中考数学考点总复习第节图形的认识初步与相交线平行线

合集下载

中考数学 考点系统复习 第四章 三角形 第一节 几何初步及相交线与平行线

中考数学 考点系统复习 第四章 三角形 第一节 几何初步及相交线与平行线

其中※处填的依据是 A.两直线平行,内错角相等 B.内错角相等,两直线平行 C.两直线平行,同位角相等 D.两直线平行,同旁内角互补
( C)
8.(2021·烟台)一副三角板如图放置,两三角板的斜边互相平行,每个 三角板的直角顶点都在另一个三角板的斜边上,图中∠α 的度数为
( C) A.45° B.60° C.75° D.85°
11.(2020·江西)如图,∠1=∠2=65°,∠3=35°,则下列结论中错
误的是
( C)
A.AB∥CD
B.∠B=30°
C.∠C+∠2=∠EFC
D.CG>FG
12.(易错题)若直线 a∥b∥c,a 与 b 之间的距离为 7 cm,b 与 c 之间的
距离为 3 cm,则 a 与 c 之间的距离为
=50°,∠1+∠2+∠3=240°,则∠4 等于( B )
A.80°
B.70°
C.60°
D.50°
20.(2020·麒麟区一模)如图,把一张上下两边平行的纸条沿 EF 折叠, 若∠2=132°,则∠1=8484°°.
21.(2020·湘潭)如图,点 P 是∠AOC 的角平分线上一点,PD⊥OA,垂足 为点 D,且 PD=3,点 M 是射线 OC 上一动点,则 PM 的最小值为__33__.
9.(2021·临沂)如图,在 AB∥CD 中,∠AEC=40°,CB 平分∠DCE,则
∠ABC 的度数为
( B)
A.10° B.20° C.30° D.40°
10.(2021·齐齐哈尔)一把直尺与一块三角板如图放置,若∠1=47°,
则∠2 的度数为
( D)
A.43° B.47° C.133° D.137°
第四章 三角形 第一节 几何初步及相交

中考数学总复习考点:线段、角、相交线、平行线

中考数学总复习考点:线段、角、相交线、平行线

中考数学总复习考点:线段、角、相交线、平行线2019中考数学总复习考点:线段、角、相交线、平行线?一、直线:直线是几何中不加定义的基本概念,直线的两大特征是“直”和“向两方无限延伸”。

二、直线的性质:经过两点有一条直线,并且只有一条直线,直线的这条性质是以公理的形式给出的,可简述为:过两点有且只有一条直线,两直线相交,只有一个交点。

三、射线:1、射线的定义:直线上一点和它们的一旁的部分叫做射线。

2.射线的特征:“向一方无限延伸,它有一个端点。

”四、线段:1、线段的定义:直线上两点和它之间的部分叫做线段,这两点叫做线段的端点。

2、线段的性质(公理):所有连接两点的线中,线段最短。

五、线段的中点:1、定义如图1一1中,点B把线段AC分成两条相等的线段,点B叫做线段图1-1AC的中点。

∴点B为AC的中点或∵AB=∴点B为AC的中点,或∵AC=2AB,∴点B为AC的中点反之也成立∵点B为AC的中点,∴AB=BC2、同角或等角的余角相等。

3、同角或等角的补角相等。

十一、相交线1、斜线:两条直线相交不成直角时,其中一条直线叫做另一条直线的斜线。

它们的交点叫做斜足。

2、两条直线互相垂直:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直。

3、垂线:当两条直线互相垂直时,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

4、垂线的性质(l)过一点有且只有一条直线与己知直线垂直。

(2)直线外一点与直线上各点连结的所有线段中,垂线段最短。

简单说:垂线段最短。

十二、距离1、两点的距离:连结两点的线段的长度叫做两点的距离。

2、从直线外一点到这条直线的垂线段的长度叫做点到直线的距离。

3、两条平行线的距离:两条直线平行,从一条直线上的任意一点向另一条直线引垂线,垂线段的长度,叫做两条平行线的距离。

说明:点到直线的距离和平行线的距离实际上是两个特殊点之间的距离,它们与点到直线的垂线段是分不开的。

十三、平行线1、定义:在同一平面内,不相交的两条直线叫做平行线。

上海中考数学复习资料(几何篇)

上海中考数学复习资料(几何篇)

第八章
考点三、相交线 (3分)
图形的初步认识Biblioteka 1、相交线中的角 两条直线相交,可以得到四个角,我们把两条直线相交所 构成的四个角中,有公共顶点但没有公共边的两个角叫做 对顶角。我们把两条直线相交所构成的四个角中,有公共 顶点且有一条公共边的两个角叫做临补角。 临补角互补,对顶角相等。 直线AB,CD与EF相交(或者说两条直线AB,CD被第三条 直线EF所截),构成八个角。其中∠1与∠5这两个角分别 在AB,CD的上方,并且在EF的同侧,像这样位置相同的一 对角叫做同位角;∠3与∠5这两个角都在AB,CD之间, 并且在EF的异侧,像这样位置的两个角叫做内错角;∠3与 ∠6在直线AB,CD之间,并侧在EF的同侧,像这样位置的 两个角叫做同旁内角。
第八章
图形的初步认识
考点一、直线、射线和线段 (3分) 7、直线的性质 (1)直线公理:经过两个点有一条直线,并且只有一条直线。它可以简单地说成:过两点 有且只有一条直线。 (2)过一点的直线有无数条。 (3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。 (4)直线上有无穷多个点。 (5)两条不同的直线至多有一个公共点。 8、线段的性质 (1)线段公理:所有连接两点的线中,线段最短。也可简单说成:两点之间线段最短。 (2)连接两点的线段的长度,叫做这两点的距离。 (3)线段的中点到两端点的距离相等。 (4)线段的大小关系和它们的长度的大小关系是一致的。
9、线段垂直平分线的性质定理及逆定理 垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。 线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。 逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
第八章

中考数学复习之线与角、平行线的性质及判定,考点过关与基础练习题

中考数学复习之线与角、平行线的性质及判定,考点过关与基础练习题

第二部分图形与几何19.线段、角、相交线与平行线知识过关1.直线、射线、线段(1)直线上一点和它____的部分叫做射线;直线上两点和它们____的部分叫做线段,这两点叫做线段的_______.(2)两点_____一条直线,两点之间线段最短,两点之间_____的长度,叫做两点间的距离.(3)线段的中点把线段_______等分.2.角(1)角:有_____端点的两条射线组成的图形叫做角,角也可以看作由一条_____绕着它的端点旋转而形成的图形.(2)余角:如果两个角的和等于_____,那么就说这两个角互为余角._____或等角的余角相等.(3)补角:如果两个角的和等于_____,那么就说这两个角互为补角._____或等角的补角相等.(4)一条射线把一个角分成两个______的角,这条射线叫做这个角的平分线.3.相交线(1)对顶角:如果一个角的两边分别是另一个角的两边的_____延长线,则称这两个角是对顶角,对顶角______.(2)垂直:在同一平面内,两条直线相交成90,叫做两条直线相互垂直,其中一条叫做另一条的垂线.(3)垂直的性质:同一平面内,过一点_____一条直线与已知直线垂直,直线外一点和直线上所有点的连接中,_______最短.(4)点到直线的距离:从直线外一点到这条直线的_____的长度,叫做点到直线的距离.4.平行线(1)平行线:平面内,_______的两条直线叫做平行线.(2)平面内两条直线的位置关系:_________和_________.(3)平行公理:过直线外一点,有且______一条直线与已知直线平行.如果两条直线都与第三条直线平行,那么这两条直线也互相______.(4)平行线的性质:如果两条直线平行,那么同位角相等,_____相等,同旁内角_______.(5)平行线的判定:如果同位角相等,或______或______互补,那么两直线平行.5.命题的概念(1)命题:______的语句叫做命题.(2)命题的组成:命题由______和______两部分组成.(3)命题的形成:命题可以写成“如果.......,那么.......”的形式,以如果开头的部分是_____,以那么开头的部分是________.(4)命题的真假:_______的命题叫做真命题,______的命题叫做假命题.6.尺规作图(1)在几何里,把用没有刻度的____和____这两种工具作几何图形的方法称为尺规作图.(2)常见的五种基本作图:①作一条线段等于已知线段;①作一个角等于已知角;①作一个角的平分线;①过一个点作已知直线的垂线;①作线段的垂直平分线.➢考点过关考点1 线段长度的有关计算例1已知线段AB=10cm,点D是线段AB的中点,直线AB上有一点C,并且BC=2cm,则线段DC=.考点2对顶角、邻补角的相关计算如图,点O为直线AB上一点,OC平分∠AOD,∠BOD=3∠BOE,若∠AOC=α,则∠COE 的度数为()A.3αB.120°−43αC.90°D.120°−13α考点3平行线的性质例3如图,AC∥BD,AE平分∠BAC交BD于点E,若∠1=54°,则∠2等于()A.108°B.117°C.126°D.54°考点4平行线的判定与性质综合例4如图1,直线HD∥GE,点A是直线HD上一点,点C是直线GE上一点,点B是直线HD、GE之间的一点.(1)过点B作BF∥GE,试说明:∠ABC=∠HAB+∠BCG;(2)如图2,RC平分∠BCG,BM∥CR,BN平分∠ABC,当∠HAB=40°时,点C在直线AB右侧运动的过程中,∠NBM的度数是否不变,若是,求出该度数;若不是,请说明理由.考点5命题的真假例5下列结论中,正确的有①对顶角相等;②两直线平行,同旁内角相等;③面积相等的两个三角形全等;④有两边和一个角分别对应相等的两个三角形全等;⑤钝角三角形三条高所在的直线交于一点,且这点在钝角三角形外部.()A.2个B.3个C.4个D.5个考点6尺规作图例6如图,在Rt△ABC中,∠C=90°,∠B=30°,AC=4,观察图中尺规作图的痕迹,则AD的长是.➢真题演练1.如图,OC在∠AOB外部,OM,ON分别是∠AOC,∠BOC的平分线.∠AOB=110°,∠BOC=60°,则∠MON的度数为()A.50°B.75°C.60°D.55°2.如图,OC、OD为∠AOB内的两条射线,OC平分∠AOB,∠BOD=3∠COD,若∠COD =10°,则∠AOB的度数是()A.30°B.40°C.60°D.80°3.如图,已知ON,OM分别平分∠AOC和∠BON.若∠MON=20°,∠AOM=35°,则∠AOB的度数为()A.15°B.35°C.40°D.55°4.如图,已知∠AOB.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD.②分别以点C,D为圆心,以大于线段OC 的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE.③连接OE交CD于点M.下列结论中不正确的是()A.∠CEO=∠DEO B.CM=MDC.∠OCD=∠ECD D.S四边形OCED=12CD•OE5.下列说法正确的是()A.如果两个角相等,那么这两个角是对顶角B.内错角相等C.过直线外一点有且只有一条直线与已知直线平行D.一个角的补角一定是钝角6.下列说法错误的是()A.在同一平面内,没有公共点的两条直线是平行线B.如果两条直线都与第三条直线平行,那么这两条直线也互相平行C.经过直线外一点有且只有一条直线与该直线平行D.在同一平面内,不相交的两条线段是平行线7.如图所示,C为线段AB的中点,D在线段CB上,DA=6cm,DB=4cm,则CD的长度为______cm.8.如图,在Rt△ABC中,∠C=90°,∠B=30°,AC=4,观察图中尺规作图的痕迹,则AD的长是.9.如图,C是线段AB上一点,D,E分别是线段AC,BC的中点,若AB=10,则DE=.10.如图,C,D为线段AB上两点,AB=7cm,AD=1.5cm,D为线段AC的中点,则线段CB=cm.11.(1)已知:如图1,AB∥CD,求证:∠B+∠D=∠BED;(2)已知:如图2,AB∥CD,试探求∠B、∠D与∠E之间的数量关系,并说明理由.拓展提升:如图3,已知AB∥DE,BF,EF分别平分∠ABC与∠CED,若∠BCE=140°,求∠BFE的度数.12.如图,AB∥CD,点P为平面内一点.(1)如图①,当点P在AB与CD之间时,若∠A=20°,∠C=45°,则∠P=°;(2)如图②,当点P在点B右上方时,∠ABP、∠CDP、∠BPD之间存在怎样的数量关系?请给出证明;(不需要写出推理依据)(3)如图③,EB平分∠PEG,FP平分∠GFD,若∠PFD=40°,则∠G+∠P=°.➢课后练习1.如图,已知AB∥DF,DE和AC分别平分∠CDF和∠BAE,若∠DEA=46°,∠ACD=56°,则∠CDF的度数为()A.22°B.33°C.44°D.55°2.如图,直线CE∥DF,∠CAB=135°,∠ABD=85°,则∠1+∠2=()A.30°B.35°C.36°D.40°3.如图,已知a∥b,则∠ACD的度数是()A.45°B.60°C.73°D.90°4.如图所示,直线a∥b,∠2=31°,∠A=28°,则∠1=()A.61°B.60°C.59°D.58°5.下列说法正确的是()A.延长射线AB到CB.若AM=BM,则M是线段AB的中点C .两点确定一条直线D .过一点有且只有一条直线与已知直线平行6.下列说法正确的是( )A .垂直于同一条直线的两直线互相垂直B .经过一点有且只有一条直线与已知直线平行C .如果两条直线被第三条直线所截,那么同位角相等D .从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离7.下列说法中错误的是( )A .过一点有且只有一条直线与已知直线平行B .在同一平面内,过一点有且只有一条直线与已知直线垂直C .两条直线相交,有且只有一个交点D .若两条直线相交成直角,则这两条直线互相垂直8.下列说法正确的是( )A .过直线上一点有且只有一条直线与已知直线平行B .不相交的两条直线叫做平行线C .直线外一点到该直线的所有线段中垂线最短D .过直线外一点有且只有一条直线与已知直线平行9.如图,在△ABC 中,分别以点A 和点B 为圆心,以相同的长(大于12AB )为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接CD .若△CDB 的面积为12,△ADE 的面积为9,则四边形EDBC 的面积为( )A .15B .16C .18D .2010.如图是用直尺和圆规作已知角的平分线的示意图,则说明∠CAD =∠DAB 的依据是( )A .SASB .ASAC .AASD .SSS11.如图,点A 、B 、C 在同一条直线上,点D 为BC 的中点,点P 为AC 延长线上一动点(AD ≠DP ),点E 为AP 的中点,则AC−BP DE 的值是 .12.如图,点D是线段AB上一点,点C是线段BD的中点,AB=8,CD=3,则线段AD长为.13.如图1,已知∠BOC=40°,OE平分∠AOC,OF平分∠BOC.(1)若AO⊥BO,则∠EOF是多少度?(2)如图2,若角平分线OE的位置在射线OB和射线OF之间(包括重合),请说明∠AOC的度数应控制在什么范围.14.如图,已知∠1=∠2,∠C=∠D.(1)求证:AC∥DF;(2)如果∠DEC=105°,求∠C的度数.15.如图,已知BC⊥AE,DE⊥AE,∠2+∠3=180°.(1)请你判断CF与BD的位置关系,并证明你的结论;(2)若∠1=70°,BC平分∠ABD,试求∠ACF的度数.➢冲击A+在半径为5的⊙O中,AB是直径,点C是直径AB上方半圆上一动点,连接AC、BC.(1)如图1,则△ABC面积的最大值是;(2)如图2,如果AC=8,①则BC=;②作∠ACB的平分线CP交⊙O于点P,求长CP的长.(3)如图3,连接AP并保持CP平分∠ACB,D为线段BC的中点,过点D作DH⊥AP,在C点运动过程中,请直接写出DH长的最大值.。

