熟练掌握勾股定理的逆定理是解题的关键.14.已知x+=,那么x﹣=±3.【考点】二次根式的化简求值.【分析】直接利用完全平方公式得出x2+=11,进而得出x﹣的值.【解答】解:∵x+=,∴(x+)2=13,∴x2++2=13,∴x2+=11,∴x2+﹣2=(x﹣)2=9,∴x﹣=±3.故答案为:±3.【点评】此题主要考查了二次根式的化简求值以及完全平方公式的应用,正确应用完全平方公式是解题关键.15.已知一组数据x,y,8,9,10的平均数为9,方差为2,则xy的值为77.【考点】方差;算术平均数.【分析】根据方差公式、算术平均数公式、完全平方公式计算即可.【解答】解:由题意得:x+y+8+9+10=45,(x﹣9)2+(y﹣9)2+(8﹣9)2+(9﹣9)2+(10﹣9)2=10,∴x+y=18,x2+y2﹣18x﹣18y=﹣154,∴(x+y)2﹣2xy﹣18(x+y)=﹣154,解得,xy=77,故答案为:77.【点评】本题考查的是方差的计算和算术平均数的计算,掌握方差的计算公式是:s2= [(x1﹣x¯)2+(x2﹣x¯)2+…+(x n﹣x¯)2]是解题的关键.16.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=6,则BC 的长为2.【考点】翻折变换(折叠问题).【分析】根据菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通过折叠的性质,结合直角三角形勾股定理求解.【解答】解:∵菱形AECF,AB=6,设BE=x,则AE=CE=6﹣x,∵菱形AECF,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=FCO=30°,∴2BE=CE,即CE=2x,∴2x=6﹣x,解得:x=2,∴CE=4,又EB=2,则利用勾股定理得:BC=2.故答案为:.【点评】此题主要考查了折叠问题以及勾股定理等知识,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.三、解答题(共8小题,满分72分)17.计算:(1)(+)﹣(﹣)(2)(+)÷.【考点】二次根式的混合运算.【分析】(1)先把各二次根式化为最简二次根式,然后去括号后合并即可;(2)先把各二次根式化为最简二次根式,然后进行二次根式的除法运算.【解答】解:(1)原式=5+3﹣3+2=2+5;(2)原式=(4+)÷2=2+.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.如图,在边长为a的正方形ABCD中,M是CD的中点,N是BC上一点,且BN=BC.求△AMN的面积.【考点】正方形的性质;三角形的面积.【分析】首先用a表示出AN、AM和MN的长,再利用勾股定理的逆定理证明△AMN是直角三角形,最后利用三角形面积公式计算即可.【解答】解:在Rt△ABN中,AN2=AB2+BN2,∴AN2=a2+(a)2=a2,在Rt△ADM中,AM2=AD2+DM2,∴AM2=a2+()2=a2,在Rt△CMN中,MN2=CM2+CN2,∴MN2=(a)2+(a)2=a2,∵a2=a2+a2,∴AN2=AM2+MN2,∴△AMN是直角三角形,∴S=AM•AN=×a×a=a2.△AMN【点评】本题主要考查了正方形的性质以及勾股定理的知识,解题的关键是证明△AMN是直角三角形,此题难度不大.19.如图,D是△ABC的边AB上一点,CE∥AB,DE交AC于点F,若FA=FC.(1)求证:四边形ADCE是平行四边形;(2)若AE⊥EC,EF=EC=1,求四边形ADCE的面积.【考点】平行四边形的判定与性质.【分析】(1)首先利用ASA得出△DAF≌△ECF,进而利用全等三角形的性质得出CE=AD,即可得出四边形ACDE是平行四边形;(2)由AE⊥EC,四边形ADCE是平行四边形,可推出四边形ADCE是矩形,由F 为AC的中点,求出AC,根据勾股定理即可求得AE,由矩形面积公式即可求得结论.【解答】解:(1)证明:∵CE∥AB,∴∠BAC=∠ECA,在△DAF和△ECF中,,∴△DAF≌△ECF (ASA),∴CE=AD,∴四边形ADCE是平行四边形;(2)∵AE⊥EC,四边形ADCE是平行四边形,∴四边形ADCE是矩形,在Rt△AEC中,F为AC的中点,∴AC=2EF=2,∴AE2=AC2﹣EC2=22﹣12=3,∴AE=,∴四边形ADCE的面积=AE•EC=.【点评】此题主要考查了平行四边形的判定,全等三角形的判定与性质,矩形的判定,勾股定理,得出∴△DAF≌△ECF 是解题关键.20.已知关于x的一次函数y=(2a﹣5)x+a﹣2的图象与y轴的交点在x轴的下方,且y随x的增大而减小,求a的值.【考点】一次函数图象上点的坐标特征;一次函数的性质.【分析】由“一次函数图象与y轴的交点在x轴的下方,且y随x的增大而减小.”即可得出关于a的一元一次不等式组,解不等式组即可得出a的取值范围.【解答】解:由题意,得:,解得:a<2.【点评】本题考查了一次函数图象上点的坐标特征、一次函数的性质以及解一元一次不等式组,解题的关键是根据一次函数图象上点的坐标特征结合一次函数的性质得出关于a的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,根据一次函数的性质结合一次函数的单调性找出不等式是关键.21.如图,在Rt△ABC中,∠B=90°,点D为AC的中点,以AB为一边向外作等边三角形ABE,连结DE.(1)证明:DE∥CB;(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.【考点】平行四边形的判定;等边三角形的性质;直角三角形斜边上的中线.【分析】(1)连结BD,根据直角三角形的性质可得BD=AC=AD,利用等边三角形的性质可得AE=BE,然后证明△ADE≌△BDE,进而可求出∠AED=∠BED=30°,然后再证明∠BED+∠EBC=180°,从而可得结论;(2)当AB=AC或AC=2AB时,四边形DCBE是平行四边形,首先利用三角函数求出∠C=30°,然后证明DC∥BE,再有DE∥BC,可得四边形DCBE是平行四边形.【解答】(1)证明:连结BD.∵点D为Rt△ABC的斜边AC的中点,∴BD=AC=AD,∵△ABE是等边三角形,∴AE=BE,在△ADE与△BDE中,,∴△ADE≌△BDE(SSS),∴∠AED=∠BED=30°,∵∠CBE=150°,∴∠BED+∠EBC=180°,∴DE∥CB;(2)解:当AB=AC或AC=2AB时,四边形DCBE是平行四边形.理由:∵AB=AC,∠ABC=90°,∴∠C=30°,∵∠EBC=150°,∴∠EBC+∠C=180°,∴DC∥BE,又∵DE∥BC,∴四边形DCBE是平行四边形.【点评】此题主要考查了平行四边形的判定,以及直角三角形的性质,等边三角形的性质,关键是掌握两组对边分别平行的四边形是平行四边形.22.(11分)(2016春•云梦县期末)已知A、B两地相距80km,甲、乙两人沿同一公路从A地出发到B地,甲骑摩托车,乙骑电动车,图中直线DE,OC分别表示甲、乙离开A地的路程s(km)与时间t(h)的函数关系的图象.根据图象解答下列问题.(1)甲比乙晚出发几个小时?乙的速度是多少?(2)乙到达终点B地用了多长时间?(3)在乙出发后几小时,两人相遇?【考点】一次函数的应用.【分析】(1)观察函数图象即可得出甲比乙晚出发1个小时,再根据“速度=路程÷时间”即可算出乙的速度;(2)由乙的速度即可得出直线OC的解析式,令y=80,求出x值即可得出结论;(3)根据点D、E的坐标利用待定系数法即可求出直线DE的解析式,联立直线OC、DE的解析式成方程组,解方程组即可求出交点坐标,由此即可得出结论.【解答】解:(1)由图可知:甲比乙晚出发1个小时,乙的速度为:60÷3=20(km/h).故:甲比乙晚出发1个小时,乙的速度是20km/h.(2)由(1)知,直线OC的解析式为y=20x,∴当y=80时,x=4,∴乙到达终点B地用了4个小时.(3)设直线DE的解析式为y=kx+b,将D(1,0)、E(3,80)代入y=kx+b,得:,解得:,∴直线DE的解析式为y=40x﹣40.联立直线OC、DE的解析式得:,解得:.∴直线OC与直线DE的交点坐标是(2,40),∴在乙出发后2小时,两人相遇.【点评】本题考查了一次函数的应用、待定系数法求函数解析式以及解二元一次方程组,解题的关键是:(1)根据“速度=路程÷时间”求出乙的速度;(2)找出直线OC的解析式;(3)联立两直线解析式成方程组.本题属于中档题,难度不大,解决该题型题目时,观察函数图象,根据函数图象给定数据解决问题是关键.23.(12分)(2013•遂宁)我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.【考点】条形统计图;算术平均数;中位数;众数.【分析】(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答;(2)根据平均数和中位数的统计意义分析得出即可;(3)分别求出初中、高中部的方差即可.【解答】解:(1)填表:初中平均数为:(75+80+85+85+100)=85(分),众数85(分);高中部中位数80(分).(2)初中部成绩好些.因为两个队的平均数都相同,初中部的中位数高,所以在平均数相同的情况下中位数高的初中部成绩好些.(3)∵= [(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70,= [(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160.∴<,因此,初中代表队选手成绩较为稳定.【点评】此题主要考查了平均数、众数、中位数、方差的统计意义.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.24.(13分)(2016春•云梦县期末)已知:如图,已知直线AB的函数解析式为y=﹣2x+8,与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),作PE⊥x轴于点E,PF⊥y轴于点F,连接EF,问:①若△PAO的面积为S,求S关于m的函数关系式,并写出m的取值范围;②是否存在点P,使EF的值最小?若存在,求出EF的最小值;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)根据坐标轴上点的特点直接求值,(2)①由点在直线AB上,找出m与n的关系,再用三角形的面积公式求解即可;②判断出EF最小时,点P的位置,根据三角形的面积公式直接求解即可.【解答】解:(1)令x=0,则y=8,∴B(0,8),令y=0,则﹣2x+8=0,∴x=4,∴A(4,0),(2)∵点P(m,n)为线段AB上的一个动点,∴﹣2m+8=n,∵A(4,0),∴OA=4,∴0<m<4∴S=OA×PE=×4×n=2(﹣2m+8)=﹣4m+16,(0<m<4);△PAO(3)存在,理由:∵PE⊥x轴于点E,PF⊥y轴于点F,OA⊥OB,∴四边形OEPF是矩形,∴EF=OP,当OP⊥AB时,此时EF最小,∵A(4,0),B(0,8),∴AB=4∵S△AOB=OA×OB=AB×OP,∴OP==,∴EF最小=OP=.【点评】此题是一次函数综合题,主要考查了坐标轴上点的特点,三角形的面积公式,极值的确定,解本题的关键是求出三角形PAO的面积.2017八年级(下)期末数学试卷二一、选择题1.化简﹣x的结果为()A.x﹣x B.x﹣C.2x D.02.已知甲乙两组各10个数据的平均数都是8,甲组数据的方差S甲2=0.12,乙组2=0.5,则()数据的方差S乙A.甲组数据的波动大B.乙组数据的波动大C.甲乙两组数据的波动一样大D.甲乙两组数据的波动大小不能比较3.a、b、c为某一三角形的三边,且满足a2+b2+c2=6a+8b+10c﹣50,则三角形是()A.直角三角形B.等边三角形C.等腰三角形D.锐角三角形4.若最简二次根式与可合并,则ab的值为()A.2 B.﹣2 C.﹣1 D.15.矩形边长为10cm和15cm,其中一内角平分线把长边分为两部分,这两部分是()A.6cm和9cm B.7cm和8 cm C.5cm和10cm D.4cm和11cm6.若一次函数+5,y随x的增大而减小,则m的值为()A.2或﹣2 B.3或﹣3 C.﹣3 D.37.某地区某月前两周从周一至周五每天的最低气温是(单位:℃)x1,x2,x3,x4,x5,和x1+1,x2+2,x3+3,x4+4,x5+5,若第一周这五天的平均气温为7℃,则第二周这五天的平均气温为()A.7℃B.8℃C.9℃D.10℃8.已知正方形ABCD中,E是BC上一点,如果DE=2,CE=1,那么正方形ABCD 的面积为()A.B.3 C.4 D.5二、填空题9.当x=时,二次根式取最小值,其最小值为.10.如下图,在Rt△ABC中,∠B=90°,BC=15,AC=17,以AB为直径作半圆,则此半圆的面积为.11.如图,已知正方形ABCD的边长为1,连接AC、BD,CE平分∠ACD交BD于点E,则DE=.12.如图,平行四边形ABCD的对角线相交于点O,且DC≠AD,过点O作OE⊥BD交BC于点E.若△CDE的周长为6cm,则平行四边形ABCD的周长为.13.直线y=3x+2沿y轴向下平移5个单位,则平移后与y轴的交点坐标为.14.小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的函数图象,则小明回家的速度是每分钟步行米.15.甲、乙两人5次射击命中的环数如下:甲:7、9、8、6、10.乙:7、8、9、8、8.则这两人5次射击命中的环数的平均数甲=乙=8,方差S甲2S乙2.(填:“>”“<”或“=”)三、解答题(本大题共8个小题满分75分)16.(7分)先化简,再求值:已知m=2+,求的值.17.(8分)如图,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形.若AB=2,求△ABC的周长.(结果保留根号)18.(8分)在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F;求证:DF=DC.19.(10分)如图,在△ABC 中,D 是BC 边上的一点,E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于点F ,且AF=BD ,连接BF . (1)线段BD 与CD 有什么数量关系,并说明理由;(2)当△ABC 满足什么条件时,四边形AFBD 是矩形?并说明理由.20.(10分)某校八年级(1)班20名学生某次数学测验的成绩统计如表:(1)若这20名学生成绩的平均数为82分,求x 和y 的值.(2)在(1)的条件下,求这20名学生本次测验成绩的众数和中位数. 21.(10分)已知直线与x 轴交于点A ,与y 轴交于点B ,直线y=2x +b经过点B 且与x 轴交于点C ,求△ABC 的面积.22.(10分)某校校长暑假将带领该校三好学生去北京旅游,甲旅行社说:“若校长买全票,则其余学生可享受半价优惠”;乙旅行社说:“包括校长在内全部按票价的六折优惠”.已知全程票价为240元.(1)设学生数为x ,甲旅行社的收费为y 甲(元),乙旅行社的收费为y 乙(元),分别求出y 甲,y 乙关于x 的函数关系式;(2)当学生数是多少时,两家旅行社的收费一样; (3)根据学生人数讨论哪家旅行社更优惠.23.(12分)如图,直线y=kx ﹣1与x 轴、y 轴分别交于B 、C 两点,且OB=OC . (1)求B 点的坐标和k 的值.(2)若点A (x ,y )是第一象限内直线y=kx ﹣1的一个动点,试写出△AOB 的面积与x 的函数关系式.(3)当点A 运动到什么位置时,△AOB 的面积是.。

【冲刺卷】八年级数学下期末模拟试卷(附答案)

【冲刺卷】八年级数学下期末模拟试卷(附答案)

【冲刺卷】八年级数学下期末模拟试卷(附答案)一、选择题1.一次函数y kx b =+的图象如图所示,点()3,4P 在函数的图象上.则关于x 的不等式4kx b +≤的解集是( )A .3x ≤B .3x ≥C .4x ≤D .4x ≥2.下列命题中,真命题是( )A .两条对角线垂直的四边形是菱形B .对角线垂直且相等的四边形是正方形C .两条对角线相等的四边形是矩形D .两条对角线相等的平行四边形是矩形3.三角形的三边长为22()2a b c ab +=+,则这个三角形是( )A .等边三角形B .钝角三角形C .直角三角形D .锐角三角形 4.若点P 在一次函数的图像上,则点P 一定不在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 5.某超市销售A ,B ,C ,D 四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是( )A .1.95元B .2.15元C .2.25元D .2.75元 6.4133 的结果为( ). A .32 B .23 C 2 D .27.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b .若8ab =,大正方形的面积为25,则小正方形的边长为( )A .9B .6C .4D .38.如图,在Y ABCD 中, 对角线AC 、BD 相交于点O. E 、F 是对角线AC 上的两个不同点,当E 、F 两点满足下列条件时,四边形DEBF 不一定是平行四边形( ).A .AE =CFB .DE =BFC .ADE CBF ∠=∠D .AED CFB ∠=∠9.计算12(75+313﹣48)的结果是( ) A .6 B .43C .23+6D .12 10.如图,以数轴的单位长度线段为边作一个正方形,以表示数1的点为圆心,正方形对角线长为半径画弧,交数轴于点A ,则点A 表示的数是( )A .-2B .﹣1+2C .﹣1-2D .1-211.如图,点P 是矩形ABCD 的边上一动点,矩形两边长AB 、BC 长分别为15和20,那么P 到矩形两条对角线AC 和BD 的距离之和是( )A .6B .12C .24D .不能确定12.如图,四边形ABCD 是菱形,∠ABC =120°,BD =4,则BC 的长是( )A .4B .5C .6D .3二、填空题13.如图.过点A 1(1,0)作x 轴的垂线,交直线y=2x 于点B 1;点A 2与点O 关于直线A 1B 1对称,过点A 2作x 轴的垂线,交直线y=2x 于点B 2;点A 3与点O 关于直线A 2B 2对称.过点A 3作x 轴的垂线,交直线y=2x 于点B 3;…按此规律作下去.则点A 3的坐标为_____,点B n 的坐标为_____.14.一次函数的图象过点()1,3且与直线21y x =-+平行,那么该函数解析式为__________.15.如图,直线l 1:y =x +n –2与直线l 2:y =mx +n 相交于点P (1,2).则不等式mx +n <x +n –2的解集为______.16.若x <2,化简22)x -(+|3﹣x|的正确结果是__.17.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、E 的面积分别为2,5,1,10.则正方形D 的面积是______.18.如图,在平行四边形ABCD 中,AB =3,BC =5,∠B 的平分线BE 交AD 于点E ,则DE 的长为____________.19.在ABC ∆中,13AC BC ==, 10AB =,则ABC ∆面积为_______. 20.若m =+5,则m n =___.三、解答题21.如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.(1)求证:△ABC≌△DFE;(2)连接AF、BD,求证:四边形ABDF是平行四边形.22.一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?23.某店代理某品牌商品的销售.已知该品牌商品进价每件40元,日销售y(件)与销售价x(元/件)之间的关系如图所示(实线),付员工的工资每人每天100元,每天还应支付其它费用150元.(1)求日销售y(件)与销售价x(元/件)之间的函数关系式;(2)该店员工人共3人,若某天收支恰好平衡(收入=支出),求当天的销售价是多少?24.某校八年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:完成作业单元测试期末考试小张70 90 80 小王 60 75(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;(2)若按完成作业、单元检测、期末考试三项成绩按1:2:7的权重来确定期末评价成绩.①请计算小张的期末评价成绩为多少分?②小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?25.如图,长方体的长为15cm ,宽为10cm ,高为20cm ,点B 离点C5cm ,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B 去吃一滴蜜糖,需要爬行的最短距离是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】观察函数图象结合点P 的坐标,即可得出不等式的解集.【详解】解:观察函数图象,可知:当3x ≤时,4kx b +≤.故选:A .【点睛】考查了一次函数与一元一次不等式以及一次函数的图象,观察函数图象,找出不等式4kx b +≤的解集是解题的关键.2.D解析:D【解析】A 、两条对角线垂直并且相互平分的四边形是菱形,故选项A 错误;B 、对角线垂直且相等的平行四边形是正方形,故选项B 错误;C 、两条对角线相等的平行四边形是矩形,故选项C 错误;D 、根据矩形的判定定理,两条对角线相等的平行四边形是矩形,为真命题,故选项D 正确;故选D .3.C解析:C【解析】【分析】利用完全平方公式把等式变形为a 2+b 2=c 2,根据勾股定理逆定理即可判断三角形为直角三角形,可得答案.【详解】∵22()2a b c ab +=+,∴a 2+2ab+b 2=c 2+2ab ,∴a 2+b 2=c 2,∴这个三角形是直角三角形,故选:C .【点睛】本题考查了勾股定理的逆定理,如果一个三角形的两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形,最长边所对的角为直角. 4.C解析:C【解析】【分析】根据一次函数的性质进行判定即可.【详解】一次函数y=-x+4中k=-1<0,b>0,所以一次函数y=-x+4的图象经过二、一、四象限,又点P 在一次函数y=-x+4的图象上,所以点P 一定不在第三象限,故选C.【点睛】本题考查了一次函数的图象和性质,熟练掌握是解题的关键.y=kx+b :当 k>0,b>0时,函数的图象经过一,二,三象限;当 k>0,b<0时,函数的图象经过一,三,四象限;当 k<0,b>0时,函数的图象经过一,二,四象限;当 k<0,b<0时,函数的图象经过二,三,四象限.5.C解析:C【解析】【分析】根据加权平均数的定义列式计算可得.【详解】解:这天销售的矿泉水的平均单价是510%315%255%120% 2.25⨯+⨯+⨯+⨯=(元),故选:C .【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.6.D解析:D【解析】【分析】根据二次根式的除法法则进行计算即可.【详解】原式2===. 故选:D.【点睛】本题考查二次根式的除法,掌握二次根式的除法法则是解答本题的关键.7.D解析:D【解析】【分析】由题意可知:中间小正方形的边长为:-a b ,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【详解】解:由题意可知:中间小正方形的边长为:-a bQ 每一个直角三角形的面积为:118422ab =⨯= 214()252ab a b ∴⨯+-= 2()25169a b ∴-=-=3a b ∴-=故选:D【点睛】本题考查勾股定理的运用,稍有难度;利用大正方形与小正方形、直角三角形面积之间的等量关系是解答本题的关键.8.B解析:B【分析】根据平行四边形的性质以及平行四边形的判定定理即可作出判断.【详解】解:A、∵在平行四边形ABCD中,OA=OC,OB=OD,若AE=CF,则OE=OF,∴四边形DEBF是平行四边形;B、若DE=BF,没有条件能够说明四边形DEBF是平行四边形,则选项错误;C、∵在平行四边形ABCD中,OB=OD,AD∥BC,∴∠ADB=∠CBD,若∠ADE=∠CBF,则∠EDB=∠FBO,∴DE∥BF,则△DOE和△BOF中,EDB FBO OD OBDOE BOF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DOE≌△BOF,∴DE=BF,∴四边形DEBF是平行四边形.故选项正确;D、∵∠AED=∠CFB,∴∠DEO=∠BFO,∴DE∥BF,在△DOE和△BOF中,DOE BOFDEO BFO OD OB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DOE≌△BOF,∴DE=BF,∴四边形DEBF是平行四边形.故选项正确.故选B.【点睛】本题考查了平行四边形的性质以及判定定理,熟练掌握定理是关键.9.D解析:D【解析】【分析】解:112(75348)23(53343)2323123⨯+-=⨯+-=⨯=.故选:D.10.D解析:D【解析】【分析】【详解】∵边长为1的正方形对角线长为:22112+=,∴OA=2-1∵A在数轴上原点的左侧,∴点A表示的数为负数,即12-.故选D11.B解析:B【解析】【分析】由矩形ABCD可得:S△AOD=14S矩形ABCD,又由AB=15,BC=20,可求得AC的长,则可求得OA与OD的长,又由S△AOD=S△APO+S△DPO=12OA•PE+12OD•PF,代入数值即可求得结果.【详解】连接OP,如图所示:∵四边形ABCD是矩形,∴AC=BD,OA=OC=12AC,OB=OD=12BD,∠ABC=90°,S△AOD=14S矩形ABCD,∴OA=OD=12 AC,∵AB=15,BC=20,∴AC25,S△AOD=14S矩形ABCD=14×15×20=75,∴OA=OD=25 2,∴S△AOD=S△APO+S△DPO=12OA•PE+12OD•PF=12OA•(PE+PF)=12×252(PE+PF)=75,∴PE+PF=12.∴点P到矩形的两条对角线AC和BD的距离之和是12.故选B.【点睛】本题考查了矩形的性质、勾股定理、三角形面积.熟练掌握矩形的性质和勾股定理是解题的关键.12.A解析:A【解析】【分析】根据菱形的性质可知对角线平分对角,从而可知∠ABD=∠CBD=60°,从而可知△BCD是等边三角形,进而可知答案.【详解】∵∠ABC=120°,四边形ABCD是菱形∴∠CBD=60°,BC=CD∴△BCD是等边三角形∵BD=4∴BC=4故答案选A.【点睛】本题考查的是菱形的性质,能够掌握菱形的性质是解题的关键.二、填空题13.(40)(2n﹣12n)【解析】【分析】先根据题意求出A2点的坐标再根据A2点的坐标求出B2的坐标以此类推总结规律便可求出点A3Bn的坐标【详解】解:∵点A1坐标为(10)∴OA1=1过点A1作x轴解析:(4,0)(2n﹣1,2n)【解析】【分析】先根据题意求出A2点的坐标,再根据A2点的坐标求出B2的坐标,以此类推总结规律便可求出点A3、B n的坐标.【详解】解:∵点A 1坐标为(1,0),∴OA 1=1,过点A 1作x 轴的垂线交直线于点B 1,可知B 1点的坐标为(1,2),∵点A 2与点O 关于直线A 1B 1对称,∴OA 1=A 1A 2=1,∴OA 2=1+1=2,∴点A 2的坐标为(2,0),B 2的坐标为(2,4),∵点A 3与点O 关于直线A 2B 2对称.故点A 3的坐标为(4,0),B 3的坐标为(4,8),此类推便可求出点A n 的坐标为(2n ﹣1,0),点B n 的坐标为(2n ﹣1,2n ).故答案为(4,0),(2n ﹣1,2n ).考点:一次函数图象上点的坐标特征.14.【解析】【分析】根据两直线平行可设把点代入即可求出解析式【详解】解:∵一次函数图像与直线平行∴设一次函数为把点代入方程得:∴∴一次函数的解析式为:;故答案为:【点睛】本题考查了一次函数的图像和性质解 解析:25y x =-+【解析】【分析】根据两直线平行,可设2y x b =-+,把点()1,3代入,即可求出解析式.【详解】解:∵一次函数图像与直线21y x =-+平行,∴设一次函数为2y x b =-+,把点()1,3代入方程,得:213b -⨯+=,∴5b =,∴一次函数的解析式为:25y x =-+;故答案为:25y x =-+.【点睛】本题考查了一次函数的图像和性质,解题的关键是掌握两条直线平行,则斜率相等. 15.>1【解析】∵直线l1:y =x +n -2与直线l2:y =mx +n 相交于点P(12)∴关于x 的不等式mx +n <x +n -2的解集为x>1故答案为x>1解析:x >1【解析】∵直线l 1:y =x +n -2与直线l 2:y =mx +n 相交于点P(1,2),∴关于x 的不等式mx +n <x +n -2的解集为x>1,故答案为x>1.16.5-2x 【解析】【分析】本题首先根据题意得出x-203-x0然后根据绝对值的性质进行化简从而得出答案【详解】解:+|3﹣x|=+|3﹣x|∵x <2∴x-203-x0∴原式=2-x+3-x=5-2x 故解析:5-2x【解析】【分析】本题首先根据题意得出x-2<0,3-x >0,然后根据绝对值的性质进行化简,从而得出答案.【详解】解:﹣x| =2x -+|3﹣x|∵x <2∴x -2<0,3-x >0∴原式=2-x+3-x=5-2x故答案为:5-2x【点睛】本题主要考查的就是二次根式的化简. 2的区别,第一个a 的取值范围为全体实数,第二个a 的取值范围为非负数,第一个的运算结果为a ,然后根据a 的正负性进行去绝对值,第二个的运算结果就是a.本题我们知道原式=x 2-+3x -,然后根据x 的取值范围进行化简.17.2【解析】【分析】设中间两个正方形和正方形D 的面积分别为xyz 然后有勾股定理解答即可【详解】解:设中间两个正方形和正方形D 的面积分别为xyz 则由勾股定理得:x =2+5=7;y =1+z ;7+y =7+1解析:2【解析】【分析】设中间两个正方形和正方形D 的面积分别为x ,y ,z ,然后有勾股定理解答即可.【详解】解:设中间两个正方形和正方形D 的面积分别为x ,y ,z ,则由勾股定理得:x =2+5=7;y =1+z ;7+y =7+1+z =10;即正方形D 的面积为:z =2.故答案为:2.【点睛】本题考查了勾股定理的应用,掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.18.2【解析】【分析】根据平行四边形的性质可得出AD∥BC则∠AEB=∠CBE 再由∠ABE=∠CBE则∠AEB=∠ABE则AE=AB从而求出DE【详解】解:∵四边形ABCD是平行四边形∴AD∥BC∴∠A解析:2【解析】【分析】根据平行四边形的性质,可得出AD∥BC,则∠AEB=∠CBE,再由∠ABE=∠CBE,则∠AEB=∠ABE,则AE=AB,从而求出DE.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵∠B的平分线BE交AD于点E,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AE=AB,∵AB=3,BC=5,∴DE=AD-AE=BC-AB=5-3=2.故答案为2.【点睛】本题考查了平行四边形的性质、角平分线的定义,解题的关键是掌握平行四边形的性质:对边相等.19.60【解析】【分析】根据题意可以判断为等腰三角形利用勾股定理求出AB 边的高即可得到答案【详解】如图作出AB边上的高CD∵AC=BC=13AB=10∴△ABC是等腰三角形∴AD=BD=5根据勾股定理C解析:60【解析】【分析】为等腰三角形,利用勾股定理求出AB边的高,即可得到答案.根据题意可以判断ABC【详解】如图作出AB边上的高CD∵AC=BC=13, AB=10,∴△ABC 是等腰三角形,∴AD=BD=5,根据勾股定理 CD 2=AC 2-AD 2, CD=22135-=12,12ABC S CD AB =⋅V =112102⨯⨯=60, 故答案为:60.【点睛】此题主要考查了等腰三角形的判定及勾股定理,关键是判断三角形的形状,利用勾股定理求出三角形的高.20.【解析】【分析】直接利用二次根式有意义的条件得出mn 的值进而得出答案【详解】∵m =n-2+2-n+5∴n =2则m =5故mn =25故答案为:25【点睛】此题主要考查了二次根式有意义的条件正确得出mn 的解析:【解析】【分析】直接利用二次根式有意义的条件得出m ,n 的值进而得出答案.【详解】∵m =+5,∴n =2,则m =5,故m n =25.故答案为:25.【点睛】此题主要考查了二次根式有意义的条件,正确得出m ,n 的值是解题关键. 三、解答题21.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)由SSS 证明△ABC ≌△DFE 即可;(2)连接AF 、BD ,由全等三角形的性质得出∠ABC=∠DFE ,证出AB ∥DF ,即可得出结论.【详解】详解:证明:,,在和中,, ≌;解:如图所示:由知≌,,,,四边形ABDF是平行四边形.点睛:本题考查了平行四边形的判定、全等三角形的判定与性质、平行线的判定;熟练掌握平行四边形的判定方法,证明三角形全等是解决问题的关键.22.(1)该一次函数解析式为y=﹣x+60.(2)在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.【解析】【分析】(1)根据函数图象中点的坐标利用待定系数法求出一次函数解析式;(2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,即可求得答案.【详解】(1)设该一次函数解析式为y=kx+b,将(150,45)、(0,60)代入y=kx+b中,得,解得:,∴该一次函数解析式为y=﹣x+60;(2)当y=﹣x+60=8时,解得x=520,即行驶520千米时,油箱中的剩余油量为8升.530﹣520=10千米,油箱中的剩余油量为8升时,距离加油站10千米,∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.【点睛】本题考查了一次函数的应用,熟练掌握待定系数法,弄清题意是解题的关键.23.(1)2140(4058)82(5871)x xyx x-+⎧=⎨-+<⎩剟…;(2)55元【解析】【分析】(1)分情况讨论,利用待定系数法进行求解即可解题,(2)根据收支平衡的含义建立收支之间的等量关系进行求解是解题关键.【详解】解:(1)当40≤x≤58时,设y与x之间的函数关系式为y=kx+b(k≠0),将(40,60),(58,24)代入y=kx+b,得:40605824k b k b +=⎧⎨+=⎩ ,解得:2140k b =-⎧⎨=⎩, ∴当40≤x≤58时,y 与x 之间的函数关系式为y =2x+140;当理可得,当58<x≤71时,y 与x 之间的函数关系式为y =﹣x+82.综上所述:y 与x 之间的函数关系式为2140(4058)82(5871)x x y x x -+⎧=⎨-+<⎩剟…. (2)设当天的销售价为x 元时,可出现收支平衡.当40≤x≤58时,依题意,得:(x ﹣40)(﹣2x+140)=100×3+150, 解得:x 1=x 2=55;当57<x≤71时,依题意,得:(x ﹣40)(﹣x+82)=100×3+150, 此方程无解.答:当天的销售价为55元时,可出现收支平衡.【点睛】本题考查了用待定系数法求解一次函数,一次函数的实际应用,中等难度,熟悉待定系数法,根据题意建立等量关系是解题关键.24.(1)80;(2)①80;②85.【解析】【分析】(1)直接利用算术平均数的定义求解可得;(2)根据加权平均数的定义计算可得.【详解】解:(1)小张的期末评价成绩为709080803++=(分); (2)①小张的期末评价成绩为70190280780127⨯+⨯+⨯=++(分); ②设小王期末考试成绩为x 分, 根据题意,得:601752780127x ⨯+⨯+++…, 解得84.2x …, ∴小王在期末(期末成绩为整数)应该最少考85分才能达到优秀.【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.25.需要爬行的最短距离是cm .【解析】【分析】先将长方体沿CF 、FG 、GH 剪开,向右翻折,使面FCHG 和面ADCH 在同一个平面内,连接AB ;或将长方体沿DE 、EF 、FC 剪开,向上翻折,使面DEFC 和面ADCH 在同一个平面内,连接AB ,然后分别在Rt △ABD 与Rt △ABH ,利用勾股定理求得AB 的长,比较大小即可求得需要爬行的最短路程.【详解】解:将长方体沿CF 、FG 、GH 剪开,向右翻折,使面FCHG 和面ADCH 在同一个平面内,连接AB ,如图1,由题意可得:BD=BC+CD=5+10=15cm ,AD=CH=15cm ,在Rt △ABD 中,根据勾股定理得:22BD AD +2cm ;将长方体沿DE 、EF 、FC 剪开,向上翻折,使面DEFC 和面ADCH 在同一个平面内, 连接AB ,如图2,由题意得:BH=BC+CH=5+15=20cm ,AH=10cm ,在Rt △ABH 中,根据勾股定理得:22BH AH +5,则需要爬行的最短距离是2cm .连接AB ,如图3,由题意可得:BB′=B′E+BE=15+10=25cm ,AB′=BC=5cm ,在Rt △AB ′B 中,根据勾股定理得:22BB AB ''+26,∵2<526∴则需要爬行的最短距离是2cm .考点:平面展开-最短路径问题.。

