1集合与命题

合集下载

第一章-集合与命题

第一章-集合与命题

第一章 集合与命题 (一)集合的概念与运算 【集合的基本概念】❖ 知识点归纳 1. 集合的定义: 2. 集合的特征: 3. 集合的表示法: 4. 集合的分类: 5. 数集: 6. 集合的关系: 7. 集合的运算: 8. 集合的运算性质:❖ 例题讲解 例1(1) 已知集合{}3M x x n n ==∈Z ,,{}31N x x n n ==+∈Z ,,{}31P x x n n ==-∈Z ,,且a M ∈,b N ∈,c P ∈,设d a b c =-+,则( ).A. d M ∈B. d N ∈C. d P ∈D. 以上都不正确 (2) 若集合2442k k A x x k B x x k ⎧⎫⎧⎫ππππ==+∈==+∈⎨⎬⎨⎬⎩⎭⎩⎭Z Z ,,,,则( ).A. A B =B. B ⊂≠AC. A ⊂≠BD.AB =∅例2 写出满足{},M a b ⊆的所有集合M .例3 已知集合{}2340A x x x x =--<∈R ,,求A N 的真子集的个数.例4 已知全集{}1,2,3,4,5,6,7,8,9U =,{}2A B =,∁{}()1,9U A B =,∁{}4,6,8U A B =,求集合A 、B .(1) {}{}2223213A y y x x x B y y x x x ==--∈==-++∈R R ,,,;(2) {}{}22(,)23(,)213A x y y x x x B x y y x x x ==--∈==-++∈R R ,,,;(3) {}{}2223213A y y x x x B y y x x x ==--∈==-++∈Z Z ,,,.例6同时满足下列两个条件: ①{}1,2,3,4,5M ⊆,②若a M ∈,则6a M -∈,这样的集合M 有多少个? 写出这些 集合. 例7 已知集合{}{}222280320A x x x x B x x ax a x =--<∈=-+=∈R R ,,, (1) 实数a 在什么范围内取值时,B ⊂≠A ?(2) 实数a 在什么范围内取值时,AB =∅.❖ 回顾反思 1. 主要方法:① 解决集合问题,首先要分析集合中的元素是什么; ② 抓住集合中元素的3个性质,对互异性要注意检验;③ 弄清集合元素的本质属性,正确进行“集合语言”和“文字语言”的相互转化; ④ 了解空集的意义,在解题中强化空集的意识; ⑤ 借助数轴和文氏图进行求解. 2. 易错、易漏点:① 辨清: 子集、真子集、非空真子集的区别。

高考数学考点突破——集合与常用逻辑用语:命题及其关系、充分条件与必要条件

高考数学考点突破——集合与常用逻辑用语:命题及其关系、充分条件与必要条件

命题及其关系、充分条件与必要条件【考点梳理】1.命题 用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系 ①两个命题互为逆否命题,它们有相同的真假性; ②两个命题互为逆命题或互为否命题,它们的真假性没有关系.3.充分条件与必要条件(1)如果p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件.(2)如果p ⇔q ,那么p 与q 互为充要条件.(3)如果p q ,且q p ,则p 是q 的既不充分也不必要条件.4.集合与充要条件设集合A ={x |x 满足条件p },B ={x |x 满足条件q },则有:(1)若A ⊆B ,则p 是q 的充分条件,若A ⊂≠B ,则p 是q 的充分不必要条件.(2)若B ⊆A ,则p 是q 的必要条件,若B ⊂≠A ,则p 是q 的必要不充分条件.(3)若A =B ,则p 是q 的充要条件.【考点突破】考点一、四种命题的关系及其真假判断【例1】(1) 命题“若4πα=,则tan 1α=”的逆否命题是( ) A.若4πα≠,则tan 1α≠ B.若4πα=,则tan 1α≠C.若tan 1α≠,则4πα≠ D.若tan 1α≠,则4πα=(2) 给出下列命题:①“∃x 0∈R ,x 20-x 0+1≤0”的否定;②“若x 2+x -6≥0,则x >2”的否命题;③命题“若x 2-5x +6=0,则x =2”的逆否命题.其中真命题的个数是( )A.0B.1C.2D.3 [答案] (1)C (2)C[解析] (1)命题“若p ,则q ”的逆否命题是“若⌝q ,则⌝p ”,显然⌝q :tan 1α≠,⌝p :4πα≠,所以该命题的逆否命题是“若tan 1α≠,则4πα≠”. (2) ①的否定是“∀x ∈R ,x 2-x +1>0”是真命题,①正确;②的否命题是“若x 2+x -6<0,则x ≤2”,由x 2+x -6<0,得-3<x <2,∴x ≤2成立,②正确;③由x 2-5x +6=0,得x =2或x =3,原命题是假命题,因此可知逆否命题为假命题,③错误.综上可知,真命题是①,②.【类题通法】1.写一个命题的其他三种命题时,需注意:(1)对于不是“若p ,则q ”形式的命题,需先改写;(2)若命题有大前提,写其他三种命题时需保留大前提.2.判断命题真假的2种方法(1)直接判断:判断一个命题是真命题,需经过严格的推理证明;而要说明它是假命题,只需举一反例即可.(2)间接判断(等价转化):由于原命题与其逆否命题为等价命题,如果原命题的真假不易直接判断,那么可以利用这种等价性间接地判断命题的真假.【对点训练】1. 命题“若a >b ,则a +c >b +c ”的否命题是( )A.若a ≤b ,则a +c ≤b +cB.若a +c ≤b +c ,则a ≤bC.若a +c >b +c ,则a >bD.若a >b ,则a +c ≤b +c[答案] A[解析] 将条件、结论都否定.命题“若a >b ,则a +c >b +c ”的否命题是“若a ≤b ,则a +c ≤b +c ”.2. 原命题:设a ,b ,c ∈R ,若“a >b ”,则“ac 2>bc 2”,以及它的逆命题、否命题、逆否命题中,真命题共有( )A.0个B.1个C.2个D.4个[答案] C[解析] 原命题:若c =0,则不成立,由等价命题同真同假知其逆否命题也为假;逆命题为设a ,b ,c ∈R ,若“ac 2>bc 2”,则“a >b ”.由ac 2>bc 2知c 2>0,∴由不等式的基本性质得a >b ,∴逆命题为真,由等价命题同真同假知否命题也为真,∴真命题共有2个.考点二、充分条件与必要条件的判断【例2】(1) 已知函数f (x )=⎩⎪⎨⎪⎧e x ,x ≥-1,ln (-x ),x <-1,则“x =0”是“f (x )=1”的( ) A.充要条件 B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件 (2) 设x ∈R ,则“2-x ≥0”是“|x -1|≤1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 [答案] (1)B (2)B[解析] (1)若x =0,则f (0)=e 0=1;若f (x )=1,则e x=1或ln(-x )=1,解得x =0或x =-e.故“x =0”是“f (x )=1”的充分不必要条件.(2)由2-x ≥0,得x ≤2,由|x -1|≤1,得0≤x ≤2.∵0≤x ≤2⇒x ≤2,x ≤2⇒0≤x ≤2,故“2-x ≥0”是“|x -1|≤1”的必要而不充分条件.【类题通法】充分条件、必要条件的三种判断方法(1)定义法:根据p ⇒q ,q ⇒p 进行判断,适用于定义、定理判断性问题.(2)集合法:根据p ,q 成立的对象的集合之间的包含关系进行判断,多适用于命题中涉及字母的范围的推断问题.(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断,适用于条件和结论带有否定性词语的命题.【对点训练】1.已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] A[解析] 因为由“a =3”可以推出“A ⊆B ”,反过来,由A ⊆B 可以得到“a =3或a =2”,不一定推出“a =3”,所以“a =3”是“A ⊆B ”的充分不必要条件.2.已知a ,b 都是实数,那么“a >b ”是“ln a >ln b ”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 [答案] B[解析] 由ln a >ln b ⇒a >b >0⇒a >b ,故必要性成立.当a =1,b =0时,满足a >b ,但ln b 无意义,所以ln a >ln b 不成立,故充分性不成立.考点三、充分条件、必要条件的应用【例3】已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求m 的取值范围.[解析] 由x 2-8x -20≤0得-2≤x ≤10,∴P ={x |-2≤x ≤10}.∵x ∈P 是x ∈S 的必要条件,则S ⊆P ,∴⎩⎪⎨⎪⎧ 1-m ≥-2,1+m ≤10,1-m ≤1+m ,∴0≤m ≤3.综上,可知0≤m ≤3时,x ∈P 是x ∈S 的必要条件.【变式1】本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件?并说明理由.[解析] 由例题知P ={x |-2≤x ≤10}.若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10,∴⎩⎪⎨⎪⎧m =3,m =9, 这样的m 不存在.【变式2】本例条件不变,若⌝P 是⌝S 的必要不充分条件,求实数m 的取值范围.[解析] 由例题知P ={x |-2≤x ≤10}.∵⌝P 是⌝S 的必要不充分条件,∴P 是S 的充分不必要条件,∴P ⇒S 且S ⇒/ P .∴[-2,10]⊂≠[1-m ,1+m ].∴⎩⎪⎨⎪⎧1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10, ∴m ≥9,则m 的取值范围是[9,+∞).【类题通法】充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(组)求解.(2)要注意区间端点值的检验.【对点训练】已知p :⎪⎪⎪⎪⎪⎪1-x -13≤2,q :x 2-2x +1-m 2≤0(m >0),且⌝p 是⌝q 的必要不充分条件,则实数m 的取值范围是________.[答案] [9,+∞)[解析] 法一:由⎪⎪⎪⎪⎪⎪1-x -13≤2,得-2≤x ≤10,∴⌝p 对应的集合为{x |x >10或x <-2},设A ={x |x >10或x <-2}.由x 2-2x +1-m 2≤0(m >0),得1-m ≤x ≤1+m (m >0),∴⌝q 对应的集合为{x |x >1+m 或x <1-m ,m >0},设B ={x |x >1+m 或x <1-m ,m >0}.∵⌝p 是⌝q 的必要不充分条件, ∴B ⊂≠A ,∴⎩⎪⎨⎪⎧ m >0,1-m <-2,1+m ≥10或⎩⎪⎨⎪⎧ m >0,1-m ≤-2,1+m >10,解得m ≥9,∴实数m 的取值范围为[9,+∞).法二:∵⌝p 是⌝q 的必要不充分条件,∴q 是p 的必要不充分条件.即p 是q 的充分不必要条件,由x 2-2x +1-m 2≤0(m >0),得1-m ≤x ≤1+m (m >0). ∴q 对应的集合为{x |1-m ≤x ≤1+m ,m >0}, 设M ={x |1-m ≤x ≤1+m ,m >0},又由⎪⎪⎪⎪⎪⎪1-x -13≤2,得-2≤x ≤10,∴p 对应的集合为{x |-2≤x ≤10},设N ={x |-2≤x ≤10}.由p 是q 的充分不必要条件知,N ⊂≠M ,∴⎩⎪⎨⎪⎧ m >0,1-m <-2,1+m ≥10或⎩⎪⎨⎪⎧m >0,1-m ≤-2,1+m >10,解得m ≥9. ∴实数m 的取值范围为[9,+∞).。