2024年中考数学真题汇编专题17 几何图形初步及相交线、平行线+答案详解

2024年中考数学真题汇编专题17 几何图形初步及相交线、平行线+答案详解

2024年中考数学真题汇编专题17 几何图形初步及相交线、平行线+答案详解(试题部分)一、单选题1.(2024·河南·中考真题)如图,乙地在甲地的北偏东50︒方向上,则∠1的度数为()A.60︒B.50︒C.40︒D.30︒2.(2024·陕西·中考真题)如图,将半圆绕直径所在的虚线旋转一周,得到的立体图形是()A.B.C.D.∠的大3.(2024·北京·中考真题)如图,直线AB和CD相交于点O,OE OC∠=︒,则EOBAOC⊥,若58小为()A.29︒B.32︒C.45︒D.58︒4.(2024·广西·中考真题)如图,2时整,钟表的时针和分针所成的锐角为()A .20︒B .40︒C .60︒D .80︒5.(2024·四川内江·中考真题)如图,AB CD ∥,直线EF 分别交AB 、CD 于点E 、F ,若64EFD ∠=︒,则BEF ∠的大小是( )A .136︒B .64︒C .116︒D .128︒6.(2024·湖北·中考真题)如图,直线AB CD ∥,已知1120∠=︒,则2∠=( )A .50︒B .60︒C .70︒D .80︒7.(2024·陕西·中考真题)如图,AB DC ∥,BC DE ∥,145B ∠=︒,则D ∠的度数为( )A .25︒B .35︒C .45︒D .55︒8.(2024·黑龙江齐齐哈尔·中考真题)将一个含30︒角的三角尺和直尺如图放置,若150∠=︒,则2∠的度数是( )A .30︒B .40︒C .50︒D .60︒9.(2024·广东·中考真题)如图,一把直尺、两个含30︒的三角尺拼接在一起,则ACE ∠的度数为( )A .120︒B .90︒C .60︒D .30︒10.(2024·青海·中考真题)生活中常见的路障锥通常是圆锥的形状,它的侧面展开图是( )A.B.C.D.11.(2024·四川德阳·中考真题)走马灯,又称仙音烛,据史料记载,走马灯的历史起源于隋唐时期,盛行于宋代,是中国特色工艺品,常见于除夕、元宵、中秋等节日,在一次综合实践活动中,一同学用如图所示的纸片,沿折痕折合成一个棱锥形的“走马灯”,正方形做底,侧面有一个三角形面上写了“祥”字,当灯旋转时,正好看到“吉祥如意”的字样.则在A、B、C处依次写上的字可以是()A.吉如意B.意吉如C.吉意如D.意如吉12.(2024·四川广安·中考真题)将“共建平安校园”六个汉字分别写在某正方体的表面上,下图是它的一种展开图,则在原正方体上,与“共”)A.校B.安C.平D.园13.(2024·江苏盐城·中考真题)正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是()A.湿B.地C.之D.都14.(2024·江西·中考真题)如图是43的正方形网格,选择一空白小正方形,能与阴影部分组成正方体展开图的方法有( )A .1种B .2种C .3种D .4种15.(2024·江苏扬州·中考真题)如图是某几何体的表面展开后得到的平面图形,则该几何体是( )A .三棱锥B .圆锥C .三棱柱D .长方体16.(2024·河北·中考真题)如图,AD 与BC 交于点O ,ABO 和CDO 关于直线PQ 对称,点A ,B 的对称点分别是点C ,D .下列不一定正确的是( )A .AD BC ⊥B .AC PQ ⊥ C .ABO CDO △≌△D .AC BD ∥17.(2024·福建·中考真题)在同一平面内,将直尺、含30︒角的三角尺和木工角尺(CD ⊥DE )按如图方式摆放,若AB CD ,则1∠的大小为( )A .30︒B .45︒C .60︒D .75︒18.(2024·江苏苏州·中考真题)如图,AB CD ,若165∠=︒,2120∠=︒,则3∠的度数为( )A .45︒B .55︒C .60︒D .65︒19.(2024·内蒙古包头·中考真题)如图,直线AB CD ∥,点E 在直线AB 上,射线EF 交直线CD 于点G ,则图中与AEF ∠互补的角有( )A .1个B .2个C .3个D .4个20.(2024·广东深圳·中考真题)如图,一束平行光线照射平面镜后反射,若入射光线与平面镜夹角150∠=︒,则反射光线与平面镜夹角4∠的度数为( )A .40︒B .50︒C .60︒D .70︒21.(2024·吉林·中考真题)如图,四边形ABCD 内接于O ,过点B 作BE AD ∥,交CD 于点E .若50BEC ∠=︒,则ABC ∠的度数是( )A .50︒B .100︒C .130︒D .150︒22.(2024·重庆·中考真题)如图,AB CD ∥,若1125∠=︒,则2∠的度数为( )A .35︒B .45︒C .55︒D .125︒23.(2024·吉林长春·中考真题)如图,在ABC 中,O 是边AB 的中点.按下列要求作图:①以点B 为圆心、适当长为半径画弧,交线段BO 于点D ,交BC 于点E ;②以点O 为圆心、BD 长为半径画弧,交线段OA 于点F ;③以点F 为圆心、DE 长为半径画弧,交前一条弧于点G ,点G 与点C 在直线AB 同侧;④作直线OG ,交AC 于点M .下列结论不一定成立的是( )A .AOMB ∠=∠B .180OMC C ∠+∠= C .AM CM =D .12OM AB = 24.(2024·青海·中考真题)如图,一个弯曲管道AB CD ,120ABC ∠=︒,则BCD ∠的度数是( )A .120︒B .30︒C .60︒D .150︒25.(2024·吉林长春·中考真题)在剪纸活动中,小花同学想用一张矩形纸片剪出一个正五边形,其中正五边形的一条边与矩形的边重合,如图所示,则α∠的大小为( )A .54oB .60C .70D .7226.(2024·内蒙古赤峰·中考真题)将一副三角尺如图摆放,使有刻度的两条边互相平行,则1∠的大小为( )A .100︒B .105︒C .115︒D .120︒27.(2024·四川达州·中考真题)如图,正方体的表面展开图上写有“我们热爱中国”六个字,还原成正方体后“我”的对面的字是( )A .热B .爱C .中D .国28.(2024·四川宜宾·中考真题)如图是正方体表面展开图.将其折叠成正方体后,距顶点A 最远的点是( )A .B 点 B .C 点 C .D 点 D .E 点29.(2024·四川泸州·中考真题)把一块含30︒角的直角三角板按如图方式放置于两条平行线间,若145∠=︒,则2∠=( )A .10︒B .15︒C .20︒D .30︒30.(2024·江苏盐城·中考真题)小明将一块直角三角板摆放在直尺上,如图,若155∠=︒,则2∠的度数为( )A .25︒B .35︒C .45︒D .55︒31.(2024·甘肃·中考真题)若55A ∠=︒,则A ∠的补角为( )A .35︒B .45︒C .115︒D .125︒32.(2024·内蒙古呼伦贝尔·中考真题)如图,,AD BC AB AC ⊥∥,若135.8∠=,则B ∠的度数是( )A .3548'︒B .5512'︒C .5412'︒D .5452'︒二、填空题33.(2024·吉林·中考真题)如图,从长春站去往胜利公园,与其它道路相比,走人民大街路程最近,其蕴含的数学道理是 .34.(2024·广西·中考真题)已知1∠与2∠为对顶角,135∠=︒,则2∠= °.35.(2024·广东广州·中考真题)如图,直线l 分别与直线a ,b 相交,a b ,若171∠=︒,则2∠的度数为 .36.(2024·四川乐山·中考真题)如图,两条平行线a 、b 被第三条直线c 所截.若160∠=︒,那么2∠= .37.(2024·黑龙江绥化·中考真题)如图,AB CD ∥,33C ∠=︒,OC OE =.则A ∠= ︒.38.(2024·山东威海·中考真题)如图,在正六边形ABCDEF 中,AH FG ∥,BI AH ⊥,垂足为点I .若20EFG ∠=︒,则ABI ∠= .39.(2024·河北·中考真题)如图,ABC 的面积为2,AD 为BC 边上的中线,点A ,1C ,2C ,3C 是线段4CC 的五等分点,点A ,1D ,2D 是线段3DD 的四等分点,点A 是线段1BB 的中点.(1)11AC D △的面积为 ;(2)143B C D △的面积为 .三、解答题40.(2024·福建·中考真题)在手工制作课上,老师提供了如图1所示的矩形卡纸ABCD ,要求大家利用它制作一个底面为正方形的礼品盒.小明按照图2的方式裁剪(其中AE FB =),恰好得到纸盒的展开图,并利用该展开图折成一个礼品盒,如图3所示.图1 图2 图3(1)直接写出AD AB的值; (2)如果要求折成的礼品盒的两个相对的面上分别印有“吉祥”和“如意”,如图4所示,那么应选择的纸盒展开图图样是( )图4A.B.C.D.(3)现以小明设计的纸盒展开图(图2)为基本样式,适当调整AE,EF的比例,制作棱长为10cm的正方体礼品盒,如果要制作27个这样的礼品盒,请你合理选择上述卡纸(包括卡纸的型号及相应型号卡纸的张数),并在卡纸上画出设计示意图(包括一张卡纸可制作几个礼品盒,其展开图在卡纸上的分布情况),给出所用卡纸的总费用.(要求:①同一型号的卡纸如果需要不止一张,只要在一张卡纸上画出设计方案;②没有用到的卡纸,不要在该型号的卡纸上作任何设计;③所用卡纸的数量及总费用直接填在答题卡的表格上;④本题将综合考虑“利用卡纸的合理性”和“所用卡纸的总费用”给分,总费用最低的才能得满分;⑤试卷上的卡纸仅供作草稿用)2024年中考数学真题汇编专题17 几何图形初步及相交线、平行线+答案详解(答案详解)一、单选题1.(2024·河南·中考真题)如图,乙地在甲地的北偏东50︒方向上,则∠1的度数为( )A .60︒B .50︒C .40︒D .30︒ 【答案】B 【分析】本题主要考查了方向角,平行线的性质,利用平行线的性质直接可得答案.【详解】解:如图,由题意得,50BAC ∠=︒,AB CD ∥,∴150BAC ∠=∠=︒,故选:B .2.(2024·陕西·中考真题)如图,将半圆绕直径所在的虚线旋转一周,得到的立体图形是( )A .B .C .D .【答案】C【分析】本题主要考查了点、线、面、体问题.根据旋转体的特征判断即可.