膨胀式温度计学习总结(模版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
膨胀式温度计学习总结(模版)
第一篇:膨胀式温度计学习总结(模版)
膨胀式温度计学习总结
这个星期重点学习了膨胀式的温度计,原理是物体受热时产生膨胀,可分为气体膨胀式,液体膨胀式和固体膨胀式。
气体膨胀式温度计一般在容器里装有氢或氮气,因为氢气和氦气的液化温度很低,接近于绝对零度,故它的测温范围很广,这种温度计精确度很高,多用于精密测量,我们工厂这种温度计比较少,故不再详细研究。
对于液体温度计,是根据物质的热胀冷缩原理制造的。
它利用作为介质的感温液体随温度变化而体积发生变化与玻璃随温度变化而体积变化之差来测量温度。
温度计所显示的示值即液体体积与玻璃毛细管体积变化的差值。
常用的有水银,以及甲苯、乙醇和煤油等有机液体,具有体膨胀系数大,粘度小,在高温下蒸气压低,化学性能稳定,不变质以及在较宽的温度范围内能保持液态等特点。
由于测温的范围达不到工业要求,一般用在生活上低温测量比较合适。
我重点学习了我们工厂比较多的双金属温度计,双金属温度计是一种测量中低温度的现场检测仪表。
可以直接测量各种生产过程中的-80℃-+500℃范围内液体蒸汽和气体介质温度。
工业用双金属温度计主要的元件是一个用两种或多种金属片叠压在一起组成的多层金属片,利用两种不同金属在温度改变时膨胀程度不同的原理工作的。
一端受热膨胀时,带动指针旋转,工作仪表便显示出热电势所应的温度值。
双金属温度计具有响应速度快、体积小、线性度好、较稳定,具备高温工作性能等的优点。
期间也和资深师傅讨论学习了温度计的相关知识,由于这个星期三才完成高压电工培训,所以还没来得及拆解温度计来深入了解内部结构,以后会找时间完成。
在学习方法有哪些疏忽的地方还请前辈指出来,谢谢。
第二篇:污泥膨胀
由于工艺控制不当,进水水质变化以及环境因素变化等原因会导致污泥膨胀、生物相异常、污泥上浮、生物泡沫出现等生物异常现象,这些问题如不立即解决,最终都会导致出水质量的降低。
1.污泥膨胀及其控制
污泥膨胀是活性污泥常见的一种异常现象,系指活性污泥由于某种因素的改变,产生沉降性能恶化,不能在二沉池内进行正常的泥水分离,污泥随出水流失。
发生污泥膨胀以后,流出的污泥会使出水SS 超标,如不立即采取控制措施,污泥继续流失会使曝气池的微生物量锐减,不能满足分解污染物的需要,从而最终导致出水BOD5也超标。
活性污泥的SVI值在100左右时,其沉降性能最佳,当SVI超过150时,预示着活性污泥即将或已经处于膨胀状态,应立即予以重视。
在沉降试验中,如发现区域沉降速度低于0.6m/h,也应引起重视。
在活性污泥镜检中,如发现丝状菌的丰度逐渐增大,至(d)级时,应予以重视,至(e)级时,污泥处于膨胀状态。
丝状菌丰度至(f)级,说明污泥处于严重膨胀状态。
污泥膨胀总体上分为两大类:丝状菌膨胀和非丝状菌膨胀。
前者系活性污泥续絮体中的丝状菌过度繁殖,导致的膨胀;后者系菌胶团细菌本身生理活动异常产生的膨胀。
(1)丝状菌膨胀的存在条件及成因正常的活性污泥中都含有一定量的丝状菌,它是形成活性污泥絮体的骨架材料。
活性污泥中丝状菌数量太少或没有,则形不成大的絮体,沉降性能不好;丝状菌过度繁殖,则形成丝状菌污泥膨胀。
在正常的环境中,菌胶团的生长速率大于丝状菌,不会出现丝状菌过度繁殖;如果环境条件发生变化,丝状菌由于其表面积较大,抵抗环境变化的能力比菌胶团细菌强,其数量超过菌胶团细菌,从而过度繁殖导致丝状菌污泥膨胀。
