平顺县第三高级中学2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平顺县第三高级中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )
A .
B .ln (x 2+1)>ln (y 2+1)
C .x 3>y 3
D .sinx >siny
2. 从1,2,3,4,5中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是( )
A .
B .
C .
D .
3. 设,,a b c R ∈,且a b >,则( ) A .ac bc > B .
11
a b
< C .22a b > D .33a b > 4. 已知条件p :|x+1|≤2,条件q :x ≤a ,且p 是q 的充分不必要条件,则a 的取值范围是( ) A .a ≥1 B .a ≤1 C .a ≥﹣1
D .a ≤﹣3
5. 全称命题:∀x ∈R ,x 2>0的否定是( )
A .∀x ∈R ,x 2≤0
B .∃x ∈R ,x 2>0
C .∃x ∈R ,x 2<0
D .∃x ∈R ,x 2≤0
6. 设全集U={1,2,3,4,5,6},设集合P={1,2,3,4},Q={3,4,5},则P ∩(∁U Q )=( ) A .{1,2,3,4,6} B .{1,2,3,4,5} C .{1,2,5}
D .{1,2}
7. 一个几何体的三视图如图所示,如果该几何体的侧面面积为12π,则该几何体的体积是( )
A .4π
B .12π
C .16π
D .48π
8. 如果函数f (x )的图象关于原点对称,在区间上是减函数,且最小值为3,那么f (x )在区间上是( ) A .增函数且最小值为3
B .增函数且最大值为3
C .减函数且最小值为﹣3
D .减函数且最大值为﹣3
9. 12,e e 是平面内不共线的两向量,已知12AB e ke =-,123CD e e =-,若,,A B D 三点共线,则的值是( )
A .1
B .2
C .-1
D .-2
10.△ABC的三内角A,B,C所对边长分别是a,b,c,设向量,
,若,则角B的大小为()
A.B.C.D.
11.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()
A.(,+∞)B.(1,)C.(2.+∞)D.(1,2)
12.数列{a n}的首项a1=1,a n+1=a n+2n,则a5=()
A.B.20 C.21 D.31
二、填空题
13.已知双曲线的一条渐近线方程为y=x,则实数m等于.
14.已知向量、满足,则|+|=.
15.在棱长为1的正方体ABCD﹣A1B1C1D1中,M是A1D1的中点,点P在侧面BCC1B1上运动.现有下列命题:
①若点P总保持PA⊥BD1,则动点P的轨迹所在曲线是直线;
②若点P到点A的距离为,则动点P的轨迹所在曲线是圆;
③若P满足∠MAP=∠MAC1,则动点P的轨迹所在曲线是椭圆;
④若P到直线BC与直线C1D1的距离比为1:2,则动点P的轨迹所在曲线是双曲线;
⑤若P到直线AD与直线CC1的距离相等,则动点P的轨迹所在曲线是抛物丝.
其中真命题是(写出所有真命题的序号)
16.下列函数中,①;②y=;③y=log2x+log x2(x>0且x≠1);④y=3x+3﹣x;⑤;
⑥;⑦y=log2x2+2最小值为2的函数是(只填序号)
17.设x,y满足的约束条件,则z=x+2y的最大值为.
18.已知圆C1:(x﹣2)2+(y﹣3)2=1,圆C2:(x﹣3)2+(y﹣4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值.
三、解答题
19.某校为选拔参加“央视猜灯谜大赛”的队员,在校内组织猜灯谜竞赛.规定:第一阶段知识测试成绩不小于160分的学生进入第二阶段比赛.现有200名学生参加知识测试,并将所有测试成绩绘制成如下所示的频率分布直方图.
(Ⅰ)估算这200名学生测试成绩的中位数,并求进入第二阶段比赛的学生人数;
(Ⅱ)将进入第二阶段的学生分成若干队进行比赛.现甲、乙两队在比赛中均已获得120分,进入最后抢答阶段.抢答规则:抢到的队每次需猜3条谜语,猜对1条得20分,猜错1条扣20分.根据经验,甲队猜对每条
谜语的概率均为,乙队猜对前两条的概率均为,猜对第3条的概率为.若这两队抢到答题的机会均等,
您做为场外观众想支持这两队中的优胜队,会把支持票投给哪队?
20.已知一个几何体的三视图如图所示.
