四年级奥数教材之欧阳学创编

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四年级奥数目录
(一)
(二)找规律★★(观察力和计算能力的一个结合)
①数列中的规律
②图形中的规律
(二)数字谜★★★(运用简单的数字组成不同或相同的位数,使式子合理)
①横式字谜
②竖式字谜
(三)定义新运算★★★(它的符号不同于课本上明确定义或已经约定的符号,先求出表示定义规则的一般表达式,方可进行运算。


(四)鸡兔同笼★★★(根据现实的例子,进行推理和计算)
(五)行程问题★★★★(求路程的问题,公式的运用)
①追及问题与相遇问题
②火车过桥
(六)植树问题★★★(植树问题,一般又可分为封闭型的和不封闭型的,每种方法不一)
(七)有趣的数阵图★★★(把一些数字按照一定的要
求,排成各种各样的图形,这类问题叫数阵图)
(八)枚举法★★(通过推测将所有的可能写下来)(九)推理逻辑★★(根据已知的条件,推出合理的答案)
(十)倒推法的妙用★★★(加的倒推成减,减的倒推成加,以此更简单快速地计算出答案)
(十一)火柴棍游戏★★★(通过移动火柴变成另一个数字或图形)
(十二)巧求周长(一)★★★★(一些不规则的比较复杂的几何图形,求周长,可以运用平移的方法,把它转化为标准的长方形或正方形,然后利用周长公式进行计算)
(十三)面积计算★★★★(解答比较复杂的长方形、正方形的面积计算的问题时,可以添加辅助线或运用割补、转化等解题技巧)
(十四)移多补少平均数★★★(将多的一方分出一部分给少的,使多的和少的同样多)
(十五)一笔画★★(类似于走迷宫)
(一)找规律
观察是解决问题的根据。

通过观察,得以揭示出事物的发展和变化规律,在一般情况下,我们可以从以下几个方面来找规律:
1.根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;
2.根据相隔的每两个数的关系,找出规律,推断出所要填的数;
3.要善于从整体上把握数据之间的联系,从而很快找出规律;
4.数之间的联系往往可以从不同的角度来理解,只要言之有理,所得出的规律都可以认为是正确的。

①数列中的规律
一、例题与方法指导
例1:先找出下列数排列的规律,并根据规律在括号里填上适当的数。

1,4,7,10,(),16,19
思路导航:
在这列数中,相邻的两个数的差都是3,即每一个数加上3都等于后面的数。

根据这一规律,括号里应填的数为:
10+3=13或16-3=13
像上面按照一定的顺序排列的一串数叫做数列。

例2:先找出下列数排列的规律,然后在括号里填上适当的数。

1,2,4,7,(),16,22
思路导航:
在这列数中,前4个数每相邻的两个数的差依次是1,2,3。

由此可以推算7比括号里的数少4,括号里应填:7+4=11。

经验证,所填的数是正确的。

应填的数为:7+4=11或16-5=11
例3:先找出规律,然后在括号里填上适当的数。

23,4,20,6,17,8,(),(),11,12
思路导航:
在这列数中,第一个数减去3的差是第三个数,第二个数加上2的和是第四个数,第三个数减去3的差是第五个数,第四个数加上2的和是第六个数……依此规律,8后面的一个数为:17-3=14,11前面的数为:8+2=10
二、巩固训练
1.先找出下列各列数的排列规律,然后在括号里填上适当的数。

(1)2,6,10,14,(),22,26
(2)3,6,9,12,(),18,21
(3)33,28,23,(),13,(),3
(4)55,49,43,(),31,(),19
(5)3,6,12,(),48,(),192
(6)2,6,18,(),162,()
(7)128,64,32,(),8,(),2
(8)19,3,17,3,15,3,(),(),11,3
2.先找出下列数排列的规律,然后在括号里填上适当的数。

(1)10,11,13,16,20,(),31
(2)1,4,9,16,25,(),49,64
(3)3,2,5,2,7,2,(),(),11,2
(4)53,44,36,29,(),18,(),11,9,8
(5)81,64,49,36,(),16,(),4,1,0
(6)28,1,26,1,24,1,(),(),20,1(7)30,2,26,2,22,2,(),(),14,2(8)1,6,4,8,7,10,(),(),13,14三、拓展提升
先找出规律,然后在括号里填上适当的数。