集合与命题

集合与命题

A M
N
(B)M
N
(C)M
N
DM
N
Ex:已知非空集合 M 1, 2, 3, 4, 5 ,且若 a M ,则 6 a M , 求集合M的个数 23-1=7 7个
6 .集合的运算: ①交集:A B { x x A 且 x B }
A
B
A
B
A B
a [ 1,1]
二、命题:
1.四种命题的关系: 原命题 若p则q 互 否 否命题 若 p 则q 互 逆 互 为 为 互 否 逆 逆 否 互 逆 逆命题 若q则p 互 否 逆否命题 若 q 则p
注:同真同假的命题是一对等价命题,互为逆否 的命题同真假,所以是一对等价命题。
关键词 都是 都不是 一定是 至多有一个 至少有一个 所有的(任意一个) p或q p且q 正数
sin (3)在 A B C 中,p:
A sin B ,
q:tan
A tan B
既非充分又非必要条件
(4)对于实数x,y,p: y 8, q: 2 或 x x
y 6
充分非必要条件
Ex: 下列四个条件中,p是q的必要不充分条件是( D )
A. p : a b, q : a b ; B . p : a b, q : 2 2 ;
否定 不都是
至少有一个是
一定不是 至少有两个 一个都没有 存在一个
p且 q
p或 q
非正数
B Ex:下列四个命题中的假命题是 (A)存在这样的α和β的值,使得 cos(α+β)=cosαcosβ+sinαsinβ; (B)不存在这样的α和β的值,使得 cos(α+β)=cosαcosβ+sinαsinβ; (C)对任意的α和β的值,cos(α+β)=cosαcosβsinαsinβ; (D)不存在这样的α和β的值,使得 cos(α+β)≠cosαcosβ-sinαsinβ;

上海高一数学第一章集合与命题复习

上海高一数学第一章集合与命题复习

word第一章集合与命题一.集合:1. 概念及符号的使用.:集合、元素,属于,自然数集,整数集,有理数集,实数集,有限集、无限集;空集,列举法、描述法、子集,包含(包含于),图示法,文氏图,真子集,真包含(真包含于),、交集,并集,全集,补集。

2. ∈⊆,的比较:元素与集合间关系用,∈∉;集合与集合间关系用⊆⊇,类; 3. 交集,并集,补集的比较4. 关于子集的等价关系:U A B A B A A B B AB U ⊆⇔=⇔=⇔=C 5. 集合的运算性质: ① A B =B A ,A B =B A② ()AB C =()A B C , ()A B C =()A B C ③ ()U C A B =U U C A C B , ()U U U C A B C A C B =④AA A =A A A =A ∅=∅A A ∅=6.有限集的元素个数有限集A 的元素的个数记为card( A),规定 card(φ) =0. 基本公式:(1)设有限集合A, card(A)=n,则(ⅰ)A 的子集个数为n2;(ⅱ)A 的真子集个数为12-n;(ⅲ)A 的非空子集个数为12-n;(ⅳ)A 的非空真子集个数为22-n.(2)设有限集合A 、B 、C ,card(B)=m, card(A)=n ,m<n,则(ⅰ) 若A C B ⊆⊆,则C 的个数为mn -2;word(ⅱ) 若A C B ⊂⊆,则C 的个数为12--m n ;⑶容斥原理:card(A ∪B)= card(A)+card(B)- card(A ∩B).二.四种命题形式及关系1. 概念:2.命题,真(假)命题 逆命题,否命题,逆否命题 等价命题2.一般地,四种命题的真假性有且仅有下面四种情况:3.常用词语的否定:三.充要条件1.若α⇒β,则称α是β的充分条件,也即β是α的必要条件; 若α⇔β,则称α是β的充要条件;原命题 若p 则q 否命题若p 则q逆命题 若q 则p逆否命题若q 则p互逆 为 ? ? 互 否 逆 ? 互 逆 为 互 否互 逆 否互 否在讨论p 是q 的什么条件时,就是指以下四种之一: ①若p ⇒q ,但q ≠> p ,则p 是q 的充分但不必要条件; ②若q ⇒p ,但p ≠> q ,则p 是q 的必要但不充分条件; ③若p ⇒q ,且q ⇒p ,则p 是q 的充要条件;④若p ≠> q ,且q ≠> p ,则p 是q 的既不充分也不必要条; ★要点:看清题目问的是:谁是谁的什么条件2.子集与推出关系 : 设A,B 是非空集合,A={}|x x α具有性质,B={}|y y β具有性质,则A ⊆B 与α⇒β等价。

高一集合与命题知识点

高一集合与命题知识点

高一集合与命题知识点在高中数学学科中,集合与命题是非常重要的知识点。

通过深入学习与理解这些知识,可以帮助我们更好地解决数学问题,并提高数学的应用能力。

本文将从集合和命题两个方面展开,介绍高一阶段的相关知识点。

一、集合集合是数学中最基础的概念之一,它是由若干个元素组成的整体。

在集合中,我们最常用的操作有并、交、差、补和集合的关系等。

下面将一一介绍这些操作:1. 并集:设有集合A和集合B,A和B的并集表示为A∪B,它包含了A和B的所有元素。

2. 交集:集合A和集合B的交集表示为A∩B,它包含了同时属于A和B的所有元素。

3. 差集:集合A和集合B的差集表示为A-B,它包含了属于A 但不属于B的所有元素。

4. 补集:集合A的补集表示为A',它包含了不属于A的所有元素。

5. 子集:若集合A的所有元素都属于集合B,则集合A是集合B的子集,表示为A⊆B。

在集合的基础上,我们还可以通过集合的运算来构建更复杂的集合,例如幂集和笛卡尔积:1. 幂集:设集合A的元素个数为n,那么A的所有子集构成的集合称为A的幂集,记作P(A)。

幂集的元素个数为2^n。

2. 笛卡尔积:设有集合A和集合B,A和B的所有有序对组成的集合称为A和B的笛卡尔积,记作A×B。

除了基本的集合操作外,我们还需要了解集合的性质和定理,例如:1. 并、交、差的运算规律:结合律、交换律、分配律等。

2. De Morgan定律:对于任意两个集合A和B,有(A∪B)'=A'∩B'和(A∩B)'=A'∪B'。

通过深入学习集合的相关知识,我们可以更好地理解和应用相关的数学概念和方法。

二、命题命题是指能够判断真假的陈述句。

在数学中,我们经常要处理各种各样的命题,因此了解命题的基本性质是非常重要的。

1. 命题的逻辑联结词:命题可以通过逻辑联结词进行组合,常见的逻辑联结词有与、或、非、蕴含和等值等。

2. 命题的真值表:我们可以通过真值表来判断命题的真假,真值表是由逻辑联结词和命题变元构成的表格。

高三复习数学11_集合与命题(有答案)