2017八年级下册数学期末试卷及答案

2017八年级下册数学期末试卷及答案

2017八年级下册数学期末试卷一、选择题(每小题3分,共48分)1.下列调查中,适宜采用普查方式的是( )A.了解某校初三一班的体育学考成绩B.了解某种节能灯的使用寿命C.了解我国青年人喜欢的电视节目D.了解全国九年级学生身高的现状2.函数y= 中,自变量x的取值范围是( )A.x>3B.x<3C.x=3D.x≠33.点A的坐标为(2,3),点B的坐标为(﹣2,3),则点A与点B( )A.关于x轴对称B.关于y轴对称C.关于原点对称D.不是对称点4.已知函数y=(1﹣3m)x是正比例函数,且y随x的增大而增大,那么m 的取值范围是( )A.m>B.m<C.m>1D.m<15.点B(m2+1,﹣1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限6.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/分钟 0频数(通话次数) 20 16 9 5则通话时间不超过15分钟的频率是( )A.0.1B.0.4C.0.5D.0.97.在下列图象中,能作为一次函数y=﹣x+1的图象的是( )A. B. C. D.8.已知四边形ABCD是平行四边形,下列结论不正确的是( )A.当AC=BD时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AB=BC时,它是菱形9.某校的校内有一个两个相同的正六边形(即六条边都相等,六个角都相等)围成的花坛,边长为2.5m,如图中的阴影部分所示,校方先要将这个花坛在原有的基础上扩建成一个菱形区域如图所示,并在新扩充的部分种上草坪,则扩建后菱形区域的周长为( )A.20mB.25mC.30mD.35m10.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为( )A.x≤3B.x≥3C.x≤D.x≥11.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长度恰好为24米.要围成的菜园是如图所示的长方形ABCD.设BC 边的长为x米,AB边的长为y米,则y与x之间的函数关系式是( )A.y= x+12B.y=﹣2x+24C.y=2x﹣24D.y= x﹣1212.A、B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B地.其中正确的个数是( )A.1B.2C.3D.413.如图,△AOB是等边三角形,B(2,0),将△AOB绕O点逆时针方向旋转90°到△A′OB′位置,则A′坐标是( )A.(﹣1, )B.(﹣,1)C.( ,﹣1)D.(1,﹣ )14.如图,在边长为1的正方形ABCD中,对角线AC和BD相交于点O,P 是BC边上任意一点,PE⊥BD于点E,PF⊥AC于点F,则PE+PF=( )A. B. C. D.15.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是( )A.②③B.②⑤C.①③④D.④⑤16.如图,在平面直角坐标系中,直线y=﹣ x+3与矩形OABC的边AB、BC分别交于点E、F,若点B的坐标为(m,2),则m的值可能为( )A. B. C. D.二、填空题(每小题3分,共12分)17.P(m﹣4,1﹣m)在x轴上,则m= .18.一次函数y=(m﹣1)x+m2的图象过点(0,4),且y随x的增大而增大,则m= .19.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=1,则AC的长为.20.如图,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0)、(5,0)、(2,3),则顶点C的坐标是.三、解答题(本题8分)21.一个多边形的内角和是它的外角和的4倍,求这个多边形的边数.22.如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线移动(即:沿着长方形移动一周)(1)写出点B的坐标.(2)当P点移动了4秒时,直接写出点P的坐标(3)在移动过程中,当点P到x轴距离为5个单位长度时,则点P移动的时间为.23.如图,将▱ABCD沿CE折叠,使点D落在BC边上的F处,点E在AD上.(1)求证:四边形ABFE为平行四边形;(2)若AB=4,BC=6,则四边形ABFE的周长为.24.为了了解某校七年级男生的体能情况,从该校七年级抽取50名男生进行1分钟跳绳测试,把所得数据整理后,画出频数分布直方图.已知图中从左到右第一、第二、第三、第四小组的频数的比为1:3:4:2.(1)总体是,个体是,样本容量是;(2)求第四小组的频数和频率;(3)求所抽取的50名男生中,1分钟跳绳次数在100次以上(含100次)的人数占所抽取的男生人数的百分比.25.如图,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(﹣3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l1上;(3)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.26.如图,在△ABC中,按如下步骤作图:①以点A为圆心,AB长为半径画弧;②以点C为圆心,CB长为半径画弧,两弧相交于点D;③连接BD,与AC交于点E,连接AD、CD;(1)求证:∠BAE=∠DAE;(2)当AB=BC时,猜想四边形ABCD是什么四边形,并证明你的结论;(3)当AC=8cm,BD=6cm,现将四边形ABCD通过割补,拼成一个正方形,那么这个正方形的边长是多少?2017八年级下册数学期末试卷参考答案一、选择题(每小题3分,共48分)1.下列调查中,适宜采用普查方式的是( )A.了解某校初三一班的体育学考成绩B.了解某种节能灯的使用寿命C.了解我国青年人喜欢的电视节目D.了解全国九年级学生身高的现状【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解某校初三一班的体育学考成绩,适合普查,故A正确;B、了解某种节能灯的使用寿命,调查具有破坏性,适合抽样调查,故B 错误;C、了解我国青年人喜欢的电视节目,调查范围广,适合抽样调查,故C 错误;D、了解全国九年级学生身高的现状,调查范围广,适合抽样调查,故D 错误;故选:A.2.函数y= 中,自变量x的取值范围是( )A.x>3B.x<3C.x=3D.x≠3【考点】函数自变量的取值范围.【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣3≠0,解得x≠3.故选D.3.点A的坐标为(2,3),点B的坐标为(﹣2,3),则点A与点B( )A.关于x轴对称B.关于y轴对称C.关于原点对称D.不是对称点【考点】关于x轴、y轴对称的点的坐标;关于原点对称的点的坐标.【分析】根据关于y轴对称的点的纵坐标相等,横坐标互为相反数,可得答案.【解答】解:由A的坐标为(2,3),点B的坐标为(﹣2,3),得点A与点B关于y轴对称,故选:B.4.已知函数y=(1﹣3m)x是正比例函数,且y随x的增大而增大,那么m 的取值范围是( )A.m>B.m<C.m>1D.m<1【考点】正比例函数的定义.【分析】先根据正比例函数的性质列出关于m的不等式,求出m的取值范围即可.【解答】解:∵正比例函数y=(1﹣3m)x中,y随x的增大而增大,∴1﹣3m>0,解得m< .故选:B.5.点B(m2+1,﹣1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标;非负数的性质:偶次方.【分析】根据非负数的性质确定出点B的横坐标是正数,再根据各象限内点的坐标特征解答.【解答】解:∵m2≥0,∴m2+1≥1,∴点B(m2+1,﹣1)一定在第四象限.故选D.6.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/分钟 0频数(通话次数) 20 16 9 5则通话时间不超过15分钟的频率是( )A.0.1B.0.4C.0.5D.0.9【考点】频数(率)分布表.【分析】根据表格可以得到总的频数和通话时间不超过15分钟的频数,从而可以求得通话时间不超过15分钟的频率.【解答】解:由表格可得,通话时间不超过15分钟的频率是:,故选D.7.在下列图象中,能作为一次函数y=﹣x+1的图象的是( )A. B. C. D.【考点】一次函数的图象.【分析】先根据一次函数y=﹣x+1中k=﹣1,b=1判断出函数图象即可.【解答】解:∵一次函数y=﹣x+1中k=﹣1<0,b=1>0,∴此函数的图象经过一、二、四象限,故选A.8.已知四边形ABCD是平行四边形,下列结论不正确的是( )A.当AC=BD时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AB=BC时,它是菱形【考点】菱形的判定;平行四边形的性质;矩形的判定.【分析】根据对角线相等的平行四边形是矩形可得A错误;根据对角线互相垂直的平行四边形是菱形可得B正确;根据有一个角是直角的平行四边形是矩形可得C正确;根据一组邻边相等的平行四边形是菱形可得D正确.【解答】解:A、当AC=BD时,它是菱形,说法错误;B、当AC⊥BD时,它是菱形,说法正确;C、当∠ABC=90°时,它是矩形,说法正确;D、当AB=BC时,它是菱形,说法正确,故选:A.9.某校的校内有一个两个相同的正六边形(即六条边都相等,六个角都相等)围成的花坛,边长为2.5m,如图中的阴影部分所示,校方先要将这个花坛在原有的基础上扩建成一个菱形区域如图所示,并在新扩充的部分种上草坪,则扩建后菱形区域的周长为( )A.20mB.25mC.30mD.35m【考点】正多边形和圆;菱形的性质.【分析】根据题意和正六边形的性质得出△BMG是等边三角形,再根据正六边形的边长得出BG=GM=2.5m,同理可证出AF=EF=2.5m,再根据AB=BG+GF+AF,求出AB,从而得出扩建后菱形区域的周长.【解答】解:如图,∵花坛是由两个相同的正六边形围成,∴∠FGM=∠GMN=120°,GM=GF=EF,∴∠BMG=∠BGM=60°,∴△BMG是等边三角形,∴BG=GM=2.5(m),同理可证:AF=EF=2.5(m)∴AB=BG+GF+AF=2.5×3=7.5(m),∴扩建后菱形区域的周长为7.5×4=30(m).故选:C.10.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为( )A.x≤3B.x≥3C.x≤D.x≥【考点】一次函数与二元一次方程(组).【分析】首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式2x≥ax+4的解集即可.【解答】解:∵函数y=2x的图象过点A(m,3),∴将点A(m,3)代入y=2x得,2m=3,解得,m= ,∴点A的坐标为( ,3),∴由图可知,不等式2x≥ax+4的解集为x≥ .故选:D.11.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长度恰好为24米.要围成的菜园是如图所示的长方形ABCD.设BC 边的长为x米,AB边的长为y米,则y与x之间的函数关系式是( )A.y= x+12B.y=﹣2x+24C.y=2x﹣24D.y= x﹣12【考点】函数关系式.【分析】根据题意可得2y+x=24,继而可得出y与x之间的函数关系式.【解答】解:由题意得:2y+x=24,故可得:y=﹣ x+12(0故选:A.12.A、B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B地.其中正确的个数是( )A.1B.2C.3D.4【考点】一次函数的应用.【分析】观察函数图象,从图象中获取信息,根据速度,路程,时间三者之间的关系求得结果.【解答】解:由函数图象可知,乙比甲晚出发1小时,故①正确;乙出发3﹣1=2小时后追上甲,故②错误;甲的速度为:12÷3=4(千米/小时),故③正确;乙的速度为:12÷(3﹣1)=6(千米/小时),则甲到达B地用的时间为:20÷4=5(小时),乙到达B地用的时间为:20÷6= (小时),1+3 ,∴乙先到达B地,故④正确;正确的有3个.故选:C.13.如图,△AOB是等边三角形,B(2,0),将△AOB绕O点逆时针方向旋转90°到△A′OB′位置,则A′坐标是( )A.(﹣1, )B.(﹣,1)C.( ,﹣1)D.(1,﹣ )【考点】坐标与图形变化-旋转.【分析】过点A′作A′C⊥x轴于C,根据点B的坐标求出等边三角形的边长,再求出∠A′OC=30°,然后求出OC、A′C,再根据点A′在第二象限写出点A′的坐标即可.【解答】解:如图,过点A′作A′C⊥x轴于C,∵B(2,0),∴等边△AOB的边长为2,又∵∠A′OC=90°﹣60°=30°,∴OC=2× = ,A′C=2× =1,∵点A′在第二象限,∴点A′(﹣,1).故选B.14.如图,在边长为1的正方形ABCD中,对角线AC和BD相交于点O,P是BC边上任意一点,PE⊥BD于点E,PF⊥AC于点F,则PE+PF=( )A. B. C. D.【考点】正方形的性质.【分析】先根据勾股定理求出对角线BD,证明△BEP是等腰直角三角形,得出PE=BE,再证明四边形OEPF是矩形,得出PF=OE,得出PE+PF=BE+OE=OB即可.【解答】解:∵四边形ABCD是正方形,∴AB=AD=1,AC⊥BD,∠ABC=∠BCD=90°,∠CBO=∠BCO=45°,OB= BD,∴BD= = ,∠BOC=90°,∴OB= ,∵PE⊥BD于点E,PF⊥AC于点F,∴∠OEP=∠OFP=90°=∠EOF,△BEP是等腰直角三角形,∴四边形OEPF是矩形,PE=BE,∴PF=OE,∴PE+PF=BE+OE=OB= ;故选:B.15.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是( )A.②③B.②⑤C.①③④D.④⑤【考点】三角形中位线定理;平行线之间的距离.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得MN= AB,从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.【解答】解:∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴M N= AB,即线段MN的长度不变,故①错误;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故②正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;∠APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选:B.16.如图,在平面直角坐标系中,直线y=﹣ x+3与矩形OABC的边AB、BC 分别交于点E、F,若点B的坐标为(m,2),则m的值可能为( )A. B. C. D.【考点】一次函数图象上点的坐标特征;矩形的性质.【分析】求出点F和直线y=﹣ x+3与x轴交点的坐标,即可判断m的范围,由此可以解决问题.【解答】解:∵B、F两点的纵坐标相同,B点的纵坐标为2,∴点F的纵坐标为2,∵点F在y=﹣ x+3上,∴点F的坐标( ,2),∵直线y=﹣ x+3与x轴的交点为(2,0),∴由图象可知点B的横坐标∴选项中只有B符合.故选B.二、填空题(每小题3分,共12分)17.P(m﹣4,1﹣m)在x轴上,则m= 1 .【考点】点的坐标.【分析】根据x轴上的点的纵坐标为0列式计算即可得解.【解答】解:∵P(m﹣4,1﹣m)在x轴上,∴1﹣m=0,解得m=1.故答案为:1.18.一次函数y=(m﹣1)x+m2的图象过点(0,4),且y随x的增大而增大,则m= 2 .【考点】一次函数的性质.【分析】根据一次函数的增减性列出关于m的不等式组,求出m的值即可.【解答】解:∵一次函数y=(m﹣1)x+m2的图象过点(0,4),且y随x的增大而增大,∴ ,解得m=2.故答案为:2.19.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=1,则AC的长为 2 .【考点】矩形的性质.【分析】由矩形的性质得出OA=OB,再证明△AOB是等边三角形,即可得出AB=OA,问题得解.【解答】解:∵四边形ABCD是矩形,∴OA= AC,OB= BD,BD=AC,∴OA=OB=1,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=1,∴AC=2OA=2,故答案为:2.20.如图,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0)、(5,0)、(2,3),则顶点C的坐标是(7,3) .【考点】平行四边形的性质;坐标与图形性质.【分析】首先过点D作DE⊥OB于点E,过点C作CF⊥OB于点F,易证得△ODE≌△CBF,则可得CF=DE=3,BF=OE=2,继而求得OF的长,则可求得顶点C的坐标.【解答】解:过点D作DE⊥OB于点E,过点C作CF⊥OB于点F,∴∠OED=∠BFC=90°,∵平行四边形ABCD的顶点A,B,D的坐标分别是(0,0)、(5,0)、(2,3),∴OB∥CD,OD∥BC,∴DE=CF=3,∠DOE=∠CBF,在△ODE和△CBF中,,∴△ODE≌△CBF(AAS),∴BF=OE=2,∴OF=OB+BF=7,∴点C的坐标为:(7,3).故答案为:(7,3).三、解答题(本题8分)21.一个多边形的内角和是它的外角和的4倍,求这个多边形的边数.【考点】多边形内角与外角.【分析】一个多边形的内角和是它的外角和的4倍,而外角和是360°,则内角和是4×360°.n边形的内角和可以表示成(n﹣2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.【解答】解:设这个多边形有n条边.由题意得:(n﹣2)×180°=360°×4,解得n=10.故这个多边形的边数是10.22.如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线移动(即:沿着长方形移动一周)(1)写出点B的坐标(4,6) .(2)当P点移动了4秒时,直接写出点P的坐标(4,4)(3)在移动过程中,当点P到x轴距离为5个单位长度时,则点P移动的时间为 4.5秒或7.5秒.【考点】四边形综合题.【分析】(1)由题意,根据A与C坐标确定出OC与OA的长,即可确定出B的坐标;(2)由P移动的速度与时间确定出移动的路程,求出AP的长,根据此时P 在AB边上,确定出P的坐标即可;(3)分两种情况考虑:当P在AB边上;当P在OC边上,分别求出P移动的时间即可.【解答】解:(1)∵长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),B在第一象限,∴OA=BC=4,OC=AB=6,则B坐标为(4,6);(2)∵P移动的速度为每秒2个单位,且运动时间是4秒,∴P移动的路程为8个单位,∴此时P在AB边上,且AP=4,则P坐标为(4,4);(3)分两种情况考虑:当P在AB边上时,由PA=5,得到P移动的路程为5+4=9,此时P移动的时间为9÷2=4.5(秒);当P在CO边上时,由OP=5,得到P移动的路程为4+6+6﹣5=11,此时P移动的时间是11÷2=5.5(秒),综上,P移动的时间为4.5秒或7.5秒.故答案为:(1)(4,6);(2)(4,4);(3)4.5秒或7.5秒23.如图,将▱ABCD沿CE折叠,使点D落在BC边上的F处,点E在AD上.(1)求证:四边形ABFE为平行四边形;(2)若AB=4,BC=6,则四边形ABFE的周长为12 .【考点】翻折变换(折叠问题);平行四边形的判定与性质.【分析】(1)根据折叠的性质得到EF=ED,∠CFE=∠CDE,根据平行四边形的性质得到AD∥BC,∠B=∠D,由平行线的判定得到AE∥BF,即可得到结论;(2)根据平行四边形的性质得到EF=AB=4.求得ED=4,得到AE=BF=6﹣4=2,于是得到结论.【解答】(1)证明:∵将 ABCD沿CE折叠,使点D落在BC边上的F处,∴EF=ED,∠CFE=∠CDE,∵四边形ABCD是平行四边形,∴AD∥BC,∠B=∠D,∴AE∥BF,∠B=∠CFE,∴AB∥EF,∴四边形ABFE为平行四边形;(2):∵四边形ABFE为平行四边形,∴EF=AB=4,∵EF=ED,∴ED=4,∴AE=BF=6﹣4=2,∴四边形ABFE的周长=AB+BF+EF+EA=12,故答案为:1224.为了了解某校七年级男生的体能情况,从该校七年级抽取50名男生进行1分钟跳绳测试,把所得数据整理后,画出频数分布直方图.已知图中从左到右第一、第二、第三、第四小组的频数的比为1:3:4:2.(1)总体是某校七年级男生的体能情况,个体是每个男生的体能情况,样本容量是50 ;(2)求第四小组的频数和频率;(3)求所抽取的50名男生中,1分钟跳绳次数在100次以上(含100次)的人数占所抽取的男生人数的百分比.【考点】频数(率)分布直方图.【分析】(1)根据总体、个体和样本容量的定义分别进行解答即可;(2)根据第一、第二、第三、第四小组的频数的比为1:3:4:2,可得第四小组的频率是,再用抽查的总人数乘以第四小组的频率即可求出频数;(3)根据1分钟跳绳次数在100次以上(含100次)的人数是第三、第四小组,再求出第三、第四小组的频率之和即可.【解答】解:(1)总体是某校七年级男生的体能情况;个体是每个男生的体能情况,样本容量是50;故答案为:某校七年级男生的体能情况;每个男生的体能情况;50.(2)第四小组的频率是: =0.2;第四小组的频数是:50× =10;(3)根据题意得:1分钟跳绳次数在100次以上(含100次)的人数占所抽取的男生人数的百分比是:×100%=60%.25.如图,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(﹣3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l1上;(3)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.【考点】一次函数图象与几何变换.【分析】(1)根据平移的性质得到点C的坐标;把点B、C的坐标代入直线方程y=kx+b(k≠0)来求该直线方程;(2)根据平移的性质得到点D的坐标,然后将其代入(1)中的函数解析式进行验证即可;(3)根据点B的坐标求得直线l2的解析式,据此求得相关线段的长度,并利用三角形的面积公式进行解答.【解答】解:(1)∵B(﹣3,3),将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,∴﹣3+1=﹣2,3﹣2=1,∴C的坐标为(﹣2,1),设直线l1的解析式为y=kx+c,∵点B、C在直线l1上,∴代入得:解得:k=﹣2,c=﹣3,∴直线l1的解析式为y=﹣2x﹣3;(2)∵将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,C(﹣2,1),∴﹣2﹣3=﹣5,1+6=7,∴D的坐标为(﹣5,7),代入y=﹣2x﹣3时,左边=右边,即点D在直线l1上;(3)把B的坐标代入y=x+b得:3=﹣3+b,解得:b=6,∴y=x+6,∴E的坐标为(0,6),∵直线y=﹣2x﹣3与y轴交于A点,∴A的坐标为(0,﹣3),∴AE=6+3=9,∵B(﹣3,3),∴△ABE的面积为×9×|﹣3|=13.5.26.如图,在△ABC中,按如下步骤作图:①以点A为圆心,AB长为半径画弧;②以点C为圆心,CB长为半径画弧,两弧相交于点D;③连接BD,与AC交于点E,连接AD、CD;(1)求证:∠BAE=∠DAE;(2)当AB=BC时,猜想四边形ABCD是什么四边形,并证明你的结论;(3)当AC=8cm,BD=6cm,现将四边形ABCD通过割补,拼成一个正方形,那么这个正方形的边长是多少?【考点】正方形的性质;线段垂直平分线的性质;作图—基本作图.【分析】(1)由SSS证明△ABC≌△ADC,得出对应角相等即可;(2)证出AB=BC=DC=AD,即可得出结论;(3)由等腰三角形的性质得出AC⊥BD,求出四边形ABCD的面积,即可得出拼成的正方形的边长.【解答】(1)证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BAE=∠DAE;(2)解:四边形ABCD是菱形,理由如下:∵AB=AD,BC=DC,AB=BC,∴AB=BC=DC=AD,∴四边形ABCD是菱形;(3)解:∵AB=AD,∠BAE=∠DAE,∴AC⊥BD,∴四边形ABCD的面积= AC•BD=8×6=24(cm2),∴拼成的正方形的边长= =2 (cm).。