【详解】解:将一个半圆绕它的直径所在的直线旋转一周得到的几何体是球,故选:C .3.(2024·北京·中考真题)如图,直线AB 和CD 相交于点O ,OE OC ⊥,若58AOC ∠=︒,则EOB ∠的大小为( )A .29︒B .32︒C .45︒D .58︒ 【答案】B 【分析】本题考查了垂直的定义,平角的定义,熟练掌握知识点,是解题的关键.根据OE OC ⊥得到90COE ∠=︒,再由平角180AOB ∠=︒即可求解.【详解】解:∵OE OC ⊥,∴90COE ∠=︒,∵180AOC COE BOE ∠+∠+∠=︒,58AOC ∠=︒,∴180905832EOB ∠=︒−︒−=︒,故选:B .4.(2024·广西·中考真题)如图,2时整,钟表的时针和分针所成的锐角为( )A .20︒B .40︒C .60︒D .80︒【答案】C 【分析】本题考查了钟面角,用30︒乘以两针相距的份数是解题关键.根据钟面的特点,钟面平均分成12份,每份是30︒,根据时针与分针相距的份数,可得答案.【详解】解:2时整,钟表的时针和分针所成的锐角是30260︒⨯=︒,故选:C .5.(2024·四川内江·中考真题)如图,AB CD ∥,直线EF 分别交AB 、CD 于点E 、F ,若64EFD ∠=︒,则BEF ∠的大小是( )A .136︒B .64︒C .116︒D .128︒ 【答案】C 【分析】本题考查了平行线的性质,根据两直线平行,同旁内角互补求解即可.【详解】解:∵AB CD ∥,∴180BEF EFD ∠+∠=︒,∵64EFD ∠=︒,∴116180EFD BEF ∠︒∠==︒−,故选:C .6.(2024·湖北·中考真题)如图,直线AB CD ∥,已知1120∠=︒,则2∠=( )A .50︒B .60︒C .70︒D .80︒ 【答案】B 【分析】本题主要考查了平行线的性质,解题的关键是熟练掌握平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.根据同旁内角互补,1120∠=︒,求出结果即可.【详解】解:∵AB CD ∥,∴12180∠+∠=︒,∵1120∠=︒,∴218012060∠=︒−︒=︒, 故选:B .7.(2024·陕西·中考真题)如图,AB DC ∥,BC DE ∥,145B ∠=︒,则D ∠的度数为( )A .25︒B .35︒C .45︒D .55︒【答案】B 【分析】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.先根据“两直线平行,同旁内角互补”,得到35C ∠=︒,再根据“两直线平行,内错角相等”,即可得到答案.【详解】AB DC ∥,180B C ∠+∠=︒∴,145B ∠=︒,18035C B ∴∠=︒−∠=︒,∥Q BC DE ,35D C ∴∠=∠=︒.故选B .8.(2024·黑龙江齐齐哈尔·中考真题)将一个含30︒角的三角尺和直尺如图放置,若150∠=︒,则2∠的度数是( )A .30︒B .40︒C .50︒D .60︒由题意得3150∠=∠=︒,590∠=∴2418090390∠=∠=︒−︒−∠=︒故选:B .9.(2024·广东·中考真题)如图,一把直尺、两个含30︒的三角尺拼接在一起,则ACE ∠的度数为( )A .120︒B .90︒C .60︒D .30︒【答案】C【分析】本题考查了平行线的性质.熟练掌握平行线的性质是解题的关键.由题意知,AC DE ∥,根据ACE E ∠=∠,求解作答即可.【详解】解:由题意知,AC DE ∥,∴60ACE E ∠=∠=︒,故选:C . 10.(2024·青海·中考真题)生活中常见的路障锥通常是圆锥的形状,它的侧面展开图是( )A .B .C .D .【答案】D【分析】本题考查了立体图形的侧面展开图.熟记常见立体图形的侧面展开图的特征是解决此类问题的关键.由圆锥的侧面展开图的特征知它的侧面展开图为扇形.【详解】解:圆锥的侧面展开图是扇形.故选:D .11.(2024·四川德阳·中考真题)走马灯,又称仙音烛,据史料记载,走马灯的历史起源于隋唐时期,盛行于宋代,是中国特色工艺品,常见于除夕、元宵、中秋等节日,在一次综合实践活动中,一同学用如图所示的纸片,沿折痕折合成一个棱锥形的“走马灯”,正方形做底,侧面有一个三角形面上写了“祥”字,当灯旋转时,正好看到“吉祥如意”的字样.则在A 、B 、C 处依次写上的字可以是( )A .吉 如 意B .意 吉 如C .吉 意 如D .意 如 吉【答案】A 【分析】本题考查的是简单几何体的展开图,利用四棱锥的展开图的特点可得答案.【详解】解:由题意可得:展开图是四棱锥,∴A、B、C处依次写上的字可以是吉,如,意;或如,吉,意;故选A12.(2024·四川广安·中考真题)将“共建平安校园”六个汉字分别写在某正方体的表面上,下图是它的一种展开图,则在原正方体上,与“共”字所在面相对的面上的汉字是()A.校B.安C.平D.园【答案】A【分析】此题考查正方体相对面上的字.根据正方体相对面之间间隔一个正方形解答.【详解】解:与“共”字所在面相对面上的汉字是“校”,故选:A.13.(2024·江苏盐城·中考真题)正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是()A.湿B.地C.之D.都【答案】C【分析】本题主要考查了正方体相对两个面上的文字,对于正方体的平面展开图中相对的面一定相隔一个小正方形,由此可解.【详解】解:由正方体表面展开图的特征可得:“盐”的对面是“之”,“地”的对面是“都”,“湿”的对面是“城”,故选C.14.(2024·江西·中考真题)如图是43的正方形网格,选择一空白小正方形,能与阴影部分组成正方体展开图的方法有()A.1种B.2种C.3种D.4种【答案】B【分析】此题主要考查了几何体的展开图,关键是掌握正方体展开图的特点.依据正方体的展开图的结构特征进行判断,即可得出结论.【详解】解:如图所示:共有2种方法,故选:B.15.(2024·江苏扬州·中考真题)如图是某几何体的表面展开后得到的平面图形,则该几何体是()A.三棱锥B.圆锥C.三棱柱D.长方体【答案】C【分析】本题考查了常见几何体的展开图,掌握常见几何体展开图的特点是解题的关键.根据平面图形的特点,结合立体图形的特点即可求解.【详解】解:根据图示,上下是两个三角形,中间是长方形,∴该几何体是三棱柱,故选:C .16.(2024·河北·中考真题)如图,AD与BC交于点O,ABO和CDO关于直线PQ对称,点A,B的对称点分别是点C,D.下列不一定正确的是()A .AD BC ⊥B .AC PQ ⊥ C .ABO CDO △≌△D .AC BD ∥ 【答案】A 【分析】本题考查了轴对称图形的性质,平行线的判定,熟练掌握知识点是解题的关键.根据轴对称图形的性质即可判断B 、C 选项,再根据垂直于同一条直线的两条直线平行即可判断选项D .【详解】解:由轴对称图形的性质得到ABO CDO △≌△,,AC PQ BD PQ ⊥⊥,∴AC BD ∥,∴B 、C 、D 选项不符合题意,故选:A .17.(2024·福建·中考真题)在同一平面内,将直尺、含30︒角的三角尺和木工角尺(CD ⊥DE )按如图方式摆放,若AB CD ,则1∠的大小为( )A .30︒B .45︒C .60︒D .75︒ 【答案】A【分析】本题考查了平行线的性质,由ABCD ,可得60CDB ∠=︒,即可求解.【详解】∵AB CD , ∴60CDB ∠=︒, ∵CD ⊥DE ,则90CDE ∠=︒,∴118030CDB CDE ∠=︒−∠−∠=︒,故选:A .18.(2024·江苏苏州·中考真题)如图,AB CD ,若165∠=︒,2120∠=︒,则3∠的度数为( )A .45︒B .55︒C .60︒D .65︒ 【答案】B 【分析】题目主要考查根据平行线的性质求角度,根据题意得出60BAD ∠=︒,再由平角即可得出结果,熟练掌握平行线的性质是解题关键【详解】解:∵AB CD ,2120∠=︒,∴2180BAD ∠+∠=︒,∴60BAD ∠=︒,∵165∠=︒,∴3180155BAD ∠=︒−∠−∠=︒,故选:B19.(2024·内蒙古包头·中考真题)如图,直线AB CD ∥,点E 在直线AB 上,射线EF 交直线CD 于点G ,则图中与AEF ∠互补的角有( )A .1个B .2个C .3个D .4个 【答案】C 【分析】本题考查了平行线的性质,对顶角的性质,补角的定义等知识,利用平行线的性质得出180AEF CGE +∠=︒∠,得出结合对顶角的性质180AEF DGF ∠+∠=︒,根据邻补角的定义得出180AEF BEG ∠+∠=︒,即可求出中与AEF ∠互补的角,即可求解.【详解】解∶∵AB CD ∥,∴180AEF CGE +∠=︒∠,∵CGE DGF ∠=∠,∴180AEF DGF ∠+∠=︒,又180AEF BEG ∠+∠=︒,∴图中与AEF ∠互补的角有CGE ∠,DGF ∠,BEG ∠,共3个.故选∶C .20.(2024·广东深圳·中考真题)如图,一束平行光线照射平面镜后反射,若入射光线与平面镜夹角150∠=︒,则反射光线与平面镜夹角4∠的度数为( )A .40︒B .50︒C .60︒D .70︒ DE GF ,450=∠=︒故选:B .21.(2024·吉林·中考真题)如图,四边形ABCD 内接于O ,过点B 作BE AD ∥,交CD 于点E .若50BEC ∠=︒,则ABC ∠的度数是( )A .50︒B .100︒C .130︒D .150︒【答案】C【分析】本题考查了平行线的性质,圆的内接四边形的性质,熟练掌握知识点是解题的关键.先根据BE AD ∥得到50D BEC ∠=∠=︒,再由四边形ABCD 内接于O 得到180ABC D ∠+∠=︒,即可求解.【详解】解:∵BE AD ∥,50BEC ∠=︒,∴50D BEC ∠=∠=︒,∵四边形ABCD 内接于O ,∴180ABC D ∠+∠=︒,∴18050130ABC ∠=︒−︒=︒,故选:C .22.(2024·重庆·中考真题)如图,AB CD ∥,若1125∠=︒,则2∠的度数为( )A .35︒B .45︒C .55︒D .125︒【答案】C 【分析】本题考查了平行线的性质,邻补角的定义,根据邻补角的定义求出3∠,然后根据平行线的性质求解即可.