(1)1,6,5,10,9,14,13,(),()
(2)13,2,15,4,17,6,(),()
(3)3,29,4,28,6,26,9,23,(),(),18,14
(4)21,2,19,5,17,8,(),()
(5)32,20,29,18,26,16,(),(),
20,12
(6)2,9,6,10,18,11,54,(),(),13,486
(7)1,5,2,8,4,11,8,14,(),()
(8)320,1,160,3,80,9,40,27,(),()
②图形中的规律
我们通常会碰到一些图形,它们在某一方面,比如颜色,形状,大小,结构,位置或繁难等有些共同的特征或变化规律,你能通过观察找规律,并根据规律推断出结果吗?
一、例题与方法指导
例 1.下面哪个图形和其他几个不一样,你能找出来吗?
思路导航:
题中几个图形的共同特征是:先连接各边中点,组成一个复合图形。

所不同的是,B图形是一个三角形,而其他几个图形都是四边形,这样,只有B与其他几个不一样。

例2.找出下组图形中不同的项。

思路导航:
题中只有D图形不是由A翻转过来的,其他图形都是
在同一个平面内通过把A图形旋转而得到的。

故不同的选项应该为D
例3.在下面图形中找出一个与众不同的.
(1) (2) (3) (4) (5)
思路导航:
很容易看出题目图中(1)逆时针旋转︒
90就是(4),但是这样一来,(2)、(3)、(5)都与它们不同了.题目上要求找出一个.所以放弃这种想法.
图(2)顺时针旋转︒
90,且大、小两个矩形颜色互换一下就得到(5).而图(1)与(3)的变化规律也是这样:顺时针旋转90,大小两部分颜色互换.因此(1)与(3)配对,(2)与(5)配对.

解:与众不同的是题目图中的(4).
例4.依照下面图中所给图形的变化规律,在空格中填图.思路导航:
我们分花盆、花茎、花叶、花朵四个部分逐步观察. (1)花盆:花盆的形状每一行都是由同样的三种形状组成,所以第三行所缺的形状便是应填的图案中的花盆形状;花盆的颜色在同一行中都是由黑、白、灰(画有斜线)三色组成,图中第三行已有白、灰二色,所以应填的花盆为黑色(如下图(1));
(2)花茎:如同上面一样的分析.花茎的形状为鱼钩状,方向向右(如下图(2));
(3)花叶:花叶数量为两朵,方向是向左、右平展(如下图(3));
(4)花朵:形状为圆形(如下图(4)).
(1) (2) (3) (4)
解:依照所给图形的变化规律,空格中应填的图形如图(4).
二、巩固训练
1.按顺序观察图5—2中图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?
分析观察中,注意到图5—1中每行三角形的个数依次减少,而正方形的个数依次增多,且三角形的个数按4、3、X、1的顺序变化.显然X应等于2;图5—2中黑点的个数从左到右逐次增多,且每一格(第一格除外)比前面的一格多两个点.事实上,本题中几何图形的变化仅表现在数量关系上,是一种较为基本的、简单的变化模式。

解:在图5—2的“?”处应是
2.请观察右图中已有的几个图形,并按规律填出空白处的图形。

分析首先可以看出图形的第一行、第二列都是由一个圆、一个三角形和一个正方形所组成的;其次,在所给出的图形中,我们发现各行、各列均没有重复的图形,而且所给出的图形中,只有圆、三角形和正方形三种图形.由此,我们知道这个图的特点是:
①仅由圆、三角形、正方形组成;
②各行各列中,都只有一个圆、一个三角形和一个正方形。

因此,根据不重不漏的原则,在第二行的空格中应填一个三角形,而第三行的空格中应填一个正方形。

解略。

3.按顺序观察下图中图形的变化规律,并在“?”处填上合适的图形.
分析显然,图(a)、图(b)中都是圆,而图(c)中却不是圆;同时,图(a)、(c)中都有3个图形,而(b)中只有两个.由此可知:图(a)到(b)的变化规律对应于图(c)到(d)的变化规律.再注意到图(a)到图(b)中图形在繁简、多少、位置几方面的变化,就容易得到图(d)中的图形了。