高三复习数学11_集合与命题(有答案)

1.1 集合与命题一、解答题。

1. 集合与元素(1)集合元素的三个特征:________、________、________.(2)元素与集合的关系是________或________关系,用符号________或________表示.(3)集合的表示法:________、________、________.2. 集合间的关系(1)子集:对任意的x∈A,都有x∈B,则A________B(或________).(2)真子集:若A⊆B,且A≠B,则A________B(或B________A).(3)空集:空集是任意集合的子集,是任何非空集合的真子集.即⌀⊆A,⌀________B (B≠⌀).(4)若A含有n个元素,则A的子集有________个,A的非空子集有________个,非空真子集有________个.(5)集合相等:若A⊆B,且B⊆A,则________.3. 集合的运算4. 命题的概念在数学中把用语言、符号或式子表达的,可以________的陈述句叫做命题.其中________的语句叫真命题,________的语句叫假命题.(常见结构:若p,则q)5. 简单的逻辑联结词(1)命题中的“________”、“________”、“________”叫做逻辑联结词.含逻辑联接词的命题称为复合命题.(2)简单复合命题的真值表:记忆口诀:“p∧q命题”________;“p∨q命题”有真为真;“¬p命题”________.6. 四种命题及相互关系7. 四种命题的真假关系(1)两个命题互为逆否命题,它们有________的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性________关系.8. (2019·河北衡水中学模拟)已知集合A={x|y=√x2−2x},B={y|y=x2+1},则A∩B=()A.[1,+∞)B.[2,+∞)C.(−∞,0]∪[2,+∞)D.[0,+∞)9. 已知集合A={x|−1<x<2},B={y|y=x+a,x∈A},C={z|z=x2,x∈A},若B⊆C求实数a的取值范围.10. 已知p:方程x2+mx+1=0有两个不相等的负实数根;q:不等式4x2+4(m−2)x+1>0的解集为R.若“p∨q”为真命题,“p∧q”为假命题,求实数m的取值范围.11. 命题p:函数y=3x−3−x是R上的增函数.命题q:函数y=3x+3−x是R上的减函数.则在命题p∨q,p∧q,(¬p)∧q,p∧(¬q)中,真命题个数是________.12. (2019·济南一中模拟)原命题:“a,b为两个实数,若a+b≥2,则a,b中至少有一个不小于1”,下列说法错误的是()A.逆命题为:a,b为两个实数,若a,b中至少有一个不小于1,则a+b≥2,为假命题B.否命题为:a,b为两个实数,若a+b<2,则a,b都小于1,为假命题C.逆否命题为:a,b为两个实数,若a,b都小于1,则a+b<2,为真命题D.a,b为两个实数,“a+b≥2”是“a,b中至少有一个不小于1”的必要不充分条件13. 设A={x|x2+px+q=0}≠⌀,M={1,3,5,7,9},N={1,4,7,10}.若A∩M=⌀,A∩N=A,求p、q的值.14. 小结与反思___________________________________________________________________________ _____________________________________________________________________________________________ __________________15. 已知集合A={1,2,3,4},B={y|y=3x−2,x∈A},则A∩B=()A.{1}B.{4}C.{1,3}D.{1,4}16. 设集合A={x∈N|14≤2x≤16},B={x|y=ln(x2−3x)},则A∩B中元素的个数是()A.1B.2C.3D.417. 命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是()A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数18. 已知集合A={1,3,√m},B={1,m},A∪B=A,则m=()A.0或√3B.0或3C.1或√3D.1或319. 已知c>0且c≠1,设P:函数y=c x在R上单调递减;Q:不等式x+|x−2c|>1的解集为R,若“P或Q”是真命题,“P且Q”是假命题,则c的取值范围是()A.(12,+∞) B.(1,+∞) C.(0,12] D.(0,12]∪(1,+∞)20. 已知命题“若函数f (x )=e x −mx 在(0,+∞)上是增函数,则m ≤1”,则下列结论正确的是( )A.否命题“若函数f (x )=e x −mx 在(0,+∞)上是减函数,则m >1”是真命题B.逆命题“若m ≤1,则函数f (x )=e x −mx 在(0,+∞)上是增函数”是假命题C.逆否命题“若m >1,则函数f (x )=e x −mx 在(0,+∞)上是减函数”是真命题D.逆否命题“若m >1,则函数f (x )=e x −mx 在(0,+∞)上不是增函数”是真命题21. 下列命题:①“全等三角形的面积相等”的逆命题;②“若ab =0,则a =0”的否命题;③“正三角形的三个角均为60∘”的逆否命题.其中真命题的序号是________(把所有真命题的序号填在横线上)22. 已知M ={(x,y)|y−3x−2=a +1},N ={(x,y)|(a 2−1)x +(a −1)y =15},若M ∩N =⌀,则a 的值为________.23. 非空数集A 如果满足:①0∉A ;②若对∀x ∈A ,有1x ∈A ,则称A 是“互倒集”.给出以下数集:①{x ∈R |x 2+ax +1=0};②{x|x 2−4x +1<0};③{y|y =ln x x ,x ∈[1e ,1)∪(1,e]};④{y|y ={2x +25,x ∈[0,1)x +1x,x ∈[1,2]}. 其中“互倒集”的个数是________.24. 已知集合A ={x|x 2−2x −3≤0},B ={x|x 2−2mx +m 2−4≤0,x ∈R ,m ∈R } 若A ∩B =[0,3],求实数m 的值;若A ⊆∁R B ,求实数m 的取值范围.25. 已知集合A ={y|y 2−(a 2+a +1)y +a (a 2+1)>0},B ={y|y =12x 2−x +52,0≤x ≤3}.若A ∩B =⌀,求a 的取值范围;当a 取使不等式x 2+1≥ax 恒成立的a 的最小值时,求(∁R A)∩B .26. 已知全集U=R,非空集合A={x|x−2x−(3a+1)<0},B={x|x−a2−2x−a<0}.当a=12时,求(∁U B)∩A;命题p:x∈A,命题q:x∈B,若q是p的必要条件,求实数a的取值范围.参考答案与试题解析1.1 集合与命题一、解答题。

一(1)集合及其运算(学生)

一(1)集合及其运算(学生)