【详解】解:如图,∵1125∠=︒,∴3180155∠=︒−∠=︒,∵AB CD ∥,∴2355∠=∠=︒,故选:C .23.(2024·吉林长春·中考真题)如图,在ABC 中,O 是边AB 的中点.按下列要求作图:①以点B 为圆心、适当长为半径画弧,交线段BO 于点D ,交BC 于点E ;②以点O 为圆心、BD 长为半径画弧,交线段OA 于点F ;③以点F 为圆心、DE 长为半径画弧,交前一条弧于点G ,点G 与点C 在直线AB 同侧;④作直线OG ,交AC 于点M .下列结论不一定成立的是( )A .AOMB ∠=∠B .180OMC C ∠+∠= C .AM CM =D .12OM AB = 180,根据平行线分线段成比例得出AOM ∠180一定成立,故的中点,24.(2024·青海·中考真题)如图,一个弯曲管道AB CD ,120ABC ∠=︒,则BCD ∠的度数是( )A .120︒B .30︒C .60︒D .150︒【答案】C 【分析】本题考查平行线的性质,熟练掌握平行线的性质是解题的关键.根据两直线平行,同旁内角互补即可得出结果.【详解】AB CD180ABC BCD ∴∠+∠=︒120ABC ∠=︒60BCD ∴∠=︒ 故选:C25.(2024·吉林长春·中考真题)在剪纸活动中,小花同学想用一张矩形纸片剪出一个正五边形,其中正五边形的一条边与矩形的边重合,如图所示,则α∠的大小为( )A .54oB .60C .70D .7226.(2024·内蒙古赤峰·中考真题)将一副三角尺如图摆放,使有刻度的两条边互相平行,则1∠的大小为( )A .100︒B .105︒C .115︒D .120︒【答案】B 【分析】本题考查了三角板中角度计算问题,由题意得3230∠=∠=︒,根据1180345∠=︒−∠−︒即可求解.【详解】解:如图所示:∠=∠=︒由题意得:3230∠=︒−∠−︒=︒∴1180345105故选:B.27.(2024·四川达州·中考真题)如图,正方体的表面展开图上写有“我们热爱中国”六个字,还原成正方体后“我”的对面的字是()A.热B.爱C.中D.国28.(2024·四川宜宾·中考真题)如图是正方体表面展开图.将其折叠成正方体后,距顶点A最远的点是()A.B点B.C点C.D点D.E点【答案】B【分析】本题考查了平面图形和立体图形,把图形围成立体图形求解.【详解】解:把图形围成立方体如图所示:所以与顶点A距离最远的顶点是C,故选:B.29.(2024·四川泸州·中考真题)把一块含30︒角的直角三角板按如图方式放置于两条平行线间,若145∠=︒,则2∠=()A.10︒B.15︒C.20︒D.30︒【答案】B【分析】本题考查了平行线的性质,三角板中角的运算,熟练掌握相关性质是解题的关键.利用平行线性∠=︒,再根据平角的定义求解,即可解题.质得到3135【详解】解:如图,∠=︒,直角三角板位于两条平行线间且145∴∠=︒,3135又直角三角板含30︒角,∴︒−∠−∠=︒,1802330∴∠=︒,215故选:B.30.(2024·江苏盐城·中考真题)小明将一块直角三角板摆放在直尺上,如图,若155∠=︒,则2∠的度数为()A .25︒B .35︒C .45︒D .55︒ 【答案】B 【分析】此题考查了平行线的性质,根据平行线的性质得到3155∠=∠=︒,再利用平角的定义即可求出2∠的度数.【详解】解:如图,∵155∠=︒,ABCD∴3155∠=∠=︒, ∴21802335∠=︒−∠−∠=︒,故选:B31.(2024·甘肃·中考真题)若55A ∠=︒,则A ∠的补角为( )A .35︒B .45︒C .115︒D .125︒32.(2024·内蒙古呼伦贝尔·中考真题)如图,,AD BC AB AC ⊥∥,若135.8∠=,则B ∠的度数是( )A .3548'︒B .5512'︒C .5412'︒D .5452'︒【答案】C 【分析】本题考查了平行线的性质,垂直的定义,度分秒的计算等,先利用垂直定义结合已知条件求出125.8BAD ∠=︒,然后利用平行线的性质以及度分秒的换算求解即可.【详解】解∶∵AB AC ⊥,135.8∠=,∴19035.8125.8BAD BAC ∠=∠+∠=︒+︒=︒,∵AD BC ∥,∴180B BAD ∠+∠=°,∴18054.25412B BAD '∠=︒−∠=︒=︒,故选∶C .二、填空题33.(2024·吉林·中考真题)如图,从长春站去往胜利公园,与其它道路相比,走人民大街路程最近,其蕴含的数学道理是 .【答案】两点之间,线段最短【分析】本题考查了两点之间线段最短,熟记相关结论即可.【详解】从长春站去往胜利公园,走人民大街路程最近,其蕴含的数学道理是:两点之间,线段最短故答案为:两点之间,线段最短.34.(2024·广西·中考真题)已知1∠与2∠为对顶角,135∠=︒,则2∠= °. 【答案】35【分析】本题主要考查了对顶角性质,根据对顶角相等,得出答案即可.【详解】解:∵1∠与2∠为对顶角,135∠=︒, ∴2135∠=∠=︒.故答案为:35.35.(2024·广东广州·中考真题)如图,直线l 分别与直线a ,b 相交,a b ,若171∠=︒,则2∠的度数为 .∵a b ,171∠=︒,∴1371∠=∠=︒,∴21803109∠=︒−∠=︒;故答案为:109︒36.(2024·四川乐山·中考真题)如图,两条平行线a 、b 被第三条直线c 所截.若160∠=︒,那么2∠= .【答案】120︒/120度【分析】本题考查了直线平行的性质:两直线平行同位角相等.也考查了平角的定义.根据两直线平行同位角相等得到1360∠=∠=︒,再根据平角的定义得到23180∠+∠=︒,从而可计算出2∠.【详解】解:如图,a b ∥,1360∴∠=∠=︒,而23180∠+∠=︒,218060120∴∠=︒−︒=︒,故答案为:120︒.37.(2024·黑龙江绥化·中考真题)如图,AB CD ∥,33C ∠=︒,OC OE =.则A ∠= ︒.【答案】66【分析】本题考查了平行线的性质,等边对等角,三角形外角的性质,根据等边对等角可得33E C ∠=∠=︒,根据三角形的外角的性质可得66DOE ∠=︒,根据平行线的性质,即可求解.【详解】解:∵OC OE =,33C ∠=︒,∴33E C ∠=∠=︒,∴66DOE E C ∠=∠+∠=︒,∵AB CD ∥,∴66A DOE =∠=︒∠,故答案为:66.38.(2024·山东威海·中考真题)如图,在正六边形ABCDEF 中,AH FG ∥,BI AH ⊥,垂足为点I .若20EFG ∠=︒,则ABI ∠= .【答案】50︒/50度【分析】本题考查了正六边形的内角和、平行线的性质及三角形内角和定理,先求出正六边形的每个内角为120︒,即120EFA FAB ∠=∠=︒,则可求得GFA ∠的度数,根据平行线的性质可求得FAH ∠的度数,进而可求出HAB ∠的度数,再根据三角形内角和定理即可求出ABI ∠的度数. 【详解】解:∵正六边形的内角和(62)180720=−⨯=︒, 每个内角为:7206120︒÷=︒,120EFA FAB ∴∠=∠=︒, 20EFG ∠=︒,12020100GFA ∴∠=︒−︒=︒, AH FG ∥,180G FAH FA ∠=︒∴∠+,180********GFA FAH =︒−∠=︒−︒=︒∴∠, 1208040HAB FA FAH B ∴∠=∠−︒−︒=︒∠=,BI AH ⊥,90BIA ∴∠=︒,904050ABI ∴∠=︒−︒=︒.故答案为:50︒.39.(2024·河北·中考真题)如图,ABC 的面积为2,AD 为BC 边上的中线,点A ,1C ,2C ,3C 是线段4CC 的五等分点,点A ,1D ,2D 是线段3DD 的四等分点,点A 是线段1BB 的中点.(1)11AC D △的面积为 ; (2)143B C D △的面积为 . ,证明()11SAS AC D ACD ≌)证明()11SAS AB D ABD ≌三点共线,得11112AB D AC D S △△+=,继而得出113AB D =△,证明3C AD △99CAD S ==△,推出S △【详解】解:(1)连接11B D 、1B ∵ABC 的面积为ABD S S △=∵点A ,1C ,1AC AC =和ACD 中,CAD , ∴()11SAS AC D ACD ≌111AC D ACD S S ==△△,∠11AC D △的面积为1,故答案为:1;)在11AB D 和△1AB AD BAD AD =∠∴()11SAS AB D ABD ≌111AB D ABD S S ==△△,∠180BDA CDA ∠+∠=︒1111180B D A C D A ∠+∠=和ACD 中,3AD AD,3C ∠CAD △,332233C AD CADS AC SAC ⎫==⎪⎭33C AD =△1AC C =【点睛】本题考查三角形中线的性质,全等三角形的判定与性质,相似三角形的判定与性质,等分点的意义,三角形的面积.掌握三角形中线的性质是解题的关键.三、解答题40.(2024·福建·中考真题)在手工制作课上,老师提供了如图1所示的矩形卡纸ABCD,要求大家利用它制作一个底面为正方形的礼品盒.小明按照图2的方式裁剪(其中AE FB=),恰好得到纸盒的展开图,并利用该展开图折成一个礼品盒,如图3所示.图1图2图3(1)直接写出ADAB的值;(2)如果要求折成的礼品盒的两个相对的面上分别印有“吉祥”和“如意”,如图4所示,那么应选择的纸盒展开图图样是()图4A.B.C.D.(3)现以小明设计的纸盒展开图(图2)为基本样式,适当调整AE,EF的比例,制作棱长为10cm的正方体礼品盒,如果要制作27个这样的礼品盒,请你合理选择上述卡纸(包括卡纸的型号及相应型号卡纸的张数),并在卡纸上画出设计示意图(包括一张卡纸可制作几个礼品盒,其展开图在卡纸上的分布情况),给出所用卡纸的总费用.(要求:①同一型号的卡纸如果需要不止一张,只要在一张卡纸上画出设计方案;②没有用到的卡纸,不要在该型号的卡纸上作任何设计;③所用卡纸的数量及总费用直接填在答题卡的表格上;④本题将综合考虑“利用卡纸的合理性”和“所用卡纸的总费用”给分,总费用最低的才能得满分;⑤试卷上的卡纸仅供作草稿用)【答案】(1)2;(2)C;∴所用卡纸总费用为:⨯+⨯+⨯=(元).202533158。

