2-matlab_多项式、插值与数据拟合(1)

合集下载

MATLAB软件中软件拟合与插值运算的方法

MATLAB软件中软件拟合与插值运算的方法

MATLAB软件中软件拟合与插值运算的方法内容目录
1MATLAB中软件拟合与插值运算的方法1
1.1拟合函数的选择1
1.1.1线性拟合1
1.1.2非线性拟合2
1.2拟合函数的求解2
1.2.1直接法2
1.2.2迭代法3
1.3MATLAB插值函数4
1.3.1样条插值函数4
1.3.2拉格朗日插值函数5
1.3.3指数插值函数5
结论6
近来,随着科学技术的进步,数据采集技术的发展,大量的实验数据和实验结果越来越多,如何合理地分析处理数据,描绘实际趋势,就变得十分重要,MATLAB中的软件拟合与插值是目前应用最多的数据处理技术之一、本文介绍了MATLAB中软件拟合与插值运算的方法及其具体实现。

1.1拟合函数的选择
1.1.1线性拟合
线性拟合是指拟合函数可以用一元线性方程描述,MATLAB中的拟合
函数有polyfit、polyval和 polyconf等。

其中,polyfit函数用来根据
输入的拟合数据拟出一元多项式,polyval函数用来求出拟合后的拟合值,polyconf函数用来计算拟合的参数的置信范围。

例如,用polyfit函数
拟合下面的数据,输入x = [1 2 3 4 5]和y = [4.3 7.3 11.1 14.1
18.4],拟出的拟合函数为y = 4.1 + 2.3x,即拟合函数为y = 4.1 +
2.3x。

1.1.2非线性拟合。

Matlab中数据处理和多项式插值与曲线拟合

Matlab中数据处理和多项式插值与曲线拟合

Matlab中数据处理和多项式插值与曲线拟合⼀、基本统计处理1、查取最⼤值MAX函数的命令格式有:[Y,I]= max (X):将max(X)返回矩阵X的各列中的最⼤元素值及其该元素的位置赋予⾏向量Y与I;当X为向量时,则Y与I为单变量。

[Y,I]=max(X,[],DIM):当DIM=1时按数组X的各列查取其最⼤的元素值及其该元素的位置赋予向量Y与I;当DIM=2时按数组X的各⾏查取其最⼤的元素值及其该元素的位置赋予向量Y与I.max(A,B):返回⼀个与A,B同维的数组,其每⼀个元素是由A,B同位置上的元素的最⼤值组成。

【例1】查找下⾯数列x的最⼤值。

x=[3 5 9 6 1 8] % 产⽣数列xx = 3 5 9 6 1 8y=max(x) % 查出数列x中的最⼤值赋予yy = 9[y,l]=max(x) % 查出数列x中的最⼤值及其该元素的位置赋予y,ly = 9l = 3【例2】分别查找下⾯3×4的⼆维数组x中各列和各⾏元素中的最⼤值。

x=[1 8 4 2;9 6 2 5;3 6 7 1] % 产⽣⼆维数组xx = 1 8 4 29 6 2 53 6 7 1y=max(x) % 查出⼆维数组x中各列元素的最⼤值产⽣赋予⾏向量yy = 9 8 7 5[y,l]=max(x) % 查出⼆维数组x中各列元素的最⼤值及其这些% 元素的⾏下标赋予y,ly = 9 8 7 5l = 2 1 3 2[y,l]=max(x,[ ],1) % 本命令的执⾏结果与上⾯命令完全相同y = 9 8 7 5l = 2 1 3 2[y,l]=max(x,[ ],2) % 由于本命令中DIM=2,故查找操作在各⾏中进⾏y = 897l = 213[y,l]=max(x) % 查出⼆维数组x中各列元素的最⼤值及其这些% 元素的⾏下标赋予y,ly = 9 8 7 5l = 2 1 3 2[y,l]=max(x,[ ],1) % 本命令的执⾏结果与上⾯命令完全相同y = 9 8 7 5l = 2 1 3 2[y,l]=max(x,[ ],2) % 由于本命令中DIM=2,故查找操作在各⾏中进⾏y = 897l = 2132、查取最⼩值MIN函数⽤来查取数据序列的最⼩值。

