材料科学基础(上海交大) 第4章

合集下载

上海交通大学材料科学基础习题与重点

上海交通大学材料科学基础习题与重点

第一章原子结构与键合1-1. 原子中一个电子的空间位置和能量可用哪4个量子数来决定?1-2. 在多电子的原子中,核外电子的排布应遵循哪些原则?1-3. 在元素周期表中,同一周期或同一主族元素原子结构有什么共同特点?从左到右或从上到下元素结构有什么区别?性质如何递变?1-4. 何谓同位素?为什么元素的相对原子质量不总为正整数?1-5. 铬的原子序数为24,它共有四种同位素:w(Cr)=4.31%的Cr原子含有26个中子,w(Cr)=83.76%的Cr含有28个中子,w(Cr)=9.55%的Cr含有29个中子,且w(Cr)=2.38%的Cr含有30个中子。

试求铬的相对原子质量。

1-6. 铜的原子序数为29,相对原子质量为63.54,它共有两种同位素Cu63和Cu65,试求两种铜的同位素之含量百分比。

1-7. 锡的原子序数为50,除了4f亚层之外,其它内部电子亚层均已填满。

试从原子结构角度来确定锡的价电子数。

1-8. 铂的原子序数为78,它在5d亚层中只有9个电子,并且在5f层中没有电子,请问在Pt的6s亚层中有几个电子?1-9. 已知某元素原子序数为32,根据原子的电子结构知识,试指出它属于哪个周期?哪个族?并判断其金属性强弱。

1-10. 原子间的结合键共有几种?各自特点如何?1-11.图1-1绘出三类材料—金属、离子晶体和高分子材料之能量与距离关系曲线,试指出它们各代表何种材料。

图1-11-12.已知Si的相对原子质量为28.09,若100g的Si中有5×1010个电子能自由运动,试计算:(a)能自由运动的电子占价电子总数的比例为多少?(b)必须破坏的共价键之比例为多少?1-13. S的化学行为有时象6价的元素,而有时却象4价元素。

试解释S这种行为的原因。

1-14. A和B元素之间键合中离子特性所占的百分比可近似的用下式表示:这里x A和x B分别为A和B元素的电负性值。

已知Ti、O、In和Sb 的电负性分别为1.5,3.5,1.7和1.9,试计算TiO2和InSb的IC%。

上海交通大学材料科学基础教学金属材料及热处理_钢中合金元素

上海交通大学材料科学基础教学金属材料及热处理_钢中合金元素

金属材料及热处理
材料?工艺?微观组织 结构?性能?应用? ?……?
刘国权教授主讲
课程复习
性能:
使用性能
力学性能
工艺性能
物理性能
其它性能
结构材料
结构组织敏感性能 结构组织不敏感性能
功能材料
金属材料及热处理
材料?工艺?微观组织 结构?性能?应用? ?……?
刘国权教授主讲
复习:第九章 第三节铁碳复线平衡相图
金属材料及热处理
刘国权教授主讲
金属材料及热处理
刘国权教授主讲
吴承建 等编著: 金属材料学,第一章 钢铁中的合金元素
第五节 合金元素对铁碳相图的影响
一、合金元素对钢临界点的影响 从对奥氏体相区大小、形状和位置的影响进而推知:
1. 对临界点 A1 (共析温度)的影响 2. 对临界点 A3 的影响 3. 对共析碳量的影响:所有合金元素均降低共析碳含量 二、合金元素是否导致出现特殊碳化物相? 1. Fe-C-碳化物形成元素: 可能会出现不同的特殊碳化物 2. Fe-C-非碳化物形成元素:不形成该合金元素的特殊碳化物
刘国权教授主讲
吴承建 陈国良 强文江 编著: 金属材料学,冶金工业出版社, 2000
第一章 钢铁中的合金元素
重要术语(第一至四节):
合金钢 (为什么要生产和应用合金钢?) 奥氏体形成元素,铁素体形成元素;(例子?) 晶界偏聚,柯垂耳气团,共偏聚 (产生的主要原因?) 钢中的强、中强、弱、非碳化物形成元素 (例子? ) 间隙化合物;原子半径比值(rx/rM) 氮化物,碳氮化物; 金属间化合物(相、AB2拉维斯相、 AB3有序相)
金属基复合材料;等等
无机非金属材料;高聚物材料;复合材料等
金属材料及热处理

