各类典型功放电路大比拼

合集下载

功放集成电路哪个好 功放集成电路排名

功放集成电路哪个好 功放集成电路排名

功放集成电路哪个好功放集成电路排名LM系列会比TDA系列的好,关于“功放集成电路哪个好功放集成电路排名”的详细说明。

1.功放集成电路哪个好、LM系列会比TDA系列的好20W功率的:LM1875,TDA2030,这两个价钱差不多,TDA2030很脆弱,LM1875保护电路多一点,音质也好一点68W功率:LM3886TF,这个就不用说,标称功率只有68W,10A的电流,实际使用的话,100W是没有问题的,绝对的比TDA7293,TDA7294好很多2.功放集成电路排名第一名:柏斯Pass Labs (美国品牌)在Hi-End音响界,美国Pass Labs柏斯的威名早已如雷贯耳,发烧群中无人不识。

虽然论价钱,比Pass Labs更贵的比比皆是;论外形,比Pass Labs更华丽、更惹眼的也不在少数;但如果论及线路设计的技术性、工作稳定性和音效全面性,Pass Labs有绝对的实力名列前几名。

第二名:金嗓子Accuphase(日本品牌)金嗓子Accuphase是日本著名Hi-End晶体管放大器品牌,其产品制作严谨精美绝伦。

Accuphase名字取自Accurate(正确的)和phase(相位),是春日二郎在1972年飞往美国芝加哥途中想出来的,后与公司名称统一。

由于输出音质极佳,被台港昵称称「金嗓子」。

制造量少质精高价位的产品,价格从数十万日圆到最高级品超过百万日圆不等。

长期品质保证,该公司保有全部零件、即使创业时产品也能维修,实际送修约九成是十年以上的制品。

自许「孤高的最高级音响製造者」不论公司风格或代理商方面等,特色就是稳定、变动不大。

第三名:麦景图McIntosh(美国品牌)美国「麦景图」McIntosh,经历六十多个年头的辉煌岁月,由Frank. H. McIntosh先生于1949年成立,植根美国纽约Binghamton。

凭著“坚持”与“创见”的理念,使「麦景图」拥有昨日的光荣与今日的成就。

没有别的厂家能像「麦景图」一样,既是真空管的鼻祖,又是电晶体与集成电路的先锋。

高品质电子管功放电路大全适合胆机发烧友

高品质电子管功放电路大全适合胆机发烧友
811单端图纸,输出功率14W
SunAudio 2A3单端改进版,增强全面性,平衡性,提高低频速度力度。
KB)
2008-2-10 02:16
2A3推挽图纸,输出功率12W,THD=%
807/FU7单端,输出功率8W
KB)
2008-9-25 17:49
KT66单端,输出功率8W
KB)
2008-9-25 17:49
6146/FU46单端,输出功率8W
KB)
2008-9-25 16:44
6V6/6P6P单端,输出功率4W
805单端图纸,输出功率大于25W
KB)
2008-2-18 19:38
前级2(12AX7+6DJ8)
KB)
2007-4-6 16:22
前级电源1
KB)
2007-4-6 16:22
当前离线
nostalgia
精华
19
阅读权限
150
在线时间
6902 小时
最后登录
2010-6-16
新增一张300B图纸
KB)新增一张300B图纸
2008-1-22 03:44
注:本图为单声道设计
6550单端图纸1(三极管接法),输出功率8W
KB)
2008-2-10 15:15
纯真之源已改版实做,第二版各种功率管电路如下:
6550/KT88单端,输出功率
KB)
2008-9-25 22:27
6L6/6P3P单端,输出端,输出功率8W
KB)
2008-9-25 15:38
高品质电子管功放电路大全适合胆机发烧友
本贴图纸都经过实做验证,转载请注明出处。
6L6G(6P3P)推挽1,输出功率25W,THD=%

主流IC比较及应用LM1875、LM3886(LM4780)、LM4766、TDA7293、TDA7294

主流IC比较及应用LM1875、LM3886(LM4780)、LM4766、TDA7293、TDA7294

LM1875、LM3886(LM4780)、LM4766、TDA7293、TDA7294比较及应用摘要:一.6片IC简介本文将为大家介绍现在流行的6款IC音频功率放大器,分别是美国国半公司的LM1875、LM4766、LM3886(LM4780)以及ST意法公司的TDA9293和TDA7294,它们的标称输出功率在30~100W范围内,适用于家用高保真音频功率放大器。

采用这几款IC的功放具有元件少、调试简单的特点,功率、音质与一般的分立元件功放相比毫不逊色,因此一直受到广大DIY发烧友,特别是初学者的喜爱。

JeffRowland 的基于LM3886、TDA7293的功放跻身世界优秀功放之林,更证明了功率IC本身性能之优异。

关键词:音频功率放大器功率IC TDA7294 TDA7293应用LM1875 LM4766 LM3886一、6片IC简介本文将为大家介绍现在流行的6款IC音频大功率放大器,分别是美国国半公司的LM1875、LM4766、LM386(LM4780)以及ST意法公司的TDA7293、TDA7294,它们的标称功率在30~100W范围内,适合于家用高保真音频放大器。