matlab插值与拟合

matlab插值与拟合

matlab插值与拟合
在MATLAB中,插值和拟合都是通过函数来实现的。

插值是通过创建新的数据点来填充在已知数据点之间的空白。

MATLAB提供了几种不同的插值方法,例如分段线性插值、三次样条插值、立方插值等。

具体使用哪种插值方法取决于数据的特性和所需的精度。

插值函数的一般形式是`interp1(x, y, xi, 'method')`,其中`x`和`y`是已知的数据点,`xi`是待插值点的横坐标向量,`method`是插值方法,例如最近邻点插值、线性插值、三次样条插值、立方插值等。

拟合是通过调整一个数学模型来使得该模型尽可能地接近给定的数据点。

在MATLAB中,可以使用`polyfit`函数进行多项式拟合。

该函数的一般形式是`p = polyfit(x, y, n)`,其中`x`和`y`是已知的数据点,`n`是多项式的阶数。

该函数返回一个向量`p`,表示多项式的系数。

可以使用`polyval`函数来评估这个多项式模型在给定数据点上的值。

需要注意的是,插值和拟合都是数学上的近似方法,它们只能尽可能地逼近真实的情况,而不能完全准确地描述数据的变化。

因此,选择合适的插值和拟合方法是非常重要的。

Matlab多项式拟合

Matlab多项式拟合

Matlab多项式拟合MATLAB学习--多项式拟合(1)(1)polyfit函数MATLAB的polyfit函数用于多项式拟合,其语法为:p = polyfit(x, y, k);其中,x,y分别是横纵坐标向量,它们不仅元素个数相同,而且同为行向量或同为列向量。

k 为非负整数,是待拟合的多项式的最高次数。

p是输出项,为待拟合的多项式的系数向量(由高次到低次排列)。

例子:在MATLAB的命令窗口输入以下代码:>> x = [1, 2, 3, 4];>> y = [3, 5, 7, 9];>> p = polyfit(x, y, 1)敲击回车键,得到输出结果:p =2.0000 1.0000所以拟合得的函数就是:y = 2.0000X + 1.0000.在进行多项式拟合时,必须注意的是,拟合的精度是有限的,一般而言,需要满足以下条件:记m为不重复的横坐标的数目,则拟合次数k <= m - 1,在此前提下尽量使用低次多项式进行拟合。

(2)polyval函数polyval,顾名思义就是“多项式的值”,该函数的功能是将已知数据代入拟合得的多项式求值。

语法格式:y = polyval(p, x);其中,p是已经拟合的多项式(比如说(1)中的p),x是自变量组成的向量,y是所求值组成的向量。

例子:在命令窗口输入以下代码:>>clear>> x = [1, 2, 3];>> y = [3, 5, 7];>> p = polyfit(x, y, 1); %得到拟合多项式:y = 2*x + 1>> t = [1, 2, 3, 4, 5];>> s = polyval(p, t)得到结果:s =3.0000 5.0000 7.0000 9.0000 11.0000(3)计算多项式拟合的方差已知原始数据x和y,拟合得到多项式p,判断拟合效果好坏的一个重要指标是方差,方差的计算方法是e = sum((y - polyval(p, x)).^2).polyval(p, x)得到拟合值向量,y是真实值向量,两者相减得到真实值和拟合值的差值向量,“.^2”表示对矩阵中的每一个元素进行平方运算,于是得到差值向量中每一个元素的平方,sum 是求和函数,显然就是求差值向量元素的平方和,而这就是方差。