材料科学基础上海交大第三版

材料科学基础上海交大第三版

材料科学基础上海交大第三版介绍材料科学是研究材料结构、组成、性能和制备方法的学科,具有重要的理论基础和实际应用。

本文将探讨《材料科学基础上海交大第三版》这本教材的内容和意义。

教材概述《材料科学基础上海交大第三版》是由上海交通大学材料科学与工程学院编写的教材。

该教材系统地介绍了材料科学的基本概念、原理和技术。

它以全面、详细和深入的方式讲解了各种材料的结构、性能、制备和应用。

该教材的第三版相对于前两版进行了进一步的修订和更新,新增了一些最新的科研成果和实践经验。

重要章节第一章:材料科学基础该章介绍了材料科学的基本概念、发展历史和研究方法。

它讲解了材料的分类、性能评价和性能调控等内容。

通过学习该章,读者可以对材料科学有一个整体的认识。

第二章:金属材料该章主要讲解了金属材料的结构和性能。

它详细介绍了金属晶体结构、缺陷和相变等基本概念,以及金属的力学、热学和电学性能。

同时,该章还介绍了金属材料的制备方法和应用领域。

第三章:陶瓷材料该章介绍了陶瓷材料的结构和性能。

它详细讲解了陶瓷的晶体结构、缺陷和相变等基本概念,以及陶瓷的力学、热学和电学性能。

此外,该章还介绍了陶瓷材料的制备方法和应用领域。

第四章:高分子材料该章主要介绍了高分子材料的结构和性能。

它详细阐述了高分子的聚合反应、分子构象和玻璃化转变等基本概念,以及高分子的力学、热学和电学性能。

同时,该章还介绍了高分子材料的制备方法和应用领域。

第五章:复合材料该章介绍了复合材料的结构和性能。

它详细讲解了复合材料的基体材料、增强材料和界面等基本概念,以及复合材料的力学、热学和电学性能。

此外,该章还介绍了复合材料的制备方法和应用领域。

重要实验实验一:金属的晶体结构研究该实验旨在通过实际操作,观察金属的晶体结构,并了解金属的晶体缺陷。

通过该实验,学生可以进一步理解金属的结构与性能之间的关系。

实验二:陶瓷材料的力学性能测定该实验旨在通过实验测定方法,了解陶瓷材料的力学性能。

上海交大-材料科学基础-第四章

上海交大-材料科学基础-第四章

从热力学角度分析,扩散系数的一般热力学关系:
Di
kTB i(1
ln i ) ln Ci
比例系数Bi为在单位力的作用下的速度,组分i质点的迁移率, γi-溶质i的活度参数,Ci 溶质的浓度
J D C x
D:扩散系数 单位 m2/s、cm2/s C:扩散物质的质量浓度,g/cm3
负号:粒子从浓度高处向浓度低处扩散(逆浓度梯度方向)
单相固溶体,横截面积
为A,浓度C不均匀 , 在Δt时间内,沿x轴方 向通过x处截面所迁移 的物质的量Δm与x处的 浓度梯度ΔC/Δx成正
比:
扩散过程中溶质原子的分布
即:原始界面的移动是由于组元的分扩散系数不同造成的
(三)扩散种类
▪ (1)按浓度均匀程度分: 互扩散:有浓度差的空间扩散;(在多元体系中扩散)
自扩散:不依赖浓度梯度,而仅由热振动而产生的扩 散(原子在自己组成的晶体中进行扩散)
(2)按扩散性质分: 本征(自)扩散:由热涨落引起本征热缺陷作为迁 移载体的扩散; 非本征扩散:由非热引起,如固溶杂质(电价或浓
2 Dt
应 用: (1)测定扩散系数
c( x, t) M exp( x2 4Dt )
2 Dt 两边取对数,得:
ln c( x, t ) ln
M
x2
2 Dt 4Dt
以 lnc(x,t)- x2 作图得一直线
M
x2
ln c( x, t ) ln
2 Dt 4Dt
斜率 k=-1/4Dt, D=-1/4tk (2)扩散一定时间后的浓度分布
扩散通量不随位置变化 C 0,
t
非稳态扩散:
J 0. x
扩散物质在扩散介质中浓度随时间发生变化,

材料科学基础(上海交大)_第4章解析

材料科学基础(上海交大)_第4章解析

学习方法指导
本章重点阐述了固体中物质扩散过程的规律及其应用, 内容较为抽象,理论性强,概念、公式多。根据这一特点, 在学习方法上应注意以下几点: 充分掌握相关公式建立的前提条件及推导过程,深入理 解公式及各参数的物理意义,掌握各公式的应用范围及必需 条件,切忌死记硬背。 从宏观规律和微观机理两方面深入理解扩散过程的本质, 掌握固体中原子(或分子)因热运动而迁移的规律及影响因 素,建立宏观规律与微观机理之间的有机联系。 学习时注意掌握以下主要内容:菲克第一,第二定律的 物理意义和各参数的量纲,能运用扩散定律求解较简单的扩 散问题;扩散驱动力及扩散机制:间隙扩散、置换扩散、空 位扩散;扩散系数、扩散激活能、影响扩散的因素。
4.0.1 扩散现象(Diffusion)
当外界提供能量时,固体金属中原子或分子偏离平衡 位置的周期性振动,作或长或短距离的跃迁的现象。 (原子或离子迁移的微观过程以及由此引起的宏观现象。) ( 热激活的原子通过自身的热振动克服束缚而迁移它处的 过程。)
扩散
半导体掺杂 固溶体的形成 离子晶体的导电 固相反应 相变 烧结 材料表面处理
©2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning™ is a trademark used herein under license.
Figure 4.3 The flux during diffusion is defined as the number of atoms passing through a plane of unit area per unit time
材料与化学化工学院
第四章 固体中原子及分子的运动—扩散

材料科学基础(上海交大) 第4章

材料科学基础(上海交大) 第4章

所以在平面2物质流出的速率应为:
物质在体积元中的积存速率为:
积存的物质必然使体积元内的浓度变化,因此 可以用体积元内浓度C旳dx随时间变化率来表示 积存速率,即
由上两式可得: 在将D近似为常数时:
它反映扩散物质的浓度、通量和时间、空间的关 系。这是Fick第二定律一维表达式。
对于三维方向的体扩散:
互扩散克肯达尔效应克肯达尔最先发现互扩散在黄铜铜扩散偶中用钼丝作为标志785下保温不同时间后钼丝向黄铜内移动移动量与保温时间的平方根成正比实验模型图412ernestkirkendall412互扩散克肯达尔效应若dcudznzn向cu中的扩散与cu向黄铜中扩散原子数相等锌原子尺寸大于铜原子尺寸扩散后造成点阵常数变化使钼丝移动量只相当于实验值的110故点阵常数变化不是引起钼丝移动的唯一原因即铜扩散系数dcu不可能与dzn相等只能是dzngt
©2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning™ is a trademark used herein under license.
Figure 4.3 The flux during diffusion is defined as the number of atoms passing through a plane of unit area per unit time
4.0.2 扩散的分类
1. 根据有无浓度变化 自扩散:原子经由自己元素的晶体点阵而迁移的扩散。
(如纯金属或固溶体的晶粒长大-无浓度变化)
互扩散:原子通过进入对方元素晶体点阵而导致的扩
散。(有浓度变化)
2. 根据扩散方向 下坡扩散:原子由高浓度处向低浓度处进行的扩散。 上坡扩散:原子由低浓度处向高浓度处进行的扩散。

