七年级数学上册专题第3讲绝对值重点、考点知识总结及练习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3讲绝对值
知识点1 绝对值的非负性
绝对值的性质:
互为相反数的两数绝对值相等.若|x|=a (a≥0),则x=±a.
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
【典例】
1.若|a|=3,|b|=2,且a <0<b ,则a 的相反数与b 的和为________.
【方法总结】
根据绝对值的性质即可求得a ,b 的值,然后代入数据即可求解.本题考查了绝对值的性质,正确确定a ,b 的值是解题的关键. 2.已知|x-2017|+|y ﹣2016|=0,则x+y=____
【方法总结】
此题主要考查了绝对值的性质,关键是掌握绝对值具有非负性.由“若几个非负数的和为0,则每一个数都为0”可得x+2017=0,y ﹣2016=0,计算出x 、y 的值,进而可得答案.
【随堂练习】
1.(2017秋•兴文县校级期中)(1)已知|x ﹣5|=3,求x 的值; (2)已知n=4,且|x ﹣5|+|y ﹣2n|=0,求x ﹣y+8的值.
⎧⎪
⎪⎨⎪⎪⎩
绝对值的非负性比较大小
绝对值数轴与绝对值绝对值的几何意义(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩(0)(0)a a a a a ≥⎧⎪=⎨⎪-<⎩(0)(0)a a a a a >⎧⎪=⎨
⎪-≤⎩
2.(2017秋•昌平区校级期中)已知|a+1|与|b﹣2|互为相反数,求a﹣b的值.
3.(2017秋•临清市期中)已知|x﹣4|+|y+2|=0,求y﹣x的值.
知识点2比较大小
两个正数,绝对值大的正数大;两个负数,绝对值大的负数小.
正数都大于0,负数都小于0,正数大于一切负数.
【典例】
1.有理数﹣2,0,﹣3.2,4中最小的数是()
A. ﹣2
B. 0
C. ﹣3.2
D. 4
【方法总结】
先将各数两两比较,再按照从小到大顺序排列,找出最小的数即可.此题考查了有理数比较大小,牢记两个有理数比较大小的方法是解本题的关键.
【随堂练习】
1.(2018•龙湖区一模)a,b,c三个数在数轴上的位置如图所示,则这三个数中绝对值最大的是()
A.a B.b C.c D.无法确定
2.(2018•石狮市模拟)如图,下列关于数m、n的说法正确的是()
A.m>n B.m=n C.m>﹣n D.m=﹣n
3.(2018春•南岗区期末)比较大小:﹣(﹣0.3)____|﹣|(填<、>、=).
知识点3数轴与绝对值
绝对值:数轴上表示一个数的点与原点的距离叫做这个数的绝对值.
在数轴上,小于0的点在原点左边,大于0的点在原点右边.
【典例】
1.已知|a|=2,|b|=2,|c|=4,且有理数a,b,c在数轴上的位置如图所示,试求a,b,c的值.
【方法总结】
先根据绝对值的意义得到a=±2,b=±2,c=±4,然后根据数轴表示数的方法得到a<0,b>0,c>0,从而得a、b、c的值.
本题考查了绝对值的性质和数在数轴上的表示,体现了数形结合的思想.
【随堂练习】
1.(2016秋•句容市校级期末)在数轴上表示a,0,1,b四个数的点如图所示,已知O为AB的中点.
求|a+b|++|a+1|的值.
2.(2017秋•无锡期中)有理数a、b、c在数轴上的位置如图:
(1)判断正负,用“>”或“<”填空:b﹣c_____0,
a+b_____0,c﹣a______0.
(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.
知识点4 绝对值的几何意义
式子|x﹣a|的几何意义是数轴上表示数x的点与表示数a的点之间的距离.