中学八级(下)期末数学试卷两套合集二附答案解析

中学八级(下)期末数学试卷两套合集二附答案解析

中学八级(下)期末数学试卷两套合集二附答案解析2017年中学八年级(下)期末数学试卷两套合集二附答案解析2017年八年级(下)期末数学试卷一.选择题(本大题共10小题,每小题2分,满分20分.)1.计算的结果是()A.B.4 C.8 D.±42.当x=3时,函数y=﹣2x+1的值是()A.﹣5 B.3 C.7 D.53.若正比例函数y=kx的图象经过点(2,1),则k的值为()A.﹣B.C.﹣2 D.24.正方形的一条对角线长为4,则这个正方形的面积是()A.8 B.4 C.8 D.165.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.6.不能判定一个四边形是平行四边形的条件是()A.两组对边分别平行B.一组对边平行且相等C.一组对边平行,另一组对边相等D.两组对边分别相等7.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n 的解集为()A.x≥m B.x≥2 C.x≥1 D.y≥28.某校有甲、乙两个合唱队,两队队员的平均身高都为160cm,标准差分别是S甲、S乙,且S甲>S乙,则两个队的队员的身高较整齐的是()A.甲队B.两队一样整齐C.乙队D.不能确定9.小强所在学校离家距离为2千米,某天他放学后骑自行车回家,先骑了5分钟后,因故停留10分钟,再继续骑了5分钟到家.下面哪一个图象能大致描述他回家过程中离家的距离s(千米)与所用时间t(分)之间的关系()A.B.C.D.10.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A.﹣1 B. +1 C.﹣1 D. +1二.填空题(共6题,每题2分,共12分,直接把最简答案填写在题中的横线上)11.在函数y=中,自变量x的取值范围是______.12.比较大小:4______(填“>”或“<”)13.如图所示,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为______.14.把直线y=x+1沿x轴向右平移2个单位,所得直线的函数解析式为______.15.有一组数据:3,a,4,6,7.它们的平均数是5,那么这组数据的方差是______.16.如图是“赵爽弦图”,△ABH、△CDF和△DAE是四个全等的直角三角形,四边形ABCD 和EFGH都是正方形,如果AH=6,EF=2,那么AB等于______.三.解答题(本大题共9小题,满分68分.解答应写出文字说明、证明过程或演算步骤.)17.(1)计算:;(2)化简:(x>0).18.在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.19.已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4.(1)求此一次函数的解析式;(2)求一次函数的图象与两坐标轴的交点坐标.20.如图,▱ABCD的对角线AC、BD相交于点O,AE=CF.(1)求证:△BOE≌△DOF;(2)连接DE、BF,若BD⊥EF,试探究四边形EBDF的形状,并对结论给予证明.21.老师想知道某校学生每天上学路上要花多少时间,于是随机选取30名同学每天来校的大致时间(单位:分钟)进行统计,统计表如下:时间 5 10 15 20 25 30 35 45人数 3 3 6 12 2 2 1 1 (1)写出这组数据的中位数和众数;(2)求这30名同学每天上学的平均时间.22.如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,(1)求证:∠DHO=∠DCO.(2)若OC=4,BD=6,求菱形ABCD的周长和面积.23.如图,一次函数的图象分别与x轴、y轴交于A、B,已线段AB为边在第一象限内作等腰Rt△ABC,使∠BAC=90°.(1)分别求点A、C的坐标;(2)在x轴上求一点P,使它到B、C两点的距离之和最小.24.甲、乙两家商场平时以同样的价格出售某种商品,“五一节”期间,两家商场都开展让利酬宾活动,其中甲商场打8折出售,乙商场对一次性购买商品总价超过300元后的部分打7折.(1)设商品原价为x元,某顾客计划购此商品的金额为y元,分别就两家商场让利方式求出y 关于x的函数解析式,并写出x的取值范围,作出函数图象(不用列表);(2)顾客选择哪家商场购物更省钱?25.已知,矩形ABCD中,AB=4cm,AD=2AB,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证四边形AFCE 为菱形,并求AF的长;(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周,即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒.当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值;②若点P、Q的速度分别为v1、v2(cm/s),点P、Q的运动路程分别为a、b(单位:cm,ab≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,试探究a与b满足的数量关系.参考答案与试题解析一.选择题(本大题共10小题,每小题2分,满分20分.)1.计算的结果是()A.B.4 C.8 D.±4【考点】二次根式的乘除法.【分析】根据=(a≥0,b≥0)进行计算即可.【解答】解:原式===4,故选:B.2.当x=3时,函数y=﹣2x+1的值是()A.﹣5 B.3 C.7 D.5【考点】一次函数的性质.【分析】把x=3代入函数解析式求得相应的y 值即可.【解答】解:当x=3时,y=﹣2x+1=﹣2×3+1=﹣6+1=﹣5.故选:A.3.若正比例函数y=kx的图象经过点(2,1),则k的值为()A.﹣B.C.﹣2 D.2【考点】一次函数图象上点的坐标特征.【分析】根据一次函数图象上点的坐标特征,把(2,1)代入y=kx中即可计算出k的值.【解答】解:把(2,1)代入y=kx得2k=1,解得k=.故选B.4.正方形的一条对角线长为4,则这个正方形的面积是()A.8 B.4 C.8 D.16【考点】正方形的性质.【分析】根据正方形的面积等于对角线乘积的一半列式计算即可得解.【解答】解:∵正方形的一条对角线长为4,∴这个正方形的面积=×4×4=8.故选:A.5.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.【考点】勾股定理;点到直线的距离;三角形的面积.【分析】根据题意画出相应的图形,如图所示,在直角三角形ABC中,由AC及BC的长,利用勾股定理求出AB的长,然后过C作CD垂直于AB,由直角三角形的面积可以由两直角边乘积的一半来求,也可以由斜边AB乘以斜边上的高CD除以2来求,两者相等,将AC,AB及BC的长代入求出CD的长,即为C到AB的距离.【解答】解:根据题意画出相应的图形,如图所示:在Rt△ABC中,AC=9,BC=12,根据勾股定理得:AB==15,过C作CD⊥AB,交AB于点D,又S△ABC=AC•BC=AB•CD,∴CD===,则点C到AB的距离是.故选A6.不能判定一个四边形是平行四边形的条件是()A.两组对边分别平行B.一组对边平行且相等C.一组对边平行,另一组对边相等D.两组对边分别相等【考点】平行四边形的判定.【分析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形,即可选出答案.【解答】解:A、两组对边分别平行,可判定该四边形是平行四边形,故A不符合题意;B、一组对边平行且相等,可判定该四边形是平行四边形,故B不符合题意;C、一组对边平行另一组对边相等,不能判定该四边形是平行四边形,也可能是等腰梯形,故C 符合题意;D、两组对边分别相等,可判定该四边形是平行四边形,故D不符合题意故选:C.7.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n 的解集为()A.x≥m B.x≥2 C.x≥1 D.y≥2【考点】一次函数与一元一次不等式.【分析】首先将已知点的坐标代入直线y=x+1求得a的值,然后观察函数图象得到在点P的右边,直线y=x+1都在直线y=mx+n的上方,据此求解.【解答】解:∵直线l1:y=x+1与直线l2:y=mx+n 相交于点P(a,2),∴a+1=2,解得:a=1,观察图象知:关于x的不等式x+1≥mx+n的解集为x≥1,故选C.8.某校有甲、乙两个合唱队,两队队员的平均身高都为160cm,标准差分别是S甲、S乙,且S甲>S乙,则两个队的队员的身高较整齐的是()A.甲队B.两队一样整齐C.乙队D.不能确定【考点】标准差.【分析】根据标准差是方差的算术平方根以及方差的意义,方差越小数据越稳定,故比较方差后可以作出判断.【解答】解:因为S甲>S乙,所以S甲2>S乙2,故有甲的方差大于乙的方差,故乙队队员的身高较为整齐.故选C.9.小强所在学校离家距离为2千米,某天他放学后骑自行车回家,先骑了5分钟后,因故停留10分钟,再继续骑了5分钟到家.下面哪一个图象能大致描述他回家过程中离家的距离s(千米)与所用时间t(分)之间的关系()A.B.C.D.【考点】函数的图象.【分析】根据题意分析可得:他回家过程中离家的距离S(千米)与所用时间t(分)之间的关系有3个阶段;(1)、行使了5分钟,位移减小;(2)、因故停留10分钟,位移不变;(3)、继续骑了5分钟到家,位移继续减小,直到为0;【解答】解:因为小强家所在学校离家距离为2千米,某天他放学后骑自行车回家,行使了5分钟后,因故停留10分钟,继续骑了5分钟到家,所以图象应分为三段,根据最后离家的距离.故选D.10.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A.﹣1 B. +1 C.﹣1 D. +1【考点】勾股定理.【分析】根据∠ADC=2∠B,∠ADC=∠B+∠BAD判断出DB=DA,根据勾股定理求出DC的长,从而求出BC的长.【解答】解:∵∠ADC=2∠B,∠ADC=∠B+∠BAD,∴∠B=∠DAB,∴DB=DA=5,在Rt△ADC中,DC===1,∴BC=+1.故选D.二.填空题(共6题,每题2分,共12分,直接把最简答案填写在题中的横线上)11.在函数y=中,自变量x的取值范围是x ≥1.【考点】函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x﹣1≥0,解不等式可求x 的范围.【解答】解:根据题意得:x﹣1≥0,解得:x≥1.故答案为:x≥1.12.比较大小:4>(填“>”或“<”)【考点】实数大小比较;二次根式的性质与化简.【分析】根据二次根式的性质求出=4,比较和的值即可.【解答】解:4=,>,∴4>,故答案为:>.13.如图所示,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为45°.【考点】等腰直角三角形;勾股定理;勾股定理的逆定理.【分析】分别在格点三角形中,根据勾股定理即可得到AB,BC,AC的长度,继而可得出∠ABC 的度数.【解答】解:如图,连接AC.根据勾股定理可以得到:AC=BC=,AB=,∵()2+()2=()2,即AC2+BC2=AB2,∴△ABC是等腰直角三角形.∴∠ABC=45°.故答案为:45°.14.把直线y=x+1沿x轴向右平移2个单位,所得直线的函数解析式为y=x﹣1.【考点】一次函数图象与几何变换.【分析】直接根据“左加右减”的平移规律求解即可.【解答】解:把直线y=x+1沿x轴向右平移2个单位,所得直线的函数解析式为y=(x﹣2)+1,即y=x﹣1.故答案为y=x﹣1.15.有一组数据:3,a,4,6,7.它们的平均数是5,那么这组数据的方差是2.【考点】方差;算术平均数.【分析】先由平均数的公式计算出a的值,再根据方差的公式计算.一般地设n个数据,x1,x 2,…,x n的平均数为,=(x1+x2+…+x n),则方差S 2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2].【解答】解:a=5×5﹣3﹣4﹣6﹣7=5,s2= [(3﹣5)2+(5﹣5)2+(4﹣5)2+(6﹣5)2+(7﹣5)2]=2.故答案为:2.16.如图是“赵爽弦图”,△ABH、△CDF和△DAE是四个全等的直角三角形,四边形ABCD 和EFGH都是正方形,如果AH=6,EF=2,那么AB等于10.【考点】勾股定理的证明.【分析】在直角三角形AHB中,利用勾股定理进行解答即可.【解答】解:∵AH=6,EF=2,∴BG=AH=6,HG=EF=2,∴BH=8,∴在直角三角形AHB中,由勾股定理得到:AB===10.故答案是:10.三.解答题(本大题共9小题,满分68分.解答应写出文字说明、证明过程或演算步骤.)17.(1)计算:;(2)化简:(x>0).【考点】二次根式的混合运算.【分析】(1)首先化简二次根式,再合并即可;(2)首先把分子分母化简二次根式,再分母有理化即可.【解答】(1)解:=2﹣=;(2)解:(x>0)==x.18.在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.【考点】平行四边形的性质;角平分线的性质;勾股定理的逆定理;矩形的判定.【分析】(1)根据平行四边形的性质,可得AB 与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)解:∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC===5,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.19.已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4.(1)求此一次函数的解析式;(2)求一次函数的图象与两坐标轴的交点坐标.【考点】待定系数法求一次函数解析式;一次函数图象上点的坐标特征.【分析】(1)设一次函数解析式为y=kx+b,将x=3、y=1,x=﹣2、y=﹣4代入求得k、b的值即可;(2)在解析式中分别令x=0和y=0求解可得.【解答】解:(1)设一次函数解析式为y=kx+b,∵当x=3时,y=1;当x=﹣2时,y=﹣4,∴,解得:,∴该一次函数解析式为y=x﹣2;(2)当x=0时,y=﹣2,∴一次函数图象与y轴交点为(0,﹣2),当y=0时,得:x﹣2=0,解得:x=2,∴一次函数图象与x轴交点为(2,0).20.如图,▱ABCD的对角线AC、BD相交于点O,AE=CF.(1)求证:△BOE≌△DOF;(2)连接DE、BF,若BD⊥EF,试探究四边形EBDF的形状,并对结论给予证明.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】(1)根据平行四边形的性质可得BO=DO,AO=CO,再利用等式的性质可得EO=FO,然后再利用SAS定理判定△BOE≌△DOF即可;(2)根据BO=DO,FO=EO可得四边形BEDF 是平行四边形,再根据对角线互相垂直的平行四边形是菱形可得四边形EBDF为菱形.【解答】证明:(1)∵四边形ABCD是平行四边形,∴BO=DO,AO=CO,∵AE=CF,∴AO﹣AE=CO﹣FO,∴EO=FO,在△BOE和△DOF中,∴△BOE≌△DOF(SAS);(2)四边形EBDF为菱形,等三角形的判定,以及菱形的判定,关键是掌握理由:∵BO=DO,FO=EO,∴四边形BEDF是平行四边形,∵BD⊥EF,∴四边形EBDF为菱形.21.老师想知道某校学生每天上学路上要花多少时间,于是随机选取30名同学每天来校的大致时间(单位:分钟)进行统计,统计表如下:时间 5 10 15 20 25 30 35 45 人数 3 3 6 12 2 2 1 1 (1)写出这组数据的中位数和众数;(2)求这30名同学每天上学的平均时间.【考点】众数;加权平均数;中位数.【分析】(1)根据中位数和众数的含义和求法,写出这组数据的中位数和众数即可.(2)首先求出这30名同学每天上学一共要用多少时间;然后用它除以30,求出平均时间是多少即可.【解答】解:(1)根据统计表,可得这组数据的第15个数、第16个数都是20,∴这组数据的中位数是:(20+20)÷2=40÷2=20这组数据的众数是20.(2)(5×3+10×3+15×6+20×12+25×2+30×2+35×1+45×1)÷30=(15+30+90+240+50+60+35+45)÷30=565÷30=18(分钟)答:这30名同学每天上学的平均时间是18分钟.22.如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,(1)求证:∠DHO=∠DCO.(2)若OC=4,BD=6,求菱形ABCD的周长和面积.【考点】菱形的性质.【分析】(1)先根据菱形的性质得OD=OB,AB ∥CD,BD⊥AC,则利用DH⊥AB得到DH⊥CD,∠DHB=90°,所以OH为Rt△DHB的斜边DB上的中线,得到OH=OD=OB,利用等腰三角形的性质得∠1=∠DHO,然后利用等角的余角相等证明结论;(2)先根据菱形的性质得OD=OB=BD=3,OA=OC=4,BD⊥AC,再根据勾股定理计算出CD,然后利用菱形的性质和面积公式求菱形ABCD的周长和面积.【解答】(1)证明:∵四边形ABCD是菱形,∴OD=OB,AB∥CD,BD⊥AC,∵DH⊥AB,∴DH⊥CD,∠DHB=90°,∴OH为Rt△DHB的斜边DB上的中线,∴OH=OD=OB,∴∠1=∠DHO,∵DH⊥CD,∴∠1+∠2=90°,∵BD⊥AC,∴∠2+∠DCO=90°,∴∠1=∠DCO,∴∠DHO=∠DCO;(2)解:∵四边形ABCD是菱形,∴OD=OB=BD=3,OA=OC=4,BD⊥AC,在Rt△OCD中,CD==5,∴菱形ABCD的周长=4CD=20,菱形ABCD的面积=×6×8=24.23.如图,一次函数的图象分别与x轴、y轴交于A、B,已线段AB为边在第一象限内作等腰Rt△ABC,使∠BAC=90°.(1)分别求点A、C的坐标;(2)在x轴上求一点P,使它到B、C两点的距离之和最小.【考点】一次函数图象上点的坐标特征;等腰直角三角形;轴对称-最短路线问题.【分析】(1)作CD⊥x轴,易证∠OAB=∠ACD,即可证明△ABO≌△CAD,可得AD=OB,CD=OA,即可解题;(2)作C点关于x轴对称点E,连接BE,即可求得E点坐标,根据点P在直线BE上即可求得点P坐标,即可解题.【解答】解:(1)作CD⊥x轴,∵∠OAB+∠CAD=90°,∠CAD+∠ACD=90°,∴∠OAB=∠ACD,在△ABO和△CAD中,,∴△ABO≌△CAD(AAS)∴AD=OB,CD=OA,∵y=﹣x+2与x轴、y轴交于点A、B,∴A(2,0),B(0,2),∴点C坐标为(4,2);(2)作C点关于x轴对称点E,连接BE,则E点坐标为(4,﹣2),△ACD≌△AED,∴AE=AC,∴直线BE解析式为y=﹣x+2,设点P坐标为(x,0),则(x,0)位于直线BE上,∴点P坐标为(2,0)于点A重合.24.甲、乙两家商场平时以同样的价格出售某种商品,“五一节”期间,两家商场都开展让利酬宾活动,其中甲商场打8折出售,乙商场对一次性购买商品总价超过300元后的部分打7折.(1)设商品原价为x元,某顾客计划购此商品的金额为y元,分别就两家商场让利方式求出y 关于x的函数解析式,并写出x的取值范围,作出函数图象(不用列表);(2)顾客选择哪家商场购物更省钱?【考点】一次函数的应用.【分析】(1)根据两家商场的让利方式分别列式整理即可;(2)利用两点法作出函数图象即可;(3)求出两家商场购物付款相同的x的值,然后根据函数图象作出判断即可.【解答】解:(1)甲商场:y=0.8x,乙商场:y=x(0≤x≤300),y=0.7(x﹣300)+300=0.7x+90,即y=0.7x+90(x>300);(2)如图所示;(3)当0.8x=0.7x+90时,x=900,所以,x<900时,甲商场购物更省钱,x=900时,甲、乙两商场购物更花钱相同,x>900时,乙商场购物更省钱.25.已知,矩形ABCD中,AB=4cm,AD=2AB,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证四边形AFCE 为菱形,并求AF的长;(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周,即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒.当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值;②若点P、Q的速度分别为v1、v2(cm/s),点P、Q的运动路程分别为a、b(单位:cm,ab≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,试探究a与b满足的数量关系.【考点】四边形综合题.【分析】(1)先证明四边形ABCD为平行四边形,再根据对角线互相垂直平分的平行四边形是菱形作出判定,根据勾股定理即可求AF的长;(2)①分情况讨论可知,P点在BF上,Q点在ED上时,才能构成平行四边形,根据平行四边形的性质列出方程求解即可;②由①的结论用v1、v2表示出A、C、P、Q四点为顶点的四边形是平行四边形时所需的时间,计算即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠CAD=∠ACB,∠AEF=∠CFE.∵EF垂直平分AC,∴OA=OC.∵在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴OE=OF.∵EF⊥AC,∴四边形AFCE为菱形.设菱形的边长AF=CF=xcm,则BF=(8﹣x)cm,在Rt△ABF中,AB=4cm,由勾股定理得:AB2+BF2=AF2,即42+(8﹣x)2=x2,解得:x=5,∴AF=5;(2)①解:根据题意得,P点AF上时,Q点CD上,此时A,C,P,Q四点不可能构成平行四边形;同理P点AB上时,Q点DE或CE上,也不能构成平行四边形.∴只有当P点在BF上,Q点在ED上时,才能构成平行四边形,∴以A,C,P,Q四点为顶点的四边形是平行四边形时,PC=QA,∵点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,∴PC=5t,QA=12﹣4t,∴5t=12﹣4t,解得:t=,∴以A,C,P,Q四点为顶点的四边形是平行四边形时,t=秒;②由①得,PC=QA时,以A,C,P,Q四点为顶点的四边形是平行四边形,设运动时间为y秒,则yv1=12﹣yv2,解得,y=,∴a=×v1,b=×v2,∴=.八年级(下)期末数学试卷一、选择题(本题共30分,每小题3分)1.下列二次根式中,是最简二次根式的是()A.B.C.D.2.平行四边形ABCD中,若∠B=2∠A,则∠C 的度数为()A.120°B.60°C.30°D.15°3.甲、乙、丙、丁四人进行射击测试,每人测试10次,平均成绩均为9.2环,方差如表所示()选手甲乙丙丁方差0.56 0.60 0.50 0.45则在这四个选手中,成绩最稳定的是()A.甲B.乙C.丙D.丁4.若A(1,y1),B(2,y2)两点都在反比例函数y=的图象上,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法确定5.如图,菱形ABCD的两条对角线AC,BD相交于点O,若AC=4,BD=6,则菱形ABCD的周长为()A.16 B.24 C.4D.86.下列命题中,正确的是()A.有一组邻边相等的四边形是菱形B.对角线互相平分且垂直的四边形是矩形C.两组邻角相等的四边形是平行四边形D.对角线互相垂直且相等的平行四边形是正方形7.如图,正方形ABCD的两条对角线AC,BD 相交于点O,点E在BD上,且BE=CD,则∠BEC的度数为()A.22.5°B.60°C.67.5°D.75°8.关于x的一元二次方程x2﹣2x+k=0有两个实数根,则实数k的取值范围是()A.k≤1 B.k>1 C.k=1 D.k≥19.已知正比例函数y=kx的图象与反比例函数y=的图象交于A,B两点,若点A的坐标为(﹣2,1),则关于x的方程=kx的两个实数根分别为()A.x1=﹣1,x2=1 B.x1=﹣1,x2=2 C.x1=﹣2,x2=1 D.x1=﹣2,x2=210.中国数学史上最先完成勾股定理证明的数学家是公元3世纪三国时期的赵爽,他为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是用八个全等的直角三角形拼接而成.将图中正方形MNKT,正方形EFGH,正方形ABCD的面积分别记为S1,S2,S3,若S1+S2+S3=18,则正方形EFGH的面积为()A.9 B.6 C.5 D.二、填空题(本题共20分,第11-14题,每小题3分,第15-18题,每小题3分)11.关于x的一元二次方程x2﹣6x+m=0有一个根为2,则m的值为______.12.如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.若CD=5,则EF的长为______.13.某校开展了“书香校园”的活动,小腾班长统计了本学期全班40名同学课外图书的阅读数量(单位:本),绘制了折线统计图(如图所示),在这40名学生的图书阅读数量中,中位数是______.14.将一元二次方程x2+4x+1=0化成(x+a)2=b 的形式,其中a,b是常数,则a+b=______.15.反比例函数y=在第一象限的图象如图,请写出一个满足条件的k值,k=______.16.如图,将矩形ABCD沿对角线BD所在直线折叠,点C落在同一平面内,落点记为C′,BC′与AD交于点E,若AB=3,BC=4,则DE 的长为______.17.如图,平安路与幸福路是两条平行的道路,且与新兴大街垂直,老街与小米胡同垂直,书店位于老街与小米胡同的交口处,如果小强同学站在平安路与新兴大街的交叉路口,准备去书店,按图中的街道行走,最近的路程为______m.18.如图,在△ABC中,点P从点A出发向点C运动,在运动过程中,设x表示线段AP的长,y表示线段BP的长,y与x之间的关系如图2所示,则线段AB的长为______,线段BC的长为______.三、解答题(本题共16分,第19题8分,第20题8分)19.计算:(1)﹣+(+1)(﹣1)(2)×÷.20.解方程:(1)x2﹣6x+5=0(2)2x2﹣3x﹣1=0.四、解答题(本题共34分,第21-22题,每小题7分,第23题6分,第24-25题,每小题7分)21.如图,在▱ABCD中,点E,M分别在边AB,CD上,且AE=CM,点F,N分别在边BC,AD上,且DN=BF.(1)求证:△AEN≌△CMF;(2)连接EM,FN,若EM⊥FN,求证:EFMN 是菱形.22.为了让同学们了解自己的体育水平,初二1班的体育康老师对全班45名学生进行了一次体育模拟测试(得分均为整数)成绩满分为10分,成绩达到9分以上(包含9分)为优秀,成绩达到6分以上(包含6分)为合格,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表平均分方差中位数众数合格率优秀率男生 2 8 7 95% 40% 女生7.92 1.99 8 96% 36% 根据以上信息,解答下列问题:(1)在这次测试中,该班女生得10分的人数为4人,则这个班共有女生______人;(2)补全初二1班男生体育模拟测试成绩统计图,并把相应的数据标注在统计图上;(3)补全初二1班体育模拟测试成绩分析表;(4)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并写出一条支持你的看法的理由;(5)体育康老师说,从整体看,1班的体育成绩在合格率方面基本达标,但在优秀率方面还不够理想,因此他希望全班同学继续加强体育锻炼,争取在期末考试中,全班的优秀率达到60%,若男生优秀人数再增加6人,则女生优秀人数再增加多少人才能完成康老师提出的目标?23.已知:如图,在四边形ABCD中,∠B=90°,AB=BC=2,CD=3,AD=1,求∠DAB的度数.24.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F,M,N分别为OA,OB,OC,OD的中点,连接EF,FM,MN,NE.(1)依题意,补全图形;(2)求证:四边形EFMN是矩形;(3)连接DM,若DM⊥AC于点M,ON=3,求矩形ABCD的面积.25.在平面直角坐标系xOy中,四边形OABC 是矩形,点B的坐标为(4,3),反比例函数y=的图象经过点B.(1)求反比例函数的解析式;(2)一次函数y=ax﹣1的图象与y轴交于点D,与反比例函数y=的图象交于点E,且△ADE的面积等于6,求一次函数的解析式;(3)在(2)的条件下,直线OE与双曲线y=(x>0)交于第一象限的点P,将直线OE向右平移个单位后,与双曲线y=(x>0)交于点Q,与x轴交于点H,若QH=OP,求k的值.26.如图,在数轴上点A表示的实数是______.27.我们已经学习了反比例函数,在生活中,两个变量间具有反比例函数关系的实例有许多,例如:在路程s一定时,平均速度v是运行时间t 的反比例函数,其函数关系式可以写为:v=(s 为常数,s≠0).请你仿照上例,再举一个在日常生活、学习中,两个变量间具有反比例函数关系的实例:______;并写出这两个变量之间的函数解析式:______.28.已知:关于x的一元二次方程mx2﹣3(m﹣1)x+2m﹣3=0(m>3).(1)求证:方程总有两个不相等的实数根;(2)设方程的两个实数根分别为x1,x2(用含m 的代数式表示);①求方程的两个实数根x1,x2(用含m的代数式表示);②若mx1<8﹣4x2,直接写出m的取值范围.29.四边形ABCD是正方形,对角线AC,BD 相交于点O.(1)如图1,点P是正方形ABCD外一点,连接OP,以OP为一边,作正方形OPMN,且边ON与边BC相交,连接AP,BN.①依题意补全图1;②判断AP与BN的数量关系及位置关系,写出结论并加以证明;(2)点P在AB延长线上,且∠APO=30°,连接OP,以OP为一边,作正方形OPMN,且边ON与BC的延长线恰交于点N,连接CM,若AB=2,求CM的长(不必写出计算结果,简述求CM长的过程)参考答案与试题解析一、选择题(本题共30分,每小题3分)1.下列二次根式中,是最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】利用最简二次根式的定义判断即可.【解答】解:A、为最简二次根式,符合题意;B、=2,不合题意;C、=,不合题意;D、=2,不合题意,故选A【点评】此题考查了最简二次根式,熟练掌握最简二次根式的定义是解本题的关键.2.平行四边形ABCD中,若∠B=2∠A,则∠C 的度数为()A.120°B.60°C.30°D.15°【考点】平行四边形的性质.。