包头市2015中考复习第4章 第1节 图形的认识初步与相交线、平行线

包头市2015中考复习第4章 第1节 图形的认识初步与相交线、平行线

第四章图形的认识与三角形第1节图形的认识初步与相交线、平行线几何图形1.几何图形分为________图形和________图形.2.点、线、面、体:点动成________,________动成面,面动成________.直线、射线、线段1.性质:两点________一条直线;两点之间________最短.2.线段的中点:如图,若AC=BC,则点C是________的中点.3.两点之间的距离:连接两点的________的________.角1.定义:具有公共________的两条________组成的图形.2.周角、平角、直角.3.角平分线.4.两个角的和为______,则这两个角互为余角;两个角的和为______,则这两个角互为补角.相交线与平行线1.对顶角、垂线、垂线段、点到直线的距离.2.同位角、内错角、同旁内角.3.平行公理:经过直线外一点,有且只有一条直线与这条直线________.4.性质与判定:两直线平行⇔同位角________;两直线平行⇔内错角________;两直线平行⇔同旁内角________.立体图形与平面图形【例1】(2014·菏泽)过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其展开图正确的为( B )解决此类问题,要充分考虑带有各种符号的面的特点及位置.线段、角、相交线的有关应用【例2】(1)(2014·长沙)如图,C,D是线段AB上两点,D是线段AC的中点,若AB=10 cm,BC=4 cm,则AD的长等于( B )A.2 cm B.3 cm C.4 cm D.6 cm(2)如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM 等于( C )A.38°B.104°C.142°D.144°(1)线段的和差、中点―→求出AD;(2)两直线相交―→对顶角;角平分线、邻补角―→求出∠BOM.平行线的性质与判定【例3】(1)(2014·临沂)如图,已知l1∥l2,∠A=40°,∠1=60°,则∠2的度数是( D ) A.40°B.60°C.80°D.100°,第(2)题图)(2)(2013·永州)如图,下列条件中能判定直线l1∥l2的是( C )A.∠1=∠2 B.∠1=∠5C.∠1+∠3=180°D.∠3=∠5(1)平行线的性质―→得出∠ABC=∠1,∠2=∠A+∠ABC;(2)平行线的判定,同旁内角互补―→两直线平行.注意要正确地把所求的角放在同一个三角形或特定的图形中.【例4】小明同学把一个含有45°角的直角三角板放在如图所示的两条平行线m,n上,测得∠α=120°,则∠β的度数是( D )A.45°B.55°C.65°D.75°将α,β角及45°角转化到一个三角形中―→求∠β的度数.真题热身1.(2013·大连)如图,点O在直线AB上,射线OC平分∠DOB,若∠COB=35°,则∠AOD等于( C )A.35°B.70°C.110°D.145°,第1题图),第2题图) 2.(2014·汕尾)如图,能判定EB∥AC的条件是( D )A.∠C=∠ABE B.∠A=∠EBDC.∠C=∠ABC D.∠A=∠ABE3.(2013·山西)如图是一个长方体包装盒,则它的平面展开图是( A )4.(2014·黄冈)如图,若AD∥BE,且∠ACB=90°,∠CBE=30°,则∠CAD=__60__度.,第4题图),第5题图) 5.(2013·淮安)如图,三角板的直角顶点在直线l上,若∠1=40°,则∠2的度数是__50°__.6.(2013·咸宁)如图是正方体的一种平面展开图,它的每个面上都有一个汉字,那么在原正方体的表面上,与汉字“香”相对的面上的汉字是__泉__.第四章图形的认识与三角形第1节图形的认识初步与相交线、平行线基础过关一、精心选一选1.(2013·娄底)下列图形中,由AB∥CD,能使∠1=∠2成立的是( B )2.(2014·滨州)如图,OB是∠AOC的角平分线,OD是∠COE的角平分线.如果∠AOB =40°,∠COE=60°,则∠BOD的度数为( D )A.50°B.60°C.65°D.70°错误!错误!,第3题图)3.(2014·成都)如图,把三角板的直角顶点放在直尺的一边上,若∠1=30°,则∠2的度数为( A )A.60°B.50°C.40°D.30°4.(2014·金华)如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( A )A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直5.如图,点C在线段AB上,点D是AC的中点,如果CD=3 cm,AB=10 cm,那么BC的长度是( C )A.3 cm B.3.5 cmC.4 cm D.4.5 cm6.(2014·大庆)对坐标平面内不同两点A(x1,y1),B(x2,y2),用|AB|表示A,B两点间的距离(即线段AB的长度),用‖AB‖表示A,B两点间的格距,定义A,B两点间的格距为‖AB‖=|x1-x2|+|y1-y2|,则|AB|与‖AB‖的大小关系为( C )A.|AB|≥‖AB‖B.|AB|>‖AB‖C.|AB|≤‖AB‖D.|AB|<‖AB‖7.(2014·汕尾)如图是一个正方体的表面展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是( D )A.我B.中C.国D.梦,第7题图),第8题图) 8.(2013·随州)如图是一个长方体形状包装盒的表面展开图,折叠制作完成后得到长方体的容积是(包装材料厚度不计)( D )A.40×40×70 B.70×70×80C.80×80×80 D.40×70×80二、细心填一填9.(2014·广安)若∠α的补角为76°28′,则∠α=__103°32′__.10.(2014·威海)直线l1∥l2,一块含45°角的直角三角板如图放置,∠1=85°,则∠2=__40°__.,第10题图),第11题图)11.(2013·株洲)如图,直线l 1∥l 2∥l 3,点A ,B ,C 分别在直线l 1,l 2,l 3上,若∠1=70°,∠2=50°,则∠ABC =__120__度.12.(2014·随州)将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为__75__度.13.平面内不同的两点确定一条直线,不同的三点最多确定三条直线,若平面内的不同的n 个点最多可确定15条直线,则n 的值为__6__.三、用心做一做14.(2013·邵阳)将一副三角板拼成如图所示的图形,过点C 作CF 平分∠DCE 交DE 于点F.(1)求证:CF ∥AB ; (2)求∠DFC 的度数.解:(1)∵CF 平分∠DCE ,∴∠1=∠2=12∠DCE ,∵∠DCE =90°,∴∠1=45°,∵∠3=45°,∴∠1=∠3,∴AB ∥CF (2)∵∠D =30°,∠1=45°,∴∠DFC =180°-30°-45°=105°15.已知角α,β都是锐角,γ是钝角.(1)在计算13(α+β+γ)的度数时有三位同学分别算出了119°,120°,121°这三个不同的结果,其中只有一个是正确的答案,根据以上信息,求α+β+γ的值;(2)在(1)的情况下,若锐角β比锐角α小1°,γ是α的两倍,求α的余角的度数.解:(1)∵α,β,γ中有两个锐角和一个钝角,∴0°<α<90°,0°<β<90°,90°<γ<180°,∴α+β+γ<360°,∵3×119°=357°,3×120°=360°,3×121°=363°,∴α+β+γ=357°(2)设α为x°,则β为(x-1)°,γ为2x°,则x+(x-1)+2x=357,解得x=89.5,则α=89.5°,90°-α=0.5°,即α的余角的度数为0.5°16.如图,已知AB∥CD,EF∥MN,∠1=115°.(1)求∠2和∠4的度数;(2)本题隐含着一个规律,请你根据(1)的结果进行归纳,试着用文字表述出来;(3)利用(2)的结论解答:如果两个角的两边分别平行,其中一个角是另一个角的两倍,求这两个角的大小.解:(1)∠2=115°,∠4=65°(2)如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补(3)根据(2),设其中一个角的度数为x°,则另一个角为2x°,则x+2x=180,∴x=60,故这两个角分别为60°,120°挑战技能17.(2014·宁波)如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱,下列棱柱中和九棱锥的棱数相等的是( B )A.五棱柱B.六棱柱C.七棱柱D.八棱柱18.(2013·盘锦)如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( C )A.30°B.20°C.15°D.14°19.(2014·安顺)如图,∠AOB的两边OA,OB均为平面反光镜,∠AOB=40°.在OB 上有一点P,从P点射出一束光线经OA上的Q点反射后(入射角等于反射角),反射光线QR恰好与OB平行,则∠QPB的度数是( B )A.60°B.80°C.100°D.120°20.(2013·河北)如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=__95°__.21.(2014·赤峰)如图1,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.(1)探究猜想:①若∠A=30°,∠D=40°,则∠AED等于多少度?②若∠A=20°,∠D=60°,则∠AED等于多少度?③猜想图1中∠AED,∠EAB,∠EDC的关系并证明你的结论.(2)拓展应用:如图2,射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界,其中区域③④位于直线AB上方),P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系.(不要求证明)解:(1)①∠AED=70°②∠AED=80°③猜想:∠AED=∠EAB+∠EDC,证明:延长AE交DC于点F,∵AB∥DC,∴∠EAB=∠EFD,∵∠AED为△EDF的外角,∴∠AED =∠EDF+∠EFD=∠EAB+∠EDC(2)根据题意得:点P在区域①时,∠EPF=360°-(∠PEB+∠PFC);点P在区域②时,∠EPF=∠PEB+∠PFC;点P在区域③时,∠EPF=∠PEB-∠PFC;点P在区域④时,∠EPF=∠PFC-∠PEB。

2013年中考数学考前热点拨《几何初步、相交线与平行线 》

2013年中考数学考前热点拨《几何初步、相交线与平行线 》

考点3
相交线
对顶角的 性质
相等 对顶角________
垂线
两条直线相交所成的角为 定义 直角 ________ 时,则这两条直线垂直 且只有一 条直线与已知 1.过一点有________ 性质 直线垂直; 最短 2.垂线段________
垂线段 的长 直线外一点到这条直线的________
点到直线 的距离
┃典型分析┃
例 如图15-14,AB∥CD,分别探讨下面四个图形中 ∠APC与∠PAB、∠PCD的关系,请你从所得到的关系中任选一个 加以说明.
图15-14
[解析]
关键是过转折点作出平行线,根据两直线平行,内
错角相等,或结合三角形的外角性质求证即可.
解:如图:
图15-15
(1)∠APC=∠PAB+∠PCD; 证明:过点P作AB∥PF, ∵AB∥PF,∴AB∥CD∥PF, ∴∠APC=∠PAB+∠PCD(两直线平行,内错角相等). (2)∠APC+∠PAB+∠PCD=360°; (3)∠APC=∠PAB-∠PCD; (4)∵AB∥CD,∴∠POB=∠PCD. ∵∠POB是△AOP的外角, ∴∠APC+∠PAB=∠POB, ∴∠APC=∠POB-∠PAB, ∴∠APC=∠PCD-∠PAB.
∴∠ABC+∠CED=∠BCP+∠ECP=∠BCE=140° . 又∵BF,EF分别平分∠ABC,∠CED, 1 1 ∴∠ABF= ∠ABC,∠DEF= ∠DEC, 2 2 1 ∴∠ABF+∠DEF= (∠ABC+∠DEC)=70° . 2 过点F作FM∥DE,则∠BFM=∠ABF,∠MFE=∠DEF, ∴∠BFE=∠BFM+∠MFE=∠ABF+∠DEF=70° .
角的概念 角的表示 角的分类 余角与补 角 角的计算