材料科学基础教程及习题_上海交通大学

材料科学基础教程及习题_上海交通大学

目录第1章原子结构与键合 (1)1.1 原子结构 (1)1.2 原子间的键合 (2)1.3 高分子链 (2)本章重点复习 (3)第2章固体结构 (4)2.1 晶体学基础 (4)2.2 金属的晶体结构 (5)2.3 合金相结构 (7)2.4 离子晶体结构 (9)2.5 共价晶体结构 (10)2.6 聚合物的晶体结构 (11)2.7 非晶态结构 (13)本章重点复习 (13)第3章晶体缺陷 (15)3.1 点缺陷 (15)3.2 位错 (16)3.3 表面及界面 (18)本章重点复习 (20)第4章固体中原子及分子的运动 (23)4.1 表象理论 (23)4.2 扩散的热力学分析 (23)4.3 扩散的原子理论 (24)4.4 扩散激活能 (25)4.5 无规则行走与扩散距离 (25)本章重点复习 (25)第5章材料的形变和再结晶 (27)5.1 弹性和粘弹性 (28)5.2 晶体的塑性变形 (29)5.3 回复和再结晶 (33)5.4 高聚物的塑性变形 (36)本章重点复习 (36)第6章单组元相图及纯晶体凝固 (38)6.1 单元系相变的热力学及相平衡 (38)6.2 纯晶体的凝固 (39)本章重点复习 (40)第7章二元系相图及合金的凝固 (42)7.1 相图的表示和测定方法 (42)7.2 相图热力学的基本要点 (43)7.3 二元相图分析 (44)7.4 二元合金的凝固理论 (45)7.5 高分子合金概述 (47)本章重点复习 (48)第8章三元相图 (52)8.1 三元相图基础 (52)8.2 固态互不溶解的三元共晶相图 (55)8.3 固态有限互溶的三元共晶相图 (57)8.4 两个共晶型二元系和一个匀晶二元系构成的三元相图 (58)8.5 包共晶型三元系相图 (59)8.6 具有四相平衡包晶转变的三元系相图 (60)8.7 形成稳定化合物的三元系相图 (60)8.8 三元相图举例 (61)8.9 三元相图小结 (63)本章重点复习 (64)第9章材料的亚稳态 (66)9.1纳米晶材料 (66)9.2 准晶态 (69)9.3 非晶态材料 (70)9.4 固态相变形成的亚稳相 (71)本章重点复习 (72)上海交通大学材料科学基础网络课程整理73材料是国民经济的物质基础。

上海交大材料科学基础知识点总结

上海交大材料科学基础知识点总结

第一章材料中的原子排列第一节原子的结合方式1 原子结构2 原子结合键(1)离子键与离子晶体原子结合:电子转移,结合力大,无方向性和饱和性;离子晶体;硬度高,脆性大,熔点高、导电性差。

如氧化物陶瓷。

(2)共价键与原子晶体原子结合:电子共用,结合力大,有方向性和饱和性;原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。

如高分子材料。

(3)金属键与金属晶体原子结合:电子逸出共有,结合力较大,无方向性和饱和性;金属晶体:导电性、导热性、延展性好,熔点较高。

如金属。

金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使诸原子结合到一起的方式。

(3)分子键与分子晶体原子结合:电子云偏移,结合力很小,无方向性和饱和性。

分子晶体:熔点低,硬度低。

如高分子材料。

氢键:(离子结合)X-H---Y(氢键结合),有方向性,如O-H—O(4)混合键。

如复合材料。

3 结合键分类(1)一次键(化学键):金属键、共价键、离子键。

(2)二次键(物理键):分子键和氢键。

4 原子的排列方式(1)晶体:原子在三维空间内的周期性规则排列。

长程有序,各向异性。

(2)非晶体:――――――――――不规则排列。

长程无序,各向同性。

第二节原子的规则排列一晶体学基础1 空间点阵与晶体结构(1)空间点阵:由几何点做周期性的规则排列所形成的三维阵列。

图1-5特征:a 原子的理想排列;b 有14种。

其中:空间点阵中的点-阵点。

它是纯粹的几何点,各点周围环境相同。

描述晶体中原子排列规律的空间格架称之为晶格。

空间点阵中最小的几何单元称之为晶胞。

(2)晶体结构:原子、离子或原子团按照空间点阵的实际排列。

特征:a 可能存在局部缺陷;b 可有无限多种。

2 晶胞图1-6(1)――-:构成空间点阵的最基本单元。

(2)选取原则:a 能够充分反映空间点阵的对称性;b 相等的棱和角的数目最多;c 具有尽可能多的直角;d 体积最小。

(3)形状和大小有三个棱边的长度a,b,c及其夹角α,β,γ表示。

上海交通大学 材料科学基础第四章 固体中原子及分子运动(第二讲)

上海交通大学 材料科学基础第四章 固体中原子及分子运动(第二讲)

xd xd
0
c
0
c
上式表明,在x=0平面两侧组元的扩散通量相等,方向相反,此时扩散 的净通量为零,也就是吴野面两侧的影线面积相等。
© meg/aol ‘02
4.2 扩散的热力学分析
扩散的驱动力并不是浓度梯度,而是化学势梯度。原子所受的驱动 力F可从化学势对距离求导得到:

1 1 dx D 1 xd 2t d =1 0
© meg/aol ‘02
dx 式中 d
=1
是ρ -x曲线上ρ =ρ 1处斜率的倒数;

1
0
xd 是积分
面积。原则上已解决了求D(ρ 1)的问题。但x的原点应定在何处,吴 野确定了x=0的平面位置,即吴野面,方法如下:
时,D>0,为“下坡”扩散 时,D<0,为“上坡”扩散
引起上坡扩散还可能有一下一些情况: (1).弹性应力的作用。 (2).晶界的内吸附。 (3).大的电场或温度场
© meg/aol ‘02
4.3 扩散的原子理论
4.3.1 扩散机制
© meg/aol ‘02
结论:DL<DB<DS
© meg/aol ‘02
xi d i RT (dxi xd ln ri )
并注意dx1=-dx2,最后整理可得:
d ln r1 d ln r2 d ln x1 d ln x2
© meg/aol ‘02
由上式可得: 当 (1 ln ri ) 0 ln xi
当 (1 ln ri ) 0 ln xi
1 d 1 1 d d D D - D , (3) 0 0 2 x d =1 d = 0