解:在上图的“?”处应填如下图形.
4.下图中的图形是按一定规律排列的,请仔细观察,并在“?”处填上适当的图形.
分析本题中,首先可以注意到每个图形都由大、小两部分组成,而且,大、小图形都是由正方形、三角形和圆形组成,图中的任意两个图形均不相同.因此,我们不妨试着把大、小图形分开来考虑,再一次观察后我们可以发现:对于大图形来说,每行每列的图形决不重复。

因此,每行每列都只有一个大正方形,一个大三角形和一个大圆,对于小图形也是如此,这样,“?”处的图形就不难
得出。

解:图中,(b)、(f)、(h)处的图形分别应填下面的图甲、图乙、图丙.
小结:对于较复杂的图形来说,有时候需要把图形分开几部分来单独考虑其变化规律,从而把复杂问题简单化。

(二)数字谜
小朋友们都玩过字谜吧,就是一种文字游戏,例如“空中码头”(打一城市名)。

谜底你还记得吗?记不得也没关系,想想“空中”指什么?“天”。

这个地名第1个字可能是天。

“码头”指什么呢?码头又称渡口,联系这个地名开头是“天”字,容易想到“天津”这个地名,而“津”正好又是“渡口”的意思。

这样谜底就出来了:天津。

算式谜又被称为“虫食算”,意思是说一道算式中的某些数字被虫子吃掉了无法辨认,需要运用四则运算各部分之间的关系,通过推理判定被吃掉的数字,把算式还原。

“虫食算”主要指横式算式谜和竖式算式谜,其中未知的数字常常用□、△、☆等图形符号或字母表示。

文字算式谜是前两种算式谜的延伸,用文字或字母来代替未知的数字,在同一道算式中不同的文字或字母表示不同的数字,相同的数字或字母表示同一个数字。

文字算式谜也是
最难的一种算式谜。

在数学里面,文字也可以组成许许多多的数学游戏,就让我们一起来看看吧。

①横式字谜
一、例题与方法指导
例1 □,□8,□97在上面的3个方框内分别填入恰当的数字,可以使得这3个数的平均数是150。

那么所填的3个数字之和是多少?
思路导航:150*3-8-97-5=340所以3个数之和为3+4+5=12。

例 2 在下列算式的□中填上适当的数字,使得等式成立:(1)6□□4÷56=□0□,(2)7□□8÷37=□1□,(3)3□□3÷2□=□17,(4)8□□□÷58=□□6。

分析:(1) 6104/56=109
(2)7548/37=204(3)3393/29=117(4)8468/58=146
例3 在算式40796÷□□□=□99……98的各个方框内填入适当的数字后,就可以使其成为正确的等式。

求其中的除数。

分析:40796/102=399...98。

例4 我学数学乐×我学数学乐=数数数学数数学学数学
在上面的乘法算式中,“我、学、数、乐”分别代表的4个不同的数字。

如果“乐”代表9,那么“我数学”代表的三位数是多少?
分析:学=1,我=8,数=6 ,81619*81619=6661661161例5 □÷(□÷□÷□)=24在式中的4个方框内填入4个不同的一位数,使左边的数比右边的数小,并且等式成立。

思路导航:
这样,我们可以先用字母代替数字,原等式写成:a/(b/c/d)=a/(b/c*d)=a*c*d/b,(a<b<c<d)当a=1时,有6*8/2=24,8*9/3=24;当a=2时,有4*9/3=12,6*8/4=12,8*9/6=12;所以,满足要求的等式有:1÷(2÷6÷8)=24,1÷(3÷8÷9)=24,2÷(3÷4÷9)=24,2÷(4÷6÷8)=24,2÷(6÷8÷9)=24。

例6 ①□×□=5□;②12+□-□=□,把1至9这9个数字分别填入上面两个算式的各个方框中,使等式成立,这里有3个数字已经填好。

分析:根据第一个等式,只有两种可能:7*8=56,6*9=54;如果为7*8=56,则余下的数字有:3、4、9,显然不行;而当6*9=54时,余下的数字有:3、7、8,那么,12+3-7=8或12+3-8=7都能满足。

二、训练巩固
1. 迎迎×春春=杯迎迎杯,数数×学学=数赛赛数,春春×春春=迎迎赛赛
在上面的3个算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字。

如果这3个等式都成立,那么,“迎+春+杯+数+学+赛”等于多少?
分析:考察上面三个等式,可以从最后一个等式入手:能够满足:春春×春春=迎迎赛赛的只有88*88=774 4,于是,春=8,迎=7,赛=4;这样,不难得到第一个为:77*88=6776,第二个为:55*99=5445;所以,迎+春+杯+数+学+赛=7+8+6+5+9+4=39。