中考数学 考点系统复习 第四章 三角形 第一节 几何初步及相交线与平行线

中考数学 考点系统复习 第四章 三角形 第一节 几何初步及相交线与平行线

4.下列命题中是真命题的是①① ③.(选填序号) ①两点之间,线段最短; ③ ②相等的角是对顶角; ③同角(或等角)的余角相等; ④两个锐角的和是钝角; ⑤同旁内角相等,两直线平行.
5.(RJ 七上 P128 练习 T3 改编)如图,点 C 为线段 AB 上一点,点 D 是线
段 AC 的中点,点 E 是线段 CB 的中点.若 AC=5 cm, BC=4 cm,则 AD=
补角为11202°0 ; (2)若EF°=3,则点E到OC的距离为 3 ;
(3)线段EG,EF,EH,EO中长度最短的是EEFF ; (4)若点F是GH的中点,EG=3,则EH=3 3 .
3.如图,已知 a∥b,∠1=∠2=50°,∠4=70°,则∠3=7700°°,∠5
=5500°°,∠6=112200°,a 与 c 的位置关系是 aa∥∥cc. °
∥b, 则∠1的大小为 A.45°
( C)
B.60°
C.75°
D.105°
7.★(2021·湘西州第17题4分)如图,将一条对边互相平行的纸带进行 两次折叠,折痕分别为AB,CD,若CD∥BE,∠1=20°,则∠2的度数是 4040°°.
命题点 3:命题与定理(2022 年考查 2 次,2021 年考查 4 次,2020 年
(B )
=80°,则∠2的度数为
( C)
A.20°
B.80°
C.100°
D.120°
5.(2022·郴州第7题3分)如图,直线a∥b,且直线a,b被直线c,d所
截,则下列条件中不能判定直线c∥d的是
( C)
A.∠3=∠4
B.∠1+∠5=180°
C.∠1=∠2
D.∠1=∠4
6.(2021·岳阳第5题3分)将一副直角三角板按如图方式摆放,若直线a

中考数学考点系统复习 第四章 三角形 第一节 几何初步及相交线与平行线

中考数学考点系统复习 第四章 三角形 第一节 几何初步及相交线与平行线

1.(2021·安徽)两个直角三角板如图摆放,其中∠BAC=∠EDF=90°,
∠E=45°,∠C=30°,AB 与 DF 交于点 M.若 BC∥EF,则∠BMD 的大小

( C)
A.60° B.67.5° C.75° D.82.5°
2.(2021·聊城)如图,AB∥CD∥EF,若∠ABC=130°,∠BCE=55°,
第四章 三角形 第一节 几何初步及相交
线与平行线
1.(1)计算:18°30′=1818.5.5°; (2)用度、分、秒表示:18.36°=18°182°1′21′336″6 ; (3)48°36′的余角是 414°1°2244′′,″补角是 13131°1°224′′.
2.如图,直线 AB 与直线 CD 相交于点 O,E 是∠AOD 内一点,已知 OE⊥AB, ∠BOD=45°,则∠COE 的度数是 13 1355°°.
命题点:利用平行线的性质求角度(近 6 年考查 4 次) 1.(2020·宁夏第 4 题 3 分)如图摆放的一副学生用直角三角板,∠F= 30°,∠C=45°,AB 与 DE 相交于点 G,当 EF∥BC 时,∠EGB 的度数是
( D) A.135° B.120° C.115° D.105°
2.(2018·宁夏第 7 题 3 分)将一个矩形纸片按如图所示折叠,若∠1=
DE=4.54.5 cm,图中线段共有 1 100 条.
cm
cm
5.乐乐观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题: 如图,已知 AB∥CD,∠BAE=92°,∠DCE=121°,则∠AEC 的度数是 2 29°9°.
【考情分析】宁夏近六年主要以选择题、填空题的形式考查平行线的性 质,多与其他知识结合考查,难度较小,分值一般 3 分.

2014年中考一轮复习讲义:图形的初步认识及相交线、平行线

2014年中考一轮复习讲义:图形的初步认识及相交线、平行线

2014年中考一轮复习讲义:图形的初步认识及相交线、平行线【考纲要求】:1.了解直线、线段、射线的相关性质以及线段中点、线段的和、差和两点间距离的意义.2.理解角的有关概念,熟练进行角的运算.3.了解补角、余角、对顶角、垂线、垂线段等概念及性质.4.会识别同位角、内错角和同旁内角,掌握相交线与平行线的定义,熟练运用垂线的性质,平行线的性质和判定.【命题趋势】:中考中,对这部分内容命题的难度较小,主要以选择题、填空题的形式出现,重点考查互为余角、互为补角的角的性质、平行线的性质与判定的应用.【知识梳理】一、直线、射线、线段1.直线的基本性质(1)两条直线相交,只有一个交点.(2)经过两点有且只有一条直线,即:两点确定一条直线.2.线段的性质所有连接两点的线中,线段最短,即:两点之间线段最短.3.线段的中点把一条线段分成两条相等线段的点,叫做这条线段的中点.二、角的有关概念及性质1.角的有关概念角是由一条射线绕着它的端点旋转而成的图形.射线端点叫做角的顶点,两条射线是角的两边.从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线就叫做这个角的角平分线.2.角的单位与换算1°=60′,1′=60″,1周角=2平角=4直角.3.余角与补角如果两个角的和等于90°,就说这两个角互为余角;如果两个角的和等于180°,就说这两个角互为补角.同角(或等角)的余角相等;同角(或等角)的补角相等.4.对顶角与邻补角在两条相交直线形成的四个角中,如果两个角有公共顶点,一个角的两边分别是另一个角两边的反向延长线,这样的两个角称为对顶角.如果两个角有公共顶点,有一条公共边,它们的另一边互为反向延长线,这样的两个角为邻补角.对顶角相等,邻补角互补.三、垂线的性质与判定1.垂线及其性质垂线:两条直线相交所构成的四个角中有一个角是直角,则这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.性质:(1)过一点有且只有一条直线与已知直线垂直;(2)直线外一点与直线上各点连接的所有线段中,垂线段最短.(简说成:垂线段最短)2.点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.四、平行线的性质与判定1.概念:在同一平面内,不相交的两条直线,叫做平行线.2.平行公理经过直线外一点,有且只有一条直线与已知直线平行.3.性质如果两条直线平行,那么同位角相等,内错角相等,同旁内角互补.4.判定同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;在同一平面内垂直于同一直线的两直线平行,平行于同一直线的两直线平行.题型分类、深度剖析:考点一、直线、射线、线段【例1】在直线l上任取一点A,截取AB=16 cm,再截取AC=40 cm,求AB的中点D与AC 的中点E 的距离.解:(1)当C 在AB 的延长线上时,如图, ∵D 是AB 的中点,AB =16 cm , ∴AD =12AB =12×16=8(cm).∵E 是AC 的中点,AC =40 cm , ∴AE =12AC =12×40=20(cm).∴DE =AE -AD =20-8=12(cm).(2)当C 在BA 的延长线上时,如图,由(1)知AD =8 cm ,AE =20 cm.∴DE =AE +AD =20+8=28(cm). 答:D 点与E 点的距离是12 cm 或28 cm.方法总结 对于线段的和、差关系以及线段的中点问题的计算,需结合图形,认真观察分析.若已知线段上给出的点未明确其位置,还需要分类讨论,千万不要漏解.触类旁通1 如图,点C 是线段AB 上的点,点D 是线段BC 的中点,若AB =12,AC =8,则CD =__________.考点二、角的计算【例2】如图,已知直线AB ,CD 相交于点O ,OA 平分∠EOC ,∠EOC =100°,则∠BOD 的度数是( )A .20°B .40°C .50°D .80°解析:∵OA 平分∠EOC ,∠EOC =100°, ∴∠AOC =12∠EOC =50°.又∵∠BOD 与∠AOC 是对顶角, ∴∠BOD =∠AOC =50°,故选C.答案:C方法总结解决有关图形中的角的计算问题时,首先要从图形中读出具有度量关系的角,如互余、互补、对顶角等,然后合理利用相关的定义、性质求解.触类旁通2 如图,直线EO⊥CD,垂足为点O,AB平分∠EOD,则∠BOD的度数为( )A.120° B.130°C.135° D.140°考点三、平行线的性质与判定【例3】如图,已知∠1=∠2=∠3=55°,则∠4的度数是( )A.110° B.115° C.120° D.125°解析:∵∠2=∠6,∠1=∠2,∴∠1=∠6,∴l1∥l2,∴∠3+∠5=180°.∵∠3=55°,∴∠5=125°.∵∠4与∠5是对顶角,∴∠4=∠5=125°,故选D.答案:D方法总结平行线的性质和判定常用来解决下列问题:(1)作图形的平移;(2)证明线段或角相等;(3)证明两直线平行;(4)证明两直线垂直.触类旁通3 如图,已知直线a∥b,∠1=40°,∠2=60°,则∠3等于( )A.100° B.60° C.40° D.20°。

相交线与平行线篇(解析版)--中考数学必考考点总结+题型专训

相交线与平行线篇(解析版)--中考数学必考考点总结+题型专训

知识回顾微专题相交线与平行线--中考数学必考考点总结+题型专训考点一:相交线与平行线之邻补角、对顶角1.邻补角:①定义:两条相交之间构成的四个角中,有公共顶点且有一条公共边,另一边互为反向延长线的两个角是邻补角。

②性质:邻补角互补。

2.对顶角:①定义:有公共顶点,两边均互为反向延长线的两个角是对顶角。

②性质:对顶角相等。

1.(2022•北京)如图,利用工具测量角,则∠1的大小为()A .30°B .60°C .120°D .150°【分析】根据对顶角的性质解答即可.【解答】解:根据对顶角相等的性质,可得:∠1=30°,故选:A .2.(2022•苏州)如图,直线AB 与CD 相交于点O ,∠AOC =75°,∠1=25°,则∠2的度数是()A .25°B .30°C .40°D .50°【分析】先求出∠BOD 的度数,再根据角的和差关系得结论.【解答】解:∵∠AOC=75°,∴∠AOC=∠BOD=75°.∵∠1=25°,∠1+∠2=∠BOD,∴∠2=∠BOD﹣∠1=75°﹣25°=50°.故选:D.3.(2022•自贡)如图,直线AB、CD相交于点O,若∠1=30°,则∠2的度数是()A.30°B.40°C.60°D.150°【分析】根据对顶角相等可得∠2=∠1=30°.【解答】解:∵∠1=30°,∠1与∠2是对顶角,∴∠2=∠1=30°.故选:A.4.(2022•桂林)如图,直线l1,l2相交于点O,∠1=70°,则∠2=°.【分析】根据对顶角的性质解答即可.【解答】解:∵∠1和∠2是一对顶角,∴∠2=∠1=70°.故答案为:70.考点二:相交线与平行线之垂直知识回顾微专题1.垂直的定义:两条直线相交形成的四个角中,若其中有一个角是90°,则此时我们说这两条直线垂直。

初三数学知识点全总结

初三数学知识点全总结

初三数学知识点全总结初三数学知识点全总结有理数、整式的加减、一元一次方程、图形的初步认识。

(1)有理数:是初中数学的基础内容,中考试题中分值约为3-6分,多以选择题,填空题,计算题的形式出现,难易度属于简单。

考察内容复数以及混合运算(期中、期末必考计算)数轴、相反数、绝对值和倒数(选择、填空)。

(2)整式的加减:中考试题中分值约为4分,题型以选择和填空题为主,难易度属于易。

考察内容①整式的概念和简单的运算,主要是同类项的概念和化简求值②完全平方公式,平方差公式的几何意义③利用提公因式法和公式法分解因式。

(3)一元一次方程:是初一学习重点内容,主要学习内容有(归纳、总结、延伸)应用题思维、步骤、文字题,根据已知条件求未知。

中考分值约为1-3分,题型主要以选择和填空题为主,极少出现简答题,难易度为易。

考察内容①方程及方程解的概念②根据题意列一元一次方程③解一元一次方程。

题型:追击、相遇、时间速度路程的关系、打折销售、利润公式。

(4)几何:角和线段,为下册学三角形打基础相交线和平行线、实数、平面直角坐标系、二元一次方程组、不等式和不等式组和数据库的收集整理与描述。

(1)相交线和平行线:相交线和平行线是历年中考中常见的考点。

通常以填空,选择题形式出现。

分值为3-4分,难易度为易。

考察内容①平行线的性质(公理)②平行线的判别方法③构造平行线,利用平行线的性质解决问题。

(2)平面直角坐标系:中考试题中分值约为3-4分,题型以选择,填空为主,难易度属于易。

考察内容①考察平面直角坐标系内点的坐标特征②函数自变量的取值范围和球函数的值③考察结合图像对简单实际问题中的函数关系进行分析。

(3)二元一次方程组:中考分值约为3-6分,题型主要以选择,解答为主,难易度为中。

考察内容①方程组的解法,解方程组②根据题意列二元一次方程组解经济问题。

(4)不等式和不等式组:中考试题中分值约为3-8分,选择,填空,解答题为主。

考察内容:①一元一次不等式(组)的解法,不等式(组)解集的数轴表示,不等式(组)的整数解等,题型以选择,填空为主。

中考数学【相交线与平行线】考点专项复习教案(含例题、习题、答案)