热点上海交大考研材料科学基础总结

热点上海交大考研材料科学基础总结

第1章原子结构和键合1.1原子结构1.1.1物质的组成(Substance Construction )物质由无数微粒(Particles )聚集而成分子(Molecule ):单独存在 保存物质化学特性dH2O=0.2nm M(H2)为2 M (protein )为百万原子(Atom ): 化学变化中最小微粒1.1.2原子的结构1.1.3原子的电子结构核外电子排布遵循以下3个原则:1.1.4元素周期表⎧⎧⎪⎪⎨⎪⎪⎩⎪⎨⎪⨯⎪⎪⎩-27-27-31(proton)(neutron)质子:正电荷m=1.6726×10kg 原子核(nucleus):位于原子中心、带正电中子:电中性m=1.6748×10kg 电子(electron):核外高速旋转,带负电,按能量高低排列,如电子云(ele ctron cloud ) m =9.109510kg,约为质子的1/1836i i n K L M N l (the orbital quantum number)主量子数(the principal quantum number): 决定原子中电子能量和核间距离(the energy of the electron), 即量子壳层,取正整数1、2、3、4、5?…, 用、、、……表示轨道动量量子数: 给出电子在同一量子壳层内所处的能级, 与电子运动的角动量有i n 1, s p d f m the inner quantum number)(spatial orientation of an electron cloud)1),1,0,⋅⋅⋅⋅⋅⋅--⋅⋅⋅⋅⋅⋅-i i 关(shape of the electron subshell), 取值为0,1,2,用,,,……表示磁量子数( :决定原子轨道或电子云在空间的伸展方向, 取值为-l ,-(l i 1,s the spin quantum number)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⋅⋅⋅⋅⋅⋅⎪⎪⎪⎪⎪⎪⎪⎩i l 自旋角动量量子数( : 表示电子自旋(spin moment )的方向,11取值为+或-22不可能有运动状态完全相同的电子, 同一亚层中电子尽量分占不同能级,2能量最低原理(Minimum Energy principle)电子总是占据能量最低的壳层 1s -2s -2p -3s -3p -4s -3d -4p -5s -4d -5p -Pauli 不相容原理(Pauli Exclusion principle): 2n Hund 原则(Hund' Rule)自⎧⎪⎪⎪⎪⎪⎨⎪⎪⎧⎪⎪⎪⎨⎪⎪⎩⎩全充满半充满 全空旋方向相同 −−−−−−−−−−−→−−−−−−−−−−−−→电离核电荷↑,原子半径↓能↑,失电子能力↓,得电子能力↑最外层电子数相同,电子层数↑,原子半径↑电离能↓,失电子能力↑,得电子能力↓同周期元素:左右,金属性↓,非金属性↑同主族元素:上下,金属性↑,非金属性↓1.2原子间的键合1.2.1金属键(Metallic bonding )典型金属原子结构:最外层电子数很少,即价电子(valence electron )极易 挣脱原子核之束缚而成为自由电子(Free electron ),形成电子云(electron cloud )金属中自由电子与金属正离子之间构成键合称为金属键特点:电子共有化,既无饱和性又无方向性,形成低能量密堆结构性质:良好导电、导热性能,延展性好1.2.2离子键(Ionic bonding)实质: 金属原子 带正电的正离子(Cation )非金属原子 带负电的负离子(anion )特点:以离子而不是以原子为结合单元,要求正负离子相间排列,且无方向性,无饱和性性质:熔点和硬度均较高,良好电绝缘体1.2.3共价键(covalent bonding )亚金属(C 、Si 、Sn 、 Ge ),聚合物和无机非金属材料实质:由二个或多个电负性差不大的原子间通过共用电子对而成特点:饱和性 配位数较小 ,方向性(s 电子除外)性质:熔点高、质硬脆、导电能力差1.2.4范德华力(Van der waals bonding)包括:静电力(electrostatic)、诱导力(induction)和色散力(dispersive force)属物理键 ,系次价键,不如化学键强大,但能很大程度改变材料性质1.2.5氢键(Hydrogen bonding )极性分子键 存在于HF 、H2O 、NH3中 ,在高分子中占重要地位,氢 原子中唯一的电子被其它原子所共有(共价键结合),裸露原子核将与近邻分子的负端相互吸引——氢桥介于化学键与物理键之间,具有饱和性1.3高分子链(High polymer Chain)⎧⎨⎩键电对键键两键间极性(Polar bonding):共用子偏于某成原子非极性(Nonpolar bonding): 位于成原子中⎧⎨⎩链结构(Chain Structure)高分子结构聚集态结构(Structure of aggregation state)1.3.1高分子链的近程结构1.结构单元的化学组成(the Chemistry of mer units)2.高分子链的几何形态(structure )热塑性:具有线性和支化高分子链结构,加热后会变软,可反复加工再成型热固性:具有体型(立体网状)高分子链结构,不溶于任何溶剂,也不能熔融,一旦受热固化后不能再改变形状,无法再生3.高分子链的键接方式4.高分子链的构型(Molecular configurations )o 线热变软动热链联线胶联变强韧状性高分子(linear polymers): 加后,甚至流,可反复加工- 塑性(therm plastic)支高分子(branched polymers):交高分子(crosslinked polymer):性天然橡用S交后耐磨体型(立体网)高分子(network on three -dimensional poly ⎧⎪⎪⎪⎨⎪⎪⎪⎩mer)近程结构(一次结构):化学结构,分子链中的原子排列,结构单元高分子链结构 的键接顺序,支化,交联等相对分子质量及其分布,链的柔顺性及构象1.3.2高分子链的远程结构1.高分子的大小2.高分子链的内旋转构象主链以共价键联结,有一定键长 d 和键角θ,每个单键都能内旋转(Chain twisting )故高分子在空间形态有mn-1( m 为每个单键内旋转可取的位置数,n 为单键数目)※ 键的内旋转使得高分子存在多种构象统计学角度高分子链取 伸直(straight )构象几率极小,呈卷曲(zigzag )构象几率极大3.影响高分子链柔性的主要因素(the main influencing factors on the molecular flexibility )高分子链能改变其构象的性质称为柔性(Flexibility )处链两侧两单处链边体间无规(syndisotactic configurations): (isotactic configurations):(atactic configuration R取代基交替地在主平面, 即旋光异构元交替R取代基全在主平面一, 即全部由一种旋光异构同立构全同立构立构⎧⎪⎪⎪⎨⎪⎪⎪⎩链两侧规则s):R取代基在主平面不排列⎧⎪⎪⎨⎪⎪⎩链结响决内势垒从酰响链链对称积响联响联单键内转碍联时主构的影:起定性作用,C -O,C -N,Si-O 旋的比C -C低,而使聚酯, 聚胺、聚胺酯,聚二甲基硅氧烷等柔性好取代基的影:取代基的极性,沿分子排布距离,在主上性,体均有影交的影:因交附近的旋受阻,交度大,柔性↓↓第2章固体结构2.1晶体学基础(Basis Fundamentals of crystallography)晶体结构的基本特征:原子(或分子、离子)在三维空间呈周期性重复排列(periodic repeated array),即存在长程有序(long-range order)性能上两大特点:1.固定的熔点(melting point),2.各向异性(anisotropy)2.1.1空间点阵和晶胞※空间点阵的概念将晶体中原子或原子团抽象为纯几何点(阵点 lattice point),即可得到一个由无数几何点在三维空间排列成规则的阵列—空间点阵(space lattice)特征:每个阵点在空间分布必须具有完全相同的周围环境(surrounding)※晶胞(Unite cells)代表性的基本单元(最小平行六面体)small repeat entities选取晶胞的原则:Ⅰ)选取的平行六面体应与宏观晶体具有同样的对称性;Ⅱ)平行六面体内的棱和角相等的数目应最多;Ⅲ)当平行六面体的棱角存在直角时,直角的数目应最多;Ⅳ)在满足上条件,晶胞应具有最小的体积。