引起环境条件变化的因素有以下几个方面:1)进水中有机物质太少,导致微生物食料不足;2)进水中氮、磷营养物质不足;3)pH值太低,不利于细菌生长; 4)曝气池内F/M太低,微生物食料不足; 5)混合液内溶解氧DO太低,不能满足需要;6)进水水质或水量波动太大,对微生物造成冲击。
出现以上情况之一,均可为丝状菌过度繁殖提供必要条件,导致丝状菌污泥膨胀。
另外,丝状菌大量繁殖的适宜温度在25~30℃,因而夏季益发生丝状菌污泥膨胀。
以上所述的丝状菌指球衣菌,当入流污水“腐化”、产生出较多的H2S(超过1~2mg/L)时,还会导致丝状菌硫磺细菌(丝硫菌)的过量繁殖,导致丝硫菌污泥膨胀。
(2)非丝状菌膨胀的存在条件及成因非丝状菌膨胀系由于菌胶团细菌生理活动异常,导致活性污泥沉降性能的恶化。
这类污泥膨胀又可分二种,一种是由于进水口含有大量的溶解性的有机物,使污泥负荷F/M太高,而进水中又缺乏足够的氧、磷等营养物质,或者混合液内溶解氧不足。
高F/M时,细菌会很快把大量的有机物吸入体内,而由于缺乏氮、磷或DO不足,又不能在体内进行正常的分解代谢。
此时,细菌会向体外分泌出过量的多聚糖类物质。
这些物质由于分子式中含有很多氢氧基而具有较强的亲水性,使活性污泥的结合水高达400%(正常污泥结合水为100%左右),呈粘性的凝胶状,使活性污泥在二沉池内无法进行有效的泥水分离及浓缩。
这种污泥膨胀有时称为粘性膨胀。
另一种丝状菌膨胀是进水中含有较多的毒性物质,导致活性污泥中毒,使细菌不能分泌出足够量的粘性物质,形不成絮体,从而也无法在二沉池内进行泥水分离。
这种污泥膨胀称为低粘性膨胀或污泥的离散增长。
(3)污泥膨胀的控制措施污泥膨胀控制措施大体可分成三大类,一类是临时控制措施,另一类是工艺运行调节控制措施,第三类是永久性控制措施。
临时控制措施主要用于控制由于临时原因造成的污泥膨胀,防止污泥流失,导致SS超标。
临时控制措施包括污泥助沉法和灭菌法二类。
污泥助沉法系指向发生膨胀的污泥中加入助凝剂,增大活性污泥的密度,使之在二沉池内易于分离。
常用的助凝剂有聚合氯化铁、硫酸铁、硫酸铝和聚丙烯酰胺等有机高分子絮凝剂。
有的小处理厂还加粘土或硅藻土作为助凝剂。
助凝剂投加量不可太多,否则易破坏细菌的生物活性,降低处理效果。
FeCl3常用的投加量为5~10mg/L。
灭菌法系指向发生膨胀的污泥中投加化学药剂,杀灭或抑制丝状菌,从而达到
控制丝状菌污泥膨胀的目的。
常用的灭菌剂有NaClO,ClO2,Cl2,H2O2和漂白粉等种类。
由于大部分处理厂都设有出水加氯消毒系统,因而加氯量控制丝状菌污泥膨胀成为最普遍的一种方法。
具体操作步骤如下:
1)运行实践及历史数据积累,确定一个临界SVI值。
当污泥指数低于该临界值时,不影响二沉池的泥水分离及出水水质。
该临界值为最大允许污泥指数SVIm。
2)持续测定SVI超过SVIm的次数和程度,决定是否采取控制措施。
3)选择最佳加氯点。
首先应考虑到氯能在污泥中充分均匀混合,并尽快与丝状菌接触。
其次尽量选择有机物含量较低的部位做投加点,以便降低投药量。
因此,最佳加氯点是在回流污泥泵上,如果渠道上有搅拌设备,则投加点设在搅拌设备附近,如无搅拌设备,则宜设在回流泵附近。
4)氯量的计算。
一般按系统内的污泥总量计算加氯量:m=K·M 式中K--单位污泥每日加氯量,8~10kgkgCl2/(kg·d);M--系统活性污泥总量。