中考数学【相交线与平行线】考点专项复习教案(含例题、习题、答案)

第五章相交线与平行线本章小结小结1 本章概述本章的主要内容是两条直线的位置关系——相交与平行.特别是垂直和平行关系是平面几何所要研究的基本内容之一.这一章的内容是很重要的基本知识,是几何学习的重要阶段,要引起高度重视.教材在给出对顶角、邻补角、垂线、点到直线的距离等概念的基础上又给出了对顶角、邻补角的性质、垂线的基本性质和平行线的判定和性质,最后给出平移的概念、性质以及利用平移绘制图案.小结2 本章学习重难点【本章重点】了解对顶角、余角、补角的概念;掌握等角的余角相等,等角的补角相等;掌握垂线、垂线段的概念;知道两条直线平行,同位角相等以及同位角相等,两直线平行,进一步探索平行线的性质和判定.【本章难点】掌握垂线段最短的性质,体会点到直线的距离的意义;通过具体实例认识平移;能按要求作出简单平面图形平移后的图形,利用平移进行图案设计,认识和欣赏平移在现实生活中的应用.小结3 中考透视中考所考查的内容主要体现在以下几个方面:1. 对顶角、邻补角、垂线、点到直线的距离等概念的理解,对顶角、邻补角以及垂线性质的应用,包括实际应用.2. 同位角、内错角、同旁内角的含义,能由线找出角、由角说出线.3. 平行线的识别与特征,以及在实际问题中的应用.4. 简单命题的证明.知识网络结构图专题总结及应用一、知识性专题专题1 有关基本图形的问题【专题解读】本章中主要考查数图形的个数问题,构造基本图形以及基本图形的组合,如平行线与角平分线的组合,平行线与平行线的组合等.例1 如图5-132所示,直线AB,CD,EF都经过点O,图中共有几对对顶角?分析数基本图形不能重复,不能遗漏.我们知道两条直线相交有两对对顶角,图中有3组两条直线相交,故对顶角有2×3=6(对).解:共有6对对顶角.【解题策略】数图形个数及书写时,应注意顺序性,这样不易例2 如图5-133所示,图中共有几对同旁内角?分析我们知道两条直线被第三条直线所截共形成八个角,其中有两对同旁内角.图形中有两个“三线八角”,即CD,EF被GH所截,形成两对同旁内角,AB,EF被GH所截,又形成两对同旁内角,所以共有4对同旁内角.解:图中共有4对同旁内角.【解题策略】注意观察同旁内角的特点.例3 如图5-134所示,AB∥CD,P为AB,CD之间的一点,已知∠1=32°,∠2=25°,求∠BPC的度数.分析此图不是我们所学的“三线八角”的基本图形,需添加一些线(辅助线)把它们转化成我们熟悉的基本图形.解:如图5-134所示,过点P作射线PN∥AB.因为AB∥CD(已知),所以PN∥CD(平行于同一条直线的两直线平行),所以∠4=∠2=25°(两直线平行,内错角相等).因为PN∥AB(已知),所以∠3=∠1=32°(两直线平行,内错角相等).所以∠BPC=∠3+∠4=32°+25°=57°.【解题策略】构造基本图形就是将残缺的基本图AB所以GM∥HN(内错角相等,两直线平行).【解题策略】此题考查平行线的性质、判定以及角平分线的综合应用.例5 如图5-136所示,已知AB∥CD,BC∥DE.试说明∠B=∠D.分析条件为直线平行,故可根据平行线的性质说明.解:因为AB∥CD(已知),所以∠B=∠C(两直线平行,内错角相等).因为BC∥DE(已知),所以∠C=∠D(两直线平行,内错角相等).【解题策略】此题重点考查了平行线的性质的应用.例6 如图5-137所示,已知AB∥CD,G为AB上任一点,GE,GF分别交CD于E,F.试说明∠1+∠2+∠3=180°.分析要说明180°问题,想到了“平角”和“两直线平行,同旁内角互补”这两个知识点,故可用它们解决问题.解:因为AB∥CD(已知),所以∠4=∠2,∠3=∠5(两直线平行,内错角相等).因为∠4+∠1+∠5=180°(平角定义),所以∠2+∠1+∠3=180°(等量代换).【解题策略】此题把说明∠2+∠1+∠3=180°转化为说明∠1+∠5+∠4=180°,应用等量代换解决了问题.例7 如图5-138所示,AB,DC相交于点O,OE,OF分别平分∠AOC,∠BOC.试说明OE⊥OF解:因为OE,OF分别平分∠AOC与∠BOC(已知),所以∠1=12∠AOC,∠2=12∠BOC(角平分线定义).所以∠1+∠2=12∠AOC+12∠BOC=12(∠AOC+∠BOC).又因为∠AOC+∠BOC=180°(邻补角定义),所以∠1+∠2=1×180°=90°,∠和°可说明∠1+∠2=90°.例9 如图5-140所示,在三角形ABC中,CD⊥AB于D,FG⊥AB于G,ED∥BC.试说明∠1=∠2.解:因为CD⊥AB,FG⊥AB(已知),所以∠CDB=∠FGB=90°(垂直定义),所以∠2=∠3(两直线平行,同位角相等).因为DE∥BC(已知),所以∠1=∠3(两直线平行,内错角相等),所以∠1=∠2(等量代换).【解题策略】多次运用平行线的性质说明∠1,∠2,∠3的关系.二、规律方法专题专题2 基本命题的计算与证明【专题解读】基本命题的计算与证明涉及的题型有(1)有关角的计算;(2)有关角相等的判定;(3)判定平行问题;(4)判定垂直问题;(5)判定共线问题.例10 如图5-141所示,已知∠4=70°,∠3=110°,∠1=46°,求∠2的度数.分析由∠3+∠4=180°,知AB∥CD,故∠2=180°-∠1.解:因为∠4=70°,∠3=110°(已知),所以∠4+∠3=180°,所以AB∥CD(同旁内角互补,两直线平行),所以∠2=180°-∠1=180°-46°=134°(两直线平行,同旁内角互补).【解题策略】此题考查由同旁内角互补判定两直线平行,由两直线平行可行同旁内角互补,从而计算相关的角.例11 如图5-142所示,AB∥CD,EB∥DF.试说明∠1=∠2.解:因为AB∥CD(已知),所以∠1+∠3=∠2+∠4(两直线平行,内错角相等).因为EB∥DF(已知),所以∠3=∠4(两直线平行,内错角相等),所以∠1=∠2(等式性质).【解题策略】判定角相等的方法有:(1)同角(等角)的余角相等;(2)同角(等角)的补角相等;(3)对顶角相等;(4)角平分线定义;(5)两直线平行,同位角相等;(6)两直线平行,内错角相等.例12 如图5-143所示,DF∥AC,∠1=∠2.试说明DE=AB.分析要说明DE∥AB,可说明∠1=∠A,而由DF∥AC,有∠2=∠A.又因为∠1=∠2,故有∠1=∠A,从而得出结论.解:因为DF∥AC(已知),所以∠2=∠A(两直线平行,同位角相等).因为∠1=∠2(已知),所以∠1=∠A(等量代换),所以DE∥AB(同位角相等,两直线平行).【解题策略】判定平行的方法有:(1)平行于同一条直线的两直线平行;(2)垂直于同一条直线的两直线平行;(3)同位角相等,两直线平行;(4)内错角相等,两直线平行;(5)同旁内角互补,两直线平行.例13 如图5-144所示,∠1=∠2,CD∥EF.试说明EF⊥AB.分析要说明EF⊥AB,可说明∠2=90°,而由CD∥EF,可得∠1+∠2=180°,又∠1=∠2,所以有∠1=∠2=90°,从而得出结论.解:因为CD∥EF(已知),所以∠1+∠2=180°(两直线平行,同旁内角互补).又因为∠1=∠2(已知),所以∠1=∠2=90°,所以EF⊥AB(垂直定义).【解题策略】判定垂直的方法有:(1)说明两条相交线的一个交角为90°;(2)说明邻补角相等;(3)垂直于平行线中的一条,也必垂直于另一条.例14 如图5-145所示,直线AB,CD相交于点O,OE平分∠AOC,OF平分∠BOD.试说明E,O,F三点在一条直线上.分析要说明E,O,F三点共线,只需说明∠EOF=180°.解:因为AB,CD相交于点O(已知),所以∠AOC=∠BOD(对顶角相等).因为OE,OF分别平分∠AOC与∠BOD(已知),已知的.例15 如图5-146所示,直线AB,CD相交于点O,OD平分∠AOE,且∠COA:∠AOD=7:2,求∠BOE的度数.分析欲求∠BOE,因为∠BOE与∠AOE互为邻补角,所以可先求∠AOE,而∠AOE=2∠AOD,所以只需求∠AOD即可,由已知条件可求得∠AOD.解:∵∠COA+∠AOD=180°,∠COA:∠AOD=7:2,∴∠COA=79×180°=140°,∠AOD=29×180°=40°.∵OD平分∠AOE,∴∠AOE=2∠AOD=2×40°=80°,∴∠BOE=180°-∠AOE=180°-80°=100°.【解题策略】互为邻补角的两个角的和为180°、对顶角相等是在有关求角的大小的问题中常用的两个等量关系,要注意发现图形中的这两种角,它们常隐藏在直线条件的背后.2011中考真题相交线与平行线精选一、选择题1.(2011云南保山2,3分)如图,l1∥l2,∠1=120°,则∠2= .考点:平行线的性质;对顶角、邻补角。

中考数学专题训练第4讲几何初步、相交线、平行线(知识点梳理)

中考数学专题训练第4讲几何初步、相交线、平行线(知识点梳理)

几何初步、相交线、平行线知识点梳理考点01 几何图形一、几何图形(一)几何图形的概念和分类1.定义:把从实物中抽象出的各种图形统称为几何图形.2.几何图形的分类:立体图形和平面图形。

(1)立体图形:图形的各部分不都在同一平面内,这样的图形就是立体图形,例如:长方体、圆柱、圆锥、球等。

立体图形按形状可分为:球、柱体(圆柱、棱柱)、椎体(圆锥、棱锥)、台体(圆台、棱台).按围成立体图形的面是平面或曲面可以分为:多面体(有平面围成的立体图形)、曲面体(围成立体图形中的面中有曲面)。

(2)平面图形:有些几何图形(如线段、角、三角形、圆、四边形等)的各部分都在同一平面内,称为平面图形.常见的平面图形有圆和多边形(三角形、四边形、五边形、六边形等)。

(二)从不同方向看立体图形:从正面看:正视图.从左面看:侧视图.从上面看:俯视图。

(三)立体图形的展开图:1.有些立体图形是由一些平面图形围成,把他们的表面沿着边剪开,可以展开形成平面图形。

2.立体图形的展开图的注意事项:(1)不是所有的立体图形都可以展开形成平面图形,例如:球不能展开形成平面图形. (2)不同的立体图形可展开形成不同的平面图形,同一个立体图形,沿不同的棱剪开,也可得到不同的平面图形。