2. 迎+春×春=迎春,(迎+杯)×(迎+杯)=迎杯在上面的两个横式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字。

那么“迎+春+杯”等于多少?
分析:同样可以从第二个算式入手,发现满足要求的只有(8+1)*(8+1)=81,于是,迎=8;这样,第一个算式显然只有:8+9*9=89;所以,迎+春+杯=8+9+1=18。

三、拓展提升
1.在下列各式的□中分别填入相同的两位数:
(1)5×□=2□;(2)6×□=3□。

2.将3~9中的数填入下列各式,使算式成立,要求各式中无重复的数字:
(1)□÷□=□÷□;(2)□÷□>□÷□。

3.在下列各式的□中填入合适的数字:
(1)448÷□□=□;(2)2822÷□□=□□;
(3)13×□□= 4□6。

4.在下列各式的□中填入合适的数:
(1) □÷32=8……31;(2)573÷32=□……29;
(3)4837÷□=74……27。

②竖式字谜
一、例题与方法指导
例1 在图4-1所示的算式中,每一个汉字代表一个数字,不同的汉字代表不同的数字.那么“喜欢”这两个汉字所代表的两位数是多少?
分析:首先看个位,可以得到“欢”是0或5,但是“欢”是第二个数的十位,所以“欢”不能是0,只能是5。

再看十位,“欢”是5,加上个位有进位1,那么,加起来后得到的“人”就应该是偶数,因为结果的百
位也是“人”,所以“人”只能是2;由此可知,“喜”等于8。

所以,“喜欢”这两个汉字所代表的两位数就是85。

例2 在图4-2所示的竖式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.如果:巧+解+数+字+谜=30,那么“数字谜”所代表的三位数是多少?
分析:还是先看个位,5个“谜”相加的结果个位还是等于“谜”,“谜”必定是5(0显然可以排出);接着看十位,四个“字”相加再加上进位2,结果尾数还是“字”,那说明“字”只能是6;再看百位,三个“数”相加再加上进位2,结果尾数还是“数”,“数”可能是4或9;再看千位,(1)如果“数”为4,两个“解”相加再加上进位1,结果尾数还是“解”,那说明“解”只能是9;5+6+4+9=24,30-24=6,“巧”等于6与“字”等于6重复,不能;(2)如果“数”为9,两个“解”相加再加上进位2,结果尾数还是“解”,那说明“解”只能是8;5+6+9+8=28,30-28=2,可以。

所以“数字谜”代表的三位数是965。

例3在图4-3所示的加法算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.请把这个竖式翻译成数字算式.
分析:首先万位上“华”=1;再看千位,“香”
只能是8或9,那么“人”就相应的只能是0或1。

但是“华”=1,所以,“人”就是0;再看百位,“人”=0,那么,十位上必须有进位,否则“港”+“人”还是“港”。

由此可知“回”比“港”大1,这样就说明“港”不是9,百位向千位也没有进位。

于是可以确定“香”等于9的;再看十位,“回”+“爱”=“港”要有进位的,而“回”比“港”大1,那么“爱”就等于8;同时,个位必须有进位;再看个位,两数相加至少12,至多13,即只能是5+7或6+7,显然“港”=5,“回”=6,“归”=7。

这样,整个算式就是:
9567+1085=10652。

例4 图4-4是一个加法竖式,其中E,F,I,N,O,R S,T,X,Y分别表示从0到9的不同数字,且F,S不等于零.那么这个算式的结果是多少?
分析:先看个位和十位,N应为0,E应为5;再看最高位上,S比F大1;千位上O最少是8;但因为N 等于0,所以,I只能是1,O只能是9;由于百位向千位进位是2,且X不能是0,因此决定了T、R只能是7、8这两个;如果T=7,X=3,这是只剩下了2、4、6三个数,无法满足S、F是两个连续数的要求。

所以,T=8、
R=7;由此得到X=4;那么,F=2,S=3,Y=6。

所以,得到的算式结果是31486。

二、训练巩固
1. 在图4-5所示的减法算式中,每一个字母代表一个数字,不同的字母代表不同的数字.那么D+G等于多少?
分析:先从最高位看,显然A=1,B=0,E=9;接着看十位,因为E等于9,说明个位有借位,所以F只能是8;由F=8可知,C=7;这样,D、G有2、4,3、5和4、6三种可能。