5)核算加氯点污泥中氯的浓度。
氯是对微生物无选择性的杀伤剂既能杀灭丝状菌,也能杀伤菌胶团细菌。
因此,应严格控制投加点氯的浓度。
一般控制在35mg/L以下。
6)实际加氯过程中,应由小剂量逐渐进行,并随时观察SVI值及生物相。
当发现SVI值低于SVIm或镜检观察到丝状菌菌丝溶液,应立即停止加氯。
开始加氯量可取由(m=K·M)式计算出的加氯量的1/5,然后每日逐渐增大,一般需持续3倍泥龄长的时间能控制住。
最后需要强调,灭菌法适用于丝状菌污泥膨胀,而助沉法一般用于非丝状菌污泥膨胀。
工业运行调节控制措施用于运行控制不当产生的污泥膨胀。
例如,由DO太低导致的污泥膨胀,可以增加供氧来解决;由于pH值太低导致的污泥膨胀,可以通过增加预曝气来解决;由于氮磷等营养物质的缺乏导致的污泥膨胀,可以投加应用物质;由于低负荷导致的污泥膨胀,可以在不降低处理功能的前提下,适当提高F/M。
另外,对混合液进行适当的搅拌,也有利于丝状菌污泥膨胀的控制。
永久性控制措施系指对现有处理措施进行改造,或设计新厂时予以充分考虑,使污泥膨胀不发生,以防为主。
常用的永久性措施是曝气池前设生物选择器。
通过选择器对微生物进行选择培养,即在系统内只允许菌胶团细菌的增长繁殖,不允许丝状菌大量繁殖。
选择器有三种:好氧选择器、缺氧选择器和厌氧选择器。
这些所谓的选择器一般只是在曝气池首端划出一格进行搅拌,使污泥与污水充分混合接触,污水在选择器中的水力停留时间一般为5~30min,常采用20min左右。
好氧选择器内需对污水进行曝气充氧,使之处于好氧状态,而缺氧选择器和厌氧选择器只搅拌不曝气。
好氧选择器防止污泥膨胀的机理是提供一个DO充足,食料充足的高负荷区,让菌胶团率先抢占有机物,不给丝状菌过度繁殖的机会。
在完全混合活性污泥工艺的曝气池前段,设一个好氧选择器,其控制污泥膨胀的效果是非常明显的。
缺氧选择器与厌氧选择器的设施和设备完全一样,它们发挥什么样的功能完全取决于活性污泥的泥龄。
当泥龄较长时,会发生较完全的硝化,选择器内会含有较多硝酸盐,此时为缺氧选择器。
当泥龄较短时,选择器内既无溶解氧,也无硝酸盐,此时为厌氧选择器。
缺氧选择器控制污泥膨胀的原理,是绝大部分菌胶团细菌能利用选择器内硝酸盐中的化合态氧作氧源,进行生物繁殖,而丝状菌(球衣菌)没有这个功能,因而在选择器内受到抑制,增殖落后于菌胶团细菌,大大降低了丝状菌膨胀发生的可能。
厌氧选择器控制污泥膨胀的原理是,绝大部分种类的丝状菌(球衣菌)都是绝对好氧,在绝对厌氧状态下将受到抑制。
而绝大部分的菌胶团细菌为兼性菌。
在厌氧状态下将进行厌氧代谢,继续增殖。
但是,厌氧选择器的设置,会导致产生丝硫菌污泥膨胀的可能性,因为菌胶团细菌厌氧代谢会产生硫化氢,从而为丝状菌的繁殖提供条件。
因此,厌氧选择器的水力停留时间不宜太长。
将现有传统活性污泥系统稍加改造成一些变形工艺,如吸附工艺,逐点进水工艺等形式,也能有效地防止污泥膨胀地发生。
另外,近年来出现的一些新工艺,如A2-O、A-B、SBR等工艺也能有效地防止污泥膨胀。
2.生物泡沫及其控制
泡沫是活性污泥法处理厂中常见的运行现象。
泡沫分为两种,一
种是化学泡沫,另一种是生物泡沫。
化学泡沫是由于污水中的洗涤剂以及一些工业用表明活性物质在曝气的搅拌和吹脱作用下形成的。
在活性污泥培养初期,化学泡沫较多,有时在曝气池表面会形成高达几米的泡沫山。