材料科学基础-名词解释

材料科学基础-名词解释

材料科学基础名词解释(上海交大第二版)第一章原子结构结合键结合键分为化学键和物理键两大类,化学键包括金属键、离子键和共价键;物理键即范德华力。

化学键是指晶体内相邻原子(或离子)间强烈的相互作用。

金属键金属中的自由电子与金属正离子相互作用所构成的键合称为金属键。

离子键阴阳离子之间通过静电作用形成的化学键叫作离子键共价键由两个或多个电负性相差不大的原子间通过共用电子对而形成的化学键。

范德华力是借助临近原子的相互作用而形成的稳定的原子结构的原子或分子结合为一体的键合。

氢键氢与电负性大的原子(氟、氧、氮等)共价结合形成的键叫氢键。

近程结构高分子重复单元的化学结构和立体结构合称为高分子的近程结构。

它是构成高分子聚合物最底层、最基本的结构。

又称为高分子的一级结构远程结构由若干个重复单元组成的大分子的长度和形状称为高分子的远程结构第二章固体结构1、晶体:原子在空间中呈有规则的周期性重复排列的固体物质。

晶体熔化时具固定的熔点,具有各向异性。

2、非晶体:原子是无规则排列的固体物质。

熔化时没有固定熔点,存在一个软化温度范围,为各向同性。

3、晶体结构:原子(或分子、离子)在三维空间呈周期性重复排列,即存在长程有序。

4、空间点阵:阵点在空间呈周期性规则排列,并具有完全相同的周围环境,这种由它们在三维空间规则排列的阵列称为空间点阵,简称点阵。

5、阵点:把实际晶体结构看成完整无缺的理想晶体,并将其中的每个质点抽象为规则排列于空间的几何点,称之为阵点。

6、晶胞:为了说明点阵排列的规律和特点,在点阵中取出一个具有代表性的单基本元(最小平行六面体)作为点阵的组成单元,称为晶胞。

7、晶系:根据六个点阵参数间的相互关系,将全部空间点阵归属于7中类型,即7个晶系,分别为三斜、单斜、正交、六方、菱方、四方和立方。

13、晶带轴:所有平行或相交于某一晶向直线的晶面构成一个晶带,此直线称为晶带轴。

属于此晶带的晶面称为共带面。

14、晶面间距:晶面间的距离。

上海交大材料科学基础课件教学大纲

上海交大材料科学基础课件教学大纲

第一章原子结构和键合(4学时)了解物质由原子组成,而组成材料的各元素的原子结构和原子间的键合是决定材料性能的重要因素。

§1 原子结构(一)、原子结构; (二)、原子间的键合; (三)、高分子链。

§2 原子间的键合(一)、金属键 (二)、离子键 (三)、共价键(四)、范德华力 (五)、氢键第二章固体结构(8学时)固态原子按其原子(或分子)聚集的状态,可划分为晶体与非晶体两大类。

晶体中的原子在空间呈有规则的周期性重复排列;而非晶体中的原子则是无规则排列的。

材料的性能与材料各元素的原子结构和键合密切相关,也与固态材料中原子或分子在空间的分布排列和运动规律以及原子集合体的形貌特征密切相关。

§1 晶体学基础(一)、晶体的空间点阵1.空间点阵概念2.晶胞3.晶系与布拉菲点阵4.晶体结构与空间点阵的关系(二)、晶向指数和晶面指数1.阵点坐标2.晶向指数3.晶面指数4.六方晶系指数5.晶带6.晶面间距§2 金属的晶体结构(一)、面心立方晶体结构的晶体学特征(fcc)(二)、体心立方晶体结构的晶体学特征(bcc)(三)、密排六方晶体结构的晶体学特征(hcp)§3 金属的相结构(一)、固溶体1.置换固溶体2.间隙固溶体3.有序固溶体4.固溶体的性质(二)、中间相1.正常价化合物2.电子化合物3.原子尺寸因素化合物(ⅰ)间隙相和间隙化合物§4 离子晶体结构(一)、NaCl型结构 (二)、萤石型结构 (三)、CsCl型结构 (四)、a-Al2O3型结构§5 共价晶体结构(一)、金刚石结构 (二)、SiO2结构 (三)、VA、VIA族亚金属结构§6 聚合物晶态结构(一)、晶胞结构 (二)、晶态结构模型 (三)、聚合物结晶形态§7 非晶态结构第三章晶体缺陷(12学时)实际晶体常存在各种偏离理想结构的区域晶体缺陷。

根据晶体缺陷分布的几何特征可分为点缺陷、线缺陷和面缺陷三类。

第四章-4上海交通大学 827 材料科学基础

第四章-4上海交通大学 827 材料科学基础

影响扩散的因素¾化学成分 单组元系统:结合键能不同,影响到激活能不同而影响扩散系数T m ↑→扩散能垒Q D ↑→扩散系数D ↓;多组元系统(主要指溶质的扩散):浓度:浓度对D 会有影响。