采用这几款IC的功放具有元件少,高度简单的特点,功率、音质与一般分立元件功放相比毫不逊色,因此一直受到DIY发烧友,特别是初学者的喜爱。

JeffRowland的基于LM3886、TDA7293的功放跻身世界优秀功放之林,更证明了功率IC本身性能之优异。

虽然JeffRowland证明了功率IC可以好声,而且这些IC家喻户晓,使用者众多,但“IC音质不如分立元件”的观念却依然根深蒂固的扎根于广大DIY发烧友的头脑里。

很多人对这些芯片的认识来自未能发挥芯片的制作,造成对这些芯片的误解。

本文将从产品数据手册入手,多角度,深入地挖掘产品数据手册中包含的丰富信息,揭开数据背后隐藏的秘密,以求给大家一个全面的认识。

1、LM1875LM1875是美国国家半导体公司20世纪90年代初推出的一款音频功放IC,如图1所示。

500w大功率功放电路图(四款功放电路图详解)

500w大功率功放电路图(四款功放电路图详解)

500w⼤功率功放电路图(四款功放电路图详解)⼀.500w⼤功率功放电路图(⼤功率单极电源的输出电路)电路的功能本电路是功率放⼤器的输出电路,负载为8欧,有效输出为500W,输出电压为180VP-P,输出电流峰值可达10A以上,所以它也可⽤于⾼输出单极电源。

电源电压为正负95V即使低些也⽆须改变电路参数。

电路⼯作原理负载为8欧时,为了输出500W的功率,根据VCC=√8RLP,VCC应为179V,再将损耗电压考虑在内,可采⽤正负95V双极电源。

四个并联流⼊的总集电极电流IO(MAX),根据IO(MAX)=√2PO/RL公式计算,约为11.2A,应配备能供给这样电流的电源。

如果TT5~TT12各晶体管的直流电流放⼤率HFE2最低为50,则有224MA的基极电流流过,若TT3(TT4)的HFE1也为50,则TT1(TT2)的发射极电流约为4.5MA,电路很容易在这样的电流下⼯作。

象这种HFE作为乘法结果(HFE1*HFE2)的连接⽅式称为达林顿连接。

⼆.500w⼤功率功放电路图(功率放⼤器开关电源电路图)三.500w⼤功率功放电路图(三垦⼤功率⾳响对管2SA2l5l/2SC6Oll)三垦⼤功率⾳响对管2SA2l5l/2SC6Oll,并应⽤这两对⼤功率管,设计出了⼀款⾼性能500W ⼤功率功放电路,电路如下图所⽰,⼯作原理输⼊级由VT1-VT3组成带射极恒流源的差分放⼤器,由VD2-VD4的正向导通电压作基准电压提供给VT3,⽽VD2-VD4的供电⼜由VT4及外围元件组成的恒流源提供,提⾼了输⼊级的稳定性,并具有较⾼的共模抑制能⼒,对于电⽹电压的变化、电⽹⼲扰、电位漂移、温度漂移等都有较强的抑制作⽤,并能很好地消除“厄雷效应(晶体管VCE的变化引起结电容的变化),输⼊管静态电流取1.5mA以保证⾜够的动态。

调RP2可以改变输⼊级静态电流的⼤⼩。

电压放⼤级是由VT5与VT6组成共基极电路,这种电路多⽤于宽带放⼤器,其电流放⼤倍数略⼩于1,但电压增益并不⽐共发射极低,并具有极好的⾼频特性,调RP4可以改变电压放⼤级电流的⼤⼩,本级电流取为5mA⼀6mA,VT7、VT8是它的镜像负载。

经典的分立元件功放电路

经典的分立元件功放电路

经典的分立元件功放电路经典的分立元件功放电路是一种常用的音频放大电路,用于将低功率的音频信号放大为较高功率的音频信号,以驱动扬声器产生高质量的音频输出。

以下是关于分立元件功放电路的十个例子:1. 单级共射式功放电路:这是最简单的功放电路之一,由一个NPN 型晶体管和几个电阻组成。

它具有较高的电压增益和较低的输入阻抗,适用于低功率应用。

2. 双级共射式功放电路:这种电路在单级共射式功放电路的基础上增加了一个额外的共射级,以提高电压增益和输出功率。

它在音频放大领域广泛应用。

3. 压控放大器(VCA):VCA是一种特殊的功放电路,它具有可以通过控制电压来调节增益的特点。

它常用于音频处理和音量控制应用。

4. 互补对称功放电路:这种电路由NPN型和PNP型晶体管组成,可以提供高质量的音频放大效果。

它具有较低的失真和较高的稳定性。

5. A类功放电路:A类功放电路通过将音频信号直接放大,不进行任何切割或变换,以实现较高的音频质量。

它的效率相对较低。

6. AB类功放电路:AB类功放电路是A类功放电路和B类功放电路的结合,既具有较高的音频质量,又具有较高的效率。

它广泛应用于音频设备中。

7. D类功放电路:D类功放电路使用数字开关技术,通过将音频信号转换为脉冲宽度调制(PWM)信号,然后再进行放大,以实现高效率和低功耗。

8. 功率放大器:功率放大器是一种专用的功放电路,用于放大较高功率的音频信号,以驱动大功率扬声器。

它通常需要较大的散热器来散热。

9. 音频放大器:音频放大器是一种专用的功放电路,用于放大音频信号的幅度,以实现较大的音量和更好的音质。

它在音响系统中起着关键作用。

10. 无负反馈功放电路:无负反馈功放电路是一种特殊的功放电路,它不使用负反馈来稳定放大电路,而是通过优化电路设计和选用高质量的元件来实现高性能的音频放大效果。

以上是关于经典的分立元件功放电路的十个例子。

这些电路在音频放大领域发挥着重要作用,具有不同的特点和适用范围。

主流IC比较及应用LM1875、LM3886(LM4780)、LM4766、TDA7293、TDA7294

主流IC比较及应用LM1875、LM3886(LM4780)、LM4766、TDA7293、TDA7294

LM1875、LM3886(LM4780)、LM4766、TDA7293、TDA7294比较及应用摘要:一.6片IC简介本文将为大家介绍现在流行的6款IC音频功率放大器,分别是美国国半公司的LM1875、LM4766、LM3886(LM4780)以及ST意法公司的TDA9293和TDA7294,它们的标称输出功率在30~100W 范围内,适用于家用高保真音频功率放大器。