2016-2017学年八年级下册数学期末考试冲刺卷(含答案)

2016-2017学年八年级下册数学期末考试冲刺卷(含答案)

2017年八年级下册数学期末考试冲刺卷一、仔细选一选(本大题有10小题,每小题3分,共30分) 1x 的取值范围是( ) A ﹒x ≤3 B ﹒x ≤3且x ≠-4 C ﹒x ≥3 D ﹒x ≥3且x ≠4 2﹒下列二次根式计算正确的是( )A ﹒B=5-3=2 C ﹒)2=D3﹒关于x 的一元二次方程x 2-ax +a -1=0的根的情况是( ) A ﹒有两个实数根 B ﹒有两个不相等的实数根 C ﹒有两个相等的实数根 D ﹒没有实数根4﹒某校对学生一学期的各学科学业总平均分是按如下扇形图信息要求进行计算的,该校八年级一班李明同学这个学期的数学成绩如下表:则李明这个学期数学总平均分为( )A ﹒87.5B ﹒87.6C ﹒87.7D ﹒87.8 5﹒下列说法不正确的是( )A ﹒菱形既是轴对称图形又是中心对称图形B ﹒反比例函数y =kx(k ≠0)的图象是以坐标原点为对称中心的中心对称图形 C ﹒有一个角是直角的平行四边形是正方形 D ﹒对角线互相平分且相等的四边形是矩形6﹒如果将长为6cm ,宽为5cm 的矩形纸片折叠一次,那么这条折痕的长不可能是( ) A ﹒8cm B ﹒ C ﹒5.5 cm D ﹒3 cmA﹒(13,-15)B﹒(5,1) C﹒(-1,5)D﹒(10,-12)8﹒如图,若将左图正方形剪成四块,恰好能拼成右图的矩形,则当a=2时,b等于()A B C D﹒+2第8题图第9题图第10题图9﹒如图,在□ABCD中,AD=2AB,F是AD的中点,作CE⊥AB于点E,连结EF、CF,则下列结论:①∠DCF=12∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF,其中正确的有()A﹒1个B﹒2个C﹒3个D﹒4个10.如图,正方形ABCD的边长为2,G是对角线BD上一动点,GE⊥CD于点E,GF⊥BC于点F,连结EF﹒给出四种情况:①若G为BD上任意一点,则AG=EF;②若BG=AB,则∠DAG=22.5°;③若G为BD的中点,则四边形CEGF是正方形;④若DG∶BG=1∶3,则S△ADG=12,则其中正确的是()A﹒①②③B﹒②③④C﹒①③④D﹒①②③④二、认真填一填(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.已知5个数据:8,8,x,10,10,如果这组数据的某个众数与平均数相等,那么这组数据的中位数是_________﹒12.___________________﹒13.若一元二次方程x2+2(a+1)x+a2+4a-5=0有两个不相等的实数根,则a的正整数解为___.14.如图,在□ABCD中,DB=CD,AE⊥BD于点E,若∠C=64°,则∠DAE的度数为______.第14题图第15题图第16题图15.如图,已知一次函数y=x+1的图象与反比例函数y=kx(k≠0)的图象在第一象限交于点A,与x轴交于点C,AB⊥x轴于点B,若△AOB的面积为4,则AC的长为______﹒16.如图,在矩形ABCD中,点E是BC上一点,且AE=AD,过点D作DF⊥AE于点F,若AB=4,BC=6,则△ADF的面积为____________﹒三、全面答一答(本大题有7小题,共66分)解答应写出文字说明、证明过程或推演步骤.17.(10分)(1)计算:22﹒(2)用配方法解方程:2x2+1=3x﹒18.(6分)在倡导“社会主义核心价值观”演讲比赛中,某校根据初赛成绩在七、八年级分别选出10名同学参加决赛,对这些同学的决赛成绩进行整理分析,绘制成如下团体成绩统计表和选手成绩折线统计图:根据上述图表提供的信息,解答下列问题:(1)请你把上面的表格填写完整;(2)考虑平均数与方差,你认为哪个年级的团体成绩更好?(3)假设在每个年级的决赛选手中分别选出3人参加决赛,你认为哪个年级的实力更强一些?请说明理由﹒19.(8分)如图,已知□ABCD的对角线AC、BD相交于点O,且∠1=∠2﹒(1)求证:□ABCD是菱形;(2)F是AD上一点,连结BF交AC于点E,且AE=AF,求证:AO=12(AF+AB)﹒20.(8分)某汽车销售公司5月份销售某厂家汽车,在一定范围内,每辆汽车的进价与销售量有如下关系:若当月仅售出1辆汽车,则该辆汽车的进价为25万元;每多售出1辆,所有售出的汽车的进价均降低0.1万元/辆,月底厂家一次性返利给销售公司,销售量与返利情况如下表:(1)若该公司当月售出7辆汽车,则每辆汽车的进价为________万元;(2)如果汽车的售价为每辆26万元,该公司计划当月盈利12万元,那么需要售出多少辆汽车?(盈利=销售利润+返利)21.(10分)如图,已知矩形OABC中,OA=3,AB=4,双曲线y=kx(k>0)与矩形两边AB、BC分别交于点D、E,且BD=2AD﹒(1)求此双曲线的函数表达式及点E的坐标;(2)若矩形OABC的对角线OB与双曲线相交于点P,连结PC,求△POC的面积﹒22.(12分)如图,已知四边形ABCD为正方形,AB=,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE.交射线BC于点F,以DE、EF为邻边作矩形DEFG,连结CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.23.(12分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处﹒(1)如图1,若测得PC的长为4,试求CD的长;(2)如图2,在(1)的条件下,擦去折痕AO、线段OP,连结BP﹒动点M在线段AP 上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E﹒试问当动点M、N在移动的过程中,线段EF的长度是否发生变化?若不变,请求出线段EF的长度;若变化,请说明变化规律﹒参考答案一、仔细选一选二、认真填一填11. 8或10﹒12. ﹒13. 1,2﹒14. 26°﹒三、全面答一答17. 解:(1)2-2=-3==(2)移项,得2x2-3x=-1,两边同时除以2,得x2-32x=-12,配方,得x2-32x+(34)2=-12+(34)2,即(x-34)2=116,两边开平方,得x-34=±14,∴x1=1,x2=12﹒18.解:(1)由折线统计图可知:七年级10名选手的成绩分别为:80,87,89,80,88,99,80,77,91,86;八年级10名选手的成绩分别为:85,97,85,87,85,88,77,87,78,88,八年级平均成绩x=1(85+97+85+87+85+88+77+87+78+88)=85.7(分),七年级成绩中80分出现的次数最多,所以七年级成绩的众数为80,八年级成绩中85分出现的次数最多,所以八年级成绩的众数为85,七年级成绩的方差S2=110[(85-85.7)2+(97-85.7)2+(85-85.7)2+(87-85.7)2+(85-85.7)2+(88-85.7)2+(77-85.7)2+(87-85.7)2+(78-85.7)2+(88-85.7)2]=39.6,故答案为:(2)由于七、八年级比赛成绩的平均数一样,而八年级的方差小于七年级的方差,方差越小,则其稳定性越强,所以应该是八年级团体成绩更好些;(3)七年级前三名总分为:99+91+89=279(分),八年级前三名总分为:97+88+88=273(分),因为279分>273分,所以七年级实力更强些﹒19.解:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠2=∠ACB,又∵∠1=∠2,∴∠1=∠ACB,∴AB=BC,∴□ABCD是菱形;(2)∵菱形ABCD中,AD∥BC,∴∠AEF=∠EBC,∵AE=AF,∴∠AEF=∠AFE,∴∠EBC=∠AFE=∠BFC,∴AC =AF +CF =AF +BC ,∵菱形ABCD 的对角线AC 、BD 相交于点O ,∴AO =12AC , ∴AO =12(AF +BC ),∵AF =AE ,BC =AB , ∴AO =12(AE +AB )﹒ 20.解:(1)若该公司当月售出7辆汽车,则每辆汽车的进价为25-0.1×(7-1)=24.4(万元), 故答案为24.4;(2)设需要售出x 辆汽车,则每辆汽车的销售利润为:26-[25-0.1(x -1)]=(0.1x +0.9)万元, 当1≤x ≤10时,由题意,得x •(0.1x +0.9)+0.5x =12, 整理,得x 2+14x -120=0,解得x 1=6,x 2=-20(不合题意,舍去), 当x >10时,由题意,得x •(0.1x +0.9)+x =12, 整理,得x 2+19x -120=0,解得x 1=5,x 2=-24(不合题意,舍去), ∵5<10,∴x 1=5与不合题意,舍去, 故该公司需要售出6辆汽车﹒ 21.解:(1)∵AB =4,BD =2AD , ∴AB =AD +BD =AD +2AD =3AD =4,∴AD =43, 又∵OA =3, ∴D (43,3), ∵点D 在双曲线y =kx(k >0),∴此双曲线的函数表达式为y=4x,∵四边形OABC是矩形,∴AB=OC=4,∴点E的横坐标为4,把x=4代入y=4x,得y=1,∴点E的坐标为(4,1);(2)∵四边形OABC是矩形,∴BC=OA=3,∴B(4,3),设直线OB的解析式为y=ax,把B(4,3)代入y=ax,得a=34,∴直线OB的解析式为y=34 x,由344y xyx⎧=⎪⎪⎨⎪=⎪⎩,得xy⎧⎪⎨⎪⎩(负值舍去),∴P,∴S△POC=12OC∣y p∣=12×22.解:(1)证明:过E作EM⊥BC于M点,过E作EN⊥CD于N点,如图所示:∵四边形ABCD正方形∴∠BCD=90°,∠ECN=45°,∴∠EMC=∠ENC=∠BCD=90°,且NE=NC,∴四边形EMCN为正方形∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,∴∠DEN=∠MEF,又∠DNE=∠FME=90°,在△DEN和△FEM中,DNE FME EN EMDEN FEM∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DEN≌△FEM(ASA),∴ED=EF,∴矩形DEFG为正方形,(2)CE+CG的值为定值,理由如下:∵矩形DEFG为正方形,∴DE=DG,∠EDC+∠CDG=90°,∵四边形ABCD是正方形,∵AD=DC,∠ADE+∠EDC=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,AD CDADE CDG DE DG=⎧⎪∠=⎨⎪=⎩,∴△ADE≌△CDG(SAS),∴AE=CG,∴AC=AE+CE4,∴CE+CG的值是定值,定值是4.23.解:(1)∵四边形ABCD是矩形,∴BC=AD=8,CD=AB,∠D=∠C=90°,由折叠性质,得AP=AB,设CD=x,则A P=AB=CD=x,PD=x-4,在Rt△APD中,AD2+PD2=AP2,即82+(x-4)2=x2,解得x=10,即CD=10;(2)当动点M、N在移动的过程中,线段EF的长度不发生变化,过点M作MQ∥AN,交PB于点Q,则∠PQM=∠ABP,∠QMF=∠N,由(1)知AP=AB,∴∠ABP=∠APB,∴∠APB=∠PQM=∠ABP,∴MQ=PM=BN,又∵ME⊥BP,∴EQ=12 PQ,在△MQF和△NBF中,QMF NMFQ NFB MQ BN∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△MQF≌△NBF(AAS),∴QF=BF,则QF=12 QB,∴EQ+QF=12PQ+12QB=12(PQ+QB),即EF=12PB,由(1)知:PC=4,BC=8,∠C=90°,∴由勾股定理,得PB∴EF=12PB=故在(1)的条件下,当动点M、N在移动过程中,线段EF的长度不变,它的长度为。