通常浓度↑晶格畸变→D ↑;某些元素的加入会改变溶质原子在系统中的稳定性,从而影响到溶质的扩散系数D 。

应力正应力> 0 (即拉伸应力) →扩散系数D↑;正应力< 0 (即压缩应力) →扩散系数D↓。

即使对于成分均匀的系统,如果应力不均匀,将导致原子扩散,从而引起成分的不均匀。

杂质原子会在位错、晶界等缺陷处富集,正是由于应力不均匀导致的扩散造成的。

2.在单相区,为常数,扩散过程进行,需存在浓度梯度,物质从高浓度处流向低浓度处。

4.单独依靠扩散从固体中析出另一新相,可以简写为。

复连接构成的。

这个结构单元就称为聚乙烯的链z 单键内旋转或链段的柔顺性取决于高分子的结构和其所处的环境( 温度、压力、介质等)。

影响高分子链柔顺性的结构因素主要有以 下三方面:2013-11-141.主链结构z 主链全由单键组成时,因单键可内旋转,使分子链显示出很好的 柔顺性。

z 主链中含有芳杂环时,由于它不能内旋转,所以柔顺性很差,刚 性较好,能耐高温。

z 带有孤立双键的高分子链不能内旋转,但柔顺性增大。

2.取代基的特性z 取代基极性的强弱对高分子链的柔顺性影响很大。

取代基的极性 越强,高分子链的柔顺性越差。

z 取代基的对称性对柔顺性也有显著影响。

对称分布将使柔顺性增 大。

2013-11-143.链的长度z 高分子链的长度和分子量相关,分子量越大,分子链越长。

若分子链 很短,可以内旋转的单键数目很少,分子的构象很少,必然出现刚性 ,所以低分子物质都没有柔顺性。

如果链比较长,单键数目较多,整 个分子链可出现众多的构象,因而分子链显示出柔顺性。

不过,当分 子量增大到一定数值,也就是说,当分子的构象数服从统计规律时, 分子量对柔顺性的影响就不存在了。

上海交大考研材料科学基础总结

上海交大考研材料科学基础总结

第1章原子结构和键合1.1原子结构1.1.1物质的组成(Substance Construction )物质由无数微粒(Particles )聚集而成分子(Molecule ):单独存在 保存物质化学特性dH2O=0.2nm M(H2)为2 M (protein )为百万原子(Atom ): 化学变化中最小微粒1.1.2原子的结构1.1.3原子的电子结构核外电子排布遵循以下3个原则:1.1.4元素周期表⎧⎧⎪⎪⎨⎪⎪⎩⎪⎨⎪⨯⎪⎪⎩-27-27-31(proton)(neutron)质子:正电荷m=1.6726×10kg 原子核(nucleus):位于原子中心、带正电中子:电中性m=1.6748×10kg 电子(electron):核外高速旋转,带负电,按能量高低排列,如电子云(ele ctron cloud ) m =9.109510kg,约为质子的1/1836i i n K L M N l (the orbital quantum number)主量子数(the principal quantum number): 决定原子中电子能量和核间距离(the energy of the electron), 即量子壳层,取正整数1、2、3、4、5?…, 用、、、……表示轨道动量量子数: 给出电子在同一量子壳层内所处的能级, 与电子运动的角动量有i n 1, s p d f m the inner quantum number)(spatial orientation of an electron cloud)1),1,0,⋅⋅⋅⋅⋅⋅--⋅⋅⋅⋅⋅⋅-i i 关(shape of the electron subshell), 取值为0,1,2,用,,,……表示磁量子数( :决定原子轨道或电子云在空间的伸展方向, 取值为-l ,-(l i 1,s the spin quantum number)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⋅⋅⋅⋅⋅⋅⎪⎪⎪⎪⎪⎪⎪⎩i l 自旋角动量量子数( : 表示电子自旋(spin moment )的方向,11取值为+或-22不可能有运动状态完全相同的电子, 同一亚层中电子尽量分占不同能级,2能量最低原理(Minimum Energy principle)电子总是占据能量最低的壳层 1s -2s -2p -3s -3p -4s -3d -4p -5s -4d -5p -Pauli 不相容原理(Pauli Exclusion principle): 2n Hund 原则(Hund' Rule)自⎧⎪⎪⎪⎪⎪⎨⎪⎪⎧⎪⎪⎪⎨⎪⎪⎩⎩全充满半充满 全空旋方向相同 −−−−−−−−−−−→−−−−−−−−−−−−→电离核电荷↑,原子半径↓能↑,失电子能力↓,得电子能力↑最外层电子数相同,电子层数↑,原子半径↑电离能↓,失电子能力↑,得电子能力↓同周期元素:左右,金属性↓,非金属性↑同主族元素:上下,金属性↑,非金属性↓1.2原子间的键合1.2.1金属键(Metallic bonding )典型金属原子结构:最外层电子数很少,即价电子(valence electron )极易 挣脱原子核之束缚而成为自由电子(Free electron ),形成电子云(electron cloud )金属中自由电子与金属正离子之间构成键合称为金属键特点:电子共有化,既无饱和性又无方向性,形成低能量密堆结构性质:良好导电、导热性能,延展性好1.2.2离子键(Ionic bonding)实质: 金属原子 带正电的正离子(Cation )非金属原子 带负电的负离子(anion )特点:以离子而不是以原子为结合单元,要求正负离子相间排列,且无方向性,无饱和性性质:熔点和硬度均较高,良好电绝缘体1.2.3共价键(covalent bonding )亚金属(C 、Si 、Sn 、 Ge ),聚合物和无机非金属材料实质:由二个或多个电负性差不大的原子间通过共用电子对而成特点:饱和性 配位数较小 ,方向性(s 电子除外)性质:熔点高、质硬脆、导电能力差1.2.4范德华力(Van der waals bonding)包括:静电力(electrostatic)、诱导力(induction)和色散力(dispersive force) 属物理键 ,系次价键,不如化学键强大,但能很大程度改变材料性质1.2.5氢键(Hydrogen bonding )极性分子键 存在于HF 、H2O 、NH3中 ,在高分子中占重要地位,氢 原子中唯一的电子被其它原子所共有(共价键结合),裸露原子核将与近邻分子的负端相互吸引——氢桥介于化学键与物理键之间,具有饱和性1.3高分子链(High polymer Chain)1.3.1高分子链的近程结构1.结构单元的化学组成(the Chemistry of mer units)2.高分子链的几何形态(structure )⎧⎨⎩键电对键键两键间极性(Polar bonding):共用子偏于某成原子非极性(Nonpolar bonding): 位于成原子中⎧⎨链结构(Chain Structure)高分子结构热塑性:具有线性和支化高分子链结构,加热后会变软,可反复加工再成型热固性:具有体型(立体网状)高分子链结构,不溶于任何溶剂,也不能熔融,一旦受热固化后不能再改变形状,无法再生3.高分子链的键接方式4.高分子链的构型(Molecular configurations )o 线热变软动热链联线胶联变强韧状性高分子(linear polymers): 加后,甚至流,可反复加工- 塑性(therm plastic)支高分子(branched polymers):交高分子(crosslinked polymer):性天然橡用S交后耐磨体型(立体网)高分子(network on three -dimensional poly ⎧⎪⎪⎪⎨⎪⎪⎪⎩mer)处链两侧两单处链边体间无规(syndisotactic configurations): (isotactic configurations):(atactic configuration R取代基交替地在主平面,即旋光异构元交替R取代基全在主平面一,即全部由一种旋光异构同立构全同立构立构⎧⎪⎪⎪⎨⎪⎪⎪⎩链两侧规则s):R取代基在主平面不排列1.3.2高分子链的远程结构1.高分子的大小2.高分子链的内旋转构象主链以共价键联结,有一定键长 d 和键角θ,每个单键都能内旋转(Chain twisting )故高分子在空间形态有mn-1( m 为每个单键内旋转可取的位置数,n 为单键数目)※ 键的内旋转使得高分子存在多种构象统计学角度高分子链取 伸直(straight )构象几率极小,呈卷曲(zigzag )构象几率极大3.影响高分子链柔性的主要因素(the main influencing factors on the molecular flexibility )高分子链能改变其构象的性质称为柔性(Flexibility )第2章 固体结构2.1晶体学基础(Basis Fundamentals of crystallography )晶体结构的基本特征:原子(或分子、离子)在三维空间呈周期性重复排列(periodic repeated array ) ,即存在长程有序(long-range order )性能上两大特点:1.固定的熔点(melting point ),2.各向异性(anisotropy )2.1.1空间点阵和晶胞⎧⎪⎪⎨⎪⎪⎩链结响决内势垒从酰响链链对称积响联响联单键内转碍联时主构的影:起定性作用,C -O,C -N,Si-O 旋的比C -C低,而使聚酯, 聚胺、聚胺酯,聚二甲基硅氧烷等柔性好取代基的影:取代基的极性,沿分子排布距离,在主上性,体均有影交的影:因交附近的旋受阻,交度大,柔性↓↓※空间点阵的概念将晶体中原子或原子团抽象为纯几何点(阵点 lattice point),即可得到一个由无数几何点在三维空间排列成规则的阵列—空间点阵(space lattice)特征:每个阵点在空间分布必须具有完全相同的周围环境(surrounding)※晶胞(Unite cells)代表性的基本单元(最小平行六面体)small repeat entities选取晶胞的原则:Ⅰ)选取的平行六面体应与宏观晶体具有同样的对称性;Ⅱ)平行六面体内的棱和角相等的数目应最多;Ⅲ)当平行六面体的棱角存在直角时,直角的数目应最多;Ⅳ)在满足上条件,晶胞应具有最小的体积。