所以,D+G就可以等于6,8或10。

2. 王老师家的电话号码是一个七位数,把它前四位组成的数与后三位组成的数相加得9063,把它前三位数组成的数与后四位数组成的数相加得2529.求王老师家的电话号码.
分析:我们可以用abcdefg来表示这个七位数电话号码。

由题意知,abcd+efg=9063,abc+defg=2529;首先从第一个算式可以看出,a=8,从第二个算式可以看出,d=1;再回到第一个算式,g=2,掉到第二个算式,c=7;又回到第一个算式,f=9,掉到第二个算式,b=3;那么,e=6。

所以,王老师家的电话号码是8371692。

3. 将一个四位数的各位顺序颠倒过来,得到一个新的四位数.如果新数比原数大7902,那么在所有符合这样条件的四位数中,原数最大是多少?
分析:用abcd来表示愿四位数,那么新四位数为dcba,dcba-abcd=7902;由最高为看起,a最大为2,则
d=9;但个位上10+a-d=2,所以,a只能是1;接下来看百位,b最大是9,那么,c=8正好能满足要求。

所以,原四位数最大是1989。

三、拓展提升
1.已知图4-6所示的乘法竖式成立.那么ABCDE是多少?
分析:由1/7的特点易知,ABCDE=42857。

142857*3=428571。

2. 某个自然数的个位数字是4,将这个4移到左边首位数字的前面,所构成的新数恰好是原数的4倍.问原数最小是多少?
分析:由个位起逐个递推:4*4=16,原十位为6;4*6+1=25,原百位为5;4*5+2=22,原千位为2;
4*2+2=10,原万位为0; 1*4=4,正好。

所以,原数最小是102564。

3. 在图4-7所示的竖式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.则符合题意的数“迎春杯竞赛赞”是多少?
分析:同第10题一样,也是利用1/7的特点。

因为每个字母代表不同的数字,因此“好”只有3和6可选:好=3,则:142857*3=428571;好=6,则:
142857*6=857142;两个都能满足,所以,符合题意的数
“迎春杯竞赛赞”可能是428571或857142。

(三)定义新运算
定义新运算通常是用特殊的符号表示特定的运算意义。

它的符号不同于课本上明确定义或已经约定的符号,例如“+、-、×、÷、、>、<”等。

表示运算意义的表达式,通常是使用四则运算符号,例如a☆b=3a-3b,新运算使用的符号是☆,而等号右边表示新运算意义的则是四则运算符号。

正确解答定义新运算这类问题的关键是要确切理解新运算的意义,严格按照规定的法则进行运算。

如果没有给出用字母表示的规则,则应通过给出的具体的数字表达式,先求出表示定义规则的一般表达式,方可进行运算。

值得注意的是:定义新运算一般是不满足四则运算中的运算律和运算性质,所以,不能盲目地运用定律和运算性质解题。

一、例题与方法指导
例1.设ab都表示数,规定a△b表示a的4倍减去b的3倍,即a△b=4×a-3×b,试计算5△6,6△5。

解5△6-5×4-6×3=20-18=2
6△5=6×4-5×3=24-15=9
说明例1定义的△没有交换律,计算中不得将△前后的数交换。

例2.对于两个数a、b,规定a☆b表示3×a+2×b,试计算(5☆6)☆7,5☆(6☆7)。

思路导航:
先做括号内的运算。

解(5☆6)☆7=(5×3+6×2)☆7=27☆7=27×3+7×2=95
5☆(6☆7)=5☆(6×3+7×2)=5☆32=5×3+32×2=79
说明本题定义的运算不满足结合律。

这是与常规的运算有区别的。

例3.已知2△3=2×3×4,4△2=4×5,一般地,对自然数a、b,a△b 表示a×(a+1)×…(a+b-1).
计算(6△3)-(5△2)。

思路导航:
原式=6×7--5×6
=336-30
规定:a△=a+(a+1)+(a+2)+…+(a+b-1),其中a,b表示自然数。

例4.求1△100的值。

已知x△10=75,求x.
思路导航:
(1)原式=1+2+3+…+100=(1+100)×100÷2=5050(2)原式即x+(x+1)+(x+2)+…+(X+9)=75,
所以
10X+(1+2+3+…+9)=75
10x+45=75
10x=30
x=3
二、巩固训练
1.若对所有b,a△b =a×x,x是一个与b无关的常数;a☆b=(a+b)÷2,且(1△3)☆3=1△(3☆3)。

