天长市第三中学校2018-2019学年高三上学期11月月考数学试卷含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天长市第三中学校2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 下列说法正确的是(
)
A .类比推理是由特殊到一般的推理
B .演绎推理是特殊到一般的推理
C .归纳推理是个别到一般的推理
D .合情推理可以作为证明的步骤2. 双曲线﹣=1(a >0,b >0)的一条渐近线被圆M :(x ﹣8)2+y 2=25截得的弦长为6,则双曲线的离
心率为( )
A .2
B .
C .4
D .
3. 袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是( )
A .至少有一个白球;都是白球
B .至少有一个白球;至少有一个红球
C .恰有一个白球;一个白球一个黑球
D .至少有一个白球;红、黑球各一个
4. 已知圆方程为,过点与圆相切的直线方程为( )
C 2
2
2x y +=(1,1)P -C A . B .
C .
D .20x y -+=10x y +-=10x y -+=20
x y ++=5. P 是双曲线
=1(a >0,b >0)右支上一点,F 1、F 2分别是左、右焦点,且焦距为2c ,则△PF 1F 2
的内切圆圆心的横坐标为( )
A .a
B .b
C .c
D .a+b ﹣c
6. 高一新生军训时,经过两天的打靶训练,甲每射击10次可以击中9次,乙每射击9次可以击中8次.甲、乙两人射击同一目标(甲、乙两人互不影响),现各射击一次,目标被击中的概率为( )
A .
B .
C .
D .
7. 平面α与平面β平行的条件可以是( )
A .α内有无穷多条直线与β平行
B .直线a ∥α,a ∥β
C .直线a ⊂α,直线b ⊂β,且a ∥β,b ∥α
D .α内的任何直线都与β平行
8. (2014新课标I )如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 做直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数f (x ),则y=f (x )在[0,π]的图象大致为(
)
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A.B.C.D.
9.如图是某工厂对一批新产品长度(单位:mm)检测结果的频率分布直方图.估计这批产品的中位数为()
A.20B.25C.22.5D.22.75
10.“x2﹣4x<0”的一个充分不必要条件为()
A.0<x<4B.0<x<2C.x>0D.x<4
11.如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形.则该几何体表面积等于()
A.12+B.12+23πC.12+24πD.12+π
12.已知f (x )为R 上的偶函数,对任意x ∈R 都有f (x+6)=f (x )+f (3),x 1,x 2∈[0,3],x 1≠x 2时,有
成立,下列结论中错误的是(
)
A .f (3)=0
B .直线x=﹣6是函数y=f (x )的图象的一条对称轴
C .函数y=f (x )在[﹣9,9]上有四个零点
D .函数y=f (x )在[﹣9,﹣6]上为增函数
二、填空题
13.抛物线y 2=4x 上一点M 与该抛物线的焦点F 的距离|MF|=4,则点M 的横坐标x= .14.的展开式中,常数项为___________.(用数字作答)8
1
()x x
-【命题意图】本题考查用二项式定理求指定项,基础题.
15.已知一个动圆与圆C :(x+4)2+y 2=100相内切,且过点A (4,0),则动圆圆心的轨迹方程 .
16.设幂函数()f x kx α=的图象经过点()4,2,则k α+= ▲ .17.(x ﹣)6的展开式的常数项是 (应用数字作答).
18.设p :实数x 满足不等式x 2﹣4ax+3a 2<0(a <0),q :实数x 满足不等式x 2﹣x ﹣6≤0,已知¬p 是¬q 的必要非充分条件,则实数a 的取值范围是 .
三、解答题
19.已知函数f (x )=2|x ﹣2|+ax (x ∈R ).(1)当a=1时,求f (x )的最小值;(2)当f (x )有最小值时,求a 的取值范围;
(3)若函数h (x )=f (sinx )﹣2存在零点,求a 的取值范围.
20.已知函数f (x )=(sinx+cosx )2+cos2x (1)求f (x )最小正周期;
(2)求f (x )在区间[
]上的最大值和最小值.
21.(本小题12分)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,
5313a b +=.111]
(1)求{}n a ,{}n b 的通项公式;(2)求数列{
}n
n
a b 的前项和n S .22.已知集合A={x|>1,x ∈R},B={x|x 2﹣2x ﹣m <0}.