(四)正方体的平面展开图正方体的展开图由6个小正方形组成,把正方体各种展开图分类如下:二、点、线、面、体1.体:长方体、正方体、圆柱体、圆锥体、球、棱锥、棱柱等都是几何体,几何体也简称体。

2.面:包围着体的是面,面有平的面和曲的面两种.3.线:面和面相交的地方形成线,线也分为直线和曲线两种.4.点:线和线相交的地方形成点。

5.所有的几何图形都是由点、线、面、体组成的,从运动的角度来看,点动成线,线动成面,面动成体。

考点02 直线、射线、线段一、直线1.直线的表示方法:(1)可以用直线上表示两个点的大写英文字母表示,可表示为直线AB或直线BA.(2)也可以用一个小写英文字母表示,例如直线m等.2.直线的基本性质:经过两点有一条直线,并且只有1条直线.简称:两点确定一条直线。

中考数学复习线段角相交线与平行线PPT

中考数学复习线段角相交线与平行线PPT

第16课时 线段、角、相交线与平行线
考点演练
考点三
误区警示
平行线的判定与性质
在运用同位角、内错角、同旁内角判定直线是否平行时,一定要 搞清楚这一对角是由哪两条直线被哪一条直线所截而成的,从而 才能确定这两条直线是平行的.
第16课时 线段、角、相交线与平行线
考点演练
考点三 平行线的判定与性质
例4 ( ·莆田)已知直线a∥b,一块直角三角尺按如图所示的方 式放置.若∠1=37°,则∠2=__5_3_°____.
考点一 度、分、秒的运算
例1 ( ·厦门)1°等于( C) A. 10′ B. 12′ C. 60′ D. 100′
思路点拨
根据度、分、秒之间的单位转换可得答案. 1°=60′,故选C.
第16课时 线段、角、相交线与平行线
考点演练
考点二 与角有关的概念和计算
例2 ( ·恩施州)已知∠AOB=70°,以O为端点作射线OC,使 ∠AOC=42°,则∠BOC的度数为( C )
A. 28° B. 112°
思路点拨
C. 28°或112°
D. 68°
根据题意画出图形,利用数形结合及角的和、差求解即可.
第16课时 线段、角、相交线与平行线
考点演练
考点二 与角有关的概念和计算
解:如图,当点C与点C1重合时, ∠BOC=∠AOB-∠AOC=70°-42°=28°; 当点C与点C2重合时,∠BOC=∠AOB+∠AOC=70°+42°= 112°. 故选C.
第16课时 线段、角、相交线与平行线
知识梳理
3.尺规作图: (1) 限定只能使用没有___刻__度___的直尺和___圆__规___作图称为尺规 作(2图) 5.种基本作图包括:

中考数学点对点-相交线与平行线(解析版)

中考数学点对点-相交线与平行线(解析版)

专题16 相交线与平行线专题知识点概述一、相交线1.邻补角(1)定义:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

(2)性质:邻补角的性质:邻补角互补。

2.对顶角(1)定义:一个角的两边分别是另一个角的两边的反向延长线,像这样的两个角互为对顶角。

(2)性质:对顶角的性质:对顶角相等。

3.垂线(1)定义:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。

(2)垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

4.同位角、内错角、同旁内角(1)同位角定义:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。

(2)内错角定义:∠2与∠6像这样的一对角叫做内错角。

(3)同旁内角定义:∠2与∠5像这样的一对角叫做同旁内角。

二、平行线1.平行线概念:在同一平面内,两条不想交的直线叫做平行线。

记做a∥b 如“AB∥CD”,读作“AB平行于CD”。

2.两条直线的位置关系:平行和相交。

3.平行线公理及其推论:(1)公理:经过已知直线外一点,有且只有一条直线与这条直线平行;(2)推论:如果两条直线都与第三条直线平行,那么这两条直线平行. 4.平行线的判定:判定方法1:两条直线被第三条直线所截,同位角相等,两直线平行;判定方法2:两条直线被第三条直线所截,内错角相等,两直线平行;判定方法3:两条直线被第三条直线所截,同旁内角互补,两直线平行. 补充平行线的判定方法:(1)平行于同一条直线的两直线平行。

(2)垂直于同一条直线的两直线平行。

5.平行线的性质:性质1:两直线平行,同位角相等。

性质2:两直线平行,内错角相等。

性质3:两直线平行,同旁内角互补。

6.证明的一般步骤(1)根据题意,画出图形。

(2)根据题设、结论、结合图形,写出已知、求证。

(3)经过分析,找出由已知推出求证的途径,写出证明过程。

例题解析与对点练习【例题1】(2020•北京)如图,AB和CD相交于点O,则下列结论正确的是()A.∠1=∠2B.∠2=∠3C.∠1>∠4+∠5D.∠2<∠5【答案】A【分析】根据对顶角定义和外角的性质逐个判断即可.【解析】A.∵∠1和∠2是对顶角,∴∠1=∠2,故A正确;B.∵∠2=∠A+∠3,∴∠2>∠3,故B错误;C.∵∠1=∠4+∠5,故③错误;D.∵∠2=∠4+∠5,∴∠2>∠5;故D错误.【对点练习】(2019•河北省)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB【答案】C.【解析】证明:延长BE交CD于点F,则∠BEC=∠EFC+∠C(三角形的外角等于与它不相邻两个内角之和).又∠BEC=∠B+∠C,得∠B=∠EF C.故AB∥CD(内错角相等,两直线平行).【点拨】以角度之间的关系为前提,得出两条直线平行,是平行线判定定理的运用。

2024年中考数学总复习专题12线段与角、相交线与平行线复习划重点 学霸炼技法

2024年中考数学总复习专题12线段与角、相交线与平行线复习划重点 学霸炼技法

(2)角的计算中,要注意角的和、差、倍、分关系,建立要求的 角与已知角的关系式,从而求出角;当题中给出比值关系时, 常常设未知量,利用方程思想解决几何问题.
第18页
返回目录
专题十二 线段与角、相交线与平行线
中考·数学
75°
第19页
145°
返回目录
专题十二 线段与角、相交线与平行线
中考·数学
∠5
∠8
专题十二 线段与角、相交线与平行线
中考·数学
人教:七上P125~P141,七下P1~P27,八上P48~P52,P60~P63; 北师:七上P105~P121,七下P38~P54,八上P162~P177,八下 P22~P32; 华师:七上P138~P184,八上P54~P55,P85~P99; 冀教:七上P62~P84,七下P35~P54,八上P32~P34,P112~P123, P162~P164.
◎会比较线段的长短,理解线段的和、差以及线段中点的意义;
◎理解角的概念,能比较角的大小;认识度、分、秒,会对度、 分、秒进行简单的换算,并会计算角的和、差;
第3页
返回目录
[课标要求]
专题十二 线段与角、相交线与平行线
中考·数学
◎理解对顶角、余角、补角等概念,探索并掌握对顶角相等、 同角(等角)的余角相等、同角(等角)的补角相等的性质;识别 同位角、内错角、同旁内角;
(4)根据图形及已知条件,利用解方程的方法求解.
中考·数学
第13页
返回目录
专题十二 线段与角、相交线与平行线
中考·数学

第14页
返回目录
专题十二 线段与角、相交线与平行线
中考·数学
考点 2 角及角平分线

中考数学总复习讲义02:空间与图形

中考数学总复习讲义02:空间与图形

中考数学总复习:空间与图形考点总结第一章:线段、角、相交线、平行线考点1 三种基本图形—直线、射线、线段:1、直线:直线是几何中不加定义的基本概念,直线的两大特征是“直”和“向两边无限延伸”。

直线公理:经过两点有且只有 一 条直线。

注:两直线相交,只有一个交点。

2、射线:直线上一点和它的一旁的部分叫做射线。

射线的特征:“向一方无限延伸,它有一个端点。

”两条射线为同一射线必须同时具备:①端点是同一点 ;②延伸方向相同;3、线段:直线上两点和它之间的部分叫做线段,这两点叫做线段的端点。

线段公理:两点之间,线段最短;说明:两个点之间连线有很多条,但只有线段最短,这条线段的长度,就叫做这两点之间的距离。

线段的中点:①定义:如图1一1中,点B 把线段AC 分成两条相等的线段,点B 叫做线段AC 的中点。

②表示法:∵AB =BC ∴点 B 为 AC 的中点 或∵ AB =21MAC ∴点 B 为AC 的中点,或∵AC =2AB ,∴点B 为AC 的中点反之也成立∵点 B 为AC 的中点,∴AB =BC 或∵点B 为AC 的中点, ∴AB=21AC 或∵点B 为AC 的中点, ∴AC=2BC考点2 角:1)角的两种定义:① 有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点 ,这两条射线叫做角的边。

注:角是由两条射线组成的图形;这两条射线必须有一个公共端点。

② 一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。

注:起始位置的射线与终止位置的射线就形成了一个角。

2)角的度量与角的分类:角的度量:度量角的大小,可用“度”作为度量单位。

把一个圆周分成360等份,每一份叫做一度的角。

1度=60分;1分=60秒。

角的分类:(1)锐角:小于直角的角叫做锐角(2)直角:平角的一半叫做直角(3)钝角:大于直角而小于平角的角(4)平角:把一条射线,绕着它的端点顺着一个方向旋转,当终止位置和起始位置成一直线时,所成的角叫做平角。

初三中考数学几何初步及平行线、相交线

初三中考数学几何初步及平行线、相交线

第六章 三角形课时26.几何初步及平行线、相交线【课前热身】1. 如图,延长线段AB 到C ,使4BC =, 若8AB =,则线段AC 是BC 的 倍.2.如图,已知直线a b ∥,135=o ∠,则2∠的度数是 .3.如图,在不等边ABC △中,DE BC ∥,60ADE =o ∠,图中等于60o 的角还有______________.4.经过任意三点中的两点共可以画出的直线条数是( )A .一条或三条B .三条C .两条D .一条5.如图,直线a b ∥,则A ∠的度数是( )A .28oB .31oC .39oD .42o【考点链接】1. 两点确定一条直线,两点之间线段最短._______________叫两点间距离.2. 1周角=__________平角=_____________直角=____________.3. 如果两个角的和等于90度,就说这两个角互余,同角或等角的余角相等;如果_____________________互为补角,__________________的补角相等.4. ___________________________________叫对顶角,对顶角___________.5. 过直线外一点心___________条直线与这条直线平行.6. 平行线的性质:两直线平行,_________相等,________相等,________互补.7. 平行线的判定:________相等,或______相等,或______互补,两直线平行.8. 平面内,过一点有且只有_____条直线与已知直线垂直.【典例精析】 例1 如图:AB ∥CD ,直线EF 分别交AB 、CD 于E 、F ,EG 平分∠BEF ,若∠1=720,则∠2等于多少度?(第1题)A BCDBADBCE(第3题)abc1 2 (第2题)ABCDab70°31°例2 如图,ABC △中,B C ∠∠,的平分线相交于点O ,过O 作DE BC ∥,若5BD EC +=,则DE 等于多少?【中考演练】1. 如图,直线a 、b 被直线c 所截,若要a ∥ b ,需增加条件 _____________.(填一个即可) 2. 如图直线l 1//l 2,AB ⊥CD ,∠1=34°,那么∠2的度数是 . 3. 如图, 已知直线οο25,115,//=∠=∠A C CD AB , 则=∠E ( ) A.ο70 B. ο80 C. ο90 D.ο10021D CBAl 2l 1( 第1题) ( 第2题) (第3题) 4. 如图,在△ABC 中,AB =BC =12cm ,∠ABC =80°,BD 是∠ABC 的平分线,DE ∥BC .(1) 求∠EDB 的度数;(2) 求DE 的长.5. 如图,AB ∥CD , AC ⊥BC ,∠BAC =65°,求∠BCD 度数.AB C O D EAB CD E﹡6.如图,在ΔABC中,AB=AC=10,BC=8.用尺规作图作BC边上的中线AD(保留作图痕迹,不要求写作法、证明),并求AD的长.AB C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档