2020-2021济南市九年级数学上期末第一次模拟试题(及答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. B. C. D.
11.若抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,则k的取值范围为()
A.k>﹣1B.k≥﹣1C.k>﹣1且k≠0D.k≥﹣1且k≠0
12.用配方法解方程x2+2x﹣5=0时,原方程应变形为( )
A.(x﹣1)2=6B.(x+1)2=6C.(x+2)2=9D.(x﹣2)2=9
(2)求出小于300的所有“差数”的和,若这个和为 ,请判断 是不是“差数”,若是,请求出 ;若不是,请说明理由.
24.如图,等腰Rt△ABC中,BA=BC,∠ABC=90°,点D在AC上,将△ABD绕点B沿顺时针方向旋转90°后,得到△CBE
(1)求∠DCE的度数;
(2)若AB=4,CD=3AD,求DE的长.
【详解】
解: ,
故选:A.
【点ห้องสมุดไป่ตู้】
本题主要考查的是配方法,正确的掌握配方的步骤是解题的关键.
5.D
解析:D
【解析】
【分析】
利用表中数据得到直线与抛物线的交点为(-1,0)和(4,5),-1<x<4时,y1>y2,从而得到当y2>y1时,自变量x的取值范围.
【详解】
∵当x=0时,y1=y2=0;当x=4时,y1=y2=5;
6.C
解析:C
【解析】
因为正八边形的每个内角为 ,不能整除360度,故选C.
7.A
解析:A
【解析】
把 向右平移3个单位长度变为: ,再向下平移5个单位长度变为: .故选A.
8.D
解析:D
【解析】
【分析】
连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.
19.飞机着陆后滑行的距离s(单位:米)关于滑行的时间t(单位:秒)的函数解析式是 ,则飞机着陆后滑行的最长时间为秒.
20.在平面直角坐标系中,抛物线y=x2的图象如图所示.已知A点坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4……,依次进行下去,则点A2019的坐标为_______.
23.若一个三位数的百位上的数字减去十位上的数字等于其个位上的数字,则称这个三位数为“差数”,同时,如果百位上的数字为 、十位上的数字为 ,三位数 是“差数”,我们就记: ,其中, , .例如三位数514.∵ ,∴514是“差数”,∴ .
(1)已知一个三位数 的百位上的数字是6,若 是“差数”, ,求 的值;
【详解】
连接AO、BO、CO,
∵AC是⊙O内接正四边形的一边,
∴∠AOC=360°÷4=90°,
∵BC是⊙O内接正六边形的一边,
∴∠BOC=360°÷6=60°,
∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,
∴n=360°÷30°=12;
故选:D.
【点睛】
本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.
10.C
解析:C
【解析】
【分析】
【详解】
解:根据题意,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,因此可知使与图中阴影部分构成轴对称图形的概率为
故选C
11.C
解析:C
【解析】
【分析】
根据抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,得出b2﹣4ac>0,进而求出k的取值范围.
当x=1时, ,
∴无论a为何值,函数图象一定经过(1,-4),故C正确;
当a=0时,y=-4x,此时函数为一次函数,与x轴只有一个交点,故D错误;
故选D.
【点睛】
本题考查了二次函数的图象与性质,以及一次函数与x轴的交点问题,熟练掌握二次函数的性质是解题的关键.
4.A
解析:A
【解析】
【分析】
根据配方法,先提取二次项的系数-3,得到 ,再将括号里的配成完全平方式即可得出结果.
B.若 ,当 时,y随x的增大而增大
C.无论a为何值时,函数图象一定经过点
D.无论a为何值时,函数图象与x轴都有两个交点
4.二次函数 变形为 的形式,正确的是()
A. B.
C. D.
5.已知一次函数 和二次函数 部分自变量和对应的函数值如表:
x