第四章-2上海交通大学 827 材料科学基础

第四章-2上海交通大学 827 材料科学基础
,常以D~ 表示。
本征扩散系数是相对于动坐标而 言的;总的扩散效果为本征扩散 和整体变化效果之和。
2015-11-4
达肯公式
把标记飘移看作类似流体运动的结果,即整体地流过了参考平面。
令vB=点阵整体的移动速度(相对于焊接面) =标记的速度=vm, vD=原子扩散系数=原子相对于标记的速度
故: i组元的实际扩散速度(相对于固定坐标系)
2015-11-4
(J1)t
1 ( D1
D2 )
dx1 dx
D1
d1
dx
x1
D1
d1
dx
(D1x1
D2 x1
D1 )
d1
dx
( D1 (1
x2 )
D2 x1
D1 )
d1
dx
(D1x2
D2 x1)
d1
dx
D~ d1
dx
同理可得:
(J2 )t
D
d 2
dx
也具有菲克第一定律的形式。
当 x2 0, x1 1, D~ D2 x1 0, x2 1, D~ D1
在稀薄固溶体中,互扩散系数=本征扩散系数
2015-11-4
问题讨论: 两个扩散偶在较高温度保温一段时间,其中的标志面在扩
散过程中是否移动?如果移动,朝什么方向移动?为什么 Mo丝 ?

纯铁
由于扩散偶两边C的浓度不同,所以将发生C的 扩散。但C原子在铁中处于间隙位置,它通过间
vt= vB + vD= vm+vD
若组元i的摩尔浓度为ρi,扩散速度为vt,则其扩散通量
J ivt
对于两个组元,它们的扩散总通量分别为:
(J1)t
1 (vm