模块: 一、集合、命题、不等式 课题: 1、集合及其运算教学目标: 理解集合、空集的意义,会用列举法和描述法表示集合;理解子集、真子集、集合相等等概念,能判断两个简单集合之间的包含关系或相等关系;理解交集、并集,掌握集合的交、并运算,知道有关的基本运算性质,理解全集的意义,能求出已知集合的补集.重难点: 集合的概念及其运算;对集合有关概念的理解.一、 知识要点1、 集合的有关概念(1) 集合、元素、有限集、无限集、空集; (2) 子集、真子集、集合相等;(3) 集合元素的特征:确定性、互异性、无序性. 2、 表示集合的方法:列举法、描述法. 3、 集合运算:交集、并集、补集(全集). 4、 有限集的子集个数公式:对于有限集A ,若其中有n 个元素,则有2n个子集,21n-个非空子集,21n-个真子集.5、 两个有限集的并集的元素个数公式:()()()()card A B card A card B card A B =+-.二、例题精讲例1、已知{}221,251,1,2A a a a a A =-+++-∈且,则a = .例2、给出下列四种说法①任意一个集合的表示方法都是唯一的;②集合{}1,0,1,2-与集合{}2,1,0,1-是同一个集合③集合{}|21,x x k k Z =-∈与集合{}|21,y y s s Z =+∈表示的是同一个集合; ④集合{}|01x x <<是一个无限集.其中正确说法的序号是 .(填上所有正确说法的序号)例3、下列五个关系式:(1){}∅=0;(2)0=∅;(3)∅∈0;(4){}∅⊇0;(5){}0≠∅;其中正确的个数是( )A 、2B 、3C 、4D 、5例4、设P 是一个数集,且至少含两个数,若对任意,a b P ∈,都有)0(,,,≠∈-+b P baab b a b a ,则称P 是一个数域.例如有理数集Q 是数域;数集Q}b a,|2b {a ∈+=F 也是数域.给出下列命题:①整数集是数域;②若有理数集M Q ⊆,则数集M 必为数域;③数域必为无限集;④存在无穷多个数域.其中正确的命题是 .(填序号)例5、已知集合{}2|320M x x x =-+=,集合{}2|220,N x x x k k R =++=∈非空,若∅=N M ,则k 的取值范围是 .例6、已知集合{}42|≤<=x a x A ,非空集合{}132|+≤≤=a x x B ,且A B ⊆,求实数a 的取值范围.例7、已知集合{}Z m m x x A ∈==,|,⎭⎬⎫⎩⎨⎧∈==Z n n x x B ,2|,⎭⎬⎫⎩⎨⎧∈+==Z k k x x C ,21|,则有( )A.C A B ⊆⊆B.A B C ⊆⊆C.C A B =D.C A B =*例8、已知集合{}R a x ax x A ∈=+-=,023|2;(1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并把这个元素写出来; (3)若A 中至多有一个元素,求a 的取值范围.三、课堂练习1、若{}2|20M x ax x =-+=是单元素集,则实数a 的值为 .2、定义集合运算:{|(),,}A B z z xy x y x A y B ⊗==+∈∈.设集合{0,1},{2,3}A B ==,则集合A B ⊗的所有元素之和为_________________.3、已知A 、B 是两个集合,定义运算{}|A B x x A x B -=∈∉且,若{}{}1,2,3,4,5,2,3,6M N ==,则___________N M -=. 4、已知集合1{(,)|21},{(,)|2}1y A x y y x B x y x -==-==-.试判断集合A 与集合B 的关系:A B (在横线上填包含或真包含符号).5、已知集合{}|24A x a x =<≤,非空集合{}|231B x x a =≤≤+,且B A ⊆,求实数a 的取值范围.6、已知集合{}2(,)|,M x y y x x R ==∈,{}2(,)|23N x y y x ==-+,求MN .四、课后作业 一、填空题1、 已知集合{}1,3,21A m =--,集合{}23,B m =,若B A ⊆,则实数m = . 2、已知集合{}{}2|1,|540A x x a B x x x =-≤=-+≥,AB =∅,则实数a 的取值范围是 .3、已知集合{}{}2|60,|10A x x x B x mx =+-==+=,则满足B A ⊂≠的实数m 的一切值为 .4、已知(){}2|210,A x x p x p x R =+++-=∈,AR +=∅,则实数p 的取值范围是 .5、含有三个实数的集合既可以表示为,,1b a a ⎧⎫⎨⎬⎩⎭,也可表示为{}2,,0a a b +,则20122013a b+= .6、集合(){}()()(){}22222,|4,,|34A x y xy B x y x y r =+==-+-=,其中0r >,若A B 中有且仅有一个元素,则r 的值是 .二、选择题 7、设全集(){},|,I x y x y R =∈集合()(){}3,|1,,|12y M x y N x y y x x -⎧⎫===≠+⎨⎬-⎩⎭,则()I C M N =( )A 、∅B 、(){}2,3C 、()2,3D 、(){},|1x y y x =+8、已知全集{}1,2,3,4,5U =,集合A B U ⊂≠、,若{}(){}2,4,U A B C AB ==()(){}1,5U UC A C B =,则下列结论中的是( )A 、3,3AB ∈∈B 、3,3A B ∉∉C 、3,3A B ∉∈D 、3,3A B ∈∉9、对于集合P 和Q ,定义{}|,P Q x x P x Q -=∈∉且,若{}2|l o g 1P x x=<,{}|21Q x x =-<,则P Q -为( )A 、{}|01x x <<B 、{}|01x x <≤C 、{}|12x x ≤<D 、{}|23x x ≤<三、解答题10、设集合{}21|2,|12x A x x a B x x -⎧⎫=-<=<⎨⎬+⎩⎭,若A B ⊆,求实数a 的取值范围.11、已知集合()(){}2|3210,A x x m x m m R =-+++=∈,(){}2|23120,B x x n x n R =+++=∈,(1) 若A B A =,求m n 、的值; (2) 若A B A =,求m n 、的值.12、已知集合{}|24A x x =-<<,{}22|320B x x ax a =-+=,(1)若B A ⊆,求实数a 的取值范围; (2)若A B =∅,求实数a 的取值范围.。

高中数学知识点总结(第一章 集合与常用逻辑用语)

高中数学知识点总结(第一章 集合与常用逻辑用语)

第一章 集合与常用逻辑用语第一节 集 合一、基础知识1.集合的有关概念(1)集合元素的三个特性:确定性、无序性、互异性.元素互异性,即集合中不能出现相同的元素,此性质常用于求解含参数的集合问题中. (2)集合的三种表示方法:列举法、描述法、图示法. (3)元素与集合的两种关系:属于,记为∈;不属于,记为∉. (4)五个特定的集合及其关系图:N *或N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.2.集合间的基本关系(1)子集:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,则称A 是B 的子集,记作A ⊆B (或B ⊇A ).(2)真子集:如果集合A 是集合B 的子集,但集合B 中至少有一个元素不属于A ,则称A 是B 的真子集,记作A B 或B A .A B ⇔⎩⎪⎨⎪⎧A ⊆B ,A ≠B .既要说明A 中任何一个元素都属于B ,也要说明B 中存在一个元素不属于A .(3)集合相等:如果A ⊆B ,并且B ⊆A ,则A =B .两集合相等:A =B ⇔⎩⎪⎨⎪⎧A ⊆B ,A ⊇B .A 中任意一个元素都符合B 中元素的特性,B 中任意一个元素也符合A 中元素的特性.(4)空集:不含任何元素的集合.空集是任何集合A 的子集,是任何非空集合B 的真子集.记作∅.∅∈{∅},∅⊆{∅},0∉∅,0∉{∅},0∈{0},∅⊆{0}.3.集合间的基本运算(1)交集:一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B,即A∩B={x|x∈A,且x∈B}.(2)并集:一般地,由所有属于集合A或属于集合B的元素组成的集合,称为A与B的并集,记作A∪B,即A∪B={x|x∈A,或x∈B}.(3)补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作∁U A,即∁U A={x|x∈U,且x∉A}.求集合A的补集的前提是“A是全集U的子集”,集合A其实是给定的条件.从全集U中取出集合A的全部元素,剩下的元素构成的集合即为∁U A.二、常用结论(1)子集的性质:A⊆A,∅⊆A,A∩B⊆A,A∩B⊆B.(2)交集的性质:A∩A=A,A∩∅=∅,A∩B=B∩A.(3)并集的性质:A∪B=B∪A,A∪B⊇A,A∪B⊇B,A∪A=A,A∪∅=∅∪A=A.(4)补集的性质:A∪∁U A=U,A∩∁U A=∅,∁U(∁U A)=A,∁A A=∅,∁A∅=A.(5)含有n个元素的集合共有2n个子集,其中有2n-1个真子集,2n-1个非空子集.(6)等价关系:A∩B=A⇔A⊆B;A∪B=A⇔A⊇B.第二节命题及其关系、充分条件与必要条件一、基础知识1.命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.一个命题要么是真命题,要么是假命题,不能模棱两可.2.四种命题及其相互关系3.充分条件、必要条件与充要条件(1)如果p⇒q,则p是q的充分条件;①A是B的充分不必要条件是指:A⇒B且B A;②A的充分不必要条件是B是指:B⇒A且A B,在解题中要弄清它们的区别,以免出现错误.(2)如果q⇒p,则p是q的必要条件;(3)如果既有p⇒q,又有q⇒p,记作p⇔q,则p是q的充要条件.充要关系与集合的子集之间的关系设A={x|p(x)},B={x|q(x)},①若A⊆B,则p是q的充分条件,q是p的必要条件.②若A B,则p是q的充分不必要条件,q是p的必要不充分条件.③若A=B,则p是q的充要条件.二、常用结论1.四种命题中的等价关系原命题等价于逆否命题,否命题等价于逆命题,所以在命题不易证明时,往往找等价命题进行证明.2.等价转化法判断充分条件、必要条件p是q的充分不必要条件,等价于非q是非p的充分不必要条件.其他情况以此类推.第三节简单的逻辑联结词、全称量词与存在量词一、基础知识1.简单的逻辑联结词(1)命题中的“且”“或”“非”❶叫做逻辑联结词.①用联结词“且”把命题p和命题q联结起来,得到复合命题“p且q”,记作p∧q;②用联结词“或”把命题p和命题q联结起来,得到复合命题“p或q”,记作p∨q;③对命题p的结论进行否定,得到复合命题“非p”,记作非p.❷❶“且”的数学含义是几个条件同时满足,“且”在集合中的解释为“交集”;“或”的数学含义是至少满足一个条件,“或”在集合中的解释为“并集”;“非”的含义是否定,“非p”只否定p的结论,“非”在集合中的解释为“补集”.❷“命题的否定”与“否命题”的区别(1)命题的否定只是否定命题的结论,而否命题既否定其条件,也否定其结论.(2)命题的否定与原命题的真假总是相对立的,即一真一假,而否命题与原命题的真假无必然联系.(2)命题真值表:命题真假的判断口诀p∨q→见真即真,p∧q→见假即假,p与非p→真假相反.2.全称量词与存在量词3.全称命题与特称命题4.全称命题与特称命题的否定二、常用结论含逻辑联结词命题真假的等价关系(1)p∨q真⇔p,q至少一个真⇔(非p)∧(非q)假.(2)p∨q假⇔p,q均假⇔(非p)∧(非q)真.(3)p∧q真⇔p,q均真⇔(非p)∨(非q)假.(4)p∧q假⇔p,q至少一个假⇔(非p)∨(非q)真.。