2.如果规定:③=2×3×4,④=3×4×5,⑤=4×5×6,……,⑨=8×9×10,求⑨+⑧-⑦+⑥-⑤+④-③的值。

三、能力提升
(四)鸡兔同笼
鸡兔同笼问题是指鸡与兔同在一个笼中,已知鸡与兔的总头数以及鸡与兔的总足数,求鸡和兔各是多少只的应用题。

这种类型题是古代趣题,在现实生活和生产中应用广泛,有着十分重要的使用价值。

鸡兔问题,也叫简换问题。

解答时,一般采用假设法,即假定全部的只数都是鸡或者是兔,算出假定情况下的足数和实际上的足数和、足数差,然后推算出鸡和兔的只数。

计算时的主要数量关系是:
1.如果假定全部是兔,则
鸡的只数=(每只兔的足数×总头数-总足数)÷(每一只鸡与兔足数的差)
简单理解就是:
鸡的只数=(4 ×总头数-总足数)÷2
兔的只数=总头数-鸡的只数
2.如果假定全部是鸡,则
兔的只数=(总足数-每只鸡的足数×总头数)÷(每一只鸡与兔足数的差)
简单写就是
兔的只数=(总足数-2 ×总头数)÷2
鸡的只数=总头数-兔的只数
一、例题与方法指导
例1. 鸡兔同笼,共有100个头,320只脚,问鸡和兔各是多少只?
思路导航:
鸡有2只脚,兔有4只脚,如果把兔子的两只前脚用绳子捆起来,当成一只脚,两只后脚也用绳子捆起来,当成一只脚,那么兔子和鸡一样,都是2只脚。

鸡和兔的总脚数就是100×2=200(只),但比实际320只脚要少320-200=120(只),为什么会少了120只脚呢?是因为每只兔子只算一只前脚,一只后脚,而少算了一只前脚和一只后脚。

也就是说每只兔子都少算了两只脚,一共少算了
120只脚,所以兔子应该有120÷2=60(只)。

解法一:解法二:
2×100=200(只)4×100=400(只)
320-200=120(只) 400-320=80(只)
120÷2=60(只) 80÷2=40(只)
100-60=40(只) 100-40=60(只)
答:鸡有40只,兔有60只。

例2. 5元纸币和2元纸币总张数是200张,已知它们的总面值是940元,这两种纸币各多少张?
思路导航:
(1)假设200张纸币完全是2元,共值:
2×200=400(元)
(2)比实际少:
940-400=540(元)
(3)2元换成5元,每张增加:
5-2=3(元)
(4)5元纸币有:
540÷3=180(张)
(5)2元纸币有:
200-180=20(张)
答:有180张5元、20张2元纸币。

例3. 鸡兔同笼,鸡比兔多25只,脚数共176只,
鸡、兔各多少只?
思路导航:
假设去掉多的25只鸡,则一共去掉2×25=50(只)脚,那么176-50=126(只)脚是鸡和兔一样多的脚的总数量,而一对鸡兔共有2+4=6(只)脚,可以求出去掉25只鸡以后一共多少对鸡和兔,然后再加上去掉的25只鸡。

2×25=50(只)
176-50=126(只)
2+4=6(只)
126÷6=21(对)‥‥‥鸡、兔各21只
21+25=46(只)‥‥‥鸡的只数
答:鸡有46只,兔有21只。

二、巩固训练
1.鸡兔同笼,共有头90只,脚252只。

鸡兔各多少只?
2.鸡兔同笼,共有头80只,鸡的脚数比兔的脚数多40只,鸡兔各多少只?
3.30枚硬币由2分和5分组成,共值9角9分,两种硬币各多少枚?
三、拓展提升
四、鸡兔共100只,鸡的脚数比兔少40只,鸡兔各多少只?
五、46人去划船,一共乘坐10条船,其中大船坐7人,小船坐4人,大、小船各多少条?
六、某车棚共停放三轮车和自行车共39辆,两种车轮总和96个,三轮车和自行车各多少辆?
(五)行程问题
行程问题是小学奥数中变化最多的一个专题,不论在奥数竞赛中还是在“小升初”的升学考试中,都拥有非常重要的地位。