(Ⅰ)求此几何体的表面积;
(Ⅱ)在如图的正视图中,如果点A为所在线段中点,点B为顶点,求在几何体侧面上从点A到点B的最短路径的长.
21.函数。

定义数列如下:是过两点的直线
与轴交点的横坐标。

(1)证明:;
(2)求数列的通项公式。

22.某运动员射击一次所得环数X的分布如下:
(I)求该运动员两次都命中7环的概率;
(Ⅱ)求ξ的数学期望Eξ.
23.已知等差数列{a n}满足a1+a2=3,a4﹣a3=1.设等比数列{b n}且b2=a4,b3=a8
(Ⅰ)求数列{a n},{b n}的通项公式;
(Ⅱ)设c n=a n+b n,求数列{c n}前n项的和S n.
24.已知函数f(x)=xlnx+ax(a∈R).
(Ⅰ)若a=﹣2,求函数f(x)的单调区间;
(Ⅱ)若对任意x∈(1,+∞),f(x)>k(x﹣1)+ax﹣x恒成立,求正整数k的值.(参考数据:ln2=0.6931,ln3=1.0986)
平顺县第三高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】C
【解析】解:∵实数x、y满足a x<a y(1>a>0),∴y<x.
对于A.取x=1,y=0,不成立,因此不正确;
对于B.取y=﹣2,x=﹣1,ln(x2+1)>ln(y2+1)不成立;
对于C.利用y=x3在R上单调递增,可得x3>y3,正确;
对于D.取y=﹣π,x=,但是sinx=,siny=,sinx>siny不成立,不正确.
故选:C.
【点评】本题考查了函数的单调性、不等式的性质,考查了推理能力,属于基础题.
2.【答案】A
【解析】解:从1,2,3,4,5中任取3个不同的数的基本事件有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10个,
取出的3个数可作为三角形的三边边长,根据两边之和大于第三边求得满足条件的基本事件有(2,3,4),(2,4,5),(3,4,5)共3个,
故取出的3个数可作为三角形的三边边长的概率P=.
故选:A.
【点评】本题主要考查了古典概型的概率的求法,关键是不重不漏的列举出所有的基本事件.
3.【答案】D
【解析】
考点:不等式的恒等变换.
4.【答案】A
【解析】解:由|x+1|≤2得﹣3≤x≤1,即p:﹣3≤x≤1,
若p是q的充分不必要条件,
则a≥1,
故选:A.
【点评】本题主要考查充分条件和必要条件的判断,比较基础.
5.【答案】D
【解析】解:命题:∀x∈R,x2>0的否定是:
∃x∈R,x2≤0.
故选D.
【点评】这类问题的常见错误是没有把全称量词改为存在量词,或者对于“>”的否定用“<”了.这里就有注意量词的否定形式.如“都是”的否定是“不都是”,而不是“都不是”.特称命题的否定是全称命题,“存在”对应“任意”.
6.【答案】D
【解析】解:∵U={1,2,3,4,5,6},Q={3,4,5},
∴∁U Q={1,2,6},又P={1,2,3,4},
∴P∩(C U Q)={1,2}
故选D.
7.【答案】B
【解析】解:由三视图可知几何体是底面半径为2的圆柱,
∴几何体的侧面积为2π×2×h=12π,解得h=3,
∴几何体的体积V=π×22×3=12π.
故选B.
【点评】本题考查了圆柱的三视图,结构特征,体积,表面积计算,属于基础题.
8.【答案】D
【解析】解:由奇函数的性质可知,若奇函数f(x)在区间上是减函数,且最小值3,
则那么f(x)在区间上为减函数,且有最大值为﹣3,
故选:D
【点评】本题主要考查函数奇偶性和单调性之间的关系的应用,比较基础.
9.【答案】B
【解析】
考点:向量共线定理.
10.【答案】B
【解析】解:若,
则(a+b)(sinB﹣sinA)﹣sinC(a+c)=0,
由正弦定理可得:(a+b)(b﹣a)﹣c(a+c)=0,
化为a2
+c2﹣b2=﹣ac,
∴cosB==﹣,
∵B∈(0,π),
∴B=,
故选:B.
【点评】本题考查了正弦定理与余弦定理的应用、向量数量积运算性质,考查了推理能力与计算能力,是一道基础题.
11.【答案】C
【解析】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交
∴圆心到渐近线的距离小于半径,即<1
∴3a2<b2,
∴c2=a2+b2>4a2,
∴e=>2
故选:C.