01-集合命题及简易逻辑

01-集合命题及简易逻辑

暑期复习第一课:集合、命题及简易逻辑复习复习要求:1.理解集合、子集、补集、交集、并集的概念;了解属于、包含、相等关系的意义.2.掌握有关的术语和符号,并会用它们正确表示一些简单的集合.3.理解逻辑联结词“或”“且”“非”的含义;理解四种命题及其相互关系;掌握充要条件的意义.4.学会运用数形结合、分类讨论的思想方法分析和解决有关集合的问题,形成良好的思维品质。

5、理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义知识点:定义:一组对象的全体形成一个集合. 特征:确定性、互异性、无序性.表示法:列举法{1,2,3,…}、描述法{x|P}.韦恩图 分类:有限集、无限集.数集:自然数集N 、整数集Z 、有理数集Q 、实数集R 、正整数集N *、空集φ. 关系:属于∈、不属于∉、包含于⊆(或⊂)、真包含于、集合相等=. 运算:交运算A ∩B ={x|x ∈A 且x ∈B};并运算A ∪B ={x|x ∈A 或x ∈B};补运算A C U ={x|x ∉A 且x ∈U},U 为全集 性质:A ⊆A ; φ⊆A ; 若A ⊆B ,B ⊆C ,则A ⊆C ;A ∩A =A ∪A =A ; A ∩φ=φ;A ∪φ=A ; A ∩B =A ⇔A ∪B =B ⇔A ⊆B ;A ∩C U A =φ; A ∪C U A =I ;C U ( C U A)=A ;C U (A ⋃B)=(C U A)∩(C U B). 方法:韦恩示意图, 数轴分析.注意:① 区别∈与、与⊆、a 与{a}、φ与{φ}、{(1,2)}与{1,2}; ② A ⊆B 时,A 有两种情况:A =φ与A ≠φ.③若集合A 中有n )(N n ∈个元素,则集合A 的所有不同的子集个数为n2,所有真子集的个数是n2-1, 所有非空真子集的个数是22-n。

④区分集合中元素的形式:如}12|{2++==x x y x A ;}12|{2++==x x y y B ;}12|),{(2++==x x y y x C ;}12|{2++==x x x x D ;},,12|),{(2Z y Z x x x y y x E ∈∈++==;}12|)',{(2++==x x y y x F ;},12|{2xyz x x y z G =++==。

第1讲 集合与命题

第1讲  集合与命题

第一讲 集合与命题【例1】(1)若非空集合{}135X x a x a =+≤≤-,{}116Y x x =≤≤,则使得X X Y ⊆成立的所有a 的集合是( )A .{}07a a ≤≤B .{}37a a ≤≤C .{}7a a ≤ D .空集 (2)设集合(){},loglog 0aa A x y x y =+>,(){},B x y y x a =+<.若A B =∅ ,则a的取值范围是( )A .∅B .0,1a a >≠C .02,1a a <≤≠D .12a <≤(3)设X 是含()2n n >个元素的集合,A 、B 是X 中的两个互不相交的子集,分别含有m 、(),1,k m k m k n ≥+≤个元素,则X 中既不包含A 也不包含B 的子集的个数是( )A .222n m n k n m k ----+-B .2n m k --C .2222n n m n k n m k ------+D .12222n n m n k n m k +------+(4)设集合X 是实数集R 的子集,如果点0x ∈R 满足:对任意0a >,都存在x X ∈,使得00x x a <-<,那么称0x 为集合X 的聚点.用Z 表示整数集,则在下列集合:①,01n n Z n n ⎧⎫∈≥⎨⎬+⎩⎭,②R {}\0,③1,0n Z n n ⎧⎫∈≠⎨⎬⎩⎭,④整数集Z 中,以0为聚点的集合有( )A .②③B .①④C .①③D .①②④ (5)条件甲:1sin a θ+=,条件乙:sincos22a θθ+=,则( )A .甲是乙的充分必要条件B .甲是乙的必要条件C .甲是乙的充分条件D .甲不是乙的必要条件,也不是充分条件 (6)对于原命题“单调函数不是周期函数”,下列陈述正确的是( ) A .逆命题为“周期函数不是单调函数” B .否命题为“单调函数是周期函数” C .逆否命题为“周期函数是单调函数” D .以上三者都不正确(7)棱柱成为直棱柱的一个必要但不充分的条件是( ) A .棱柱有一条侧棱与底面垂直B .棱柱有一条侧棱与底面的两条边垂直C .棱柱有一个侧面与底面的一条边垂直D .棱柱有一个侧面是矩形且它与底面垂直 (8)若{}{}{}2,11,2,1,2,3,a a a ⊂⊂,则a 的值是_______________.札 记合*111log 2,23n n n N ⎧⎫-<<-∈⎨⎬⎩⎭的真子集的个数为___________.(10)从集合{},,,U a b c d =的子集中选出4个不同的子集,需同时满足以下两个条件: ①∅、U 都要选出;②对选出的任意两个子集A 和B ,必有A B ⊆或A B ⊇. 那么,共有________种不同的选法. (11)11220a b a b ≠是二元一次方程组111222,a xb yc a x b y c +=⎧⎨+=⎩有解的__________条件. (12)在平面上,两条直线的位置关系有相交、平行、重合三种.已知α、β是两个相交平面,空间两条直线1l 、2l 在α上的射影是直线1s 、2s ,1l 、2l 在β上的射影是直线1t 、2t .用1s 与2s ,1t 与2t 的位置关系,写出一个总能确定1l 与2l 是异面直线的充分条件________________________________________. 【例2】设集合(){}M x f x x ==,()(){}N x f f x x ==.(1)求证:M N ⊆;(2)若()f x 是一个在R 上单调递增的函数,是否有M N =?若有,请证明.札 记在平面直角坐标系xOy 中,直线l 与抛物线22y x =相交于A 、B 两点.(1)求证:“如果直线l 过点()3,0T ,那么3OA OB ⋅=”是真命题;(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.【例4】已知2113x A x x +⎧⎫=≥⎨⎬-⎩⎭,3arctan ,1,03B y y b t t b ⎧⎫⎪⎪==-≤≤≤⎨⎬⎪⎪⎩⎭,A B =∅ ,求b 的取值范围.札 记已知()f x 是定义在R 上的奇函数,且当0x <时,()f x 单调递增,()10f -=.设()2s i n c o s2x x m x m ϕ=+-,集合()0,,02M m x x πϕ⎧⎫⎡⎤=∈<⎨⎬⎢⎥⎣⎦⎩⎭对任意的,()()0,,02N m xf x πϕ⎧⎫⎡⎤=∈<⎨⎬⎢⎥⎣⎦⎩⎭对任意的,求M N .【跟踪训练】1、设集合{}1,2A =,则从A 到A 的映射f 中满足()()()ff x f x =的映射的个数是( )A .1B .2C .3D .42、在坐标平面上,纵横坐标都是整数的点叫做整点.我们用I 表示平面上所有直线的集合,M 表示恰好通过一个整点的直线的集合,N 表示不通过任何整点的直线的集合,P 表示通过无穷多个整点的直线的集合,给出表达式①M N P I = ,②N ≠∅,③M ≠∅,④P ≠∅,其中正确表达式的序号是_______________. 3、设(){}22,,,S x y xy x y R =-∈为奇数,()()(){22,sin 2sin 2T x y x y =π-π=()()}22cos 2cos 2,,xy x y R π-π∈,则S 与T 的关系为_______________.4、已知集合A 和集合B 各含有12个元素,A B 含有4个元素,试求同时满足下列两个条件的集合C 的个数:①C A B ⊂ ,且C 中含有3个元素;②C A ≠∅ . 札 记。

集合的运算、命题与充要条件

集合的运算、命题与充要条件

教学目标
重点、难点
考点及考试要求
集合的三种运算及集合的思想会判断命题的真假和充分条件,必要条件和充要条件
教学内容
一、基础知识点:
知识点复习: 1、交集的运算性质
A B B A;A B A ;A B B ;A U A;A A A;A
2、并集的运算性质:
例4
p 是 q 的充要条件的是 [ A.p:3x+2>5,q:-2x-3>-5 B.p:a>2,b<2,q:a>b C.p:四边形的两条对角线互相垂直平分,q:四边形是正方形 D.p:a≠0,q:关于 x 的方程 ax=1 有惟一解 ]
练习:若 A 是 B 成立的充分条件,D 是 C 成立的必要条件,C 是 B 成立的充要条件,则 D 是 A 成立的 [ A.充分条件 C.充要条件 B.必要条件 D.既不充分也不必要条件 ]
判断充判断充判断充分条件必要条件和充要条件分条件必要条件和充要条件分条件必要条件和充要条件集合的三种运算及集合的思想会判断命题的真假和充分条件必要条件和充要条件集合的三种运算及集合的思想会判断命题的真假和充分条件必要条件和充要条件集合的三种运算及集合的思想会判断命题的真假和充分条件必要条件和充要条件知识点复习


10.已知全集 I=N,集合 A={x|x=2n,n∈N},B={x|x=4n,n∈N},则 A.I=A∪B 11.设集合 M= { x | x A.M =N
k 2