采用这几款IC的功放具有元件少、调试简单的特点,功率、音质与一般的分立元件功放相比毫不逊色,因此一直受到广大DIY发烧友,特别是初学者的喜爱。

JeffRowland的基于LM3886、TDA7293的功放跻身世界优秀功放之林,更证明了功率IC本身性能之优异。

关键词:音频功率放大器功率IC TDA7294 TDA7293应用LM1875 LM4766 LM3886一、6片IC简介本文将为大家介绍现在流行的6款IC音频大功率放大器,分别是美国国半公司的LM1875、LM4766、LM386(LM4780)以及ST意法公司的TDA7293、TDA7294,它们的标称功率在30~100W范围内,适合于家用高保真音频放大器。

采用这几款IC的功放具有元件少,高度简单的特点,功率、音质与一般分立元件功放相比毫不逊色,因此一直受到DIY发烧友,特别是初学者的喜爱。

JeffRowland的基于LM3886、TDA7293的功放跻身世界优秀功放之林,更证明了功率IC本身性能之优异。

虽然JeffRowland证明了功率IC可以好声,而且这些IC家喻户晓,使用者众多,但“IC音质不如分立元件”的观念却依然根深蒂固的扎根于广大DIY发烧友的头脑里。

很多人对这些芯片的认识来自未能发挥芯片的制作,造成对这些芯片的误解。

本文将从产品数据手册入手,多角度,深入地挖掘产品数据手册中包含的丰富信息,揭开数据背后隐藏的秘密,以求给大家一个全面的认识。

1、LM1875LM1875是美国国家半导体公司20世纪90年代初推出的一款音频功放IC,如图1所示。

模拟电子技术几种功放电路的比较

模拟电子技术几种功放电路的比较
BTL功率放大电路(Balanced Transformerless )是两个极性相 反的OTL放大器或无变压器的OCL放大器推动的
1.OCL乙类互补对称电路
+VCC V1
+
+
ui
RL
uo
V2
VEE
2.甲乙类互补对称式功率放大器
+VCC V1
+
+
ui
RL
uo
V2
VEE
常见的OCL甲乙类功率放大电路
2]2 (VCC VCES )2 VCC2
2RL
2RL
任务4 功率放大电路的制作
3)直流电源供给的功率PV
IC1
IC2
1
2
0
I c max
sintd (t)
I c max
PV
2IC1VCC
2VCC Icmax
2V CC(VCC UCES )
RL
2VC2C
RL
4)效率
Pomax VCC UCES Uomax
几种功放电路简介
OTL 为Output TransformerLess 的缩写。 OTL电路为单端推 挽式无输出变压器功率放大电路
OCL,是英文Output Capacitorless TransformerLess的缩写, 意思是没有输出电容器。OCL功率放大电路一般采用正、负 对称的两组电源供电,电路内部直到负载扬声器全部采用直 接耦合,中间无输入、输出变压器(人们将不用输入和输出 变压器的功率放大电路称为单端推挽电路).
PV
VCC 1
2
0
I cm
sin
td
(t )
VCC I cm

几种常见的功放电路

几种常见的功放电路
4.OTL功放电路:OTL功放电路又称为无输出变压器的推挽功率电路。下图是OTL功率放大器的 典型电路。V1和V2管是一对导电类型不同,特性配对一致的功放管,从连接方式看,V1和V2 上下对称,两管都接成射极输出,两管工作在乙类状态。从导电特性看:V1管是NPN型,它 在信号的正半周导通;V2管是PNP型,它在信号负半周导通。两管工作性能对称互为补偿, 故称它为互补对称电路。 在静态时,UB= UGB,由于V1和V2对称连接,特性一致,每管压降为 UGB,这时电 容C上电压亦为 UGB。UB=UE,V1和V2管均因零偏而截止,这时仅有很小的穿透电流ICEO 通过。 动态时,ui接入输入端,在ui的正半周,V1管的基极电位高于 UGB,其发射结处于正偏, V1管导通;V2管的发射结处于反偏,V2管截止。输出电流ic1由电源正端→V1→C→RL回到 电源负端。同理输入信号为负半周时,V2导通、V1截止,输出电流ic2由电容C的正极 →V2→RL回到电容C的负极,这时C代替电源向V2供电,即C充当V2管导通时的电源,这要 求电容C上的电压 UGB基本上维持不变,C必须足够大。
电子整机维修
几种常见的功放电路
1.甲类功放电路:甲类功放电路又称为单管功率放大器。此类放大器末级功率管的工作点在其线 性部分的中点,不论信号电平如何变化,他从电源取出的电流总是恒定不变的,因此也是效率 比较低的。其实际效率不超过25%。甲类放大器的优点是无交越失真和开关失真,而且谐波分 量中次级谐波非常丰富,听感上具有低音厚实、中音柔顺温暖,高音清晰圆润、层次感丰富的 特点。缺点是耗电量大,效率低,容易发热和对散热性要求高。此外,由于长期工作在大电流 高温状态下,因此容易引起可靠性和寿命方面的问题,而且整机成本较高。此类放大器适用于 小功率高保真放大。 如图所示为单管甲类功率放大电路。T1是输入变压器,其主要作用是变换阻抗(使前级得 到一个合适的负载),传输交流信号;T2是输出变压器,也主要起阻抗变换作用(使负载RL 与功放管的输出电阻相匹配)、传输功率。RB1、RB2、RE构成功放管的带直流负反馈的分 压式偏置电路;CB和CE分别为基极和发射极的交流旁路电容,CB将RB1和RB2交流短路,避 免了输入信号在偏置电阻 1 R 0 2 c i t t C 1 c i 2 0 c i 2 1 0 V V E B B G t U 1/2 ~ i i u u 0