这主要是因为初期活性污泥尚未形成,所有产生泡沫的物质在曝气作用下都形成了泡沫。
随着活性污泥的增多,大量洗涤剂或表面物质会被微生物吸收分解掉,泡沫也会逐渐消失。
正常运行的活性污泥系统中,由于某种原因造成污泥大量流失,导致F/M剧增,也会产生化学泡沫。
化学泡沫处理较容易,可以用水冲消泡,也可加消泡剂。
较难处理的是生物泡沫,它是由称作诺卡氏菌的一类丝状菌形成的。
化学泡沫呈乳白色,而生物泡沫呈褐色,可在曝气池上堆积很高,并进入二沉池随水流走,产生一系列卫生问题。
首先,生物泡沫蔓延至走道板上,使操作人员无法正常维护。
另外,生物泡沫在冬天能结冰,清理起来异常困难。
夏天生物泡沫会随风飘荡,形成不良气味。
目前,预防医学还认为诺卡氏菌极有可能成为人类的病原菌。
如果采用表明曝气设备,生物泡沫还能组织正常的曝气充氧,使混合液DO降低。
生物泡沫还能随排泥进入泥区,干扰浓缩池及消化池的运行。
用水冲无法冲散生物泡沫,消泡剂作用也不大。
有的处理厂曾尝试用加氯解决,但收效不大,因为诺卡氏菌产生于活性污泥絮体内部。
增大排泥,降低SRT,有时稍有效果,但不能从根本上解决问题。
因为已发现诺卡氏菌有很多种,绝大部分的世代期长,而有的世代期仅2d,采用增大排泥方法,只能去除世代期长的那部分诺卡氏菌。
综上所述,生物泡沫控制的根本措施是从根源上入手,以防为主。
已经知道,诺卡氏菌是形成生物泡沫的主要原因。
这种丝状菌为树枝状丝体,其细胞中蜡质的类脂化合物含量可高达11%,细胞质和细胞壁中都含有大量类脂物质,具有极强的疏水性,密度较小。
在曝气作用下,菌丝体能伸出液面,形成泡沫。
诺卡氏菌在温度较高(>20℃)、富油脂类物质的环境中易大量繁殖。
因此,入流污水中含油及脂类物质较多的处理厂(入大量宾馆饭店污水排入)或初沉池浮渣去除不彻底的处理厂易产生生物泡沫。
在上述处理厂中,夏天又比冬天易产生生物泡沫。
虽然诺卡氏菌世代期有长有短,但绝大部分都在
9d以上,因而超低负荷的活性污泥系统中更易产生生物泡沫。
3.污泥上浮问题及其控制
水中的氮以有机氮、氨氮、亚硝氮和硝酸盐4种形态存在…。
如污水有机氮占含氮量的4O%~60%,氨氮占5O%~60%,硝态氮仅占0%一5%。
传统生物脱氮技术遵循已发现的自然界氮循环机理,中的有机氮依次在氨化菌、亚硝化菌、硝化菌和反硝化菌的作用下进行氨化反应、亚硝化反应、硝化反应和反硝化反应后最终转变为氮气而溢出水体,达到了脱氮目的。
传统生物脱氮技术是目前应用最广的脱氮技术。
硝化工艺虽然能把氨氮转化为硝酸盐,消除氨氮的污染,但不能彻底消除氮污染。
而反硝化工艺虽然能根除氮素的污染,但不能直接去除氨氮。
因此,传统生物脱氮工艺通常由硝化工艺和反硝化工艺组成。
由于参与的菌群不同和工艺运行参数不同,硝化和反硝化两个过程需要在两个隔离的反应器中进行,或者在时间或空间上造成交替缺氧和好氧环境的同一个反应器中进行…传统生物脱氮途径就是人为创造出硝化菌、反硝化菌的生长环境,使硝化菌和反硝化菌成为反应池中的优势菌种。
由于对环境条件的要求不同,硝化反硝化这两个过程不能同时发生,而只能序列式进行,即化反应发生在好氧条件下,反硝化反应发生在缺氧或厌氧条件下。
常见的工艺有三级生物脱氮工艺、二级生物脱氮工艺和合建式缺氧一好氧活性污泥法脱氮系统等。
传统生物脱氮工艺存在不少问题:(1)工艺流程较长,占地面积大,基建投资高。