B.I= C I A ∪B
ห้องสมุดไป่ตู้ 1 4
C.I=A∪ C I B
k 4 1 2
D.I= C I A ∪ C I B ( )
A B B A;A B A ;A B B ;A U U ;A A A;A A。

1.1交大附中2017届第一轮复习01-集合与命题第1讲-集合的概念及运算

1.1交大附中2017届第一轮复习01-集合与命题第1讲-集合的概念及运算

集合第1讲 集合的概念及运算【知识点归纳】1. 定义:我们常常把能够确切指定的一些对象看作一个整体,这个整体叫做集合,简称集。

根据此定义,集合中元素具有:确定性。

2. 表示法:(1)列举法。

如{1,2,3,4,5};(当集合用列举法表示的时候,其中的元素具有互异性与无序性)(2)描述法。

如A ={x │x 满足性质p};(凡具有性质p 的元素都在集合A 中,不满足性质p 的就不在其中)(3)图示法。

如韦恩图、数轴、坐标平面等。

(4)特殊集合:自然数集N 、整数集Z 、有理数集Q 、实数集R 、复数集C 、空集∅。

正整数集N *、负整数集Z -等。

(5)区间也是一种集合的表示方法。

3. 分类(按元素个数):空集、有限集、无限集。

4. 关系:(元素与集合)属于∈、不属于∉。

(集合与集合)包含于⊆、真包含于、包含⊇,真包含,集合相等=。

(1)子集:若对任意x A ∈都有x B ∈(或对任意x B ∉都有x A ∉)则A 是B 的子集,记作:A B ⊆或B A ⊇。

(2)真子集:若A B ⊆,且存在x 0∈B 但x 0∉A ,则A 是B 的真子集,记作AB ,对任何集合A 有∅⊆A ;若A ≠∅则∅A 。

(3)集合的包含:若A 是B 子集,则说A 包含于B ,或B 包含A 。

(4)集合的相等:若A B ⊆且B A ⊆,则A =B 。

(5)包含关系的性质:(1)A A ⊆;(2)A ∅⊆;(3)若A B ⊆,B C ⊆,则A C ⊆; 5. 运算:(1)交运算:A ∩B ={x │x ∈A 且x ∈B }; (2)并运算:A ∪B ={x │x ∈A 或x ∈B };(3)补运算:当A 是U 的子集时,A C u ={x │x ∈U 且x ∉A }。

运算性质:(1)A ∩A =A ∪A =A ;(2)A ∩∅=∅,A ∪∅=A ;(3)A B B A =,A B B A =;(4)()()AB C A B C A B C ==,()()A B C A B C A B C ==(5)A ∩B =A ⇔A ∪B =B ⇔A ⊆B ;(6)Φ=⋂A C A u ,U A C A u =⋃,A A C C u u =)(;(7))()()(B C A C B A C u u u ⋂=⋃,)()()(B C A C B A C u u u ⋃=⋂ 6. 常用方法:韦恩图:离散的数集的并、交、补、包含关系可画韦恩图解决。

上海市进才中学 作业册第一章 集合与命题(带答案)

上海市进才中学 作业册第一章 集合与命题(带答案)

§1.1 集合及其表示方法(1)A 组1.判断下列对象能否构成集合,能的打勾,不能的打叉。

① 上海市各区县的名称。

( )能 ② 末位数是3的自然数。

( )能 ③ 身高比较高的男生。

( )不能2.集合元素的性质: 、 、 。

确定性、互异性、无序性3.用符号,∈∉填空:①1_____}1{; ②d _____},,{c b a ; ,∈∉4.用符号,∈∉填空:①0_____N ; ②0_____∅; ③π_____Q ; ④2_____R ,,,∈∉∉∈5.用符号,∈∉填空:①1_____{(1,2)}; ②)2,1(_____)}1,2(),2,1{(;,∉∈6.确定下列集合是有限集还是无限集: ①}043|{2=--x x x 是_________;②},32|{R x x x ∈<<是_________;③},|),{(*N y Z x y x ∈∈是_________; ④},101|{*N x x x ∈≤≤-是_________; ⑤},101|{Q x x x ∈≤≤-是_________; 有限集,无限集,无限集,有限集,无限集B 组填空题7.判断下列对象能否构成集合;若能,指出是有限集还是无限集;若不能,请说明理由。

① 高一1班身高超过1.8m 的同学; ( 是 ) 有限集 ② 末位数是3的自然数; ( 是 ) 无限集 ③ NBA 篮球明星; ( 不是 ) 对象不确定 ④ 某中学的大胖子。

( 不是 ) 对象不确定8.若集合{|0.30.7,}A x x n n N ==-+∈,则 1.3- A ,0.29- A ,2- A 。

∉∉∈ 9.数集{}x x -2,1,0中的x 不能取的数的集合为 。

⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-+251,251,1,0 10.若集合22{2,(1),33}A a a a =+++,且1A ∈,则实数a = 。

0,-1 11. 若集合2{|(1)0}A x k x x k =++-=中只有一个元素,则实数k = 。

第一章 集合与常用逻辑用语1-2命题、量词、逻辑联结词

第一章  集合与常用逻辑用语1-2命题、量词、逻辑联结词

2
4
故 D 真. 答案:D



[例2] (文)已知命题p:∀x∈R,sinx≤1,则 ( ) A.綈p:∃x∈R,sinx≥1 B.綈p:∀x∈R,sinx≥1 C.綈p:∃x∈R,sinx>1 D.綈p:∀x∈R,sinx>1 解析:利用含有量词的命题否定形式知选C. 答案:C


二、填空题 5.(2010·安徽文)命题“存在x∈R,使得x2 +2x+5=0”的否定是____________. [答案] 对∀x∈R,都有x2+2x+5≠0.
D.4
π [解析] 函数 y=sin2x 的图象向右平移3个单位后, π 2π 所得函数为 y=sin2(x-3)=sin(2x- 3 ), ∴命题 P 是假命题, π π 又 y=sin(x+ )cos( -x) 6 3 π π π =sin(x+6)cos[2-(x+6)] π 1 1 π 2 =sin (x+ )= - cos(2x+ ), 6 2 2 3 2π ∴其最小正周期为 T= 2 =π.∴命题 Q 真.




点评:(1)命题的否定是否定命题的结 论.否命题既否定条件也否定结论. (2)全称命题的否定是存在性命题,存在性 命题的否定是全称命题. (3)“A或B”的否定綈(A∨B)为綈A且綈B, “A且B”的否定綈(A∧B)为綈A或綈B.



[例5] 给出以下四个命题: ①若ab≤0,则a≤0或b≤0; ②若a>b,则am2>bm2; ③在△ABC中,若sinA=sinB,则A=B; ④在一元二次方程ax2+bx+c=0中,若b2 -4ac<0,则方程有实数根.其中原命题、 逆命题、否命题、逆否命题全都是真命题的 是 ( ) A.① B.② C.③ D.④

第一章 集合与命题

第一章 集合与命题
空集 是任何集合的子集; 任何一个集合是它本身的子集;
9
定义 2:对于两个集合 A 与 B,如果 A B 且 B A, 那么叫做集合 A 等于集合 B ,记作 A = B(读作集合 A 等于集合 B );
定义 3:对于两个集合 A 与 B ,如果 A B ,并且 B 中 至少有一个元素不属于 A ,那么集合 A 叫做 B 的真子 集,记作: AÜ B或 B Ý A,读作 A 真包含于 B 或 B 真 包含 A .
16
5.交集的运算性质
对于任何集合A、B,有 (1)A∩B=B∩A; (2)A∩A=A; (3)A∩Ø=Ø ;
(4)A∩B ⊆ A,A∩B⊆B; (5)A∩B=A⇔A⊆B
.
17
6.并集的运算性质 (1)A∪B=B∪A; (2)A∪A=A; (3)A∪Ø=A;
(4)A∪B ⊇ A,A∪B ⊇ B; (5)A∪B=B⇔A⊆B. 7.交集、并集、补集的关系 A∩(∁UA)=Ø;A∪(∁UA)=U. 8.常见结论 (1)A∩B=A⇔A⊆B;A∪B=A⇔A⊇B; (2)A∪(∁UA)=U;A∩(∁UA)=Ø.
2.若p q, q p,即p q,则p是q充分必要条件, 简称充要条件. 也说p与q互为充要条件.
3.若p q, q p,则p是q的既不充分不必要条件. q是p的既不必要不充分条件.
31
2010年上海15
A
32
2009年上海 15
A
33
1、判别步骤:
① 认清条件和结论。 ② 考察p q和q p的真假。
• 确定性:按照明确的判断标准给定一个元素或者在这个 集合里,或者不在,不能模棱两可;
• 互异性:集合中的元素没有重复; • 无序性:集合中的元素没有一定的顺序(通常用正常的