行程问题中包括:火车过桥、流水行船、沿途数车、猎狗追兔、环形行程、多人行程,等等。

每一类问题都有自己的特点,解决方法也有所不同,但是,行程问题无论怎么变化,都离不开“三个量,三个关系”:这三个量是:路程(s)、速度(v)、时间(t)三个关系:1. 简单行程:路程 = 速度×时间2. 相遇问题:路程和 = 速度和×时间 3. 追击问题:路程差= 速度差×时间牢牢把握住这三个量以及它们之间的三种关系,就会发现解决行程问题还是有很多方法可循的。

①追击及遇问题
一、例题与方法指导
例 1.有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。

甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。

在途中,甲和乙相遇后3分钟和丙相遇。

问:这个花圃的周长
是多少米?思路导航:
这个三人行程的问题由两个相遇、一个追击组成,题目中所给的条件只有三个人的速度,以及一个“3分钟”的时间。

第一个相遇:在3分钟的时间里,甲、丙的路程和为(40+36)×3=228(米)第一个追击:这228米是由于在开始到甲、乙相遇的时间里,乙、丙两人的速度差造成的,是逆向的追击过程,可求出甲、乙相遇的时间为228÷(38-36)=114(分钟)第二个相遇:在114分钟里,甲、乙二人一起走完了全程所以花圃周长为(40+38)×114=8892(米)我们把这样一个抽象的三人行程问题分解为三个简单的问题,使解题思路更加清晰。

例2.东西两地间有一条公路长217.5千米,甲车以每小时25千米的速度从东到西地,1.5小时后,乙车从西地出发,再经过3小时两车还相距15千米。

乙车每小时行多少千米?
思路导航:
从图中可以看出,要求乙车每小时行多少千米,关键要知道乙车已经行了多少路程和行这段路程所用的时
间。

解:(1)甲车一共行多少小时?1.5+3=4.5(小时)(2)甲车一共行多少千米路程?25×4.5=112.5(千米)
(3)乙车一共行多少千米路程?217.5-
112.5=105(千米)
(4)乙车每小时行多少千米? (105-15)÷3=30(千米)
答:乙车每小时行30千米。

例3.兄妹二人同时从家里出发到学校去,家与学校相距1400米。

哥哥骑自行车每分钟行200米,妹妹每分钟走80米。

哥哥刚到学校就立即返回来在途中与妹妹相遇。

从出发到相遇,妹妹走了几分钟?相遇处离学校有多少米?思路导航:
从图中可以看出,哥与妹妹相遇时他们所走的路程的和相当于从家到学校距离的2倍。

因此本题可以转化为“哥哥妹妹相距2800米,两人同时出发,相向而行,哥哥每分钟行200米,妹妹每分钟行80米,经过几分钟相遇?”的问题,解答就容易了。

解:(1)从家到学校的距离的2倍:1400×2=2800(米)
(2)从出发到相遇所需的时间:2800÷
(200+80)=10(分)
(3)相遇处到学校的距离:1400-80×10=600(米)
答:从出发到相遇,妹妹走了10分钟,相遇处离学校有600米。

二、巩固训练
1.两城市相距328千米,甲、乙两人骑自行车同时从两城出发,相向而行。

甲每小时行28千米,乙每小时行22千米,乙在中途修车耽误1小时,然后继续行驶,与甲相遇,求出发到相遇经过多少时间?
2.快车和慢车同时从甲乙两地相对开出,已知快车每小时行40千米,经过3小时快车已过中点12千米与慢车相遇,慢车每小时行多少千米?
3.小华和小明同时从甲、乙两城相向而行,在离甲城85千米处相遇,到达对方城市后立即以原速沿原路返回,又在离甲城35千米处相遇,两城相距多少千米?
3.拓展提升
三、客车和货车同时从甲、乙两地相对开出,客车每小时行54千米,货车每小时行48千米,两车相遇后又以原来的速度继续前进,客车到达乙站后立即返回,货车到达甲站后也立即返回,两车再次相遇时,客车比货车多行216千米。

求甲乙两站相距多少千米?
2.甲、乙、丙三辆车同时从A地出发到B地去,甲、乙两车速度分别为每小时60千米和48千米,有一辆迎面。

相关文档
最新文档