七款双电源功放单电源功放声道应用电路

七款双电源功放单电源功放声道应用电路

七款双电源功放单电源功放声道应用电路tda2030应用电路一:双电源供电BTL音频功放电路BTL 功放电路能把单路功放的输出功率(PMONO)扩展4倍,但实际上却受到集成电路本身功耗和最大输出电流的限制,该电路若在VS=±14V工作时,PO=28W。

若在VS=±16V或±18V(TDA 2030A)工作时,输出功率会增加,但调试中应密切注视两块电路输出端(④脚)的直流电平,它们对地的电平都近似为零,为tda2030应用电路二:单电源供电音频功率放大器单电源供电音频放大电路是典型应用电路,由一块TDA 2030和较少元件组成单声道音频放大电路、装置调整方便、性能指标好等突出的优点。

特别是集成块内部设计有完整的保护电路,能自我保护。

tda2030应用电路三:OTL形式的功放OTL功放的形式:采用单电源,有输出耦合电容。

如图1所示电路中的R5 (150 kΩ)与R4 (4.7 kΩ)电阻决定放大器闭环增益,R4电阻越小增益越大,但增益太大也容易导致信号失真。

两个二极管接在电源与输出端之间,是防止扬声器感性负载反冲而影响音质。

C3(0.22 uF)电容与R6(1 Ω)的电阻是对感性负载(喇叭)进行相位补偿来消除自激,该电路采用36V单电源,输出功率约20 W。

tda2030应用电路四:OCL形式功放OCL功放的形式是采用双电源,无输出耦合电容,如图2所示,由于无输出耦合电容低频响应得到改善,属于高保真电路。

双电源采用初级线圈中间点接地、上下电压对称相等的变压器,经过整流滤波后构成±18 V的双电源,输出功率为20 W。

tda2030应用电路五:典型应用tda2030应用电路六:立体声应用电路tda2030应用电路七:声道应用电路。

常见9大功放电路

常见9大功放电路

常见9大功放电路功放,顾名思义就是功率放大的缩写,与电压或者电流放大来说,功放要求获得一定的、不失真的功率,一般在大信号状态下工作。

因此,功放电路一般包含电压放大或者电流放大电路没有的特殊问题,具体表现在:输出功率尽可能大;通常在大信号状态下工作;非线性失真突出;提高效率是重要的关注点;功率器件的安全问题。

而对于音频功放电路,也需要注意以上的问题,根据放大电路的导电方式不同,音频功放电路按照模拟和数字两种类型进行分类。

模拟音频功放通常有A类、B类、AB类、G类、H类、TD功放,数字电路功放分为D类、T类,下文对以上的功放电路做详细的介绍和分析。

01A类功放(又称甲类功放)A类功放如上图,在信号的整个周期内都不会出现电流截止(即停止输出)的一类放大器,但是A类放大器工作时会产生高热,效率很低。

尽管A类功放有以上的弊端,但固有的优点是不存在交越失真,并且内部原理存在着一些先天优势,是重播音乐的理想选择。

它能提供非常平滑的音质,音色圆润温暖,高频透明开扬,中频饱满通透的优点。

单端放大器都是甲类工作方式,推挽放大器可以是甲类,也可以是乙类或甲乙类。

02B类功放(又称乙类功放)B类功放是指正弦信号的正负两个半周分别由推挽输出级的两个晶体管轮流放大输出的一类放大器,每一晶体管的导电时间为信号的半个周期,通常会产生我们所说的交越失真。

通过模拟电路的调整可以将该失真尽量的减小甚至消失,B类放大器的效率明显高于A类功放。

03AB类功放(又称甲乙类)AB类功放界于甲类和乙类之间,推挽放大的每一个晶体管导通时间大于信号的半个周期而小于一个周期。

因此AB类功放有效解决了乙类放大器的交越失真问题,效率又比甲类放大器高,因此获得了极为广泛的应用。

04D类功放(又称丁类功放)D类功放也称数字式放大器,利用极高频率的转换开关电路来放大音频信号,具体工作原理如下:D类功放采用异步调制的方式,在音频信号周期发生变化时,高频载波信号仍然保持不变。