∣x-a∣+∣x-b∣的几何意义是数轴上表示x的点到表示a的点和表示b的点的距离和. 【典例】
1.有理数a、b、c、d所表示的点在数轴上的位置如图所示,若|a﹣c|=|b﹣d|=4,|a﹣d|=5,则|b﹣c|=______
【方法总结】
根据绝对值的几何意义,将两个数的差的绝对值看成是这两个点之间的距离,在数轴上由线段的和差关系可求|a﹣b|,|c﹣d|,再根据线段的和差关系即可求解.
本题考查了绝对值、数轴,熟练掌握绝对值的几何意义是解题的关键.用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.
2. 同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:
(1)数轴上表示5与﹣2两点之间的距离是___________,
(2)数轴上表示x与2的两点之间的距离可以表示为___________.
(3)如果|x﹣2|=5,则x=___________.
(4)同理|x-(-3)|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是______________________.
(5)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.
【方法总结】
本题是一道去绝对值和数轴相联系的综合试题,体现了数形结合的思想.式子|x﹣a|的几何意义是数轴上表示数x的点与表示数a的点之间的距离,式子∣x-a∣+∣x-b∣的几何意义是数轴上表示x的点到表示a的点和表示b的点的距离和.
数形结合往往能使问题变得直观、简洁,省去复杂的分析过程.
【随堂练习】
1.(2016秋•思明区校级期末)同学们都知道|5﹣(﹣2)|表示5与(﹣2)之差的绝对值,也可理解为5与﹣2两数在数轴上所对的两点之间的距离,试探索:(1)求|5﹣(﹣2)|=____.
(2)找出所有符合条件的整数x,使得|x+5|+|x﹣2|=7成立的整数是_____(3)由以上探索猜想,对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,写出最小值;如果没有,说明理由.
2.(2017秋•宝应县月考)已知A、B在数轴上分别表示a、b.
(1)对照数轴填写下表:
(2)若A、B两点间的距离记为d,试问d和a、b(a<b)有何数量关系;(3)写出数轴上到﹣1和1的距离之和为2的所有整数;
(4)若点C表示的数为x,代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是_____,此时代数式|x+1|+|x﹣2|的最小值是_____.
3.(2017秋•开福区校级月考)同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)求|4﹣(﹣2)|=____;
(2)若|x﹣2|=5,则x=_____;
(3)请你找出所有符合条件的整数x,使得|1﹣x|+|x+2|=3.
综合集训
1.在﹣(﹣2),﹣|﹣7|,﹣|+1|,|﹣2
3
|中,负数有_______________.
2.若|m|=|﹣7|,则m=__________.
3.在数﹣5,﹣1
3,−2
5
,−1
6
中,大于﹣1
5
的数有___________.
4.填空:
(1)﹣3
4
的绝对值的相反数是________,﹣0.3的相反数的绝对值是________;
(2)在数轴上,到原点的距离是2的点所表示的数是________;
(3)互为相反数的两个数在数轴上对应点之间的距离为6,这两个数分别为________和________;
(4)相反数等于它本身的数是________,相反数等于它的绝对值的数是_______.
5.已知|x﹣2|+|y-3|=0,则x+y=________.
6.若|x+1|+|y﹣2|+|z+3|=0,求|x|+|y|+|z|的值.
7.如图表示数轴上四个点的位置关系,且它们表示的数分别为p,q,r,s.若|p﹣r|=10,|p ﹣s|=12,|q﹣s|=9,求|q﹣r|的值.
8.已知|a﹣2|+|b﹣3|+|c﹣4|=0,求式子a+2b+3c的值.
9.如果∣x-3∣+∣x+1∣=4,则x的取值范围是什么?
10.阅读:已知点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为|AB|=|a ﹣b|.
理解:
(1)数轴上表示2和﹣4的两点之间的距离是__________;
(2)数轴上表示x和﹣6的两点A和B之间的距离是__________;
应用:
(1)当代数式|x﹣1|+|x-(-2)|取最小值时,相应的x的取值范围是_______,最小值为_____;(2)当x≤﹣2时,代数式|x﹣1|﹣|x-(-2)|的值_____3(填写“≥、≤或=”).。