【点评】本题主要考查了双曲线的简单性质,直线与圆的位置关系,点到直线的距离公式等.考查了学生数形结合的思想的运用.
12.【答案】C
【解析】解:由a n+1=a n+2n,得a n+1﹣a n=2n,又a1=1,
∴a5=(a5﹣a4)+(a4﹣a3)+(a3﹣a2)+(a2﹣a1)+a1
=2(4+3+2+1)+1=21.
故选:C.
【点评】本题考查数列递推式,训练了累加法求数列的通项公式,是基础题.
二、填空题
13.【答案】4.
【解析】解:∵双曲线的渐近线方程为y=x,
又已知一条渐近线方程为y=x,∴=2,m=4,
故答案为4.
【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,求得渐近线方程为y=x,是解题的关键.
14.【答案】5.
【解析】解:∵=(1,0)+(2,4)=(3,4).
∴==5.
故答案为:5.
【点评】本题考查了向量的运算法则和模的计算公式,属于基础题.
15.【答案】①②④
【解析】解:对于①,∵BD1⊥面AB1C,∴动点P的轨迹所在曲线是直线B1C,①正确;
对于②,满足到点A的距离为的点集是球,∴点P应为平面截球体所得截痕,即轨迹所在曲线为圆,
②正确;
对于③,满足条件∠MAP=∠MAC1的点P应为以AM为轴,以AC1为母线的圆锥,平面BB1C1C是一个与轴AM平行的平面,
又点P在BB1C1C所在的平面上,故P点轨迹所在曲线是双曲线一支,③错误;
对于④,P到直线C1D1的距离,即到点C1的距离与到直线BC的距离比为2:1,
∴动点P的轨迹所在曲线是以C1为焦点,以直线BC为准线的双曲线,④正确;
对于⑤,如图建立空间直角坐标系,作PE⊥BC,EF⊥AD,PG⊥CC1,连接PF,
设点P坐标为(x,y,0),由|PF|=|PG|,得,即x2﹣y2=1,
∴P点轨迹所在曲线是双曲线,⑤错误.
故答案为:①②④.
【点评】本题考查了命题的真假判断与应用,考查了圆锥曲线的定义和方方程,考查了学生的空间想象能力和思维能力,是中档题.
16.【答案】①③④⑥
【解析】解:①∵x与同号,故=|x|+||,由|x|>0,||>0
∴=|x|+||≥2=≥2,故正确;
②y==+,由>0,>0,
∴y=+≥2=2,故正确;
③当<x<1时,log2x<0时,y=log2x+log x2≤﹣2,故错误;
④由3x>0,3﹣x>0,
∴y=3x+3﹣x≥2=2,故正确;
⑤当x<0时,≤﹣6,故错误;
⑥∵>0,>0,
则≥=2,故正确;
⑦∵x2>0,故y=log2x2∈(﹣∞,+∞),故y=log2x2+2∈(﹣∞,+∞),故错误;
故答案为:①③④⑥
【点评】本题主要考查了基本不等式在求解函数的最值中的应用,解题的关键是基本不等式的应用条件的判断
17.【答案】7.
【解析】解:作出不等式对应的平面区域,
由z=x+2y,得y=﹣,
平移直线y=﹣,由图象可知当直线y=﹣经过点B时,直线y=﹣的截距最大,此时z最大.
由,得,
即B(3,2),
此时z的最大值为z=1+2×3=1+6=7,
故答案为:7.
【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.
18.【答案】5﹣4.
【解析】解:如图,圆C1关于x轴的对称圆的圆心坐标A(2,﹣3),半径为1,圆C2的圆心坐标(3,4),半径为3,
|PM|+|PN|的最小值为圆A与圆C2的圆心距减去两个圆的半径和,
即:﹣4=5﹣4.
故答案为:5﹣4.
【点评】本题考查圆的对称圆的方程的求法,考查两个圆的位置关系,两点距离公式的应用,考查转化思想与计算能力,考查数形结合的数学思想,属于中档题.
三、解答题
19.【答案】
【解析】解:(Ⅰ)设测试成绩的中位数为x,由频率分布直方图得,
(0.0015+0.019)×20+(x﹣140)×0.025=0.5,
解得:x=143.6.
∴测试成绩中位数为143.6.
进入第二阶段的学生人数为200×(0.003+0.0015)×20=18人.