专业功放电路图1

专业功放电路图1

专业功放电路图1QSC MX-1500 功放>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>NUSUN CE-060 定压输出功放>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>SPIRIT AV-600 功放声艺VA-600功放是一款较为高档的专业功放,下图是根据实物绘制的主功放电路图,其电路结构与传统OCL功放有较大的区别,特别是采用具有电源补偿功能的双电源供电结构,能有效降低功耗和温升,克服强信号时的动态失真,很多国外名牌专业功放也都采用了类似电路。

Q1、Q2组成NPN差分放大器,Q3、Q4构成镜流源。

Q6、Q7组成PNP差分放大器,Q8、Q9是镜流源。

ZD1、ZD2与C5、C6、R7、R14组成+36V稳压器,既给镜流源提供稳压偏置,又是两个差分放大器的发射极的稳压源。

R21、R22组成直流反馈网络,R19、C7、R20、c8组成高频补偿电路。

为了提高电压放大级Q11、Q12驱动电流,比普通功放增加了Q5、Q10缓冲放大级。

恒压偏置电路中Q13采用TIP42这种。

PNP管是此机的另一个特点。

环境温度引起Q11、Q12之间电流增加时,恒压偏置管集电极与发射极之间的压差Uce增大,此电压直接加在Q13的发射极。

加大Q13的偏置而增加导通。

从而达到降低Uce,使推动级Q14、Q15有一个恒定的偏置。

一般功放的恒压偏置管都采用NPN管,Uce 是通过上下偏置电阻分压后提供给偏置管基极,使其增加导通来稳定uce的。

四款300W音频功放电路图详解

四款300W音频功放电路图详解

四款300W音频功放电路图详解一.300W音频功放电路图选用MJL4281A(NPN)和MJL4302A(PNP),具有高带宽,良好的SOA(安全工作区),高线性和高增益。

驱动晶体管选用MJE15034(NPN)和MJE15035(PNP)。

所有器件的额定电压为350V。

输出三极管选用MJL4281A(NPN)和MJL4302A(PNP),具有高带宽,良好的SOA(安全工作区),高线性和高增益。

驱动晶体管选用MJE15034(NPN)和MJE15035(PNP)。

所有器件的额定电压为350V。

性能指标:8Ω4Ω电压增益27dB27dB功率(连续)153W (240W)240W (470W)峰值功率 - 10 ms185W (250W)344W (512W)峰值功率 - 5 ms185W (272W)370W (540W)输入电压1.3V (2.0V)RMS1.3V (2.0V) RMS噪声 *-63dBV (ref. 1V)-63dBV (ref. 1V)S / N比 *92dB92dB失真0.4%0.4%失真(@ 4W)0.04% (1 Khz)0.04% (1 Khz)失真(@ 4W)0.07% (10 kHz)0.07% (10 kHz)摆率》 3V/us》 3V/us300W音频功率放大器电路原理图300W音频功率放大器电源线路图二.由STK3152Ⅲ组成的300W功放电路前置放大电路信号输入采用平衡与不平衡两种方式,平衡输入电路由运放NE5532及外围电路组成,不平衡输入直接送人STK3152Ⅲ的1脚和15脚,经STK3152Ⅲ放大后的信号分别由5、6、10、11脚输出,2、14脚分别为两个声道的负反馈输入端NF。

电源电路功率放大电路每声道采用了8对日本东芝生产的发烧级大功率对管,以保证足够的电流驱动能力。

制作时也可根据实际需要选取合适的功率管数量。

图8对应的印板图见图9。

由于工作电流较大,整流滤波部分没有采用印板,而是采用直接搭焊的形式。

几款功放电路设计—电路图天天读64)

几款功放电路设计—电路图天天读64)

几款功放电路设计—电路图天天读64 引言功放是一种比较重要的电子元件。

在音响设备和音频相关设备中,功放扮演着非常关键的角色。

它主要用于将低电平的音频信号转化为高功率的音频信号。

因此,高品质的功放电路设计是整个音响系统的不可少的关键组成部分。

本文将介绍一些常见的功放电路设计。

线性功放线性功放,也称为Class AB功放,是最常见的功放类型之一。

它是一种基础的放大器类型,通过将输入信号放大到输出电平来工作。

线性功放的电路结构简单易于实现,同时功率输出和效率较高。

电路原理线性功放的电路图如下所示:+--------+-+ +----+ +--------+| |+| | | | || | | | Q1|-----| || | | C1 | | | |Vin-+ C2 Q2| | E +----+ | || | | B | || | | | | +----+| |-| | | | |+--------+ | |-----| Q3 |Vout-+ | | | || R1 | +----++--/\\/\\/\\--+| 1KΩ |+---------+工作原理线性功放的工作原理非常简单。

输入信号经过C1和R1进入晶体管Q1的基极。

Q1通过电流放大效应将信号放大,并将其传递到Q2的基极。

Q2执行类似的操作,将信号放大,并通过连接到电源的负载电阻R2输出到扬声器上。

优缺点线性功放的优点在于其输出功率高,能够输出高品质的音频信号。

缺点是其效率较低,会产生较多的热量,从而浪费电能。

数字功放数字功放是一种相对较新的功放设计,旨在提高效率和降低功耗。

数字功放以数字信号作为输入信号,并使用开关技术进行放大,仅在需要放大时打开电路。

由于数字功放的输出电压仅取两种极值,因此它被称为“类D功放”。

电路原理数字功放的电路图如下所示:+------+-+ +----+| |+| Q1| || | | | LL |Vin-+----Q2| | E | +-Vout| | | B +----+| | || |-|+------+Vdd-+数字功放的工作原理与线性功放有所不同。