(2)由于硝化菌群增殖速度慢且难以维持较高的生物浓度,特别是在低温冬季,造成系统的HRT较长,需要较大的曝气池,增加了投资和运行费用。
(3)系统为维持较高的生物浓度及获得良好的脱氮效果,必须同时进行污泥和硝化液回流,增加了动力消耗和运行费用。
(4)系统抗冲击能力较弱,高浓度NH,一和NO:一废水会抑制硝化菌生长。
(5)硝化过程中产生的酸度需要投加碱中和,不仅增加了处理费用,而且还有可能造成二次污染。
因此,人们积极探讨开发高效低耗的新型生物脱氮新工艺。
2新型生物脱氮工艺
随着科学的发展,近年来发现了好氧反硝化菌和异养硝化菌,硝化反应不仅由自养菌完成,某些异养菌也可以进行硝化作用,反硝化不只在厌氧条件下进行,某些细菌也可在好氧条件下进行反硝化;许多好氧反硝化菌同时也是异养硝化菌(如Thiosphaerapantotropha菌),并能把NH3一氧化成NO:一后直接进行反硝化反应;氨的氧化不仅可以在好氧条件下进行,也可以在厌氧条件下进行。
这些新发现突破了传统生物脱氮理论的认识,为研发生物脱氮新工艺奠定了基础。
2.1短程硝化反硝化
传统的生物脱氮工艺经过一系列反应,是全程硝化反硝化。
中间浪费了一个将亚硝氮转化硝氮,硝氮又转化为亚硝氮的过程。
1975年,Voets等进行经NO:一途径处理高浓度氨氮废水研究时发现了硝化过程中NO一积累的现象,并首次提出了短程硝化反硝化生物脱氮的概念。
短程硝化反硝化(shortcutnitrifcationdenitrifcation)生物脱氮是将硝化过程控制在亚硝酸盐阶段,阻止NO:一的进一步硝化,然后直接进行反硝化。
然而,硝化菌能够迅速地将NO:一转化为NO,一,将NH的氧化成功地控制在亚硝酸盐阶段并非易事。
目前,经NO一途径实现生物脱氮成功应用的报道还不多见。
影响NO一积累的控制因素比较复杂,主要有温度、pH、游离氨(FA)、溶解氧(DO)、游离羟胺(FH)以及水力负荷、有害物质和污泥泥龄等。
目前比较有代表性的工艺为SHAR—ON工艺oSHARON工艺(SinglereactorforHighae—tivityAmmoniaRemovMOverNitrite)是由荷兰DeIft技术大学于1997年开发的。
该工艺采用的是CSTR反应器(CompleteStirredT ankReactor),适合于处理高浓度含氮废水(>0.5gN/L),其成功之处在于巧妙地利用了硝酸菌和亚硝酸菌的不同生长速率,即在较高温度下(30℃~4O℃),硝化菌的生长速率明显低于亚硝酸菌的生长速率。
因此通过控制温度和HRT可以自然淘汰掉硝酸菌,使反应器中的亚硝酸菌占绝对优势,使氨氧化控制在亚硝酸盐阶段。
同时硝化反硝化(SimultaneousNitrifcationDenitrifcation—SND),即硝化与反硝化反应在同一个反应器中同时完成¨引。
SND生
物脱氮的机理目前已初步形成了三种解释,即宏观环境解释、微环境理论和生物学解释。
宏观环境解释认为l1¨:由于生物反应器的混合形态不均,可在生物反应器内形成缺氧及(或)厌氧段,即宏观环境。
例如,在生物膜反应器中,生物膜采用了系列稀释分离、平板划线分离,显微单细胞分离等多种方法,但均以失败告终。
用传统的微生物培养方法,了解到ANAMMOX菌混培物的一些基本生理生化特征。
在鉴定厌氧氨氧化菌的过程中,尝试了现代分子生物学技术¨引。