(Ⅰ)当m=3时,求;A ∩(∁R B );
(Ⅱ)若A ∩B={x|﹣1<x <4},求实数m 的值.
23.某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x 年后数控机床的盈利总额y 元.(1)写出y 与x 之间的函数关系式;(2)从第几年开始,该机床开始盈利?
(3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以30万元价格处理该机床;②当盈利额达到最大值时,以12万元价格处理该机床.问哪种方案处理较为合理?请说明理由.
24.设集合.
{}
()(
){
}
2
2
2
|320,|2150A x x x B x x a x a =-+==+-+-=
(1)若,求实数的值;{}2A B =I (2),求实数的取值范围.1111]
A B A =U
天长市第三中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
1. 【答案】C
【解析】解:因为归纳推理是由部分到整体的推理;类比推理是由特殊到特殊的推理;演绎推理是由一般到特殊的推理;合情推理的结论不一定正确,不可以作为证明的步骤,故选C .
【点评】本题考查合情推理与演绎推理,考查学生分析解决问题的能力,属于基础题.
2. 【答案】D 【解析】
解:双曲线
﹣
=1(a >0,b >0)的一条渐近线方程为bx+ay=0,
∵渐近线被圆M :(x ﹣8)2+y 2=25截得的弦长为6,∴=4,
∴a 2=3b 2,∴c 2=4b 2,∴e==.故选:D .
【点评】本题考查双曲线的性质和应用,解题时要注意公式的合理运用.
3. 【答案】D
【解析】解:从3个红球,2个白球,1个黑球中任取2个球的取法有:2个红球,2个白球,1红1黑,1红1白,1黑1白共5类情况,所以至少有一个白球,至多有一个白球不互斥;至少有一个白球,至少有一个红球不互斥;至少有一个白球,没有白球互斥且对立;
至少有一个白球,红球黑球各一个包括1红1白,1黑1白两类情况,为互斥而不对立事件,故选:D
【点评】本题考查了互斥事件和对立事件,是基础的概念题.
4. 【答案】A 【解析】
试题分析:圆心
,由
(0,0),C r =
1(1),10y k x kx y k -=+∴-++=,所以切线方程为,故选
A.
,1d r k =∴=20x y -+=考点:直线与圆的位置关系.
5.【答案】A
【解析】解:如图设切点分别为M,N,Q,
则△PF1F2的内切圆的圆心的横坐标与Q横坐标相同.
由双曲线的定义,PF1﹣PF2=2a.
由圆的切线性质PF1﹣PF2=F I M﹣F2N=F1Q﹣F2Q=2a,
∵F1Q+F2Q=F1F2=2c,
∴F2Q=c﹣a,OQ=a,Q横坐标为a.
故选A.
【点评】本题巧妙地借助于圆的切线的性质,强调了双曲线的定义.
6.【答案】
D
【解析】【解答】解:由题意可得,甲射中的概率为,乙射中的概率为,
故两人都击不中的概率为(1﹣)(1﹣)=,
故目标被击中的概率为1﹣=,
故选:D.
【点评】本题主要考查相互独立事件的概率乘法公式,所求的事件的概率与它的对立事件的概率之间的关系,属于基础题.
7.【答案】D
【解析】解:当α内有无穷多条直线与β平行时,a与β可能平行,也可能相交,故不选A.
当直线a∥α,a∥β时,a与β可能平行,也可能相交,故不选B.
当直线a⊂α,直线b⊂β,且a∥β时,直线a 和直线b可能平行,也可能是异面直线,故不选C.
当α内的任何直线都与β平行时,由两个平面平行的定义可得,这两个平面平行,
故选D.
【点评】本题考查两个平面平行的判定和性质得应用,注意考虑特殊情况.
8.【答案】C
【解析】解:在直角三角形OMP中,OP=1,∠POM=x,则OM=|cosx|,
∴点M到直线OP的距离表示为x的函数f(x)=OM|sinx|
=|cosx||sinx|=|sin2x|,
其周期为T=,最大值为,最小值为0,
故选C.
【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用.
9.【答案】C
【解析】解:根据频率分布直方图,得;
∵0.02×5+0.04×5=0.3<0.5,
0.3+0.08×5=0.7>0.5;
∴中位数应在20~25内,
设中位数为x,则
0.3+(x﹣20)×0.08=0.5,
解得x=22.5;
∴这批产品的中位数是22.5.
故选:C.