各类典型功放电路大比拼

各类典型功放电路大比拼

各类典型功放电路大比拼何庆华已刊于<<无线电与电视>>2004.9期笔者对音响的热爱已十几年,特别是自己动手,由当年的卡座到如今CD,转盘,解码器,前后级,音箱等,虽说不上精通,却也有一定的认识。

早年喜欢到处试听人家的进口器材,有时还傻愣愣地捧着自己的土作品去撼人家十几倍价位的进口器材,当然那时是无法与人家比拟,无数的失败,尝试,差距却日益接近,到了两年前,已经可以用进口器材十分一的土作品去撼倒对方。

当然,由于物理工艺,即外壳强度的处理,如今我所做的功放最高只能到七八千元一台的价钱去卖给人家。

从我所卖出的功放,只要价钱上了千五元以上,从来都不会让买主有意见的,至于千五元以下的,勉强相当于六七千的进口纯功放,性价比反而不及贵的功放。

这么多年来,经我制作卖出的功放已愈千部,电路也是五花八门,基本上的典型电路都做过了,所以在此谈谈各种电路的音质差别。

以下对比是在电源,外壳,元件,输出级,搭配的其它器材等各方面都一致的情况为依据的,所不同之处仅电路而已。

1双电源不对称两级差动电路(如PIONEER M22K)详细电路2双电源对称,第一级典型差动,第二级共射放大(如PHILIP 的LHH1000)3双电源对称,第一级共射共基差动,第二级共射共基(如金嗓子E-305V)详细电路4双电源对称,第一,二级共射共基差动,第三级共射共基(如金嗓子A-100)详细电路电路1,这是很多进口八千元以下的低档机的常用电路,不少人认为这样是属于单端甲类电压放大模式,可杜绝交越失真。

在实际试听中,这种电路给人一种柔慢的感觉,低频较松,人声的感情比较丰富,相当突出,有一定的厚度但量感不足,高频有衰落的表现(实测闭环增益在10-60000Hz),有一种雾里看花的感觉,乐器的轮廓让人很难定得准。

总体而言,音色方面是较接近于胆机的表现。

这跟进口八千元以下的纯功放音色表现相近。

电路2,这种电路在进口器材中采用得相对较少,可能是它高不成低不就吧,通常是几千到万五元的档次。

ab类功放电路与A类功放B类功放D类功放G类功放的对比

ab类功放电路与A类功放B类功放D类功放G类功放的对比

ab类功放电路与A类功放B类功放D类功放G类功放的对比
ab类功放电路与A类功放B类功放D类功放G类功放
的对比
这里我们主要列举出ab类功放电路与A类放大器B类放大器D 类放大器G类放大器的各自优势与对比分析。

A类放大器是最简单的放大器类型,对于任何输出波形,其输出级的晶体管始终处于导通状态(不会完全关断)。

这类放大器具有极佳的线性特性,
但效率很低。

B类放大器的输出级晶体管只在信号波形的半个周期(180度)导通,
为了对整个信号进行放大,使用了两个晶体管,一个用于正输出信号,另一个用于负输出信号。

B类放大器的效率远远高于A类放大器,但由于两个晶体管从通到断过程中存在交越点,失真较大。

A类和B类组合即ab类放大器,效率高于A类放大器,失真低于B类放大器。

通过对电路中的两个晶体管进行偏置,使信号接近零(B 类放大器引入非线性的工作点)时两个晶体管导通;大信号时,晶体管转换到B类工作方式。

由此可见,小信号时两个晶体管均保持有效工作,类似于A类放大器;大
信号时,相应于波形的每半周,只有一个晶体管保持有效状态,类似于B类放大器。

D类放大器的输出为开关波形,开关频率远远高于需要恢复的音频信号的最高频率。

经过低通滤波后,输出波形的平均值与实际的音频信号保持一致。

由于工作时输出级晶体管处于完全导通或完全关断状态,不会进入晶体管的线。

几款不错的场效应管功放电路图

几款不错的场效应管功放电路图

几款不错的场效应管功放电路图描述场效应管多管并联输出,500W。

场管跟普功率最大不同就是场管是用电压驱动,在驱动级上有些不一样,没弄过场管功放,音质怎要看你设计和工艺!IRFB33N15D是一颗非常好的MOS管,其导通内阻低达56mΩ,最大电流为33A,耐压却有150V,常用于DC/DC的变换器中,当然,在数字功放中,也经常应用。

其也有不足的地方,其输入电容为2020pF,和常见的MOS管一样,在驱动它时,就要采用特殊电路来驱动,如同你的电路中的R29和D3并联电路,也是业界惯用手法,其作用是:当没有R29时,Q7的栅极直接接前面的IC引脚,其内部都是图腾柱电路,由于是容性负载,都会有振荡产生,从而使驱动波形出现振铃现象,产生的后时是,MOS管开启不够,内阻大,效率低。

串入R29可以消除这种振荡,其和后续的MOS管输入电容(Ciss)的时间常数要远小于MOS管的开启时间13ns,而4.7Ω的2020pF的时间常数为9.5nS,满足要求。

IRFB33N15D用标准电路(相当于R29为3.6Ω)驱动时,其恢复时间长达130nS,这也是MOS管的通病,为了加快关断(争取这9.5nS的时间),在关断时,希望栅级电阻为0,所以会在R29上反向并联肖特基二极管D3(其工作频率可以近GHz),来加速放电。