高中数学第一章集合与逻辑1-2常用逻辑用语1-2-1命题学生用书湘教版必修第一册

高中数学第一章集合与逻辑1-2常用逻辑用语1-2-1命题学生用书湘教版必修第一册

1.2 常用逻辑用语1.2.1 命题教材要点要点一 命题1.命题的概念:可以____________________的语句叫作命题.2.命题的分类(1)真命题:________的命题叫作真命题.(2)假命题:________的命题叫作假命题.(3)猜想:________________的命题可以叫作猜想.状元随笔 (1)命题是一个陈述句,疑问句或祈使句等均不是命题,如“你今天快乐吗?”“请坐下!”等都不是命题,它们分别是疑问句和祈使句;(2)命题不一定是正确的,但可以作出正确与否的判断,常说的定理、公理等都是正确的,所以是真命题.可以作出判断,只是暂时作不出的陈述句也是命题,如著名的哥德巴赫猜想就是一个命题.要点二 命题的条件和结论如果将命题写成“若p ,则q ”的形式,就将p 叫作命题的条件,q 叫作命题的结论. 命题“若p ,则q ”为真,则记作p ⇒q ,读作“p 推出q ”;命题“若p ,则q ”为假,则记作pq ,读作“p 推不出q ”.状元随笔 (1)命题的否定就是否定命题的结论,它仍然是一个命题;(2)如果将命题的条件和结论交换一个位置,所得到的命题称为原来命题的逆命题.基础自测1.思考辨析(正确的画“√”,错误的画“×”)(1)并非任何语句都是命题,只有能判断真假的陈述句才是命题.( )(2)一个命题不是真命题就是假命题.( )(3)有的命题只有结论没有条件.2.(多选)下列语句中是命题的是( )A.空集是任何集合的真子集B.请起立!C.单位向量的模为1D.你是高二的学生吗?3.下列命题是真命题的是( )A.所有素数都是奇数B.若a>b,则a-6>b-6成立C.对任意的x∈N,都有x3>x2成立D.方程x2+x+1=0有实根4.命题“若a>1,则a>0”的逆命题是________________.题型1 命题及其真假的判断例1 判断下列语句是否为命题?若是,请判断其真假,并说明理由.(1)求证√3是无理数;(2)若x∈R,则x2+4x+4≥0;(3)你是高一的学生吗?(4)并非所有的人都喜欢吃苹果;(5)若xy是有理数,则x,y都是有理数;(6)60x+9>4.方法归纳判断一个语句是否是命题,关键是看它是否符合两个条件:“是陈述句”“可以判断真假”,祈使句、疑问句、感叹句等都不是命题.判断命题的真假,往往要综合运用日常生活和生产实践中的知识经验或数学的知识方法.跟踪训练1 判断下列命题的真假,并说明理由.(1)正方形既是矩形又是菱形;(2)当x=4时,2x+1<0;(3)若x=3或x=7,则(x-3)(x-7)=0;(4)一个等比数列的公比大于1时,该数列一定为递增数列.题型2 命题结构的分析与转化例2 把下列命题改写成“若p,则q”的形式,并判断真假.(1)实数的平方是非负数;(2)等底等高的两个三角形是全等三角形;(3)当ac>bc时,a>b;(4)角的平分线上的点到角的两边的距离相等.方法归纳(1)将命题改写为“若p,则q”形式的方法及原则(2)命题改写中的注意点若命题不是以“若p,则q”这种形式给出时,首先要确定这个命题的条件p和结论q,进而再写成“若p,则q”的形式.跟踪训练2 把下列命题改写成“若p,则q”的形式:(1)各位数字之和能被9整除的整数,可以被9整除;(2)能被6整除的数既能被3整除也能被2整除;(3)钝角的余弦值是负数.题型3 写出一个命题的否定和逆命题例3 写出下列命题的否定和逆命题,并判断它们的真假.(1)正数的平方根都不等于0;(2)当x=-2时,x2-x-6=0;(3)实数的平方是非负数;(4)若x,y都是奇数,则x+y是偶数.方法归纳(1)如果一个命题不是“若p,则q”的形式,则改写成这个形式后更有利于对它进行分析;(2)将一个命题的条件和结论交换位置,就变为这个命题的逆命题;将一个命题的条件不变而否定结论,就变为这个命题的否定.跟踪训练3 写出下列命题的否定和逆命题,并判断它们的真假.(1)若a=b,则a2=b2;(2)若|2x+1|≥1,则x2+x>0.课堂十分钟1.下列语句为命题的是( )A.对角线相等的四边形B.同位角相等C.x≥2D.x2-2x-3<02.下列命题中的真命题是( )A.互余的两个角不相等B.相等的两个角是同位角C.若a2=b2,则|a|=|b|D.三角形的一个外角等于和它不相邻的一个内角3.给出命题“方程x2+ax+1=0没有实数根”,则使该命题为真命题的a的一个值可以是( )A.4B.2C.0D.-34.命题“若x2<1,则-1<x<1”的逆命题是________.5.将下列命题改写成“若p,则q”的形式,并判断命题的真假.(1)6是12和18的公约数;(2)当a>-1时,方程ax2+2x-1=0有两个不等实根;(3)平行四边形的对角线互相平分;(4)已知x,y为非零自然数,当y-x=2时,y=4,x=2.1.2 常用逻辑用语1.2.1 命题要点一1.判断成立或不成立2.(1)成立(2)不成立(3)暂时不知道真假[基础自测]1.答案:(1)√(2)√(3)×2.解析:AC是命题.答案:AC3.答案:B4.答案:若a>0,则a>1题型探究·课堂解透例1 解析:(1)是祈使句,不是命题.(2)因为x2+4x+4=(x+2)2≥0,所以可以判断其真假,是命题,而且是真命题.(3)是疑问句,不是命题.(4)是命题,而且是真命题,有的人喜欢吃苹果,有的人不喜欢吃苹果.(5)是命题,而且是假命题,如√7×(-√7)=-7是有理数,但√7和-√7都是无理数.(6)不是命题.这种含有未知数的语句,无法确定未知数的取值能否使不等式成立.跟踪训练1 解析:(1)是真命题.由正方形的定义知,正方形既是矩形又是菱形.(2)是假命题.x=4时,不满足2x+1<0.(3)是真命题.x=3或x=7能得到(x-3)(x-7)=0.(4)是假命题.因为当首项a1<0,公比q>1时,该数列为递减数列.例2 解析:(1)若一个数是实数,则它的平方是非负数.真命题.(2)若两个三角形等底等高,则这两个三角形是全等三角形,假命题.(3)若ac>bc,则a>b.假命题.(4)若一个点是一个角的平分线上的点,则该点到这个角的两边的距离相等.真命题.跟踪训练2 解析:(1)若一个整数的各位上数字之和能被9整除,则这个整数可以被9整除.(2)若一个数能被6整除,则这个数既能被3整除也能被2整除.(3)若一个角是钝角,则这个角的余弦值是负数.例3 解析:(1)命题p:“若a为正数,则a的平方根不等于0”,¬p:“若a为正数,则a的平方根不存在或等于0”,是真命题;逆命题:“若a的平方根不等于0,则a为正数”,是真命题.(2)命题p:“若x=-2,则x2-x-6=0”,¬p:“若x=-2,则x2-x-6≠0”,是假命题;逆命题:“若x2-x-6=0,则x=-2”,是假命题.(3)命题p:“若x∈R,则x2≥0”,¬p:“若x∈R,则x2<0”,是假命题;逆命题:“若x2≥0,则x∈R”,是真命题.(4)¬p:“若x,y都是奇数,则x+y不是偶数”,是假命题.逆命题:“若x+y是偶数,则x,y都是奇数”,是假命题.跟踪训练3 解析:(1)¬p:“若a=b,则a2≠b2”,是假命题.逆命题:若a2=b2,则a=b,该命题是假命题.(2)¬p:“若|2x+1|≥1,则x2+x≤0”,是假命题.逆命题:若x2+x>0,则|2x+1|≥1,该命题是真命题.[课堂十分钟]1.解析:A、C、D不能判断真假,所以不是命题,故选B.答案:B2.解析:由平面几何知识可知A、B、D三项都是错误的.答案:C3.解析:方程无实根时,应满足Δ=a2-4<0.故a=0时适合条件.答案:C4.答案:若-1<x<1,则x2<15.解析:(1)若一个数是6,则它是12和18的公约数,是真命题.(2)若a>-1,则方程ax2+2x-1=0有两个不等实根,是假命题.(3)若一个四边形是平行四边形,则它的对角线互相平分,是真命题.(4)已知x,y为非零自然数,若y-x=2,则y=4,x=2,是假命题.。

高一数学上册 第1章 集合和命题 1.5 充分条件与必要条件课件 沪教版

高一数学上册 第1章 集合和命题 1.5 充分条件与必要条件课件 沪教版
•p:x=y;q:x2=y2 •p:x2-3x+2≠0; q: x ≠1 •p:AC=BD;q: 四边形ABCD是矩形
练习
“a和b都是偶数”是“a+b也是偶数”的_____条件; “四边相等”是“四边形是正方形”的_____条件; “x≠3”是“|x|≠3”的______条件; “x-1=0”是“x2-1=0”的________条件; “两个角是对顶角”是“这两个角相等”的___条件; 集合A = B是A∩C = B∩C的_______条件; 对于实数x,y,“xy=0”是“x2+y2=0”的_____条件;
定义:如果 p q ,
有它p足够推 q, 没有p,q不一定不成立
则说p是q的充分条件,
q是p的必要条件
如果x>0,则x≥0
有它q推p不一定行, 没它一定不行
可理解成:x>0 是x≥0 的充分条件 x≥0 是 x>0 的必要条件
运用新知
例1:下列“若p,则q”形式的命题中,哪些命题中的 p是q
的充分条件?
(3)有两角相等的三角形是等腰三角形。(4)Biblioteka a2>b2,则a>b。
(1)、(3)为真命题。 (2)、(4)为假命题。
写出命题“若x1,x2是一元二次方程ax2+bx+c=0的
两个根,则
x1
x2
b a
且x1x2
c a
”的等价命题。
新课
如果命题“若p则q”为真,则记作p q。 如果命题“若p则q”为假,则记作p q。
从集合角度理解:
p小推大q, 相当于P Q
例如:
小范围是大范围的充分条件 大范围是小范围的必要条件
1、”x>0”是”x>1”的什么条件?