【点评】本题考查了利用频率分布直方图求数据的中位数的应用问题,是基础题目.
10.【答案】B
【解析】解:不等式x2﹣4x<0整理,得x(x﹣4)<0
∴不等式的解集为A={x|0<x<4},
因此,不等式x2﹣4x<0成立的一个充分不必要条件,
对应的x范围应该是集合A的真子集.
写出一个使不等式x2﹣4x<0成立的充分不必要条件可以是:0<x<2,
故选:B.
11.【答案】C
【解析】解:根据几何体的三视图,得;
该几何体是一半圆台中间被挖掉一半圆柱,
其表面积为
S=[×(2+8)×4﹣2×4]+[×π•(42﹣12)+×(4π×﹣π×)+×8π]
=12+24π.
故选:C.
【点评】本题考查了空间几何体三视图的应用问题,也考查了空间想象能力与计算能力的应用问题,是基础题目.
12.【答案】D
【解析】解:对于A:∵y=f(x)为R上的偶函数,且对任意x∈R,均有f(x+6)=f(x)+f(3),
∴令x=﹣3得:f(6﹣3)=f(﹣3)+f(3)=2f(3),
∴f(3)=0,故A正确;
对于B:∵函数y=f(x)是以6为周期的偶函数,
∴f(﹣6+x)=f(x),f(﹣6﹣x)=f(x),
∴f(﹣6+x)=f(﹣6﹣x),
∴y=f(x)图象关于x=﹣6对称,即B正确;
对于C:∵y=f(x)在区间[﹣3,0]上为减函数,在区间[0,3]上为增函数,且f(3)=f(﹣3)=0,
∴方程f(x)=0在[﹣3,3]上有2个实根(﹣3和3),又函数y=f(x)是以6为周期的函数,
∴方程f(x)=0在区间[﹣9,﹣3)上有1个实根(为﹣9),在区间(3,9]上有一个实根(为9),
∴方程f(x)=0在[﹣9,9]上有4个实根.故C正确;
对于D:∵当x1,x2∈[0,3]且x1≠x2时,有,
∴y=f(x)在区间[0,3]上为增函数,又函数y=f(x)是偶函数,
∴y=f(x)在区间[﹣3,0]上为减函数,又函数y=f(x)是以6为周期的函数,
∴y=f(x)在区间[﹣9,﹣6]上为减函数,故D错误.
综上所述,命题中正确的有A、B、C.
故选:D.
【点评】本题考查抽象函数及其应用,命题真假的判断,着重考查函数的奇偶性、对称性、周期性、单调性,考查函数的零点,属于中档题.
二、填空题
13.【答案】 3 .
【解析】解:∵抛物线y2=4x=2px,
∴p=2,
由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,
∴|MF|=4=x+=4,
∴x=3,
故答案为:3.
【点评】活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.
14.【答案】70
【解析】的展开式通项为,所以当时,常数项为
81
()x x -8821881()(1)r r
r r r r r T C x C x x
--+=-=-4r =.
448(1)70C -=15.【答案】+
=1 .
【解析】解:设动圆圆心为B ,半径为r ,圆B 与圆C 的切点为D ,∵圆C :(x+4)2+y 2=100的圆心为C (﹣4,0),半径R=10,∴由动圆B 与圆C 相内切,可得|CB|=R ﹣r=10﹣|BD|,∵圆B 经过点A (4,0),
∴|BD|=|BA|,得|CB|=10﹣|BA|,可得|BA|+|BC|=10,∵|AC|=8<10,
∴点B 的轨迹是以A 、C 为焦点的椭圆,设方程为
(a >b >0),可得2a=10,c=4,
∴a=5,b 2=a 2﹣c 2=9,得该椭圆的方程为+
=1.
故答案为:
+
=1.
16.【答案】32
【解析】
试题分析:由题意得11,422
k α
α==⇒=∴32k α+=
考点:幂函数定义17.【答案】 ﹣160
【解析】解:由于(x ﹣)6展开式的通项公式为 T r+1=•(﹣2)r •x 6﹣2r ,令6﹣2r=0,求得r=3,可得(x ﹣)6展开式的常数项为﹣8=﹣160,
故答案为:﹣160.
【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.
18.【答案】 .