IRFB33N15D的VGS在3.0V至5.5V这间,实际驱动时,取决于IRS2902S的工作电压,实际都在10V左右,肖特基二极管D3的正向压降只有1.2V左右(电流1A,但其ΔV/ΔI约为0,动态内阻极低),已经可以确保Q7和栅极处于低于VGS以下,对关断没有影响。

另外,你要学习动态内阻的含义,如同电源,其压降可能是5V,但其内阻可以低达十几毫欧。

这个电路里的2颗场效应管不能同时导通,所以,在它们工作的时候,要关断优先,导通稍缓。

D3,D4二极管就能够在驱动电压下降的时候,迅速释放场效应管的栅极结电压,从而使管子从导通状态恢复到关断状态的时间大大缩短。

最简单的12v功放电路图(四种功放电路图详解)

最简单的12v功放电路图(四种功放电路图详解)

最简单的12v功放电路图(四种功放电路图详解)功放电路图(一):12V单音道简单功放LM1875为单片30W集成功率放大电路。

它的主要特性:最大输出功率为30W(8欧),开环增益90dB,总谐波失真0,02%,功率带宽为70kHz,最大电流容量3A,供电电压范围为15-20V。

(1)稳定性。

闭环增益在10dB或稍大于10dB使用时,电路工作最稳定。

和其它大电流放大器件一样,当因布线不当造成输出与输入之间产生耦台时,会出现自激。

可在3脚、5脚与地之间加入0.1uF 的退耦电容。

电路的输出可直接与扬声器连接(不安全)也可通过电容与扬声器耦台。

并在输出与地之间加入平衡网络,用1欧电阻与0.22v.F电容串联。

(2)保护:正常应用时,工作电流限制在4A左右,当输出管加上高电压时,则降低最大电流,以确保安全。

LM1875在驱动非线性的电抗性负载时,例如装有保护继电器的扬声器时,由于电感反动势的作用,可能使负载上的电压摆幅超过电源电压,导致晶体管损坏,一般电路常用反向电压泄放二极管以保安全,这就是所谓的SOA保护。

LM1875内装有SOA保护电路,确保电路安全。

(3)过热保护。

LM1875内部设有先进的过热保护电路,当管芯温度达到170℃时,电路自动停止工作。

当温度降至145℃时,又重新工作。

此后若温度再度上升时,只要升到150℃时,即停止工作。

这样即使在持续故障下也能保证过热保护的可靠性。

下图是单电源供电电路图:功放电路图(二):TDA2040汽车音响功放TDA2040是单片集成音频放大器,AB类模式运行。

该集成电路还内置电路短路保护和热关机和更多的可以从单电源操作过于。

该放大器可提供12瓦到8欧姆扬声器。

电路中的IC是有线,以经营从汽车12V线。

电容C7是输入直流去耦电容和R4提供反馈。

网络由电阻R5和电容C5提供高频率稳定度和防止振荡的机会。

电容C6夫妇的IC输出到扬声器。

C2和C1是电源滤波器。

车音响电路采用TDA2040的电路图功放电路图(三):高保真功放单路TDA1521A制作功放电路,具有外围元件少,不用调试,一装就响的特点。

功放电路集锦

功放电路集锦

功放电路集锦一、双30W功放图1是2×30W双声道音频功率放大器,其核心器件ICl采用高保真音响功放集成电路STK465,该电路内包含两个性能指标完全相同的功率放大器,分别用作左、右声道的功放,可保证两个声道放大器指标的一致性。

电路输入阻抗30k,输入灵敏度150mV,电压增益40dB,频率响应:10Hz~100kHz,谐波失真≤0.08%,电源电压范围±(25~35)V。

制作时应注意,正、负电源退耦滤波电容C5、C14的位置应尽量分别靠近sTK465的正、负电源输入端。

如电路有自激现象,则增大C5和C14的容量。

该功放输出功率适中,制作容易,可用作一般家庭的组合音响、卡拉OK设备或VCD机的声音播放。

由于该功放电压增益高达40dB,输入灵敏度高,可省去前置放大器,而直接与卡拉OK机、VCD机等信号源连接。

该功放也可用作家庭影院系统的环绕声功放。

二、40W功放图2为采用高保真音响专用功放集成电路TDAl514构成的40W功率放大器,具有快速切断保护和延时静噪功能。

电路输入阻抗20k,输入灵敏度600mV,电压增益30dB,信噪比80dB。

制作两套该功放,分别用于左、右声道,即可构成2×40W立体声功率放大器。

三、50W功放图3是50W高保真功率放大器,采用LM3886音频功放集成电路构成。

电路输入阻抗20k,输入灵敏度1000mV,电压增益26dB,信噪比110dB,输出连续平均功率50W,峰值功率可达135W,总静态电流50mA,电源电压范围±(30~40)V。

Ll用φ1.2mm漆包线在10Ω/5W金属膜电阻(R7)上平绕10匝后与该电阻并联即可。

LM3886还具有静音功能,其第8脚为静音控制端,当第8脚开路(或接地)时为静音状态;第8脚通过30k电阻接-35V时则无静音。

调试时,如发现总静态电流过大,则是电路自激,可适当调节负反馈回路中的C3、R4或移相网络中的C4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