-1
0
2
4
5

y1

0
1
3
5
6

y2

0
-1
0
5
9

当y2>y1时,自变量x的取值范围是
16.半径为2的圆被四等分切割成四条相等的弧,将四个弧首尾顺次相连拼成如图所示的恒星图型,那么这个恒星的面积等于______.
17.△ABC中,∠A=90°,AB=AC,以A为圆心的圆切BC于点D,若BC=12cm,则⊙A的半径为_____cm.
18.某市为了扎实落实脱贫攻坚中“两不愁、三保障”的住房保障工作,去年已投入5亿元资金,并计划投入资金逐年增长,明年将投入7.2亿元资金用于保障性住房建设,则这两年投入资金的年平均增长率为________.
22.某水果商场经销一种高档水果,原价每千克50元.
(1)连续两次降价后每千克32元,若每次下降的百分率相同.求每次下降的百分率;
(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,但商场规定每千克涨价不能超过8元,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,那么每千克应涨价多少元?
三、解答题
21.4张相同的卡片上分别写有数字1、2、3、4,将卡片背面朝上,洗匀后从中任意抽取1张,将卡片上的数字作为被减数;一只不透明的袋子中装有标号为1、2、3的3个小球,这些球除标号外都相同,搅匀后从中任意摸出1个球,将摸到的球的标号作为减数.
(1)求这两个数的差为0的概率;
(2)游戏规则规定:当抽到的这两个数的差为非负数时,甲获胜;否则,乙获胜.这样的规则公平吗?如果不公平,请设计一个公平的规则,并说明理由.
∴直线与抛物线的交点为(-1,0)和(4,5),
而-1<x<4时,y1>y2,
∴当y2>y1时,自变量x的取值范围是x<-1或x>4.
故选D.
【点睛】
本题考查了二次函数与不等式:对于二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.
B.将y=﹣2(x﹣1)2的图象向左平移3个单位得到y=﹣2(x+2)2的图象
C.将y=﹣2x2的图象沿x轴翻折得到y=2x2的图象
D.将y=﹣2(x﹣1)2+1的图象沿y轴翻折得到y=﹣2(x+1)2﹣1的图象
10.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )
3.D
解析:D
【解析】
【分析】
将a的值代入函数表达式,根据二次函数的图象与性质可判断A、B,将x=1代入函数表达式可判断C,当a=0时,y=-4x是一次函数,与x轴只有一个交点,可判断D错误.
【详解】
当 时, ,
∴当 时,函数取得最大值5,故A正确;
当 时, ,
∴函数图象开口向上,对称轴为 ,
∴当 时,y随x的增大而增大,故B正确;
2.C
解析:C
【解析】
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A、图形既不是轴对称图形是中心对称图形,
B、图形是轴对称图形,
C、图形是轴对称图形,也是中心对称轴图形,
D、图形是轴对称图形.
故选C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
C选项,将y=﹣2x2的图象沿x轴翻折得到y=2x2的图象,故C选项不符合题意;
D选项,将y=﹣2(x﹣1)2+1的图象沿y轴翻折得到y=﹣2(x+1)2+1的图象,故D选项符合题意.
故选D.
【点睛】
本题主要考查了二次函数图象与几何变换,熟练掌握平移变换只改变图形的位置不改变图形的形状与大小的关键.
9.D
解析:D
【解析】
【分析】
根据平移变换只改变图形的位置不改变图形的形状与大小对各选项分析判断后利用排除法求解.
【详解】
A选项,将y=﹣2x2+1的图象向下平移3个单位得到y=﹣2x2﹣2的图象,故A选项不符合题意;
B选项,将y=﹣2(x﹣1)2的图象向左平移3个单位得到y=﹣2(x+2)2的图象,故B选项不符合题意;
C.y=2(x﹣3)2+5D.y=2(x+3)2﹣5
8.如图,AC是⊙O的内接正四边形的一边,点B在弧AC上,且BC是⊙O的内接正六边形的一边.若AB是⊙O的内接正n边形的一边,则n的值为( )
A.6B.8C.10D.12
9.关于下列二次函数图象之间的变换,叙述错误的是( )
A.将y=﹣2x2+1的图象向下平移3个单位得到y=﹣2x2﹣2的图象
【详解】
∵二次函数y=kx2﹣2x﹣1的图象与x轴有两个交点,
∴b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0,
∴k>﹣1,
∵抛物线y=kx2﹣2x﹣1为二次函数,
∴k≠0,
则k的取值范围为k>﹣1且k≠0,
故选C.
【点睛】
本题考查了二次函数y=ax2+bx+c的图象与x轴交点的个数的判断,熟练掌握抛物线与x轴交点的个数与b2-4ac的关系是解题的关键.注意二次项系数不等于0.
解析:24π
【解析】
【分析】
根据整体思想,可知S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB=S扇形ABB′,再利用扇形面积公式计算即可.
【详解】
解:∵S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB
而根据旋转的性质可知S半圆AB′=S半圆AB
∴S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB=S扇形ABB′
二、填空题
13.如图,将半径为6的半圆,绕点A逆时针旋转60°,使点B落到点B′处,则图中阴影部分的面积是_____.
14.一个不透明的口袋中有5个完全相同的小球,分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号是偶数的概率为.
15.如图,已知射线 ,点 从B点出发,以每秒1个单位长度沿射线 向右运动;同时射线 绕点 顺时针旋转一周,当射线 停止运动时,点 随之停止运动.以 为圆心,1个单位长度为半径画圆,若运动两秒后,射线 与 恰好有且只有一个公共点,则射线 旋转的速度为每秒______度.
12.B
解析:B
【解析】
x2+2x﹣5=0,
x2+2x=5,
x2+2x+1=5+1,
(x+1)2=6,
故选B.
二、填空题
13.24π【解析】【分析】根据整体思想可知S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB=S扇形ABB′再利用扇形面积公式计算即可【详解】解:∵S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB而根据旋
25.为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.
(1)求这两年该县投入教育经费的年平均增长率;
(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.
A.-1<x<2B.4<x<5C.x<-1或x>5D.x<-1或x>4
6.某人到瓷砖商店去购买一种多边形形状的瓷砖,用来铺设无缝地板,他购买的瓷砖形状不可以是( )
A.正三角形B.矩形C.正八边形D.正六边形
7.将抛物线y=2x2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为()
A.y=2(x﹣3)2﹣5B.y=2(x+3)2+5
2020-2021济南市九年级数学上期末第一次模拟试题(及答案)
一、选择题
1.下列图形中,可以看作是中心对称图形的是()
A. B. C. D.
2.下列智能手机的功能图标中,既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
3.已知y关于x的函数表达式是 ,下列结论不正确的是()
A.若 ,函数的最大值是5
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【解析】
分析:根据中心对称的定义,结合所给图形即可作出判断.
详解:A、是中心对称图形,故本选项正确;
B、不是中心对称图形,故本选项错误;
C、不是中心对称图形,故本选项错误;
D、不是中心对称图形,故本选项错误;
故选:A.
点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.
相关文档
最新文档