第四章-3上海交通大学 827 材料科学基础

第四章-3上海交通大学 827 材料科学基础

称热力学因子)等于1, 因而
D = kTBi 上式为能斯脱-爱因斯坦方程。
2013-11-14
由此可见,在理想或稀固溶体中,不同组元的扩散速率仅取决于迁移 率B的大小。对于一般实际固溶体来说。上述结论也是正确的,可证 明如下: 在二元系中,由吉布斯-杜亥姆关系:
x1d μ1 + x2d μ2 = 0
2013-11-14
扩散的热ห้องสมุดไป่ตู้学分析
扩散的驱动力并不是浓度梯度,而是化学势梯度。原子所受的驱动 力F可从化学势对距离求导得到:
F = − ∂μi
∂x 式中负号表示驱动力与化学势下降的方向一致,也就是扩散总是向化学 势减小的方向进行,即在等温等压条件下,只要两个区域中i组元存在化
学势差△μi,就能产生扩散,直至△μ i=0。
扩散原子的平均速度v正比于驱动力F: v = BF
比例系数B为迁移率。扩散通量等于扩散原子的摩尔浓度和其平均速度的
乘积:
J = ρiυi
由此得:
J
=
ρi Bi Fi
=
− ρi Bi
∂μi
∂x
2013-11-14
由菲克第一定律:
J = −D ∂ρi
∂x
比较上两式可得:D
=
ρi Bi
∂μi ∂ρi
=
Bi
n(G
>
G1 )
=
N
exp(
− G1 kT
)
n(G > G2 ) = exp( − G2 − − G1 )
n(G > G1)
kT kT
由于G1处于平衡位置,即最低自由能的稳定状态 ,故n(G > G1) ≈ N
7) 位错扩散
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
©2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning™ is a trademark used herein under license.
Figure 4.3 The flux during diffusion is defined as the number of atoms passing through a plane of unit area per unit time
time
图4.1 扩散示意图
water
adding dye partial mixing homogenization
半导体掺杂 固溶体的形成 扩散
相变 烧结 材料表面处理
离子晶体的导电
固相反应
研究扩散一般有两种方法: • 表象理论 — 根据所测量的参数描述物质 传输的速率和数量等; • 原子理论 — 扩散过程中原子是如何迁移 的。 金属、陶瓷和高分子化合物三类固体材料 中的原子结合方式不同,这就导致了三种类型 固体中原子或分子扩散的方式不同。
图4.2 Fick的经典实验 浓度为0
饱和溶液
Solid NaCl
4.1.1 菲克第一定律
(1)稳态扩散(Steady State Diffusion):扩散过 程中各处的浓度及浓度梯度(Concentiontration Gradient)不随时间变化(əC/ət=0,əJ/əx=0), 见图4.3,浓度梯度证明见图4.4。
4.0.1 扩散现象(Diffusion)
当外界提供能量时,固体金属中原子或分子偏离平衡 位置的周期性振动,作或长或短距离的跃迁的现象。 (原子或离子迁移的微观过程以及由此引起的宏观现象。) ( 热激活的原子通过自身的热振动克服束缚而迁移它处的 过程。)
扩散
半导体掺杂 固溶体的形成 离子晶体的导电 固相反应 相变 烧结 材料表面处理
材料与化学化工学院
第四章 固体中原子及分子的运动—扩散
4.0 4.1 4.2 4.3 概述 表象理论 扩散的热力学分析 扩散的原子理论
4.4
4.5 4.6 4.7 4.8
扩散激活能
无规则行走与扩散距离 影响扩散的因素 反应扩散 离子晶体中的扩散
重点与难点
• • 菲克第一定律的含义和各参数的量纲。 能根据一些较简单的扩散问题中的初始 条件和边界条件。运用菲克第二定律求 解。 柯肯达耳效应的起因,以及标记面漂移 方向与扩散偶中两组元扩散系数大小的 关系。

• • •散”和“上坡扩散”的热力学 因子判别条件。 扩散的几种机制,着重是间隙机制和空 位机制。 间隙原子扩散比置换原子扩散容易的原 因。 计算和求解扩散系数及扩散激活能的方 法。
• • •
• • •
无规则行走的,扩散距离与步长的关系。 响扩散的主要因素。 反应扩散的特点和能应用相图确定反应扩 散出现相类型。 运用电荷中性原理确定不同情况下出现的 缺陷类型。 高分子链柔韧性的表征及其结构影响因素。 线型非晶高分子、结晶高分子和非完全结 晶高分子力学状态的差异和起因。
4.0.3 固态扩散的条件
1、温度足够高;
2、时间足够长;
3、扩散原子能固溶; 4、具有驱动力: 5、化学位梯度。
4.1 表象理论
Adolf Fick, a German physiologist and inventor, was born on August 3rd, 1829, in Germany. In 1855, he introduced “Fick’s Law of Diffusion” which described the dispersal of gas as it passes through a fluid membrane. (Figure 4.2) An astigmatism in his eyes led Fick to explore the idea of a contact lens, which he successfully created in 1887. His other research resulted in the development of a technique to measure cardiac output. Adolf Fick’s work served as a vital precursor in the studies of biophysics, cardiology, and vision.
4.0
概述
扩散 (Diffusion) 是物质中原子(分子或离子)
的迁移现象,是物质传输的一种方式。扩散是一 种由热运动引起的物质传递过程。扩散的本质是 原子依靠热运动从一个位置迁移到另一个位置。 扩散是固体中原子迁移的唯一方式。
扩散会造成物质的迁移,会使浓度均匀化, 而且温度越高,扩散进行得越快(图4.1)。
4.0.2 扩散的分类
1. 根据有无浓度变化 自扩散:原子经由自己元素的晶体点阵而迁移的扩散。
(如纯金属或固溶体的晶粒长大-无浓度变化)
互扩散:原子通过进入对方元素晶体点阵而导致的扩
散。(有浓度变化)
2. 根据扩散方向 下坡扩散:原子由高浓度处向低浓度处进行的扩散。 上坡扩散:原子由低浓度处向高浓度处进行的扩散。
学习方法指导
本章重点阐述了固体中物质扩散过程的规律及其应用, 内容较为抽象,理论性强,概念、公式多。根据这一特点, 在学习方法上应注意以下几点: 充分掌握相关公式建立的前提条件及推导过程,深入理 解公式及各参数的物理意义,掌握各公式的应用范围及必需 条件,切忌死记硬背。 从宏观规律和微观机理两方面深入理解扩散过程的本质, 掌握固体中原子(或分子)因热运动而迁移的规律及影响因 素,建立宏观规律与微观机理之间的有机联系。 学习时注意掌握以下主要内容:菲克第一,第二定律的 物理意义和各参数的量纲,能运用扩散定律求解较简单的扩 散问题;扩散驱动力及扩散机制:间隙扩散、置换扩散、空 位扩散;扩散系数、扩散激活能、影响扩散的因素。
相关文档
最新文档