各类典型功放电路大比拼
何庆华
已刊于<<无线电与电视>>2004.9期
笔者对音响的热爱已十几年,特别是自己动手,由当年的卡座到如今CD,转盘,解码器,前后级,音箱等,虽说不上精通,却也有一定的认识。

早年喜欢到处试听人家的进口器材,有时还傻愣愣地捧着自己的土作品去撼人家十几倍价位的进口器材,当然那时是无法与人家比拟,无数的失败,尝试,差距却日益接近,到了两年前,已经可以用进口器材十分一的土作品去撼倒对方。

当然,由于物理工艺,即外壳强度的处理,如今我所做的功放最高只能到七八千元一台的价钱去卖给人家。

从我所卖出的功放,只要价钱上了千五元以上,从来都不会让买主有意见的,至于千五元以下的,勉强相当于六七千的进口纯功放,性价比反而不及贵的功放。

这么多年来,经我制作卖出的功放已愈千部,电路也是五花八门,基本上的典型电路都做过了,所以在此谈谈各种电路的音质差别。

以下对比是在电源,外壳,元件,输出级,搭配的其它器材等各方面都一致的情况为依据的,所不同之处仅电路而已。

1双电源不对称两级差动电路(如PIONEER M22K)
详细电路
2双电源对称,第一级典型差动,第二级共射放大(如PHILIP 的LHH1000)
3双电源对称,第一级共射共基差动,第二级共射共基(如金嗓子E-305V)
详细电路
4双电源对称,第一,二级共射共基差动,第三级共射共基(如金嗓子A-100)
详细电路
电路1,这是很多进口八千元以下的低档机的常用电路,不少人认为这样是属于单端甲类电压放大模式,可杜绝交越失真。

在实际试听中,这种电路给人一种柔慢的感觉,低频较松,人声的感情比较丰富,相当突出,有一定的厚度但量感不足,高频有衰落的表现(实测闭环增益在10-60000Hz),有一种雾里看花的感觉,乐器的轮廓让人很难定得准。

总体而言,音色方面是较接近于胆机的表现。

这跟进口八千元以下的纯功放音色表现相近。

电路2,这种电路在进口器材中采用得相对较少,可能是它高不成低不就吧,通常是几千到万五元的档次。

在这样机中我采用了直流伺服,因而低频表现好于电路1,控制力
比较合适,清晰度也有一定的改进,人声中的喉音,鼻音清晰可闻,量感也不错,中高频通透,只是乐器的轮廓还稍嫌不够,总体表现优于电路1。

电路3,与前两种电路差距拉大了,不少几万元的进口高中档机也使用这种电路模式。

尤其是中高频段的清晰度,可能是归功于采用了共射共基电路吧,音色表现出式,人声,乐器的质与量相当充足,再没有蒙胧的感觉,尤其是人声与小提琴,忧怨,轻快,稳重,演绎者的感情都能清楚地交代,高频比前两种电路顺了不少,没有一点衰落的感觉。

电路4,曾经有不定期一段时期,国内的发烧友十分推崇“简洁至上”的理论,当时笔者也属于人云亦云的时期,因而那时常用电路1与2,后来,随着经验增多,对电路进行一点点的缓慢改进,演变出了电路3,再改了两年,才成功做出了电路4。

为何那时乃至今天还有人推崇“简洁至上”呢?原因可能有两方面:1元件性能不佳。

十年前不少发烧友都用C1815之类的普通管子,更甚者,笔者通过这几年在一些电器厂家出任设计,发现不少这类通用的三极二极管,都只是一些国内厂家买国外的芯片封装的,并且越做越假,频率特性不好,用这类管子当然不能保证了。

2。

技术水平低,很多人都不具备调试设备,往往只能靠一只万用表,对于电路的工作点设置与调整不熟悉,有轻微自激也不知道,因此简单的电路稳定性容易保证,音质反而好于复杂的电路。

当技术水平到了一定的层面,再去做复杂的电路,结果却不一样了,光说理论,什么复杂电路的线性容易做得更好等,或者不够说服力,但各位不妨翻开一些音响杂志,进口器材中低档与高档的照片对比,很容易发现,高档机的电路复杂多了,又或者一些文献中介绍的电路原理图,高档机也是相对复杂的。

说回正题,话说我于一年多前第一次做出了电路4时,简直是技惊四座,一呜惊人,在一个月的时间里,被要求复制了四部,对比之下,其音质有一种超凡的感觉。

乐器的表现甭得说,轮廓定位让人一览无遗,人声的表现显得质量十足,轻快的让人觉得活跃,忧郁的催人泪下,所有的弱音都不放过,与乐器之间毫不妥协,不会有厚此薄彼的感觉,对于喇叭的控制有增强的趋势,收放自如,余间不会被吞噬或加长。

对比现行流行的电流放大电路,分晰力有过而无不及,且不会有电流放大电路的那种稍薄的声音。

这个电路也是够复杂的,光说电压放大级,元件数目比上述三种电路是倍数的增加,光三极管已经有二十一只。

如果应用于前级或CD中替代运放,三极管多过二十四只,者每一只三极管都是信号放大,没有电源恒流的用途,但其表现也是不可以用运放或其它分立电路替代的。

总而言之,电路是合理地复杂,电源变换的环节合理地简洁,才能把效果推上巅峰,做得好不好最主要的还是制作者的技术水平,而技术水平是经过长时间的磨炼得来的。

相关文档
最新文档