初二下册数学 2017版人教版八年级数学下期末模拟试卷(二)含答案

初二下册数学 2017版人教版八年级数学下期末模拟试卷(二)含答案

八年级下期末模拟试卷二(本试卷共五大题,26小题,满分150分)一、选择题(本题共8小题;每小题3分,共24分)1. ()是关于的方程的根,则的值为 ( )n n≠0x x2+mx+2n=0m+nA. B. C. D.x=1x=2x=-1x=-22. 若一个的角绕顶点旋转,则重叠部分的角的大小是 ( )60∘15∘A. B. C. D.15∘30∘45∘75∘3. 直线经过一、三、四象限,则直线的图象只能是图中的 ( )y=kx+b y=bx-kA. B.C. D.4. 如图 1,在菱形中,,,是边上一个动点,是ABCD∠BAD=60∘AB=2E DC F AB 边上一点,.设,图中某条线段长为,与满足的函数关系∠AEF=30∘DE=x y y x 的图象大致如图 2 所示,则这条线段可能是图中的( )A. 线段B. 线段C. 线段D. 线段EC AE EF BF5. 已知:如图,在正方形外取一点,连接,,.过点作的垂线ABCD E AE BE DE A AE 交于点.若,.DE P AE=AP=1PB=5下列结论:①;△APD≌△AEB②点到直线的距离为;B AE2③;EB⊥ED④;S△APD+S△APB=1+6⑤.S正方形ABCD=4+6其中正确结论的序号是 ( )A. ①③④B. ①②⑤C. ③④⑤D. ①③⑤6. 如图,在平面直角坐标中,直线经过原点,且与轴正半轴所夹的锐角为,过l y60∘点作轴的垂线交直线于点,过点作直线的垂线交轴于点,以A(0,1)y l B B l y A1、为邻边作平行四边形;过点作轴的垂线交直线于点,A1B BA ABA1C1A1y l B1过点作直线的垂线交轴于点,以、为邻边作平行四边形B1l y A2A2B1B1A1A1B1;;按此作法继续下去,则的坐标是 ( )A2C2⋯C n(-3×4n,4n)(-3×4n-1,4n-1)A. B.(-3×4n-1,4n)(-3×4n,4n-1)C. D.7. 边长一定的正方形,是上一动点,交于点,过作ABCD Q CD AQ BD M M MN⊥AQ 交于点,作于点,连接,下列结论:①;②BC N NP⊥BD P NQ AM=MN MP=12;③;④为定值.其中一定成立的是 ( ) BD BN+DQ=NQ AB+BNBMA. ①②③B. ①②④C. ②③④D. ①②③④8. 在锐角中,,,(如图),将绕点按逆△ABC AB=5BC=6∠ACB=45∘△ABC B△AʹBCʹA C AʹCʹCʹCA 时针方向旋转得到(顶点、分别与、对应),当点在线段的延长线上时,则的长度为 ( )ACʹ2+732-732+73-7A. B. C. D.(6题图)(7题图)(8题图)二、填空题(本题共8小题;每小题3分,共24分)9. 如图,在笔直的铁路上、两点相距,、为两村庄,,A B25 km C D DA=10 km,于,于,现要在上建一个中转站,使得CB=15 km DA⊥AB A CB⊥AB B AB E、两村到站的距离相等.则应建在距 kmC D E E A△ABC AB=AC BD⊥AC D BD=3DC=1AD=10. 在中,,于,若,,则.11. 如图,点是等边内一点,如果绕点逆时针旋转后能与D△ABC△ABD A△ACE 重合,那么旋转了度.(9题图)(11题图)12. 一食堂需要购买盒子存放食物,盒子有 , 两种型号,单个盒子的容量和价格如A B 表.现有 升食物需要存放且要求每个盒子要装满,由于 型号盒子正做促销活15A 动:购买三个及三个以上可一次性返还现金 元,则购买盒子所需要最少费用为 4 元.型号 A B 单个盒子容量(升) 23单价(元) 5 613. 如图 1, 是边长为 的等边三角形;如图 2,取 的中点 ,画等边三△AB 1C 11AB 1C 2角形 ;如图 3,取 的中点 ,画等边三角形 ,连接 ;如图 4,AB 2C 2AB 2C 3AB 3C 3B 2B 3取 的中点 ,画等边三角形 ,连接 ,则 的长为 .若AB 3C 4AB 4C 4B 3B 4B 3B 4按照这种规律已知画下去,则 的长为 .(用含 的式子表示)B n B n +1n14. 如图,长方体的底面边长分别为 和 ,高为 .若一只蚂蚁从 点开始2 cm 4 cm 5 cm P 经过 个侧面爬行一圈到达 点,则蚂蚁爬行的最短路径长为 .4Q cm 15. 正方形 ,,, 按如图所示的方式放置.点 ,,A 1B 1C 1O A 2B 2C 2C 1A 3B 3C 3C 2…A 1A 2, 和点 ,, 分别在直线 ()和 轴上,已知点 A 3…C 1C 2C 3…y =kx +b k >0x B 1,,则点 的坐标是 ,点 的坐标是 .(1,1)B 2(3,2)B 3B n 16. 方程 全部相异实根是(x 3-3x 2+x -2)⋅(x 3-x 2-4x +7)+6x 2-15x +18=0 .(14题图) (15题图)三、解答题(本大题共4小题;其中17、18题、19各9分,20题12分,共39分) 17. 设 ,, 是 的三边,关于 的方程 有两个相等的a b c △ABC x 12x 2+b x +c -12a =0实数根,方程 的根为 . 3cx +2b =2a x =0(1)试判断 三边的关系;△ABC (2)若 , 为方程 的两个根,求 的值. a b x 2+mx -3m =0m18. 如图,在正方形,点是上任意一点,连接,作于点,ABCD中G CD BG AE⊥BG E 于点.CF⊥BG F(1)求证:;BE=CF(2)若,,求的长.BC=2CF=6EF519. 目前我市“校园手机”现象越来越受到社会关注,针对这种现象,我市某中学九年级数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的看法,统计整理并制作了如下的统计图:(1)这次调查的家长总数为.家长表示“不赞同”的人数为;(2)从这次接受调查的家长中随机抽查一个,恰好是“赞同”的家长的概率是;(3)求图 2 中表示家长“无所谓”的扇形圆心角的度数.20. 有这样一个问题:探究函数的图象与性质.小东对函数y=(x-1)(x-2)(x-3)的图象与性质进行了探究.y=(x-1)(x-2)(x-3)下面是小东的探究过程,请补充完成:函数的自变量的取值范围是全体实数;y=(x-1)(x-2)(x-3)x(1)下表是与的几组对应值.y xx⋯-2-10123456⋯y⋯m-24-600062460⋯①;m=②若,为该函数图象上的两点,则;M(-7,-720)N(n,720)n=(2)在平面直角坐标系中,,为该函数图象上的两点,且为xOy A(x A,y A)B(x B,y B)A2范围内的最低点,点的位置如图所示.≤x≤3A①标出点的位置;B②画出函数的图象.y=(x-1)(x-2)(x-3)(0≤x≤4)四、解答题(本大题共3小题;其中21、22题各9分,23题10分,共28分)21. 小轿车从甲地出发驶往乙地,同时货车从相距乙地的入口处驶往甲地(两车60 km均在甲、乙两地之间的公路上匀速行驶),如图是它们离甲地的路程与货车y(km)行驶时间之间的函数的部分图象.x(ℎ)(1)求货车离甲地的路程与它的行驶时间的函数表达式.y(km)x(h)(2)哪一辆车先到达目的地?说明理由.22. 菱形的边长为,,对角线,相交于点,动点在线ABCD2∠BAD=60∘AC BD O P 段上从点向点运动,过作,交于点,过作,AC A C P PE∥AD AB E P PF∥AB 交于点,四边形与四边形关于直线对称.设菱形被AD F QHCK PEAF BD ABCD 这两个四边形盖住部分的面积为,:S1AP=x(1)对角线的长为;;(直接写出答案)AC S菱形ABCD=(2)用含的代数式表示;x S1(3)设点在移动过程中所得两个四边形与的重叠部分面积为,当P PEAF QHCK S2S2时,求的值.=1S菱形ABCD x223. 在中,,,分别为,,所对的边,我们称关于的一元二△ABC a b c∠A∠B∠C x 次方程为“ 的方程”.根据规定解答下列问题:ax2+bx-c=0△ABC(1) “ 的方程” 的根的情况是(填序号);△ABC ax2+bx-c=0A. 有两个相等的实数根B. 有两个不相等的实数根C. 没有实数根(2)如图,为圆的直径,为弦,于,,求“ AD O BC BC⊥AD E∠DBC=30∘△的方程” 的解;ABC ax2+bx-c=0(3)若是“ 的方程” 的一个根,其中,,均为整数,c△ABC ax2+bx-c=0a b c x=14且,求方程的另一个根.ac-4b<0五、解答题(本大题共3小题;其中24题11分,25、26题各12分,共35分)24. 在平行四边形中,、、、平分线分别为、ABCD∠BAD∠ABC∠BCD∠CDA AG 、、,与交于点,与交于点,与交于点,与BE CE DG BE CE E AG BE F AG DG G CE 交于点.DG H(1)如图(1),已知,此时点、分别在边、上.AD=2AB E G AD BC①四边形是;EFGHA.平行四边形 B. 矩形 C. 菱形 D. 正方形②请判断与的位置关系和数量关系,并说明理由;EG AB(2)如图(2),分别过点、作、,分别交、于点E G EP∥BC GQ∥BC AG BE、,连接、.求证:四边形为菱形;P Q PQ EG EPQG(3)已知,判断与的位置关系和数量关系(直接写出结AD=nAB(n≠2)EG AB论).25. 如图 1,在中,,,点是角平分线上△ABC∠ACB=90∘∠BAC=60∘E∠BAC 一点,过点作的垂线,过点作的线段,两垂线交于点,连接,点E AE A AB D DB是的中点,,垂足为,连接,.F BD DH⊥AC H EF HF(1)如图 1,若点是的中点,,求,的长.H AC AC=23AB BD(2)如图 1,求证:.HF=EF(3)如图 2,连接,,猜想:是否是等边三角形?若是,请证明;若不是,CF CE△CEF请说明理由.26. 如图,在矩形中,点为坐标原点,点的坐标为,点,在坐标ABCO O B(4,3)A C 轴上,点在边上,直线:,直线:.P BC l1y=2x+3l2y=2x-3(1)分别求直线与轴,直线与的交点坐标.l1x l2AB(2)已知点在第一象限,且是直线上的点,若是等腰直角三角形,求M l2△APM点的坐标.M(3)我们把直线和直线上的点所组成的图形称为图形.已知矩形的顶l1l2F ANPQ点在图形上,是坐标平面内的点,且点的横坐标为,请直接写出的取值N F Q N x x范围(备用图)答案第一部分 1. D 【解析】()是关于 的方程 的根, ∵n n ≠0x x 2+mx +2n =0 ,即 . ∴n 2+mn +2n =0n +m +2=0 .∴m +n =―2 2. C 【解析】∠AOB ʹ=∠AOB ―∠B ʹOB =45∘.3. C 【解析】 直线 经过第一、三、四象限, ∵y =kx +b ,, ∴k >0b <0 ,∴―k <0 直线 经过第二、三、四象限. ∴y =bx ―k 4. B 5. D【解析】① ,, ∵∠EAB +∠BAP =90∘∠PAD +∠BAP =90∘ .∴∠EAB =∠PAD 又 ,,∵AE =AP AB =AD (故①正确); ∴△APD ≌△AEB ③ , ∵△APD ≌△AEB .∴∠APD =∠AEB 又 ,, ∵∠AEB =∠AEP +∠BEP ∠APD =∠AEP +∠PAE . ∴∠BEP =∠PAE =90∘ (故③正确);∴EB ⊥ED ②过 作 ,交 的延长线于 ,B BF ⊥AE AE F,, ∵AE =AP ∠EAP =90∘.∴∠AEP =∠APE =45∘又 ③中 ,, ∵EB ⊥ED BF ⊥AF ,∴∠FEB =∠FBE =45∘又 , ∵BE =BP 2―PE 2=5―2=3 (故②不正确); ∴BF =EF =6④如图,连接 ,在 中, BD Rt △AEP , ∵AE =AP =1 , ∴EP =2又 , ∵PB =5 .∴BE =3 , ∵△APD ≌△AEB .∴PD =BE =3 .(故④不正∴S △ABP +S △ADP =S △ABD ―S △BDP =12S 正方形ABCD ―12×DP ×BE =12×(4+6)―12×3×3=12+62确). ⑤ ,,∵EF =BF =62AE =1 在 中,, ∴Rt △ABF AB 2=(AE +EF )2+BF 2=4+6 (故⑤正确); ∴S 正方形ABCD =AB 2=4+66. C 【解析】 直线 经过原点,且与 轴正半轴所夹的锐角为 ,∵l y 60∘直线 的解析式为 .∴l y =33x 轴,点 ,∵AB ⊥y A (0,1) 可设 点坐标为 ,∴B (x,1)将 代入 ,解得 , B (x,1)y =33x x =3 点坐标为 ,,∴B (3,1)AB =3在 中,,,Rt △A 1AB ∠AA 1B =90∘―60∘=30∘∠A 1AB =90∘ ,,∴AA 1=3AB =3OA 1=OA +AA 1=1+3=4 平行四边形 中,,∵ABA 1C 1A 1C 1=AB =3 点的坐标为 ,即 ;∴C 1(―3,4)(―3×40,41)由 ,解得 ,33x =4x =43 点坐标为 ,.∴B 1(43,4)A 1B 1=43在 中,,,Rt △A 2A 1B 1∠A 1A 2B 1=30∘∠A 2A 1B 1=90∘ ,,∴A 1A 2=3A 1B 1=12OA 2=OA 1+A 1A 2=4+12=16 平行四边形 中,,∵A 1B 1A 2C 2A 2C 2=A 1B 1=43 点的坐标为 ,即 ;∴C 2(―43,16)(―3×41,42)同理,可得 点的坐标为 ,即 ;C 3(―163,64)(―3×42,43)以此类推,则 的坐标是 .C n (―3×4n ―1,4n )7.D 【解析】作 于 ,连接 ,. AU ⊥NQ U AN AC,∵∠AMN =∠ABC =90∘ ,,, 四点共圆.∴A B N M ,.∴∠NAM =∠DBC =45∘∠ANM =∠ABD =45∘ .∴∠ANM =∠NAM =45∘ .故①正确.∴AM =MN 由同角的余角相等知 ,∠HAM =∠PMN .∴Rt △AHM ≌Rt △MPN .故②正确.∴MP =AH =12AC =12BD ,,∵AB =AD ∠BAD =90∘把 绕点 顺时针旋转 得 . △ADQ A 90∘△ABR,,. ∴∠RAN =∠BAN +∠DAQ =∠QAN =45∘DQ =BR AR =AQ .∵AN =AN .∴△AQN ≌△ARN .∴NR =NQ .故③正确.∴BN +DQ =NQ 作 ,垂足为 ,作 ,垂足为 .MS ⊥AB S MW ⊥BC W点 是对角线 上的点,∵M BD 四边形 是正方形.∴SMWB.∴MS =MW =BS =BW .∴△AMS ≌△NMW .∴AS =NW .∴AB +BN =SB +BW =2BW ,∵BW:BM =1:2 故④正确.∴AB +BNBM =22=28. B 【解析】由旋转性质可得 ,,∠A ʹC ʹB =∠ACB =45∘BC =BC ʹ ,∴∠BC ʹC =∠ACB =45∘ .∴∠CBC ʹ=180∘―∠BC ʹC ―∠ACB =90∘ ,∵BC =6 .∴CC ʹ=2BC =62过点 作 于点 .A AD ⊥BC D ,∵∠ACB =45∘ 是等腰直角三角形.∴△ACD 设 ,则 .AD =x CD =x .∴BD =BC ―CD =6―x 在 中,,Rt △ABD AD 2+BD 2=AB 2 ,∴x 2+(6―x )2=52解得 ,(不合题意舍去).x 1=6+142x 2=6―142 ,∴AC =6+142×2=32+7 的长度为:.∴AC ʹ62―(32+7)=32―7第二部分9.15 km 【解析】设 ,则 .AE =x BE =25―x ,DE =CE =102+x 2=152+(25―x )2 .x =1510.4【解析】提示:设 ,则 .勾股定理可以求出 的值.AD =x AB =x +1x 11.6012. 29【解析】设购买 种型号盒子 个,购买盒子所需要费用为 元,则购买 种盒子的个数为个, A x y B 15―2x 3①当 时,,0≤x <3y =5x +15―2x 3×6=x +30 ,∵k =1>0 随 的增大而增大, ∴y x 当 时, 有最小值,最小值为 元;∴x =0y 30②当 时,,x ≥3y =5x +15―2x 3×6―4=26+x ,∵k =1>0 随 的增大而增大,∴y x 当 时, 有最小值,最小值为 元;∴x =3y 29综合①②可得,购买盒子所需要最少费用为 元.2913. ;3832n 【解析】在 中,,; Rt △AB 2B 1AB 2=12B 1B 2=3AB 2=32在 中,,; Rt △AB 3B 2AB 3=14B 2B 3=3AB 3=34=322在 中,,;Rt △AB 4B 3AB 4=12B 3B 4=3AB 4=38=323⋯所以 .B n B n +1=32n 14.13【解析】,,∵PA =2×(4+2)=12QA =5 .∴PQ =13 15. ;(7,4)(2n ―1,2n ―1)【解析】点 ;B 1(1,1)点 ,即 ;B 2(3,2)B 2(22―1,21)点 ,即 ;B 3(7,4)B 3(23―1,22)⋯所以点 .B n (2n ―1,2n ―1)16. 1,2,―2,1+2,1―2【解析】设 , .A =x 3―2x 2―32x +52B =x 2―52x +92则原方程可变为 ,(A ―B )(A +B )+6B ―9=0即A 2―B 2+6B ―9=0,A 2―(B ―3)2=0∴ ,(A +B ―3)(A ―B +3)=0∴ 或 .A +B =3A ―B =―3若 ,则 ,解得 , ;A +B =3x 3―x 2―4x +7=3x =1±2若 ,则 ,解得 , .A ―B =―3x 3―3x 2+x +1=0x =1x =1±2第三部分17. (1) 方程有两个不相等的实数根,. ∴Δ=(b )2―4×12×(c ―12a )=0解得 .a +b ―2c =0把 代入 ,x =03cx +2b =2a 解得 ,即 .2b =2a a =b .∴2a ―2c =0 .∴a =b =c 三边相等.∴△ABC (2) 由 , 为方程的两个根可得 .a b (x ―a )(x ―b )=0 .∴x 2―(a +b )x +ab =0 ,.∴m =―a ―b ―3m =ab .∴―3m =3a +3b =ab .∴a =6 .∴m =―1218. (1) ,,∵AE ⊥BG CF ⊥BG .∴∠AEB =∠BFC =90∘又 ,,∠ABE +∠FBC =90∘∠ABE +∠BAE =90∘ .∴∠FBC =∠BAE ,∵AB =BC .∴△ABE ≌△BCF .∴BE =CF (2) ,,,∵CF ⊥BG BC =2CF =65 . ∴BF =BC 2―CF 2=22―(65)2=85又 , BE =CF =65 .∴EF =BF ―BE =85―65=2519. (1) ;60080【解析】调查的家长总数为 人,360÷60%=600很赞同的人数 人, 600×20%=120不赞同的人数 人.600―120―360―40=80 (2)60% (3) 表示家长“无所谓”的圆心角的度数为:.40600×360∘=24∘20. (1) ① ;② ;m =―60n =11 (2) 点 的位置如图. B函数图象如图.【解析】① 与 关于点 对称 .B A (2,0)21. (1) 设货车离甲地的路程 与行驶时间 的函数表达式是 .代入点 ,,得 y (km)x (h)y =kx +b (0,240)(1.5,150){240=b,150=1.5k +b.解得{k =―60,b =240.所以货车离甲地的路程 与行驶时间 的函数表达式是y (km)x (h) y =―60x +240.(2) 解法一:设小轿车离甲地的路程 与行驶时间 的函数表达式是 .代入点 ,得y 2(km)x (h)y 2=mx (1.5,150)150=1.5m.解得m =100.所以小轿车离甲地的路程 与行驶时间 的函数表达式是y 2(km)x (h) y 2=100x.由(1)知,货车离甲地的路程 与行驶时间 的函数表达式是y 1(km)x (h)y 1=240―60x.当 时,代入 ,得 .y 1=0y 1=―60x +240x 1=4当 时,代入 ,得 ,即小轿车先到达目的地.y 2=300y 2=100x x 2=3【解析】解法二:根据图象,可得小轿车的速度为150÷1.5=100(km/h).货车到达甲地用时240÷60=4(h).小轿车到达乙地用时300÷100=3(h),即小轿车先到达目的地.22. (1) ;AC =23S 菱形ABCD =23【解析】提示:由 ,可知 .∠BAD =60∘∠BAO =∠DAO =30∘从而可得 ,. AO =3BO AB =2BO ,即 .∴AO =32AB AC =3AB (2) 当 时: 0≤x ≤3 ,得菱形 的边长 , ∵AP =x PEAF AE =EF =33x ,S 菱形PEAF =12AP ⋅EF =12x ⋅33x =36x 2 .∴S 1=2S 菱形PEAF =3x 2②当 时:3<x ≤23如图等于大菱形 减去未被遮盖的两个小菱形, S 1ABCD 由菱形 的边长 为 ,PEAF AE 33x . ∴BE =2―33x . ∴S 菱形BEMH =2×34(2―33x )2=36x 2―2x +23 . ∴S 1=23―2S 菱形BEMH =23―2(36x 2―2x +23)=―33x 2+4x ―23.(3) 有重叠,∵ .∴3<x ≤23此时 .OP =x ―3 重叠菱形 的边长 . ∴QMPN MP =MN =233x ―2 . ∴S 2=12PQ ⋅MN =12×2(x ―3)(23x ―2)=23x 2―4x +23令 ,233x 2―4x +23=3解得 ,x =3±6符合题意的是 .x =3+6223. (1) ②【解析】 在 中,,, 分别为 ,, 所对的边,∵△ABC a b c ∠A ∠B ∠C 关于 的一元二次方程 为“ 的 方程”,x ax 2+bx ―c =0△ABC ★ ,,.∴a >0b >0c >0 .∴Δ=b 2+4ac >0 方程有两个不相等的实数根.∴ (2) 为 的直径,∵AD ⊙O.∴∠DBA =90∘ ,∵∠DBC =30∘ .∴∠CBA =60∘ 于 ,,∵BC ⊥AD E ∠DBC =30∘ .∴∠BDA =60∘ .∴∠C =60∘ 是等边三角形.∴△ABC .∴a =b =c “ 的 方程” 可以变为:.∴△ABC ★ax 2+bx ―c =0ax 2+ax ―a =0 ,∵Δ=b 2+4ac >0 . ∴x =―a ±a 2+4a 22a=―1±52即 ,. x 1=―1+52x 2=―1―52 (3) 将 代入 方程中可得:,x =14c ★ac 216+bc 4―c =0方程两边同除以 可得:.c >0ac 16+b 4―1=0化简可得:.ac +4b ―16=0 ,∵ac ―4b <0 .∴ac +ac ―16<0 .∴0<ac <8 ,, 均为整数,,∵a b c ac +4b =16 能被 整除.∴ac 4又 ,0<ac <8 ,.∴ac =4b =3 , 为正整数,∵a c ,(不能构成三角形,舍去)或者 ,∴a =1c =4a =c =2 方程为 .∴★2x 2+3x ―2=0解得:,.x 1=12x 2=―2 ,∵14c >0方程的另一个根是 .x =―224. (1) ① B ;② ,.EG ∥AB EG =AB 四边形 是平行四边形,∵ABCD .∴AD ∥BC .∴∠AEB =∠EBG 平分 ,∵BE ∠ABC ,∴∠ABE =∠EBG ,∴∠ABE =∠AEB .∴AB =AE 同理,,BG =AB .∴AE =BG ,,∵AE ∥BG AE =BG 四边形 是平行四边形.∴ABGE ,.∴EG ∥AB EG =AB (2) 分别延长 、 ,交 于点 、 ,EP GQ AB M N 分别延长 、 ,交 于点 、 , PE QG CD M ʹN ʹ四边形 是平行四边形,∵ABCD , ∴AB ∥DC又 ,PE ∥BC 四边形 是平行四边形,∴MBCM ʹ ,.∴MM ʹ=BC MB =M ʹC ,∵PE ∥BC .∴∠MEB =∠EBC 平分 ,∵BE ∠ABC ,∴∠ABE =∠EBC ,∴∠MEB =∠ABE .∴MB =ME 同理,.M ʹE =M ʹC .∴ME =M ʹE ,∴ME =12MM ʹ又 ,MM ʹ=BC .∴ME =12BC 同理,.NG =12BC .∴ME =NG ,∵GQ ∥BC .∴∠DAG =∠AGN 平分 ,∵AG ∠BAD ,∴∠DAG =∠NAG ,∴∠NAG =∠AGN .∴AN =NG ,,,∵MB =ME AN =NG ME =NG .∴MB =AN ,即 .∴MB ―MN =AN ―MN BN =AM ,∵PE ∥BC ,∴∠DAG =∠APM 又 ,∠DAG =∠BAG ,∴∠APM =∠BAG .∴AM =PM 同理,.BN =QN .∴PM =QN ,,∵ME =NG PM =QN ,即 .∴ME ―PM =NG ―QN PE =QG ,,∵EP ∥BC GQ ∥BC .∴EP ∥GG 又 ,PE =QG 四边形 是平行四边形.∴EPQG 分别平分 ,,∵AG 、BE ∠BAD ∠ABC ,.∴∠BAG =12∠BAD ∠ABG =12∠ABC ,∴∠BAG +∠ABG =12∠BAD +12∠ABC =12×180∘=90∘ ,即 .∴∠AFB =90∘PG ⊥EF 平行四边形 是菱形.∴EPQG (3) ① 时, 且 ;n >1EG ∥AB EG =(n ―1)AB ② 时, 且 ;n <1EG ∥AB EG =(1―n )AB ③ 时,此四边形不存在.(此种情况不写不扣分)n =125. (1) ,,∵∠ACB =90∘∠BAC =60∘ ,∴∠ABC =30∘ .∴AB =2AC =2×23=43 ,,∵AD ⊥AB ∠CAB =60∘ ,∴∠DAC =30∘ ,∵AH =12AC =3 , ∴AD =AH cos30∘=2.∴BD =AB 2+AD 2=213 (2) 连接 .AF 由已知可得 ,△DAE ≌△ADH .∴DH =AE ,∵∠EAF =∠EAB ―∠FAB =30∘―∠FAB ,∠FDH =∠FDA ―∠HDA =∠FDA ―60∘=(90∘―∠FBA )―60∘=30∘―∠FBA .∴∠EAF =∠FDH .∴△DHF ≌△AEF .∴HF =EF (3) 为等边三角形.理由如下:△CEF 取 的中点 ,连接 ,.AB M CM FM 在 中,Rt △ADE , 是 的中位线,AD =2AE FM △ABD ,∴AD =2FM .∴FM =AE 为等边三角形, ∴△ACM ,,.∴AC =CM ∠CAE =12∠CAB =30∘∠CMF =∠AMF ―∠AMC =30∘ .∴△ACE ≌△MCF 为等边三角形.∴△CEF 【解析】(法二)延长 至点 ,使 ,连接 ;延长 至点 ,使 ,连接 ;延长 交 DE N EN =DE AN BC MCB =CM AM BD AM 于点 ,连接 ,. P MD BN 易证:,.△ADE ≌△ANE △ABC ≌△AMC 易证:(手拉手全等模型),故 .△ADM ≌△ANB DM =BN 是 的中位线, 是 的中位线,CF △BDM EF △BDN 故 .EF =12BN =12DM =CF ∠CFE =∠CFD +∠DFE =∠MDP +∠DBN =∠MDP +∠DBA +∠ABN =∠MDP +∠DBA +∠AMD =∠DPA +∠DBA =180∘―∠PAB=180∘―2∠CAB =60∘,故 为等边三角形.△CEF 26. (1) 当 时, . .y =02x +3=0x =―32 与 轴交于 ;∴l 1x (―32,0)当 时, . . y =32x ―3=3x =3直线 与 的交点为 .∴l 2AB (3,3) (2) ①若点 为直角顶点时,点 在第一象限,连接 ,如图.A M AC ,∠APB >∠ACB >45∘ 不可能为等腰直角三角形,∴△APM 点 不存在.∴M ②若点 为直角顶点时,点 在第一象限,如图.P M过点 作 ,交 的延长线于点 ,M MN ⊥CB CB N 则 ,Rt △ABP ≌Rt △PNM , .∴AB =PN =4MN =BP 设 ,则 .M (x,2x ―3)MN =x ―4 .∴2x ―3=4+3―(x ―4) .∴x =143 .∴M (143,193)③若点 为直角顶点,点 在第一象限,如图.M M设 .M 1(x,2x ―3)过点 作 于点 ,交 于点 .M 1M 1G 1⊥OA G 1BC H 1则 .Rt △AM 1G 1≌Rt △PM 1H 1 .∴AG 1=M 1H 1=3―(2x ―3) .∴x +3―(2x ―3)=4 .∴x =2 .∴M 1(2,1)设 ,M 2(x,2x ―3)同理可得 ,x +2x ―3―3=4 ,∴x =103. ∴M 2(103,113)综上所述,点 的坐标可以为,,. M (143,193)(2,1)(103,113) (3) 的取值范围为 或 或 或 .x ―25≤x <00<x ≤4511+315≤x ≤18511―315≤x ≤2。