【解析】解:∵x2﹣4ax+3a2<0(a<0),
∴(x﹣a)(x﹣3a)<0,
则3a<x<a,(a<0),
由x2﹣x﹣6≤0得﹣2≤x≤3,
∵¬p是¬q的必要非充分条件,
∴q是p的必要非充分条件,
即,即≤a<0,
故答案为:
三、解答题
19.【答案】
【解析】解:(1)当a=1时,f(x)=2|x﹣2|+x=…(2分)
所以,f(x)在(﹣∞,2)递减,在[2,+∞)递增,
故最小值为f(2)=2;…(4分)
(2)f(x)=,…(6分)
要使函数f(x)有最小值,需,
∴﹣2≤a≤2,…(8分)
故a的取值范围为[﹣2,2]. …(9分)
(3)∵sinx∈[﹣1,1],∴f(sinx)=(a﹣2)sinx+4,
“h(x)=f(sinx)﹣2=(a﹣2)sinx+2存在零点”等价于“方程(a﹣2)sinx+2=0有解”,
亦即有解,
∴,…(11分)
解得a≤0或a≥4,…(13分)
∴a的取值范围为(﹣∞,0]∪[4,+∞)…(14分)
【点评】本题主要考查分段函数的应用,利用分段函数的表达式结合一元二次函数的性质,是解决本题的关键.
20.【答案】
【解析】解:(1)∵函数f (x )=(sinx+cosx )2+cos2x=1+sin2x+cos2x=1+
sin (2x+),
∴它的最小正周期为
=π.
(2)在区间
上,2x+∈[,],故当2x+=时,f (x )取得最小值为 1+×(﹣)=0,
当2x+=时,f (x )取得最大值为 1+×1=1+.
21.【答案】(1)2,2==q d ;(2)12
326-+-
=n n n S .【解析】
(2)
12
12--=n n n n b a ,………………6分12212
1223225231---+-++++=n n n n n S ,①n
n n n n S 212232252321211321-+-++++=- .②……………8分①-②得n n n n n S 2122222222212`1221--+++++=-- 23112222211222222n n n n S --=++++-L ,…………10分所以1
2326-+-=n n n S .………………12分
考点:等差数列的概念与通项公式,错位相减法求和,等比数列的概念与通项公式.
【方法点晴】本题主要考查等差数列和等比数列的通项公式以及数列的求和,通过设}{n a 的公差为d ,}{n b 的公比为,根据等差数列和等比数列的通项公式,联立方程求得d 和,进而可得}{n a ,}{n b 的通项公式;
(2)数列}a {n
n b 的通项公式由等差数列和等比数列对应项相乘构成,需用错位相减法求得前项和n S .22.【答案】
【解析】解:(1)当m=3时,由x 2﹣2x ﹣3<0⇒﹣1<x <3,由>1⇒﹣1<x <5,
∴A ∩B={x|﹣1<x <3};
(2)若A ∩B={x|﹣1<x <4},
∵A=(﹣1,5),
∴4是方程x 2﹣2x ﹣m=0的一个根,
∴m=8,
此时B=(﹣2,4),满足A ∩B=(﹣1,4).
∴m=8.
23.【答案】
【解析】解:(1)y=﹣2x 2+40x ﹣98,x ∈N *.
(2)由﹣2x 2+40x ﹣98>0解得,
,且x ∈N *,所以x=3,4,,17,故从第三年开始盈利.
(3)由
,当且仅当x=7时“=”号成立,所以按第一方案处理总利润为﹣2×72+40×7﹣98+30=114(万元).
由y=﹣2x 2+40x ﹣98=﹣2(x ﹣10)2+102≤102,
所以按第二方案处理总利润为102+12=114(万元).
∴由于第一方案使用时间短,则选第一方案较合理.
24.【答案】(1)或;(2).
1a =5a =-3a >【解析】
(2) .
{}{}1,2,1,2A A B ==U ①无实根,, 解得; ()()22
,2150B x a x a =∅+-+-=0∆<3a >② 中只含有一个元素,仅有一个实根, B ()()222150x a x a +-+-=故舍去;
{}{}0,3,2,2,1,2a B A B ∆===-=-U ③中只含有两个元素,使 两个实根为和, B ()()
222150x a x a +-+-=需要满足方程组无根,故舍去, 综上所述]()2212121=a 5
a ⎧+=--⎪⎨⨯-⎪⎩3a >考点:集合的运算及其应用.。