研究表明厌氧氨氧化菌广泛存于自然界中,用普通好氧活性污泥、好氧硝化活性污泥、好氧硝化颗粒污泥、反硝化污泥、SBR泥、河涌底泥、UASB颗粒污泥、污水处理厂污泥、垃圾填埋场处理渗滤液的污泥等¨加’,而且都成功启动了ANAMMOX反应器,启动时间也由两百天缩短到两个月。
目前要解决的问题是实际废水中氨氮含量高,但是亚硝氮含量非常低,而且要求的反应温度过高(32℃),这些都限制了厌氧氨氧化反应器的实际运用。
3发展
氮污染日益严重,研发高效低耗的生物脱氮技术势在必行。
目前污水厂脱氮效果不好,而新型的生物脱氮技术大多仍在小试和中式阶段,离实际运用还有一定的距离。
相信在广大科技工作者的共同努力下,这些新型生物脱氮工艺不久就会造福人类。
丝状菌在低基质浓度条件下具有高的增长速率,而具有较高KS和μmax值的菌胶团细菌在高基质浓度条件下才占优势。
在基质浓度高时菌胶团的基质利用速率要高于丝状菌,故可以利用基质推动力选择性的培养菌胶团细菌而限制丝状菌的增长。
根据这一原理可以在曝气池前设生物选择器,通过选择器对微生物进行选择性培养以防止污泥膨胀的发生。
根据生物选择器中曝气与否可将其分为好氧、缺氧、厌氧选择器。
具体方法是在曝气池首端划出一格或几格设置高负荷接触区,将全部污水引入第一个间格并使整个系统中不存在浓度梯度(进行搅拌使污泥和污水充分混合接触)。
在好氧选择器内需对污水进行曝气充氧,而缺氧、厌氧选择器只搅拌不曝气。
好氧选择器防止污泥膨胀的机理是提供一个氧源和食料充足的高负荷区,让菌胶团细菌率先抢占有机物而不给丝状菌过度繁殖的机会。
缺氧选择器和厌氧选择器的构造完全一样,其功能取决于活性污泥的泥龄。
当泥龄较长时会发生较完全的硝化,选择器内会含有很多硝酸盐,此时为缺氧选择器;当泥龄较短时选择器内既无溶解氧又无硝酸盐,此时为厌氧选择器。
缺氧选择器控制污泥膨胀的主要原理是绝大部分菌胶团细菌能够利用选择器内硝酸盐中的化合态氧作氧源进行生长繁殖,而丝状菌没有此功能,因而其在选择器内受到抑制,大大降低了污泥膨胀的可能性。
厌氧选择器控制污泥膨胀的主要原理是绝大部分种类的丝状菌都是好氧的,在厌氧状态下将受到抑制,而绝大部分的菌胶团细菌为兼性菌,在厌氧条件下将进行厌氧代谢,继续增殖。
但应注意厌氧选择器的设置会增大产生丝硫菌污泥膨胀的可能性(菌胶团细菌的厌氧代谢产生的硫化氢为丝状菌的繁殖提供条件),故厌氧选择器的水力停留时间不宜过长。
1.2 生物吸附机理
菌胶团细菌对溶解性有机物的吸附能力远高于丝状菌。
在生物选择器中基质浓度很高,所以菌胶团细菌能够吸附较多的底物积累在细胞内,在进入曝气池后可利用这部分底物继续生长繁殖。
常规工艺中控制污泥膨胀的途径
2.1完全混合活性污泥法
完全混合曝气池内基质浓度较低,丝状菌可以获得较高的增长速率,故该法易发生污泥膨胀。
这时可将曝气池分成多格且以推流的方式运行或增设一个分格设置的小型预曝气池作为生物选择器。
当废水进入选择器后,由于废水中的有机物浓度较高使选择器中的F/M值较大而不适宜丝状菌的生长,菌胶团微生物则快速吸附废水中的大部分可溶性有机物,在有足够的停留时间和溶解氧的条件下进行生物代谢而不断地得到增殖,丝状菌却因缺乏足够的有机营养而受到抑制,这样就会减少丝状菌引起的污泥膨胀。
2.3 AB工艺
AB工艺中的A段实际上相当于一个良好的选择器,其对污泥膨胀的控制表现在:一方面A段的水力停留时间为15~20min,因此世代期较长的丝状菌难以在此生存;另一方面A段中的有机负荷通常较高〔≥2kgBOD5/(kgMLSS·d)〕,因而可有效地抑制丝状菌的增长。
与。