第一讲 集合与命题

第一讲 集合与命题

第一讲 集合与命题第一节 集合的概念与运算一、知识梳理1、集合:把某些能够确切指定的对象看作一个整体,这个整体就叫做集合,简称集。

集合中的各个对象叫做这个集合的元素。

2、集合元素的特征:确定性、互异性、无序性3、子集:对于两个集合A 和B ,如果集合A 中任何一个元素都属于B ,那么集合A 叫作集合B 的子集,记作A B ⊆,或B A ⊇4、真子集:对于两个集合A 和B ,如果A B ⊆,并且集合B 中至少有一个元素不属于集合A ,那么集合A 叫作集合B 的真子集,记作A B Ü,或B A Ý5、相等集:对于两个集合A 和B ,如果A B ⊆,且B A ⊆,那么集合A 与B 相等,记作A B =6、空集:不含任何元素的集合,记∅。

空集是任何集合的子集,是任何非空集合的真子集。

7、交集:由集合A 和集合B 的所有公共元素组成的集合,叫作A 与B 的交集,记作{}A B x x A x B =∈∈ 且8、并集:由所有属于集合A 或者属于集合B 的元素组成的集合,叫作A 与B 的并集,记作{}A B x x A x B =∈∈ 或9、补集:记U 为全集,A 是U 的子集,则由U 中所有不属于A 的元素组成的集合,叫作A 在全集U 中的补集,记作{}U A x x U x A =∈∉且ð10、对于含有n 个元素的有限集合{}12,,,n A a a a = ,其子集的个数为2n个,其真子集的个为21n -个,其非空子集的个数为21n -个,其非空真子集的个数为22n-个 11、集合的表示方法:列举法、描述法、文氏图法 12、德·摩根公式:()U UU A B A B = 痧?,()U UU A B A B =痧?二、学法点拨1、理解集合的概念,掌握集合的三种表示方法,领会集合中元素的确定性、互异性、无序性(确定性和无序性主要用于列式,互异性主要用于检验),以及元素与集合的“属于”或“不属于”关系。

集合知识点

集合知识点

原结论 至少有一个 至多有一个 至少有 n 个 至多有 n 个
反设词 一个也没有 至少有两个 至多有( n 1 )个 至少有( n 1 )个
p 或q p 且q
p 且 q p 或 q
A CU B CU A B R
4. 集合 {a1 , a2 ,
n n 真子集有 2 –1 个; 非空子集有 2 –1 , an } 的子集个数共有 2n 个; n
个;非空的真子集有 2 –2 个. 5.四种命题的相互关系(互为逆否命题同真假) 原命题 若p则q 互 互 否 否 否命题 若非p则非q 互逆 为 逆 为 逆 否 逆否命题 若非q则非p 互逆 互 互 否 逆命题 若q则p
集合与命题知识梳理
1. 元素与集合的关系 x A x CU A , x CU A x A . 2.德摩根公式
CU ( A B) CU A CU B; CU ( A B) CU A CU B .
3.包含关系
A B A A B B A B CU B CU A
6.充要条件 Βιβλιοθήκη 1)充分条件:若 p q ,则 p 是 q 充分条件. (2)必要条件:若 q p ,则 p 是 q 必要条件. (3)充要条件:若 p q ,且 q p ,则 p 是 q 充要条件. 7.常见结论的否定形式 原结论 反设词 是 不是 都是 不都是 大于 不大于 小于 不小于 对所有 x , 存在某 x , 成立 不成立 对任何 x , 不成立 存在某 x , 成立
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合与命题
一、填空题
1、设全集U=R ,集合}21{},1{<≤-=≥=x x N x x M ,则CuM ∩CuN=
2、已知集合}2{,)}2lg({x y y B x y x A ==-==,则A ∩B=
3、 集合A =}06|{2=-+x x x ,}01|{=+=mx x B ,写出A B ≠
⊂的一个充分非必要条件_____________.
4、设集合}3,0{},,{=∈≤=P R x a x x M ,若P ⊆M ,则实数a 的取值范围为
5、集合{}
2(6)20,______.A x ax a x a =+-+==是单元素集合则实数 6、设集合{}{},0,1,2,3,4,5,7,8,0,2,4,8,10,____A B A C B C A ⊆⊆===,集合的个数为
7、试从①“x=1或x=-1”;②“x=1”;③“x=-1”;④“-2<x<2”中,选出适合下列条件的,并用代号填空:
(1)“实数x 适合21x =”的充分非必要条件___________;
(2)“实数x 适合21x =”的必要非充分条件___________.
8、有下列四个命题,其中真命题是____________(填序号):
①命题“若xy=1,则x,y 互为倒数”的逆命题;
②命题“面积相当的三角形全等”的否命题;
③命题“若2201x x m m -+=≤-有实根,则”;
④命题“若,A B B A B ⋂=⊆则”的逆否命题.
9、设有两个命题:
(1)不等式|x|+|x-1|>m 的解集是R ;(2)函数()(73)x f x m =--是减函数.如果这两个命题中有且仅有一个命题是真命题,则m 的取值范围为_________.
10、定义集合运算:A*B={}
,,.z z xy x A y B =∈∈设A={1,2},B={0,2},则集合A*B 的所有元素之和为____________.
二、解答题
11、已知A={x||x-a|<4},B={x||x-2|>3}.
(1)若a=1,求;A B ⋂(2)若,.A B R a ⋃=求实数的取值范围 ,,2,, 1.(x y R x y x y ∈+>12、证明:已知且则中至少有一个大于反证法或证明其逆否命题为真)
13、全集R U =,已知集合}15|{>+=a
x x A ,(1)若4A ∈,求实数a 的取值范围;(2)将(1)中a 的取值范围记为B 集合,集合C =}13|{1032≤-+x x x ,求B C U [⋂.
{}22124,,3210.32(1),;(2),;
(3),.
x A x x R B x x mx m m x Z A B m A B m -⎧⎫=≤≤∈=-+--<⎨⎬⎩⎭
∈=∅⊇14、设集合当时求的非空真子集的个数若求的取值范围若求的取值范围
15、设})]([|{)},(|{,)(2x x f f x B x f x x A q px x x f ====++=。

(1)求证:B A ⊆;
(2)如果}3,1{-=A ,求B 。

当堂练习(一)
[基础夯实]
1. 设全集U={0,1,2,3,4}集合A={0,1,2,3}集合B= {2,3,4}
则(СU A )∪(СU B )=
2. 设A={ x ∣x
x -+21≥0},B={x ∣x <a},若A∩B≠Φ,则a 的取值范围是 3.集合A={x ∣∣x+1∣<2},集合B={x ∣x 2-(a+1)x+a <0}且B ⊆A ,则a 的范围是
4.A={x|-2<x<4},B={x|x 2-6x+5<0},C={y|y=x 2-2x+4,x R ∈},则A ∩B ∩C=
5.若A={x ∈R ∣ax 2+2x+1=0}中只含有一个元素,则a=_____________
[能力提高]
6.已知集合A={x|x 2+4x-12=0},B={x|x 2+kx-k=0},若B B A = ,求k 的取值.
7.已知集合A={x ∈R ∣4
32+-x x <0},B={ x ∈R ∣x 2+ax+b ≤0}, A ∩B=ф A ∪B={ x ∈R ∣-4<x ≤3}, 求实数a 、b 的值。

8.已知集合A ={x ⎢2x +(a -1)x -a >0},B ={x ⎢(x +a)(x +b)>0},其中a ≠b , M ={x ⎢2x -2x -3≤0},全集U =R .(1)若B C U =M ,求a 、b 的值,
(2)若a >b >-1, 求A ∩B ;(3)若2a +
4
1∈A C U ,求a 的取值范围.。

相关文档
最新文档