重点中学八级下学期数学期末冲刺试卷两套汇编八内附答案解析

重点中学八级下学期数学期末冲刺试卷两套汇编八内附答案解析

重点中学八级下学期数学期末冲刺试卷两套汇编八内附答案解析2017年重点中学八年级下学期数学期末冲刺试卷两套汇编八内附答案解析八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.下列运算中正确的是()A.B.C.D.2.如图,在菱形ABCD中,对角线AC、BD交于点O,下列说法错误的是()A.AD∥BC B.OA=OC C.AC⊥BD D.AC=BD3.若三角形的三边长分别为,,2,则此三角形的面积为()A.B.C.D.4.甲、乙、丙、丁四人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么四人中成绩最稳定的是()A.甲B.乙C.丙D.丁5.下列图象分别给出了x与y的对应关系,其中y 是x的函数的是()A. B.C.D.6.与直线y=2x+5平行,且与x轴相交于点M(﹣2,0)的直线的解析式为()A.y=2x+4 B.y=2x﹣2 C.y=﹣2x﹣4 D.y=﹣2x﹣2 7.某超市一月份的营业额为36万元,三月份的营业额为48万元.设每月的平均增长率为x,则可列方程为()A.48(1+x)2=36 B.48(1﹣x)2=36 C.36(1﹣x)2=48 D.36(1+x)2=488.若一元二次方程式x2﹣2x﹣3599=0的两根为a、b,且a>b,则2a﹣b的值为()A.﹣57 B.63 C.179 D.1819.已知一元二次方程x2﹣x﹣3=0的较小根为x1,则下面对x1的估计正确的是()A.﹣3<x1<﹣2 B.﹣2<x1<﹣1 C.﹣1<x1<0 D.1<x1<210.甲、乙两名选手参加长跑比赛,他们的行程y(km)随时间x(h)变化的图象(全程)如图所示,有下列说法:①在起跑后1h内,甲在乙的前面;②甲在第1.5h时的行程为12km;③乙比甲早0.3h到达终点;④本次长跑比赛的全程为20km.其中正确说法的个数是()A.1 B.2 C.3 D.4二、填空题(本大题共6个小题,每小题3分,共18分)11.在函数中,自变量x的取值范围是.12.若关于x的方程x2﹣x﹣a2+5=0的一个根是2,则它的另一个根为.13.已知一次函数的图象经过点(0,1),且满足y 随x的增大而增大,则该一次函数的解析式可以为.14.在△ABC中,AD⊥BC于D,AB=3,BD=2,DC=1,则AC= .15.如图,在平行四边形ABCD中,AB=2,BC=4,AC 的垂直平分线交AD于点E,则△CDE的周长为.16.如图,在平面直角坐标系xOy中,菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限内,对角线BD与x轴平行,直线y=x+3与x轴、y轴分别交于点E,F.将菱形ABCD沿x轴向左平移m(m>0)个单位,当点D落在△EOF的内部时(不包括三角形的边),则m的取值范围是.三、解答题:本大题共6个小题,共52分17.小明本学期的数学测验成绩如表所示:测验类别平时测验期中测验期末测验第1次第2此第3次第4次成绩80 86 84 90 90 95 (1)求六次测验成绩的众数和中位数;(2)求小明本学期的数学平时测验的平均成绩;(3)如果本学期的总评成绩是将平时测验的平均成绩、期中测验成绩、期末测验成绩按照3:3:4的比例计算所得,计算小明本学期学科的总评成绩.18.已知一次函数y=kx+b(k为常数,k≠0)的图象经过点A(2,2),B(0,1).(1)求该一次函数的解析式,并作出其图象;(2)当0≤y≤2时,求x的取值范围.19.用适当的方法解下列方程.(1)x2+3x=5(x+3);(2)2x2﹣6x+1=0.20.已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)若|x1+x2|=x1x2,求k的值.21.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.(1)试找出一个与△AED全等的三角形,并加以证明;(2)若AB=8,DE=3,P为线段AC上的任意一点,PG ⊥AE于G,PH⊥EC于H,试求PG+PH的值,并说明理由.22.某家具厂生产的沙发计划在甲地区全部采用网络直销的方式销售,并找当地人员进行安装,甲地区一家专业安装公司给出如下安装方案(均为每月收费),设该品牌沙发在甲地区每月的销量为x套(x>0),该家具厂需支付安装公司的费用为y元.方案1:安装费为9600元,不限安装套数;方案2:每安装一套沙发,安装费为80元;方案3:不超过30套,每套安装费为100元,超过30套,超出部分每套安装费为60元.(1)分别求出按方案1,方案2,方案3需要支付给安装公司的费用y与销量x之间的函数关系式;(2)该家具厂应选择哪种安装方案比较省钱?参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.下列运算中正确的是()A.B.C.D.【考点】二次根式的混合运算.【分析】对各个选项矩形计算分析,即可得出结论.【解答】解:A、+≠,选项A错误;B、×=,选项B错误;C、÷==2,选项C正确;D、==6,选项D错误;故选:C.【点评】本题考查了二次根式的运算、二次根式的性质;熟练掌握二次根式的运算和性质是解决问题的关键.2.如图,在菱形ABCD中,对角线AC、BD交于点O,下列说法错误的是()A.AD∥BC B.OA=OC C.AC⊥BD D.AC=BD【考点】菱形的性质.【分析】直接根据菱形的性质对各选项进行判断.【解答】解:∵四边形ABCD为菱形,∴AD∥BC,OA=OC,AC⊥BD,所以A、B、C选项的说法正确,D选项的说法错误.故选D.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.3.若三角形的三边长分别为,,2,则此三角形的面积为()A.B.C.D.【考点】勾股定理的逆定理.【分析】先根据勾股定理的逆定理求出该三角形是直角三角形,再求出三角形的面积即可.【解答】解:∵三角形的三边长分别为,,2,∴()2+22=()2,∴此三角形是直角三角形,∴此三角形的面积是××2=,故选C.【点评】本题考查了勾股定理的逆定理的应用,能求出三角形是直角三角形是解此题的关键.4.甲、乙、丙、丁四人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么四人中成绩最稳定的是()A.甲B.乙C.丙D.丁【考点】方差.【分析】根据方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好可得答案.【解答】解:从折线图上看,乙的波动最小,因此成绩最稳定的是乙,故选:B.【点评】此题主要考查了方差,关键是掌握方差是反映一组数据的波动大小的一个量.5.下列图象分别给出了x与y的对应关系,其中y 是x的函数的是()A. B.C.D.【考点】函数的概念.【分析】利用函数的定义,对于给定的x的值,y都有唯一的值与其对应,进而判断得出.【解答】解:在图象A,C,D中,每给x一个值,y 都有2个值与它对应,所以A,C,D中y不是x的函数,在B中,给x一个正值,y有一个值与之对应,所以y是x的函数.故选:B.【点评】本题考查函数的定义.利用函数定义结合图象得出是解题关键.6.与直线y=2x+5平行,且与x轴相交于点M(﹣2,0)的直线的解析式为()A.y=2x+4 B.y=2x﹣2 C.y=﹣2x﹣4 D.y=﹣2x﹣2 【考点】待定系数法求一次函数解析式.【分析】根据已知条件“一次函数y=kx+b(k≠0)的图象与直线y=2x+5平行”知k=2,再将点M(﹣2,0)代入y=kx+b(k≠0),利用待定系数法求此一次函数的解析式.【解答】解:设直线解析式为y=kx+b(k≠0),∵函数的图象与直线y=2x+5平行,∴k=2;∵与x轴相交于点M(﹣2,0),∴0=﹣4+b,解得b=4;∴此一次函数的解析式为y=2x+4;故选A.【点评】本题考查了待定系数法求一次函数解析式.解答此题的关键是弄清楚两条直线平行的条件是k值相同.7.某超市一月份的营业额为36万元,三月份的营业额为48万元.设每月的平均增长率为x,则可列方程为()A.48(1+x)2=36 B.48(1﹣x)2=36 C.36(1﹣x)2=48 D.36(1+x)2=48【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设教育经费的年平均增长率为x,然后根据已知条件可得出方程.【解答】解:依题意得三月份的营业额为36(1+x)2,∴36(1+x)2=48.故选D.【点评】本题考查了一元二次方程的应用,找到关键描述语,就能找到等量关系,是解决问题的关键.同时要注意增长率问题的一般规律8.若一元二次方程式x2﹣2x﹣3599=0的两根为a、b,且a>b,则2a﹣b的值为()A.﹣57 B.63 C.179 D.181【考点】解一元二次方程-配方法;有理数的混合运算.【专题】计算题.【分析】配方得出(x﹣1)2=3600,推出x﹣1=60,x ﹣1=﹣60,求出x的值,求出a、b的值,代入2a﹣b求出即可.【解答】解:x2﹣2x﹣3599=0,移项得:x2﹣2x=3599,x2﹣2x+1=3599+1,即(x﹣1)2=3600,x﹣1=60,x﹣1=﹣60,解得:x=61,x=﹣59,∵一元二次方程式x2﹣2x﹣3599=0的两根为a、b,且a>b,∴a=61,b=﹣59,∴2a﹣b=2×61﹣(﹣59)=181,故选D.【点评】本题考查了有理数的混合运算和解一元二次方程的应用,能求出a、b的值是解此题的关键,主要培养学生解一元二次方程的能力,题型较好,难度适中.9.已知一元二次方程x2﹣x﹣3=0的较小根为x1,则下面对x1的估计正确的是()A.﹣3<x1<﹣2 B.﹣2<x1<﹣1 C.﹣1<x1<0 D.1<x1<2【考点】解一元二次方程-公式法;估算无理数的大小.【分析】求出方程的解,求出方程的最小值,即可求出答案.【解答】解:x2﹣x﹣3=0,b2﹣4ac=(﹣1)2﹣4×1×(﹣3)=13,∴x=,∴方程的最小值是,∵3<<4,∴﹣3>﹣>﹣4,∴﹣>﹣>﹣2,∴﹣>﹣>﹣2,∴﹣1>>﹣故选:B.【点评】本题考查了求一元二次方程的解和估算无理数的大小的应用,关键是求出方程的解和能估算无理数的大小.10.甲、乙两名选手参加长跑比赛,他们的行程y(km)随时间x(h)变化的图象(全程)如图所示,有下列说法:①在起跑后1h内,甲在乙的前面;②甲在第1.5h时的行程为12km;③乙比甲早0.3h到达终点;④本次长跑比赛的全程为20km.其中正确说法的个数是()A.1 B.2 C.3 D.4【考点】一次函数的应用.【分析】①正确.由图象即可判断.②正确,通过计算可知甲在第1.5h时的行程为12km.③错误.无法判断甲到达终点的时间.④正确.求出乙2小时的路程即可判断.【解答】解:由图象可知,在起跑后1h内,甲在乙的前面,故①正确.∵y乙=10x,当0.5<x<1.5时,y甲=4x+6,x=1.5时,y甲=12,故②正确,x=2时,y乙=20,故④正确,无法判断甲到达终点的时间,故③错误,故选C.【点评】本题考查一次函数、路程、速度、时间之间的关系等知识,解题的关键是构建一次函数解决问题,属于中考常考题型.二、填空题(本大题共6个小题,每小题3分,共18分)11.在函数中,自变量x的取值范围是x≤2 .【考点】函数自变量的取值范围.【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得2﹣x≥0,解得x≤2,故答案为:x≤2.【点评】本题考查了函数自变量的取值范围,利用被开方数是非负数得出不等式是解题关键.12.若关于x的方程x2﹣x﹣a2+5=0的一个根是2,则它的另一个根为﹣1 .【考点】根与系数的关系.【分析】根据一元二次方程的一个根为x=2,通过根与系数的关系x1+x2=﹣,求得方程的另一个根即可.【解答】解:设关于x的一元二次方程x2﹣x﹣a2+5=0的另一个根为x2,则2+x2=1,解得x2=﹣1.故答案为﹣1.【点评】本题考查了一元二次方程的解的定义.解答关于x的一元二次方程x2﹣x﹣a2+5=0的另一个根时,也可以直接利用根与系数的关系x1+x2=﹣解答.13.已知一次函数的图象经过点(0,1),且满足y 随x的增大而增大,则该一次函数的解析式可以为y=x+1(答案不唯一,可以是形如y=kx+1,k>0的一次函数).【考点】一次函数的性质.【专题】开放型.【分析】先设出一次函数的解析式,再根据一次函数的图象经过点(0,1)可确定出b的值,再根据y 随x的增大而增大确定出k的符号即可.【解答】解:设一次函数的解析式为:y=kx+b(k≠0),∵一次函数的图象经过点(0,1),∴b=1,∵y随x的增大而增大,∴k>0,故答案为y=x+1(答案不唯一,可以是形如y=kx+1,k>0的一次函数).【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,k>0,y随x的增大而增大,与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上.14.在△ABC中,AD⊥BC于D,AB=3,BD=2,DC=1,则AC= .【考点】勾股定理.【分析】分两种情况:①D在BC上;②D在BC的延长线上.先在Rt△ADB中利用勾股定理求出AD,然后在Rt△ACD中利用勾股定理求出AC.【解答】解:分两种情况:①D在BC上,如图1.在Rt△ADB中,由勾股定理得:AD2=AB2﹣BD2=32﹣22=5,在Rt△ADC中,由勾股定理得:AC2=DC2+AD2=12+5=6,所以AC=;②D在BC的延长线上,如图2.在Rt△ADB中,由勾股定理得:AD2=AB2﹣BD2=32﹣22=5,在Rt△ADC中,由勾股定理得:AC2=DC2+AD2=12+5=6,所以AC=;综上可知,AC=.故答案为.【点评】本题主要考查勾股定理,即:在直角三角形中,两直角边的平方和等于斜边的平方.15.如图,在平行四边形ABCD中,AB=2,BC=4,AC 的垂直平分线交AD于点E,则△CDE的周长为 6 .【考点】平行四边形的性质;线段垂直平分线的性质.【分析】根据平行四边形的性质求出AD、CD的长,根据线段垂直平分线性质求出E=CE,求出△CDE的周长=AD+CD,代入求出即可.【解答】解:∵四边形ABCD是平行四边形,AB=2,BC=4,∴AD=BC=4,CD=AB=2,∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长为DE+CE+DC=DE+AE+CD=AD+CD=4+2=6,故答案为:6.【点评】本题考查了平行四边形的性质,线段垂直平分线性质的应用,解此题的关键是求出AD、CD的长和求出△CDE的周长=AD+CD,注意:平行四边形的对边相等,难度适中.16.如图,在平面直角坐标系xOy中,菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限内,对角线BD与x轴平行,直线y=x+3与x轴、y轴分别交于点E,F.将菱形ABCD沿x轴向左平移m(m>0)个单位,当点D落在△EOF的内部时(不包括三角形的边),则m的取值范围是4<m<6 .【考点】一次函数图象上点的坐标特征;菱形的性质;坐标与图形变化-平移.【分析】根据菱形的对角线互相垂直平分表示出点D 的坐标,再根据直线解析式求出点D移动到MN上时的x的值,从而得到m的取值范围.【解答】解:∵菱形ABCD的顶点A(2,0),点B (1,0),∴点D的坐标为(4,1),当y=1时,x+3=1,解得x=﹣2,∴点D向左移动2+4=6时,点D在EF上,∵点D落在△EOF的内部时(不包括三角形的边),∴4<m<6.故答案为:4<m<6.【点评】本题考查的是一次函数图象上点的坐标特征,菱形的性质,比较简单,求出m的取值范围是解题的关键.三、解答题:本大题共6个小题,共52分17.小明本学期的数学测验成绩如表所示:测验类别平时测验期中期末第1次第2此第3次第4次测验测验成绩80 86 84 90 90 95 (1)求六次测验成绩的众数和中位数;(2)求小明本学期的数学平时测验的平均成绩;(3)如果本学期的总评成绩是将平时测验的平均成绩、期中测验成绩、期末测验成绩按照3:3:4的比例计算所得,计算小明本学期学科的总评成绩.【考点】众数;加权平均数;中位数.【分析】(1)根据中位数及众数的定义,即可得出答案;(2)根据平均数的计算方法进行计算即可;(3)用本学期的数学平时测验的平均成绩×0.3+期中测验成绩×0.3+期末测验成绩×0.4,计算即可.【解答】解:(1)∵在六次成绩中,90出现了2次,出现的次数最多,∴这组数据的众数为90;∵将六次成绩按从小到大的顺序排列,处于中间的两个数分别为86,90,有=88,∴这组数据的中位数为88;(2)根据表中数据,小明四次平时成绩的平均值==85;(3)根据题意,小明的总评成绩为85×0.3+90×0.3+95×0.4=90.5.【点评】本题考查了扇形统计图、中位数及众数的知识,注意培养自己的读图能力,另外要熟练掌握中位数及众数的定义,难度一般.18.已知一次函数y=kx+b(k为常数,k≠0)的图象经过点A(2,2),B(0,1).(1)求该一次函数的解析式,并作出其图象;(2)当0≤y≤2时,求x的取值范围.【考点】待定系数法求一次函数解析式;一次函数的图象.【专题】常规题型;函数及其图象.【分析】(1)将点A、B的坐标代入一次函数的解析式y=kx+b(k为常数,k≠0),得关于k、b的二元一次方程组,解之即可;(2)根据函数图象的性质及函数的解析式求x的取值范围或直接利用函数图象确定x的取值范围.【解答】解:(Ⅰ)∵点A(2,2),点B(0,1)在一次函数y=kx+b(k为常数,k≠0)的图象上,∴解得∴一次函数的解析式为:y=x+1其图象如下图所示:(Ⅱ)∵k=>0,∴一次函数y=x+1的函数值y随x的增大而增大.当y=0时,解得x=﹣2;当y=2时,x=2.∴﹣2≤x≤2.即:当0≤y≤2时,求x的取值范围是:﹣2≤x≤2.【点评】本题考查了待定系数法求一次函数的解析式及一次函数图象的画法,关键是要理解函数图象上的点的坐标与函数图象的关系:若点在函数的图象上,那么点的坐标(x,y)就满足函数的解析式y=kx+b.19.用适当的方法解下列方程.(1)x2+3x=5(x+3);(2)2x2﹣6x+1=0.【考点】解一元二次方程-因式分解法;解一元二次方程-公式法.【分析】(1)直接利用提取公因式法分解因式解方程得出答案;(2)直接利用公式法解方程得出答案.【解答】解:(1)移项,得 x(x+3)﹣5(x+3)=0.因式分解,得(x﹣5)(x+3)=0.于是得x﹣5=0,或x+3=0,解得:x1=5,x2=﹣3;(2)∵a=2,b=﹣6,c=1,△=b2﹣4ac=(﹣6)2﹣4×2×1=28>0,方程有两个不等的实数根x===,解得:x1=,x2=.【点评】此题主要考查了因式分解法以及公式法解方程,正确因式分解是解题关键.20.已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)若|x1+x2|=x1x2,求k的值.【考点】根与系数的关系;根的判别式.【专题】计算题.【分析】(1)根据判别式的意义得到△=4(k﹣1)2﹣4k2≥0,然后解不等式即可;(2)根据根与系数的关系得到x1+x2=2(k﹣1),x1•x2=k2,利用k≤得到x1+x2=2(k﹣1)<0,则﹣(x1+x2)=x1x2,所以﹣2(k﹣1)=k2,然后解关于k的一元二次方程,然后利用k的范围确定k的值.【解答】解:(1)根据题意得△=4(k﹣1)2﹣4k2≥0,解得k≤;(2)根据题意得x1+x2=2(k﹣1),x1•x2=k2,∵k≤,∴x1+x2=2(k﹣1)<0,∴﹣(x1+x2)=x1x2,∴﹣2(k﹣1)=k2,整理得k2+2k﹣2=0,解得k 1=﹣1+,k2=﹣1﹣,∵k≤,∴k=﹣1﹣.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1•x2=.也考查了根的判别式.21.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.(1)试找出一个与△AED全等的三角形,并加以证明;(2)若AB=8,DE=3,P为线段AC上的任意一点,PG ⊥AE于G,PH⊥EC于H,试求PG+PH的值,并说明理由.【考点】翻折变换(折叠问题);直角三角形全等的判定;矩形的性质.【专题】几何综合题.【分析】(1)由折叠的性质知,CB′=BC=AD,∠B=∠B′=∠D=90°,∠B′EC=DEA,则由AAS得到△AED≌△CEB′;(2)延长HP交AB于M,则PM⊥AB,PG=PM,PG+PH=HM=AD,∵CE=AE=CD﹣DE=8﹣3=5在Rt△ADE 中,由勾股定理得到AD=4,∴PG+PH=HM=AD=4.【解答】解:(1)△AED≌△CEB′证明:∵四边形ABCD为矩形,∴B′C=BC=AD,∠B′=∠B=∠D=90°,又∵∠B′EC=∠DEA,∴△AED≌△CEB′;(2)由折叠的性质可知,∠EAC=∠CAB,∵CD∥AB,∴∠CAB=∠ECA,∴∠EAC=∠ECA,∴AE=EC=8﹣3=5.在△ADE中,AD===4,延长HP交AB于M,则PM⊥AB,∴PG=PM.∴PG+PH=PM+PH=HM=AD=4.【点评】本题利用了:1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、全等三角形的判定和性质,矩形的性质,勾股定理求解.22.某家具厂生产的沙发计划在甲地区全部采用网络直销的方式销售,并找当地人员进行安装,甲地区一家专业安装公司给出如下安装方案(均为每月收费),设该品牌沙发在甲地区每月的销量为x套(x>0),该家具厂需支付安装公司的费用为y元.方案1:安装费为9600元,不限安装套数;方案2:每安装一套沙发,安装费为80元;方案3:不超过30套,每套安装费为100元,超过30套,超出部分每套安装费为60元.(1)分别求出按方案1,方案2,方案3需要支付给安装公司的费用y与销量x之间的函数关系式;(2)该家具厂应选择哪种安装方案比较省钱?【考点】一次函数的应用;一元一次不等式组的应用.【专题】应用题;一次函数及其应用.【分析】(1)根据题中的方案,分别表示出方案1,方案2,方案3需要支付给安装公司的费用y与销量x之间的函数关系式即可;(2)根据方案二与方案三,方案一与方案三,方案一与方案二,分别联立求出x的值,分类讨论安装方案比较省钱的x范围即可.【解答】解:(1)按方案一,需要支付给安装公司的费为y=9600;按方案二,需要支付给安装公司的费为y=80x;按方案三,根据题意,当0<x≤30时,y3=100x;当x>30时,其中有30套沙发的安装费按100元∕套收费,其余的(x﹣30)套沙发按60元∕套收费,∴y3=30×100+60(x﹣30)=60x+1200,∴y3关于x的函数解析式为y3=;(2)根据题意,由,解得:,由60x+1200=9600,解得:x=140;由80x=9600,解得:x=120,∴当0<x<60时,方案2比较省钱;当x=60时,方案2,方案3安装费相同;当60<x<140时,方案3比较省钱;当x=140时,方案1,方案3安装费相同;当x>140时,方案1比较省钱.【点评】此题考查了一次函数的应用,以及二元一次方程组的解法,熟练掌握一次函数性质是解本题的关键.八年级(下)期末数学试卷一、选择题:(本大题共6题,每题3分,满分18分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.下列方程中,不是分式方程的是()A. B.C.D.2.函数y=﹣2x+3的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限3.如果点C是线段AB的中点,那么下列结论中正确的是()A.B.C.D.4.小杰两手中仅有一只手中有硬币,他让小敏猜哪只手中有硬币.下列说法正确的是()A.第一次猜中的概率与重放后第二次猜中的概率不一样B.第一次猜不中后,小杰重放后再猜1次肯定能猜中C.第一次猜中后,小杰重放后再猜1次肯定猜不中D.每次猜中的概率都是0.55.如图,在梯形ABCD中,AB∥CD,AD=DC=CB,AC ⊥BC,那么下列结论不正确的是()A.AC=2CD B.DB⊥AD C.∠ABC=60°D.∠DAC=∠CAB6.下列命题中,假命题是()A.有一组对角是直角且一组对边平行的四边形是矩形B.有一组对角是直角且一组对边相等的四边形是矩形C.有两个内角是直角且一组对边平行的四边形是矩形D.有两个内角是直角且一组对边相等的四边形是矩形二、填空题(本大题共12题,每题2分,满分24分)7.一次函数y=﹣3x﹣5的图象在y轴上的截距为.8.已知直线y=kx+b经过点(﹣2,2),并且与直线y=2x+1平行,那么b= .9.如果一次函数y=(m﹣2)x+m的函数值y随x的值增大而增大,那么m的取值范围是.10.关于x的方程a2x+x=1的解是.11.方程的解为.12.如图,一次函数y=kx+b的图象与x轴、y轴分别相交于A、B两点,那么当y<0时,自变量x的取值范围是.13.2名男生和2名女生抓阄分派2张电影票,恰好2名女生得到电影票的概率是.14.如果一个八边形的每一个内角都相等,那么它的一个内角的度数等于度.15.在▱ABCD中,如果∠A+∠C=140°,那么∠B= 度.16.如图,在△ABC中,点D、E分别是边AB、AC的中点,已知DE=6cm,则BC= cm.17.在梯形ABCD中,AD∥BC,AB=CD,AC⊥BD.如果AD=4,BC=10,那么梯形ABCD的面积等于.18.如图,在△ABC中,AB=AC,点M、N分别在边AB、AC上,且MN⊥AC.将四边形BCNM沿直线MN翻折,点B、C的对应点分别是点B′、C′,如果四边形ABB′C′是平行四边形,那么∠BAC= 度.三、计算题(本大题共8题,满分58分)19.解方程:.20.解方程组:.21.已知:如图,在△ABC中,设,.(1)填空: = ;(用、的式子表示)(2)在图中求作.(不要求写出作法,只需写出结论即可.)22.已知直线y=kx+b经过点A(﹣3,﹣8),且与直线的公共点B的横坐标为6.(1)求直线y=kx+b的表达式;(2)设直线y=kx+b与y轴的公共点为点C,求△BOC 的面积.23.已知:如图,在正方形ABCD中,点E在边BC 上,点F在边CD的延长线上,且BE=DF.(1)求∠AEF的度数;(2)如果∠AEB=75°,AB=2,求△FEC的面积.24.某中学八年级学生到离学校15千米的青少年营地举行庆祝十四岁生日活动,先遣队与大部队同时从学校出发.已知先遣队每小时比大部队多行进1千米,预计比大部队早半小时到达目的地.求先遣队与大部队每小时各行进了多少千米.25.已知:如图,在□ABCD中,E为边CD的中点,联结AE并延长,交边BC的延长线于点F.(1)求证:四边形ACFD是平行四边形;(2)如果∠B+∠AFB=90°,求证:四边形ACFD是菱形.26.已知:如图,在梯形ABCD中,AD∥BC,AB⊥BC,.E是边AB的中点,联结DE、CE,且DE⊥CE.设AD=x,BC=y.(1)如果∠BCD=60°,求CD的长;(2)求y关于x的函数解析式,并写出自变量x的取值范围;(3)联结BD.如果△BCD是以边CD为腰的等腰三角形,求x的值.参考答案与试题解析一、选择题:(本大题共6题,每题3分,满分18分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.下列方程中,不是分式方程的是()A. B.C.D.【考点】分式方程的定义.【分析】判断一个方程是否为分式方程主要是看这个方程的分母中是否含有未知数.【解答】解:A、该方程符合分式方程的定义,属于分式方程,故本选项错误;B、该方程属于无理方程,故本选项正确;C、该方程符合分式方程的定义,属于分式方程,故本选项错误;D、该方程符合分式方程的定义,属于分式方程,故本选项错误;故选:B.【点评】本题考查了分式方程的定义:分母中含有未知数的方程叫做分式方程.2.函数y=﹣2x+3的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限【考点】一次函数的性质.【专题】探究型.【分析】直接根据一次函数的性质进行解答即可.【解答】解:∵一次函数y=﹣2x+3中,k=﹣2<0,b=3>0,∴此函数的图象经过一、二、四象限.故选B.【点评】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k<0,b>0时函数图象经过一、二、四象限是解答此题的关键.3.如果点C是线段AB的中点,那么下列结论中正确的是()A.B.C.D.【考点】*平面向量.【专题】计算题.【分析】根据点C是线段AB的中点,可以判断||=||,但它们的方向相反,继而即可得出答案.【解答】解:由题意得:||=||,且它们的方向相反,∴有=,故选C.【点评】本题考查了平面向量的知识,注意向量包括长度及方向,及0与的不同.4.小杰两手中仅有一只手中有硬币,他让小敏猜哪只手中有硬币.下列说法正确的是()A.第一次猜中的概率与重放后第二次猜中的概率不一样B.第一次猜不中后,小杰重放后再猜1次肯定能猜中C.第一次猜中后,小杰重放后再猜1次肯定猜不中D.每次猜中的概率都是0.5【考点】列表法与树状图法;概率公式.【分析】首先直接利用概率公式求得第一次猜中的概率;首先根据题意画出树状图,然后由树状图求得等可能的结果与第二次猜中的情况,再利用概率公式即可求得答案.。