(Ⅱ)设最后抢答阶段甲、乙两队猜对灯谜的条数分别为ξ、η,
则ξ~B(3,),
∴E(ξ)=.
∴最后抢答阶段甲队得分的期望为[]×20=30,
∵P(η=0)=,
P(η=1)=,
P(η=2)=,
P(η=3)=,
∴Eη=.
∴最后抢答阶段乙队得分的期望为[]×20=24.
∴120+30>120+24,
∴支持票投给甲队.
【点评】本小题主要考查概率、概率与统计等基础知识,考查推理论证能力、数据处理能力、运算求解能力及应用意识,考查或然与必然的思想,属中档题.
20.【答案】
【解析】解:(Ⅰ)由三视图知:几何体是一个圆锥与一个圆柱的组合体,且圆锥与圆柱的底面半径为2,母线长分别为2、4,
其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和.
S圆锥侧=×2π×2×2=4π;
S圆柱侧=2π×2×4=16π;
S圆柱底=π×22=4π.
∴几何体的表面积S=20π+4π;
(Ⅱ)沿A点与B点所在母线剪开圆柱侧面,如图:
则AB===2,
∴以从A点到B点在侧面上的最短路径的长为2.
21.【答案】
【解析】(1)为,故点在函数的图像上,故由所给出的两点
,可知,直线斜率一定存在。

故有
直线的直线方程为,令,可求得
所以
下面用数学归纳法证明
当时,,满足
假设时,成立,则当时,
22.【答案】
【解析】解:(1)设A=“该运动员两次都命中7环”,
则P(A)=0.2×0.2=0.04.
(2)依题意ξ在可能取值为:7、8、9、10
且P(ξ=7)=0.04,
P(ξ=8)=2×0.2×0.3+0.32=0.21,
P(ξ=9)=2×0.2×0.3+2×0.3×0.3×0.32=0.39,
P(ξ=10)=2×0.2×0.2+2×0.3×0.2+2×0.3×0.2+0.22=0.36,
∴ξ的分布列为:
ξ7 8 9 10
P 0.04 0.21 0.39 0.36
ξ的期望为Eξ=7×0.04+8×0.21+9×0.39+10×0.36=9.07.
【点评】本题考查概率的求法,考查离散型随机变量的数学期望的求法,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.
23.【答案】
【解析】解:(1)设等差数列{a n}的公差为d,则由,可得,…
解得:,
∴由等差数列通项公式可知:a n=a1+(n﹣1)d=n,
∴数列{a n}的通项公式a n=n,
∴a4=4,a8=8
设等比数列{b n}的公比为q,则,
解得,
∴;
(2)∵…
∴,
=,
=,
∴数列{c n}前n项的和S n=.
24.【答案】
【解析】解:(I)a=﹣2时,f(x)=xlnx﹣2x,则f′(x)=lnx﹣1.
令f′(x)=0得x=e,
当0<x<e时,f′(x)<0,当x>e时,f′(x)>0,
∴f(x)的单调递减区间是(0,e),单调递增区间为(e,+∞).
(II)若对任意x∈(1,+∞),f(x)>k(x﹣1)+ax﹣x恒成立,
则xlnx+ax>k(x﹣1)+ax﹣x恒成立,即k(x﹣1)<xlnx+ax﹣ax+x恒成立,
又x﹣1>0,则k<对任意x∈(1,+∞)恒成立,
设h(x)=,则h′(x)=.
设m(x)=x﹣lnx﹣2,则m′(x)=1﹣,
∵x∈(1,+∞),∴m′(x)>0,则m(x)在(1,+∞)上是增函数.
∵m(1)=﹣1<0,m(2)=﹣ln2<0,m(3)=1﹣ln3<0,m(4)=2﹣ln4>0,
∴存在x0∈(3,4),使得m(x0)=0,
当x∈(1,x0)时,m(x)<0,即h′(x)<0,
当x∈(x0,+∞)时,m(x)>0,h′(x)>0,
∴h(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,
∴h(x)的最小值h min(x)=h(x0)=.
∵m(x0)=x0﹣lnx0﹣2=0,∴lnx0=x0﹣2.∴h(x0)==x0.
∴k<h min(x)=x0.
∵3<x0<4,
∴k≤3.
∴k的值为1,2,3.
【点评】本题考查了利用导数研究函数的单调性,函数的最值,函数恒成立问题,构造函数求出h(x)的最小值是解题关键,属于难题.。

相关文档
最新文档