八年级下册数学期末冲刺卷答案

八年级下册数学期末冲刺卷答案

八年级下册数学期末冲刺卷答案期末考试是教学活动中十分重要的环节,数学期末考试与八年级学生的学习是息息相关的。

下面是小编为大家精心整理的八年级下册数学期末冲刺卷和答案,仅供参考。

八年级下册数学期末冲刺卷题目一、选择题(每小题3分。

共30分)1. 下列各数中,与是同类二次根式的是…………………… 【】A. B. C. D.2. 若一个多边形的每个内角都等于135°,则该多边形的边数为【】A.8B.7C.6D.53. 若一1是关于x的方程nx2+mx+2=0(n≠0)的一个根,则m—n的值为【】A.1B.2C.一lD.一24.若,则的值为【】A.4或-2B.4C.一2D.一45.下列二次根式中,最简二次根式是( ) 【】A. B. C. D.6.在△ABC中,AB=15,AC=13,高AD=12. 则它的周长是【】A. 42.B. 32.C. 37或33D.42或32.7.一次数学测试,某小组五名同学的成绩如下表所示(有两个数据被遮盖).组员甲乙丙丁戊方差平均成绩得分81 79 ■ 80 82 ■ 80那么被遮盖的两个数据依次是【】A.80,2 B.80,2 C.78,2D.78,28.如图,在菱形ABCD中,AB=5,对角线AC=6,过A作AE⊥BC,垂足为E,则AE的长是【】A. 24B. 36C. 48D. 4.89.如图,把菱形ABCD沿AH折叠,使B点落在BC上的E点处,若∠B=70°,则∠EDC的大小为【】A.10°B.15°C.20°D.30°10.如图,已知平行四边形ABCD,下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD从中选两个作为补充条件,使它成为正方形,其中错误的是【】A.①②B.②③C.①③D.②④二、填空题 (每小题3分。

共24分)11.若代数式在实数范围内有意义,则x的取值范围是____________.12.平行四边形ABCD中,对角线AC、BD的长度分别为10、6,则边AB的长度取值范围是 ____________.13.已知关于x的方程x2+6x+k=0的两实根分别是x1、x2, 且则k的值是____________.14.若矩形对角线相交所成的钝角为120°,较短的边长为4cm,则对角线的长为____________.15.已知方程x2+4x+n=0可以配方成(x+m)2=3,则(m-n)2016=________.16.一个三角形的三边长之比为5:12:13,它的周长为120,则它的面积是________.17.如图,矩形内有两个相邻的正方形,面积分别为4和2,那么阴影部分的面积是。

最新重点中学八年级下学期期末数学试卷两套汇编十一附解析答案.docx

最新重点中学八年级下学期期末数学试卷两套汇编十一附解析答案.docx

2017年重点中学八年级下学期期末数学试卷两套汇编十一附解析答案八年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.不等式2x﹣3≥0的解集是()A.x≥B.x>C.x>D.x≤2.在式子、、、、、中,分式的个数有()A.2个 B.3个 C.4个 D.5个3.下列多项式能用完全平方公式进行分解因式的是()A.x2+1 B.x2+2x+4 C.x2﹣2x+1 D.x2+x+14.若分式的值为0,则()A.x=±1 B.x=1 C.x=﹣1 D.x=05.如图,▱ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3cm,则AB的长为()A.3 cm B.6 cmC.9 cm D.12 cm6.如图,已知直线y1=ax+b与y2=mx+n相交于点A(2,﹣1),若y1>y2,则x 的取值范围是()A.x<2 B.x>2 C.x<﹣1 D.x>﹣17.下列说法正确的是()A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.平移和旋转的共同点是改变图形的位置C.图形可以向某方向平移一定距离,也可以向某方向旋转一定距离D.由平移得到的图形也一定可由旋转得到8.如果把分式中的x、y都扩大3倍,那么分式的值()A.扩大3倍B.不变C.缩小3倍D.缩小6倍9.解关于x的方程产生增根,则常数m的值等于()A.﹣1 B.﹣2 C.1 D.210.下列哪组条件能判别四边形ABCD是平行四边形()A.AB∥CD,AD=BC B.AB=CD,AD=BC C.∠A=∠B,∠C=∠D D.AB=AD,CB=CD二、填空题:11.已知函数y=2x﹣3,当x时,y≥0;当x时,y<5.12.若分式方程=有增根,则这个增根是x=.13.分解因式:2x2﹣12x+18=.14.计算x2﹣3x﹣10=(x+a)(x+b)的结果是.15.如图,在▱ABCD中,已知对角线AC和BD相交于点O,△AOB的周长为15,AB=6,那么对角线AC+BD=.16.若x2+2(m﹣3)+16是关于x的完全平方式,则m=.17.当x=时,分式无意义;当x=时,分式的值为0.18.若x2﹣3x﹣10=(x+a)(x+b),则a=,b=.三、解答题(本小题共8个小题,共66分)19.(8分)解不等式(组),并把解集在数轴上表示出来.(1)5(x+2)≥1﹣2(x﹣1)(2).20.(8分)因式分解:(1)x(x﹣y)﹣y(y﹣x)(2)﹣8ax2+16axy﹣8ay2.21.(8分)解方程:(1)(2)=3.22.(10分)解答下列问题:(1)先化简,再求值,其中x=﹣2,y=1.(2)先分解因式,再求值:已知a+b=2,ab=2,求的值.23.(8分)某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?24.(6分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A 的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.25.(8分)如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.26.(10分)现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂在A、B两种不同规格的货车厢共40节,使用A型车厢每节费用为6000元,使用B型车厢每节费用为8000元.(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试定出用车厢节数x表示总费用y的公式.(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.不等式2x﹣3≥0的解集是()A.x≥B.x>C.x>D.x≤【考点】解一元一次不等式.【分析】利用不等式的基本性质,将两边不等式同时加上3再除以2,不等号的方向不变.【解答】解:将不等式2x﹣3≥0先移项得,2x≥3,两边同除以2得,x≥;故选A.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.2.在式子、、、、、中,分式的个数有()A.2个 B.3个 C.4个 D.5个【考点】分式的定义.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:、、9x+这3个式子的分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选:B.【点评】本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.3.下列多项式能用完全平方公式进行分解因式的是()A.x2+1 B.x2+2x+4 C.x2﹣2x+1 D.x2+x+1【考点】因式分解-运用公式法.【分析】利用完全平方公式的结构特征判断即可得到结果.【解答】解:x2﹣2x+1=(x﹣1)2,故选C.【点评】此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.4.若分式的值为0,则()A.x=±1 B.x=1 C.x=﹣1 D.x=0【考点】分式的值为零的条件.【分析】分式值为零的条件是分式的分子等于0,分母不等于0.【解答】解:∵分式的值为0,∴|x|﹣1=0,x+1≠0.∴x=±1,且x≠﹣1.∴x=1.故选:B.【点评】本题主要考查的是分式值为零的条件,明确分式值为零时,分式的分子等于0,分母不等于0是解题的关键.5.如图,▱ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3cm,则AB的长为()A.3 cm B.6 cmC.9 cm D.12 cm【考点】平行四边形的性质;三角形中位线定理.【分析】因为四边形ABCD是平行四边形,所以OA=OC;又因为点E是BC的中点,所以OE是△ABC的中位线,由OE=3cm,即可求得AB=6cm.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC;又∵点E是BC的中点,∴BE=CE,∴AB=2OE=2×3=6(cm)故选:B.【点评】此题考查了平行四边形的性质:平行四边形的对角线互相平分.还考查了三角形中位线的性质:三角形的中位线平行且等于三角形第三边的一半.6.如图,已知直线y1=ax+b与y2=mx+n相交于点A(2,﹣1),若y1>y2,则x 的取值范围是()A.x<2 B.x>2 C.x<﹣1 D.x>﹣1【考点】一次函数与一元一次不等式.【分析】观察函数图象得到当x>2时,直线y1=ax+b都在直线y2=mx+n的上方,即有y1>y2.【解答】解:根据题意当x>2时,若y1>y2.故选B.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.7.下列说法正确的是()A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.平移和旋转的共同点是改变图形的位置C.图形可以向某方向平移一定距离,也可以向某方向旋转一定距离D.由平移得到的图形也一定可由旋转得到【考点】旋转的性质;平移的性质.【分析】根据平移和旋转的性质,对选项进行一一分析,排除错误答案.【解答】解:A、平移不改变图形的形状和大小,而旋转同样不改变图形的形状和大小,故错误;B、平移和旋转的共同点是改变图形的位置,故正确;C、图形可以向某方向平移一定距离,旋转是围绕中心做圆周运动,故错误;D、平移和旋转不能混淆一体,故错误.故选B.【点评】要根据平移和旋转的定义来判断.(1)在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动成为平移;(2)旋转就是物体绕着某一点或轴运动.平移和旋转的共同点是改变图形的位置.8.如果把分式中的x、y都扩大3倍,那么分式的值()A.扩大3倍B.不变C.缩小3倍D.缩小6倍【考点】分式的基本性质.【分析】分别用3x、3y代替原分式中的xy,再利用分式的基本性质化简【解答】解:原式=,=,=.故选B.【点评】本题考查了分式的基本性质.如果分式的分子分母乘以(或除以)同一个不等于0的整式,分式的值不变.9.解关于x的方程产生增根,则常数m的值等于()A.﹣1 B.﹣2 C.1 D.2【考点】分式方程的增根.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.本题的增根是x=1,把增根代入化为整式方程的方程即可求出未知字母的值.【解答】解;方程两边都乘(x﹣1),得x﹣3=m,∵方程有增根,∴最简公分母x﹣1=0,即增根是x=1,把x=1代入整式方程,得m=﹣2.故选:B.【点评】增根问题可按如下步骤进行:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.10.下列哪组条件能判别四边形ABCD是平行四边形()A.AB∥CD,AD=BC B.AB=CD,AD=BC C.∠A=∠B,∠C=∠D D.AB=AD,CB=CD【考点】平行四边形的判定.【分析】平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.根据平行四边形的判定方法判断,只有B正确.【解答】解:根据平行四边形的判定,A、C、D均不能判定四边形ABCD是平行四边形;B选项给出了四边形中,两组对边相等,故可以判断四边形是平行四边形.故选B.【点评】本题考查了平行四边形的判定,熟练掌握判定定理是解题的关键.平行四边形共有五种判定方法,记忆时要注意技巧;这五种方法中,一种与对角线有关,一种与对角有关,其他三种与边有关.二、填空题:11.已知函数y=2x﹣3,当x≥时,y≥0;当x<4时,y<5.【考点】一次函数的性质.【分析】先根据y≥0得出关于x的不等式,求出x的取值范围;再根据y<5得出关于x的不等式,求出x的取值范围即可.【解答】解:∵y=2x﹣3且y≥0,∴2x﹣3≥0,∴x≥;∵y<5,∴2x﹣3<5,∴x<4.故答案为:≥;<4.【点评】本题考查的是一次函数的性质,根据题意得出关于x的不等式是解答此题的关键.12.若分式方程=有增根,则这个增根是x=2.【考点】分式方程的增根.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.【解答】解:∵分式方程=有增根,∴x﹣2=0∴原方程增根为x=2,故答案为2.【点评】本题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值13.分解因式:2x2﹣12x+18=2(x﹣3)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式2,再对余下的多项式利用完全平方公式继续分解.【解答】解:2x2﹣12x+18,=2(x2﹣6x+9),=2(x﹣3)2.故答案为:2(x﹣3)2.【点评】本题主要考查提公因式法分解因式和利用完全平方公式分解因式,熟记公式结构是解题的关键.14.计算x2﹣3x﹣10=(x+a)(x+b)的结果是(x﹣5)(x+2).【考点】因式分解-十字相乘法等.【分析】根据十字相乘法进行因式分解,即可解答.【解答】解:x2﹣3x﹣10=(x﹣5)(x+2),故答案为:(x﹣5)(x+2).【点评】本题考查了十字相乘法进行因式分解,解决本题的关键是熟记十字相乘法进行因式分解.15.如图,在▱ABCD中,已知对角线AC和BD相交于点O,△AOB的周长为15,AB=6,那么对角线AC+BD=18.【考点】平行四边形的性质.【分析】△AOB的周长为15,则AO+BO+AB=15,又AB=6,所以OA+OB=9,根据平行四边形的性质,即可求解.【解答】解:因为△AOB的周长为15,AB=6,所以OA+OB=9;又因为平行四边形的对角线互相平分,所以AC+BD=18.故答案为18.【点评】此题主要考查平行四边形的对角线互相平分.在应用平行四边形的性质解题时,要根据具体问题,有选择的使用,避免混淆性质,以致错用性质.16.若x2+2(m﹣3)+16是关于x的完全平方式,则m=﹣1或7.【考点】完全平方式.【分析】直接利用完全平方公式的定义得出2(m﹣3)=±8,进而求出答案.【解答】解:∵x2+2(m﹣3)+16是关于x的完全平方式,∴2(m﹣3)=±8,解得:m=﹣1或7,故答案为:﹣1或7.【点评】此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.17.当x=1时,分式无意义;当x=﹣3时,分式的值为0.【考点】分式的值为零的条件;分式有意义的条件.【分析】依据“分式的分母为零时分式无意义”和“当分式的分子为零且分母不为零时分式的值为0”分别求出x的值即可.【解答】解:当x﹣1=0,即x=1时分式无意义;当时,分式的值为0,解得x=﹣3;故填:1;﹣3.【点评】本题主要考查分式有意义及分式的值为零的条件,注意分式的值为零需要满足分式有意义.18.若x2﹣3x﹣10=(x+a)(x+b),则a=2或﹣5,b=﹣5或2.【考点】因式分解-十字相乘法等.【分析】先根据多项式乘多项式法则把多项式的左边展开,合并同类项后再根据多项式两边相同字母的系数相等,列出方程组,求出a,b的值即可.【解答】解:∵(x+a)(x+b),=x2+(a+b)x+ab,=x2﹣3x﹣10,∴a+b=﹣3,ab=﹣10,解得a=2,b=﹣5或a=﹣5,b=2.故答案为:2或﹣5,﹣5或2.【点评】本题主要考查了多项式相等条件:对应项的系数相同.解答此题的关键是熟知多项式的乘法法则,即识记公式:(x+a)(x+b)=x2+(a+b)x+ab.三、解答题(本小题共8个小题,共66分)19.解不等式(组),并把解集在数轴上表示出来.(1)5(x+2)≥1﹣2(x﹣1)(2).【考点】解一元一次不等式组;在数轴上表示不等式的解集;解一元一次不等式.【分析】(1)先求出不等式的解集,再在数轴上表示出来即可;(2)先求出不等式的解集,再求出不等式组的解集,最后表示出来即可.【解答】解:(1)去括号得:5x+10≥1﹣2x+2,5x+2x≥1+2﹣10,7x≥﹣7,x≥﹣1,在数轴上表示为:;(2)∵解不等式①得:y<8,解不等式②得:y≥2,∴不等式组的解集为2≤y<8,在数轴上表示为:.【点评】本题考查了解一元一次不等式(组),在数轴上表示不等式(组)的解集,能求出不等式或不等式组的解集是解此题的关键.20.因式分解:(1)x(x﹣y)﹣y(y﹣x)(2)﹣8ax2+16axy﹣8ay2.【考点】提公因式法与公式法的综合运用.【分析】(1)利用提公因式法即可分解;(2)首先提公因式,然后利用公式法即可分解.【解答】解:(1)原式=x(x﹣y)+y(x﹣y)=(x﹣y)(x+y);(2)原式=﹣8a(x2﹣2xy+y2)=﹣8a(x﹣y)2.【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.21.解方程:(1)(2)=3.【考点】解分式方程.【分析】把分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)方程两边乘以(x+2)(x﹣2)得:x﹣2+4x=2(x+2),解得:x=2,检验:x=2时,(x+2)(x﹣2)=0,x=2不是原方程的解:因此,原方程无解.(2)方程两边乘以2(x﹣1)得:3﹣2=6(x﹣1),解得:x=,检验:x=时,2(x﹣1)≠0,x=是原方程的解:因此,原方程的解为x=.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.22.(10分)(2016春•沙坡头区校级期末)解答下列问题:(1)先化简,再求值,其中x=﹣2,y=1.(2)先分解因式,再求值:已知a+b=2,ab=2,求的值.【考点】因式分解的应用;分式的化简求值.【分析】(1)先把括号里的式子进行通分,再把除法转化成乘法,然后约分,最后把x,y的值代入计算即可;(2)先把a3b+a2b2+ab3提公因式ab,再运用完全平方和公式分解因式,最后整体代入求值.【解答】解:(1)=[﹣]×=×=﹣,把x=﹣2,y=1代入上式得:原式=﹣=2;(2)求=ab(a2+2ab+b2)=ab(a+b)2,当a+b=2,ab=2时,原式=×2×22=4.【点评】此题考查了分式的化简求值,化简求值是课程标准中所规定的一个基本内容,它涉及对运算的理解以及运算技能的掌握两个方面,也是一个常考的题材.23.某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?【考点】分式方程的应用.【分析】(1)求的是单价,总价明显,一定是根据数量来列等量关系.本题的关键描述语是:“数量是第一批购进数量的3倍”;等量关系为:6300元购买的数量=2000元购买的数量×3.(2)盈利=总售价﹣总进价.【解答】解:(1)设第一批购进书包的单价是x元.则:×3=.解得:x=80.经检验:x=80是原方程的根.答:第一批购进书包的单价是80元.(2)×(120﹣80)+×(120﹣84)=3700(元).答:商店共盈利3700元.【点评】应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.24.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.【考点】作图-旋转变换;作图-轴对称变换.【分析】(1)分别找出A、B、C三点关于x轴的对称点,再顺次连接,然后根据图形写出A点坐标;(2)将△A1B1C1中的各点A1、B1、C1绕原点O旋转180°后,得到相应的对应点A2、B2、C2,连接各对应点即得△A2B2C2.【解答】解:(1)如图所示:点A1的坐标(2,﹣4);(2)如图所示,点A2的坐标(﹣2,4).【点评】本题考查图形的轴对称变换及旋转变换.解答此类题目的关键是掌握旋转的特点,然后根据题意找到各点的对应点,然后顺次连接即可.25.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.【考点】平行四边形的判定与性质;全等三角形的判定与性质.【分析】(1)由BF=DE,可得BE=DF,由AE⊥BD,CF⊥BD,可得∠AEB=∠CFD=90°,又由AB=CD,在直角三角形中利用HL即可证得:△ABE≌△CDF;(2)由△ABE≌△CDF,即可得∠ABE=∠CDF,根据内错角相等,两直线平行,即可得AB∥CD,又由AB=CD,根据有一组对边平行且相等的四边形是平行四边形,即即可证得四边形ABCD是平行四边形,则可得AO=CO.【解答】证明:(1)∵BF=DE,∴BF﹣EF=DE﹣EF,即BE=DF,∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,∵AB=CD,∴Rt△ABE≌Rt△CDF(HL);(2)连接AC,交BD于点O,∵△ABE≌△CDF,∴∠ABE=∠CDF,∴AB∥CD,∵AB=CD,∴四边形ABCD是平行四边形,∴AO=CO.【点评】此题考查了全等三角形的判定与性质与平行四边形的判定与性质.此题难度不大,解题的关键是要注意数形结合思想的应用.26.(10分)(2015•宝安区二模)现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂在A、B两种不同规格的货车厢共40节,使用A型车厢每节费用为6000元,使用B型车厢每节费用为8000元.(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试定出用车厢节数x表示总费用y的公式.(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?【考点】一元一次不等式组的应用.【分析】(1)这列货车挂A型车厢x节,则挂B型车厢(40﹣x)节,从而可得出y与x的表达式;(2)设A型车厢x节,则挂B型车厢(40﹣x)节,根据所装的甲货物不少于1240吨,乙货物不少于880吨,可得出不等式组,解出即可.【解答】解:(1)y=0.6x+0.8(40﹣x)=﹣0.2x+32;(2)设A型车厢x,节,则挂B型车厢(40﹣x)节,由题意得:,解得:24≤x≤26,故有三种方案:①A、B两种车厢的节数分别为24节、16节;②A型车厢25节,B型车厢15节;③A型车厢26节,B型车厢14节.【点评】本题考查了一元一次不等式的应用,解答本题的关键是仔细审题,根据所装货物的不等关系,列出不等式组,难度一般.八年级(下)期末数学试卷一、选择题(本题共10道小题,每小题3分,共30分)下面各题均有四个选项,其中只有一个是符合题意的.1.点A的坐标是(﹣2,5),则点A在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.下列四个艺术字中,不是中心对称图形的是()A.木B.田C.王D.噩3.如图,在▱ABCD中,∠B=60°,则∠D的度数等于()A.120°B.60° C.40° D.30°4.一个三角形的周长是36cm,则以这个三角形各边中点为顶点的三角形的周长是()A.6cm B.12cm C.18cm D.36cm5.若一次函数y=x+4的图象上有两点A(﹣,y1)、B(1,y2),则下列说法正确的是()A.y1>y2 B.y1≥y2C.y1<y2D.y1≤y26.甲、乙、丙、丁四名同学在几次数学测验中,各自的平均成绩都是98分,方差分别为:S甲2=0.51,S乙2=0.52,S丙2=0.56,S丁2=0.49,则成绩最稳定的是()A.甲B.乙C.丙D.丁7.菱形ABCD的对角线AC=5,BD=10,则该菱形的面积为()A.50 B.25 C.D.12.58.如图是利用平面直角坐标系画出的怀柔城区附近部分乡镇分布图.若这个坐标系分别以正东、正北方向为x轴、y轴的正方向.表示南华园村的点坐标为(0,﹣1),表示下园村的点的坐标为(1.6,0.9),则表示下列各地的点的坐标正确的是()A.石厂村(﹣1.2,﹣2.7)B.怀柔镇(0.4,1)C.普法公园(0,0) D.大屯村(2.2,2.6)9.已知:如图,折叠矩形ABCD,使点B落在对角线AC上的点F处,若BC=4,AB=3,则线段CE的长度是()A.B.C.3 D.2.810.如图,在等腰△ABC中,直线l垂直底边BC,现将直线l沿线段BC从B点匀速平移至C点,直线l与△ABC的边相交于E、F两点.设线段EF的长度为y,平移时间为t,则下图中能较好反映y与t的函数关系的图象是()A.B.C.D.二、填空题(本题共6道小题,每小题3分,共18分)11.在平面直角坐标系中,点A(1,2)关于x轴对称点的坐标是(,).12.如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5= .13.如图,点D是直线l外一点,在l上取两点A,B,连接AD,分别以点B,D为圆心,AD,AB的长为半径画弧,两弧交于点C,连接CD,BC,则四边形ABCD是平行四边形,理由是.14.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开放术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》“勾股”一章记载:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何?”译文:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?(1丈=10尺,1尺=10寸)设长方形门的宽x尺,可列方程为.15.已知直线y=x﹣3与y=2x+2的交点为(﹣5,﹣8),则方程组的解是.16.我们解答过一些求代数式的值的题目,请把下面的问题补充完整:当x的值分别取﹣5、0、1…时,3x2﹣2x+4的值分别为89、4、5…根据函数的定义,可以把x看做自变量,把看做因变量,那么因变量(填“是”或“不是”)自变量x 的函数,理由是.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解方程:(y﹣1)2+3(y﹣1)=0.18.王洪同学在解方程x2﹣2x﹣1=0时,他是这样做的:解:方程x2﹣2x﹣1=0变形为x2﹣2x=1.…第一步x(x﹣2)=1.…第二步x=1或x﹣2=1.…第三步∴x1=1,x2=3.…第四步王洪的解法从第步开始出现错误.请你选择适当方法,正确解此方程.19.先化简,再求值:2(m﹣1)2+3(2m+1),其中m2+m﹣2=0.20.如图,正方形ABCD和正方形AEFG有公共顶点A,连接BE,DG.求证:BE=DG.21.已知y是x的一次函数,下表列出了部分y与x的对应值,求m的值.22.列方程或方程组解应用题某区大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全区学校的设施和设备进行全面改造.2015年区政府已投资5亿元人民币,若每年投资的增长率相同,预计2017年投资7.2亿元人民币,求每年投资的增长率.23.2015年是怀柔区创建文明城区的全面启动之年,各学校组织开展了丰富多彩的未成年人思想道德教育实践活动.某校在雁栖湖畔举行徒步大会,大会徒步线路全长13千米.从雁栖湖国际会展中心北侧出发,沿着雁栖湖路向东,经过日出东方酒店、雁栖湖景区、古槐溪语公园、雁栖湖北岸环湖健身步道等,再返回雁栖湖国际会展中心.下图是小明和小军徒步时间t(小时)和行走的路程s(千米)之间的函数图象,请根据图象回答下列问题:(1)试用文字说明,交点C所表示的实际意义;(2)行走2小时时,谁处于领先地位?(3)在哪段时间小军的速度大于小明的速度?说明理由.24.如图,在△ABC中,AB=AC,∠DAC是△ABC的一个外角,AM是∠DAC的平分线,AC的垂直平分线与AM交于点F,与BC边交于点E,连接AE、CF.(1)补全图形;(2)判断四边形AECF的形状并加以证明.25.《北京中小学语文学科教学21条改进意见》中的第三条指出:“在教学中重视对国学经典文化的学习,重视历史文化的熏陶,加强与革命传统教育的结合,使学生了解中华文化的悠久历史,增强民族文化自信和价值观自信,使语文教学成为涵养社会主义核心价值观的重要源泉之一”.为此,怀柔区掀起了以“阅读经典作品,提升思维品质”为主题的读书活动热潮,在一个月的活动中随机调查了某校初二年级学生的周人均阅读时间的情况,整理并绘制了如下的统计图表:某校初二年级学生周人均阅读时间频数分布表请根据以上信息,解答下列问题:(1)在频数分布表中a= ,b= ;(2)补全频数分布直方图;(3)若该校有1600名学生,根据调查数据请你估计,该校学生周人均阅读时间不少于6小时的学生大约有人;(4)通过观察统计图表,你对这所学校初二年级同学的读书情况有什么意见或建议?26.有这样一个问题,探究函数y=的图象和性质.小强根据学习一次函数的经验,对。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年重点中学八年级下学期数学期末冲刺试卷两套汇编五内附答案解析八年级(下)期末数学试卷一、选择题1.下列式子中,属于最简二次根式的是()A.B.C. D.2.正方形具有而矩形不一定具有的性质是()A.四个角都是直角B.对角线相等C.四条边相等D.对角线互相平行3.若代数式有意义,则实数x的取值范围是()A.x≠1 B.x≥0 C.x>0 D.x≥0且x≠14.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12D.165.如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为()A.2 B.C.D.6.一次函数y=﹣2x+1的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.在平行四边形ABCD中,∠A:∠B:∠C:∠D的值可以是()A.1:2:3:4 B.1:2:2:1 C.1:2:1:2 D.1:1:2:28.在等腰△ABC中,AB=5,底边BC=8,则下列说法中正确的有()(1)AC=AB;(2)S△ABC=6;(3)△ABC底边上的中线为4;(4)若底边中线为AD,则△ABD≌△ACD.A.1个B.2个C.3个D.4个9.点A(x1,y1),B(x2,y2)是一次函数y=﹣x﹣1图象上的两个点,且x1<x2,则y1、y2的大小关系为()A.y1>y2B.y1>y2>﹣1 C.y1<y2D.y1=y210.数据x1,x2,…,x n的方差为s2,则ax1+b,ax2+b,…,ax n+b的方差为()A.a2s2B.2a2s2 C.D.二、填空题(每小题3分,共24分)11.在△ABC中AB=AC=13,BC=10,则BC边上的高为.12.若在实数范围内有意义,则x的取值范围是.13.若实数a、b满足,则= .14.已知函数y=(3k﹣1)x,若y随x的增大而增大,则k的取值范围为.15.如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2013的直角顶点的坐标为.16.如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件,使ABCD成为菱形(只需添加一个即可)17.已知y与x﹣3成反比例,当x=4时,y=﹣1;那么当x=﹣4时,y= .18.一组数据8,8,x,10的众数与平均数相等,则x= .三、解答题(19题5分,20题6分,21题6分,22题14分,23题10分,共46分)19.计算:(1)6﹣2﹣3(2)4+﹣+4.20.如图,四边形ABCD是菱形,对角线AC与BD相交于O,AB=5,AO=4,求BD的长.21.如图所示,沿海城市B的正南方向A处有一台风中心,沿AC的方向以30km/h的速度移动3小时后到达D处.已知A距台风中心最短的距离BD为120km,求AB间的距离.22.某班为了从甲、乙两同学中选出班长,进行了一次演讲答辩和民主测评A、B、C、D五位老师作为评委,对演讲答辩情况进行评价,结果如下表,另全班50位同学则参与民主测评进行投票,结果如下图:规定:演讲得分按“去掉一个最高分和一个最低分再算平均分”的方法确定;民主测评得分=“好”票数×2分+“较好”票数×1分+“一般”票数×0分.(1)求甲、乙两位选手各自演讲答辩的平均分;(2)试求民主测评统计图中a、b的值是多少?(3)若按演讲答辩得分和民主测评6:4的权重比计算两位选手的综合得分,则应选取哪位选手当班长?23.为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示:每月用气量单价(元/m3)不超出75m3的部分 2.5超出75m3不超过125m3的部分 a超出125m3的部分 a+0.25(1)若某用户3月份用气量为60m3,交费多少元?(2)调价后每月支付燃气费用y(单位:元)与每月用气量x(单位:m3)的关系如图所示,求y 与x的解析式及a的值.参考答案与试题解析一、选择题1.下列式子中,属于最简二次根式的是()A.B.C. D.【考点】最简二次根式.【专题】计算题.【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答】解:A、=3,故A错误;B、是最简二次根式,故B正确;C、=2,不是最简二次根式,故C错误;D、=,不是最简二次根式,故D错误;故选:B.【点评】本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.正方形具有而矩形不一定具有的性质是()A.四个角都是直角B.对角线相等C.四条边相等D.对角线互相平行【考点】多边形.【分析】根据正方形、矩形的性质,即可解答.【解答】解:根据正方形和矩形的性质知,它们具有相同的特征有:四个角都是直角、对角线都相等、对角线互相平分,但矩形的长和宽不相等.故选C.【点评】本题考查了正方形和矩形的性质,解决本题的关键是熟记正方形和矩形的性质.3.若代数式有意义,则实数x的取值范围是()A.x≠1 B.x≥0 C.x>0 D.x≥0且x≠1【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:,解得:x≥0且x≠1.故选D.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.4.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12D.16【考点】翻折变换(折叠问题);矩形的性质.【分析】根据平行线的性质和折叠的性质易证得△EFB′是等边三角形,继而可得△A′B′E中,B′E=2A′E,则可求得B′E的长,然后由勾股定理求得A′B′的长,继而求得答案.【解答】解:在矩形ABCD中,∵AD∥BC,∴∠DEF=∠EFB=60°,∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠EFB=∠EFB′=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,AB=A′B′,在△EFB′中,∵∠DEF=∠EFB=∠EB′F=60°∴△EFB′是等边三角形,Rt△A′EB′中,∵∠A′B′E=90°﹣60°=30°,∴B′E=2A′E,而A′E=2,∴B′E=4,∴A′B′=2,即AB=2,∵AE=2,DE=6,∴AD=AE+DE=2+6=8,∴矩形ABCD的面积=AB•AD=2×8=16.故答案为:16.【点评】此题考查了矩形的性质、折叠的性质、勾股定理以及等边三角形的判定与性质.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想的应用.5.如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为()A.2 B.C.D.【考点】含30度角的直角三角形;勾股定理;等腰直角三角形.【分析】在Rt△ACD中求出AD,在Rt△CDB中求出BD,继而可得出AB.【解答】解:在Rt△ACD中,∠A=45°,CD=1,则AD=CD=1,在Rt△CDB中,∠B=30°,CD=1,则BD=,故AB=AD+BD=+1.故选D.【点评】本题考查了等腰直角三角形及含30°角的直角三角形的性质,要求我们熟练掌握这两种特殊直角三角形的性质.6.一次函数y=﹣2x+1的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】一次函数图象与系数的关系.【分析】先根据一次函数y=﹣2x+1中k=﹣2,b=1判断出函数图象经过的象限,进而可得出结论.【解答】解:∵一次函数y=﹣2x+1中k=﹣2<0,b=1>0,∴此函数的图象经过一、二、四象限,不经过第三象限.故选C【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0,b>0时,函数图象经过一、二、四象限.7.在平行四边形ABCD中,∠A:∠B:∠C:∠D的值可以是()A.1:2:3:4 B.1:2:2:1 C.1:2:1:2 D.1:1:2:2【考点】平行四边形的性质.【分析】根据平行四边形的性质得到∠A=∠C,∠B=∠D,∠B+∠C=180°,∠A+∠D=180°,根据以上结论即可选出答案.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,AB∥CD,∴∠B+∠C=180°,∠A+∠D=180°,即∠A和∠C的数相等,∠B和∠D的数相等,且∠B+∠C=∠A+∠D,故选C.【点评】本题主要考查对平行四边形的性质,平行线的性质等知识点的理解和掌握,能根据平行四边形的性质进行判断是解此题的关键,题目比较典型,难度适中.8.在等腰△ABC中,AB=5,底边BC=8,则下列说法中正确的有()(1)AC=AB;(2)S△ABC=6;(3)△ABC底边上的中线为4;(4)若底边中线为AD,则△ABD≌△ACD.A.1个B.2个C.3个D.4个【考点】全等三角形的判定;三角形的面积;等腰三角形的性质.【分析】根据等腰三角形的定义判断(1);先求出底边上的高,再根据三角形的面积公式求出S△ABC,即可判断(2);根据等腰三角形三线合一的性质底边上的中线就是底边上的高,根据(2)的结论即可判断(3);利用SSS可证明△ABD≌△ACD.【解答】解:(1)∵在等腰△ABC中,底边是BC,∴AC=AB.故(1)正确;(2)作底边BC上的高AD,则BD=DC=BC=4,AD===3,S△ABC=BC•AD=×8×3=12,故(2)错误;(3)由(2)可知,△ABC底边上的中线AD为3,故(3)错误;(4)在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),故(4)正确.故选B.【点评】本题考查了全等三角形的判定,等腰三角形的性质和定义,勾股定理,主要考查学生运用定理进行推理的能力.9.点A(x1,y1),B(x2,y2)是一次函数y=﹣x﹣1图象上的两个点,且x1<x2,则y1、y2的大小关系为()A.y1>y2B.y1>y2>﹣1 C.y1<y2D.y1=y2【考点】一次函数图象上点的坐标特征.【分析】利用一次函数的增减性可求得答案.【解答】解:在一次函数y=﹣x﹣1中,∵k=﹣1<0,∴y随x的增大而减小,∵x1<x2,∴y1>y2.故选A.【点评】本题主要考查一次函数的性质,掌握一次函数的增减性是解题的关键,即在y=kx+b(k≠0)中,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.10.数据x1,x2,…,x n的方差为s2,则ax1+b,ax2+b,…,ax n+b的方差为()A.a2s2B.2a2s2 C.D.【考点】方差.【分析】根据方差的变化规律得出ax1,ax2,…,ax n的方差是a2s2,再根据一组数据中的每一个数加(或减)一个数,方差不变,即可得出答案.【解答】解:∵数据x1,x2,…,x n的方差为s2,∴ax1,ax2,…,ax n的方差是a2s2,∴ax1+b,ax2+b,…,ax n+b的方差为a2s2;故选A.【点评】此题考查了方差,本题说明了一组数据中的每一个数加(或减)一个数,它的平均数也加(或减)这个数,方差不变;一组数据中的每一个数都变为原数的n倍,它的方差变为原数据的n2倍.二、填空题(每小题3分,共24分)11.在△ABC中AB=AC=13,BC=10,则BC边上的高为12 .【考点】勾股定理.【分析】过A作AD⊥BC于D,由等腰三角形的性质求出BD的长,根据勾股定理求出AD的长即可.【解答】解:如图,等腰△ABC中,AB=AC=13,BC=10,过A作AD⊥BC于D,则BD=5,在Rt△ABD中,AB=13,BD=5,则AD==12.故BC边上高的长的高为12.故答案是:12.【点评】本题考查的是等腰三角形的性质及勾股定理的运用,涉及面较广,但难度适中,是一道不错的中考题,解题的关键是作出BC边上的高线,构造直角三角形.12.若在实数范围内有意义,则x的取值范围是x≤.【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.【解答】解:根据题意得:1﹣3x≥0,解得:x≤.故答案是:x≤.【点评】本题考查的知识点为:二次根式的被开方数是非负数.13.若实数a、b满足,则= .【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则原式=﹣.故答案是:﹣.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为014.已知函数y=(3k﹣1)x,若y随x的增大而增大,则k的取值范围为k>.【考点】正比例函数的性质.【分析】由函数的增减性可得到关于k的不等式,可求得k的取值范围.【解答】解:∵y=(3k﹣1)x,若y随x的增大而增大,∴3k﹣1>0,解得k>,故答案为:k>.【点评】本题主要考查正比例函数的性质,掌握正比例函数的增减性是解题的关键,即在y=kx(k ≠0)中,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.15.如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2013的直角顶点的坐标为(8052,0).【考点】规律型:点的坐标.【专题】压轴题;规律型.【分析】根据勾股定理列式求出AB的长,再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环,然后求出一个循环组旋转前进的长度,再用2013除以3,根据商为671可知第2013个三角形的直角顶点为循环组的最后一个三角形的顶点,求出即可.【解答】解:∵点A(﹣3,0)、B(0,4),∴AB==5,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,∵2013÷3=671,∴△2013的直角顶点是第671个循环组的最后一个三角形的直角顶点,∵671×12=8052,∴△2013的直角顶点的坐标为(8052,0).故答案为:(8052,0).【点评】本题是对点的坐标变化规律的考查了,难度不大,仔细观察图形,得到每三个三角形为一个循环组依次循环是解题的关键,也是求解的难点.16.如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件OA=OC ,使ABCD成为菱形(只需添加一个即可)【考点】菱形的判定.【专题】开放型.【分析】可以添加条件OA=OC,根据对角线互相垂直平分的四边形是菱形可判定出结论.【解答】解:OA=OC,∵OB=OD,OA=OC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴平行四边形ABCD是菱形,故答案为:OA=OC.【点评】此题主要考查了菱形的判定,关键是掌握菱形的判定定理.17.已知y与x﹣3成反比例,当x=4时,y=﹣1;那么当x=﹣4时,y= .【考点】待定系数法求反比例函数解析式.【专题】计算题;待定系数法.【分析】设出函数表达式,把点代入表达式求出k值整理即可得到函数解析式,再把x=﹣4代入函数解析式求出函数值即可.【解答】解:设y=,∵当x=4时,y=﹣1,∴k=(4﹣3)×(﹣1)=﹣1,∴函数解析式为y=﹣,当x=﹣4时,y=﹣=.故答案为:.【点评】本题主要考查待定系数法求函数解析式,把(x﹣3)看作一个整体进行求解是解答本题的关键.18.一组数据8,8,x,10的众数与平均数相等,则x= 6 .【考点】众数;算术平均数.【分析】根据众数和平均数的定义以及它们相等可分析得到x的值.【解答】解:当这组数的众数是8.根据平均数得到:(8+8+x+10)=8解得:x=6当这组数的众数是10,则x=10,众数与平均数不相等,所以舍去.故填6.【点评】主要考查了众数的概念和平均数的计算.注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.三、解答题(19题5分,20题6分,21题6分,22题14分,23题10分,共46分)19.计算:(1)6﹣2﹣3(2)4+﹣+4.【考点】二次根式的加减法.【分析】(1)先进行二次根式的合并,然后进行二次根式的化简;(2)先进行二次根式的化简,然后合并同类二次根式.【解答】解:(1)原式=6﹣5=6﹣;(2)原式=4+3﹣2+4=7+2.【点评】本题考查了二次根式的加减法,解答本题的关键在于掌握二次根式的化简以及同类二次根式的合并.20.如图,四边形ABCD是菱形,对角线AC与BD相交于O,AB=5,AO=4,求BD的长.【考点】菱形的性质;勾股定理.【分析】根据菱形的性质得出AC⊥BD,再利用勾股定理求出BO的长,即可得出答案.【解答】解:∵四边形ABCD是菱形,对角线AC与BD相交于O,∴AC⊥BD,DO=BO,∵AB=5,AO=4,∴BO==3,∴BD=2BO=2×3=6.【点评】此题主要考查了菱形的性质以及勾股定理,根据已知得出BO的长是解题关键.21.如图所示,沿海城市B的正南方向A处有一台风中心,沿AC的方向以30km/h的速度移动3小时后到达D处.已知A距台风中心最短的距离BD为120km,求AB间的距离.【考点】勾股定理的应用.【分析】求出AD,由勾股定理求出AB即可.【解答】解:根据题意得:AD=3×30=90km,由勾股定理得:AB===150(km);答:AB间的距离为150km.【点评】此题考查了勾股定理的应用,解题的关键是整理出直角三角形.22.某班为了从甲、乙两同学中选出班长,进行了一次演讲答辩和民主测评A、B、C、D五位老师作为评委,对演讲答辩情况进行评价,结果如下表,另全班50位同学则参与民主测评进行投票,结果如下图:规定:演讲得分按“去掉一个最高分和一个最低分再算平均分”的方法确定;民主测评得分=“好”票数×2分+“较好”票数×1分+“一般”票数×0分.(1)求甲、乙两位选手各自演讲答辩的平均分;(2)试求民主测评统计图中a、b的值是多少?(3)若按演讲答辩得分和民主测评6:4的权重比计算两位选手的综合得分,则应选取哪位选手当班长?【考点】加权平均数;条形统计图.【专题】图表型.【分析】(1)根据求平均数公式:,结合题意,按“去掉一个最高分和一个最低分再算平均分”的方法,即可求出甲、乙两位选手各自演讲答辩的平均分.(2)a、b的值分别表示甲、乙两同学进行演讲答辩后,所得的“较好”票数.根据“较好”票数=投票总数50﹣“好”票数﹣“一般”票数即可求出.(3)首先根据平均数的概念分别计算出甲、乙两位选手的民主测评分,再由(1)中求出的两位选手各自演讲答辩的平均分,最后根据不同权重计算加权成绩.【解答】解:(1)甲演讲答辩的平均分为:;乙演讲答辩的平均分为:.(2)a=50﹣40﹣3=7;b=50﹣42﹣4=4.(3)甲民主测评分为:40×2+7=87,乙民主测评分为:42×2+4=88,∴甲综合得分:∴乙综合得分:.∴应选择甲当班长.【点评】本题考查了平均数和加权平均数的概念及应用,以及从统计图中获取信息的能力.23.为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示:每月用气量单价(元/m3)不超出75m3的部分 2.5超出75m3不超过125m3的部分 a超出125m3的部分 a+0.25(1)若某用户3月份用气量为60m3,交费多少元?(2)调价后每月支付燃气费用y(单位:元)与每月用气量x(单位:m3)的关系如图所示,求y 与x的解析式及a的值.【考点】一次函数的应用.【分析】(1)根据单价×数量=总价就可以求出3月份应该缴纳的费用;(2)结合统计表的数据)根据单价×数量=总价的关系建立方程就可以求出a值,再从0≤x≤75,75<x≤125和x>125运用待定系数法分别表示出y与x的函数关系式即可.【解答】解:(1)由题意,得60×2.5=150(元);(2)由题意,得a=(325﹣75×2.5)÷(125﹣75),a=2.75,∴a+0.25=3,设OA的解析式为y1=k1x,则有2.5×75=75k1,∴k1=2.5,∴线段OA的解析式为y1=2.5x(0≤x≤75);设线段AB的解析式为y2=k2x+b,由图象,得,解得,∴线段AB的解析式为:y2=2.75x﹣18.75(75<x≤125);(385﹣325)÷3=20,故C(145,385),设射线BC的解析式为y3=k3x+b1,由图象,得,解得:,∴射线BC的解析式为y3=3x﹣50(x>125).【点评】本题是一道一次函数的综合试题,考查了单价×数量=总价的运用,待定系数法求一次函数的解析式的运用,分段函数的运用,分类讨论思想在解实际问题的运用,解答时求出函数的解析式是关键.八年级(下)期末数学试卷一、选择题(本大题共6题,每题3分,满分18分)1.下列说法正确的是()A.x2﹣x=0是二项方程B.是分式方程C.是无理方程D.2x2﹣y=4是二元二次方程2.下列关于x的方程一定有实数根的是()A.ax﹣1=0 B.ax2﹣1=0 C.x﹣a=0 D.x2﹣a=03.四边形ABCD中,∠A=∠B=∠C=90°,下列条件能使这个四边形是正方形的是()A.∠D=90° B.AB=CD C.BC=CD D.AC=BD4.如图,梯形ABCD中,AD∥BC,DE∥AB交BC边于点E.那么下列事件中属于随机事件的是()A. =B. =C. =D. =5.若是非零向量,则下列等式正确的是()A.||=|| B.||+||=0 C. +=0 D. =6.如图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家3.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店1.5千米D.张强从早餐店回家的平均速度是3千米/小时二、填空题(本大题共12题,每题2分,满分24分)7.方程x4﹣8=0的根是.8.已知方程(+1)2﹣﹣3=0,如果设+1=y,那么原方程化为关于y的方程是.9.若一次函数y=(1﹣k)x+2中,y随x的增大而增大,则k的取值范围是.10.将直线y=﹣x+2向下平移3个单位,所得直线经过的象限是.11.若直线y=kx﹣1与x轴交于点(3,0),当y>﹣1时,x的取值范围是.12.如果多边形的每个外角都是45°,那么这个多边形的边数是.13.如果菱形边长为13,一条对角线长为10,那么它的面积为.14.如果一个平行四边形的内角平分线与边相交,并且这条边被分成3、5两段,那么这个平行四边形的周长为.15.在△ABC中,点D是边AC的中点,如果,那么= .16.顺次连结三角形三边的中点所构成的三角形周长为16,那么原来的三角形周长是.17.当x=2时,不论k取任何实数,函数y=k(x﹣2)+3的值为3,所以直线y=k(x﹣2)+3一定经过定点(2,3);同样,直线y=k(x﹣3)+x+2一定经过的定点为.18.在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,AB=3,BC=6,如果CE平分∠BCD交边AB于点E,那么DE的长为.三、解答题(本大题共6题,满分40分)19.解方程:.20.解方程组:.21.有一个不透明的袋子里装有除标记数字不同外其余均相同的4个小球,小球上分别标有数字1,2,3,4.(1)任意摸出一个小球,所标的数字不超过4的概率是;(2)任意摸出两个小球,所标的数字和为偶数的概率是;(3)任意摸出一个小球记下所标的数字后,再将该小球放回袋中,搅匀后再摸出一个小球,摸到的这两个小球所标数字的和被3整除的概率是多少?(请用列表法或树形图法说明)22.已知平行四边形ABCD,点E是BC边上的点,请回答下列问题:(1)在图中求作与的和向量并填空: = ;(2)在图中求作减的差向量并填空: = ;(3)计算: = .(作图不必写结论)23.八年级的学生去距学校10千米的科技馆参观,一部分学生骑自行车先走,过了25分钟,其余的学生乘汽车出发,结果他们同时到达,已知每小时汽车的速度比骑自行车学生速度的2倍还多10千米,求骑车学生每小时行多少千米?24.已知梯形ABCD中,AD∥BC,AB=AD=DC,点E、F分别是对角线AC、BD的中点.求证:四边形ADEF为等腰梯形.四、解答题(本大题共2题,满分18分)25.平行四边形ABCD在平面直角坐标系中的位置如图所示,已知AB=8,AD=6,∠BAD=60°,点A 的坐标为(﹣2,0).求:(1)点C的坐标;(2)直线AC与y轴的交点E的坐标.26.如图,AC⊥BC,直线AM∥CB,点P在线段AB上,点D为射线AC上一动点,连结PD,射线PE ⊥PD交直线AM于点E.已知BP=,AC=BC=4,(1)如图1,当点D在线段AC上时,求证:PD=PE;(2)当BA=BD时,请在图2中画出相应的图形,并求线段AE的长;(3)如果∠EPD的平分线交射线AC于点G,设AD=x,GD=y,求y关于x的函数解析式,并写出自变量的取值范围.参考答案与试题解析一、选择题(本大题共6题,每题3分,满分18分)1.下列说法正确的是()A.x2﹣x=0是二项方程B.是分式方程C.是无理方程D.2x2﹣y=4是二元二次方程【考点】无理方程;分式方程的定义.【专题】探究型.【分析】可以先判断各个选项中的方程是什么方程,从而可以解答本题.【解答】解:x2﹣x=0是二元一次方程,故选项A错误;是一元一次方程,故选项B错误;﹣2x=是二元一次方程,故选项C错误;2x2﹣y﹣4是二元二次方程,故选项D正确;故选D.【点评】本题考查无理方程、分式方程的定义,解题的关键是明确方程的特点,可以判断一个方程是什么类型的方程.2.下列关于x的方程一定有实数根的是()A.ax﹣1=0 B.ax2﹣1=0 C.x﹣a=0 D.x2﹣a=0【考点】根的判别式.【分析】①分母=0,②中,被开方数a<0时,③△<0,满足①、②、③中的任何一个条件,方程都无实数根,所以A、B、D无实根.【解答】解:A、x=,当a=0时,方程ax﹣1=0无实根;B、△=0+4a=4a,当a≤0时,方程ax2﹣1=0无实根;C、x﹣a=0,x=a,无论a为任何实数,x都有实数根为a;D、△=0+4a=4a,当a<0时,方程x2﹣a=0无实根;故选C.【点评】本题考查了不解方程来判别方程根的情况,依据是:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.3.四边形ABCD中,∠A=∠B=∠C=90°,下列条件能使这个四边形是正方形的是()A.∠D=90° B.AB=CD C.BC=CD D.AC=BD【考点】正方形的判定.【专题】矩形菱形正方形.【分析】根据题意得到四边形ABCD为矩形,再由邻边相等的矩形为正方形即可得证.【解答】解:四边形ABCD中,∠A=∠B=∠C=90°,能使这个四边形是正方形的是BC=CD,故选B【点评】此题考查了正方形的判定,熟练掌握正方形的判定方法是解本题的关键.4.如图,梯形ABCD中,AD∥BC,DE∥AB交BC边于点E.那么下列事件中属于随机事件的是()A. =B. =C. =D. =【考点】随机事件;梯形;*平面向量.【分析】根据平行四边形的判定定理得到四边形ABED是平行四边形,根据向量的性质和随机事件的概念进行判断即可.【解答】解:∵AD∥BC,DE∥AB,∴四边形ABED是平行四边形,=是不可能事件;=是不可能事件;=是必然事件;=是随机事件,故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.若是非零向量,则下列等式正确的是()A.||=|| B.||+||=0 C. +=0 D. =【考点】*平面向量.【分析】长度不为0的向量叫做非零向量,本题根据向量的长度及方向易得结果.【解答】解:∵是非零向量,∴||=||.+=故选A.【点评】本题考查的是非零向量的长度及方向的性质,注意熟练掌握平面向量这一概念.6.如图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家3.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店1.5千米D.张强从早餐店回家的平均速度是3千米/小时【考点】函数的图象.【分析】根据函数图象的横坐标,可得时间,根据函数图象的纵坐标,可得距离.【解答】解:A、由纵坐标看出,体育场离张强家3.5千米,故A正确;B、由横坐标看出,30﹣15=15分钟,张强在体育场锻炼了15分钟,故B正确;C、由纵坐标看出,3.5﹣2.0=1.5千米,体育场离早餐店1.5千米,故C正确;D、由纵坐标看出早餐店离家2千米,由横坐标看出从早餐店回家用了95﹣65=30分钟=0.5小时,2÷=4千米/小时,故D错误;故选:D.。

相关文档
最新文档