Matlab中的曲线拟合与插值技巧

Matlab中的曲线拟合与插值技巧

Matlab中的曲线拟合与插值技巧在数据科学和工程领域中,曲线拟合和插值技术是常用的数学方法。

在Matlab 中,有许多工具和函数可用于处理这些技术。

本文将讨论Matlab中的曲线拟合和插值技巧,并介绍一些实际应用案例。

一、曲线拟合技术曲线拟合是根据已知数据点来构造一个与这些点最匹配的曲线模型。

在Matlab 中,常用的曲线拟合函数包括polyfit和lsqcurvefit。

1. polyfit函数polyfit函数是Matlab中一个功能强大的多项式拟合函数。

它可以拟合多项式曲线模型,并通过最小二乘法找到最佳拟合系数。

例如,我们有一组数据点(x,y),我们想要拟合一个二次多项式曲线来描述这些数据。

可以使用polyfit函数:```matlabx = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];degree = 2;coefficients = polyfit(x, y, degree);```在上述例子中,degree参数设置为2,表示拟合一个二次多项式曲线。

polyfit 函数将返回一个包含拟合系数的向量,可以用来构造拟合曲线。

2. lsqcurvefit函数lsqcurvefit函数是Matlab中一个用于非线性最小二乘拟合的函数。

与polyfit函数不同,lsqcurvefit函数可以用于拟合任意曲线模型,不局限于多项式。

例如,我们想要拟合一个指数函数曲线来拟合数据:```matlabx = [1, 2, 3, 4, 5];y = [1.1, 2.2, 3.7, 6.5, 12.3];model = @(params, x) params(1)*exp(params(2)*x);params0 = [1, 0];estimated_params = lsqcurvefit(model, params0, x, y);```在上述例子中,model是一个函数句柄,表示要拟合的曲线模型。

插值与拟合的MATLAB实现

插值与拟合的MATLAB实现

插值与拟合的MATLAB实现插值和拟合是MATLAB中常用的数据处理方法。

插值是通过已知数据点之间的数值来估计未知位置的数值。

而拟合则是通过已知数据点来拟合一个曲线或者函数,以便于进行预测和分析。

插值方法:1.线性插值:使用MATLAB中的interp1函数可以进行线性插值。

interp1函数的基本语法为:yinterp = interp1(x, y, xinterp),其中x和y为已知数据点的向量,xinterp为待插值的位置。

函数将根据已知数据点的线性关系,在xinterp位置返回相应的yinterp值。

2.拉格朗日插值:MATLAB中的lagrangepoly函数可以使用拉格朗日插值方法。

lagrangepoly的基本语法为:yinterp = lagrangepoly(x, y, xinterp),其中x和y为已知数据点的向量,xinterp为待插值的位置。

函数将根据拉格朗日插值公式,在xinterp位置返回相应的yinterp值。

3.三次样条插值:使用MATLAB中的spline函数可以进行三次样条插值。

spline函数的基本语法为:yinterp = spline(x, y, xinterp),其中x和y为已知数据点的向量,xinterp为待插值的位置。

函数将根据已知数据点之间的曲线关系,在xinterp位置返回相应的yinterp值。

拟合方法:1.多项式拟合:MATLAB中的polyfit函数可以进行多项式拟合。

polyfit的基本语法为:p = polyfit(x, y, n),其中x和y为已知数据点的向量,n为要拟合的多项式的次数。

函数返回一个多项式的系数向量p,从高次到低次排列。

通过使用polyval函数,我们可以将系数向量p应用于其他数据点,得到拟合曲线的y值。

2.曲线拟合:MATLAB中的fit函数可以进行曲线拟合。

fit函数的基本语法为:[f, goodness] = fit(x, y, 'poly2'),其中x和y为已知数据点的向量,'poly2'表示要拟合的曲线类型为二次多项式。

MATLAB中的数据插值与拟合方法介绍

MATLAB中的数据插值与拟合方法介绍

MATLAB中的数据插值与拟合方法介绍概述数据处理是科学研究和工程实践中的重要环节之一。

对于实验或观测数据,我们常常需要通过插值和拟合方法来获取更加精确和连续的函数或曲线。

在MATLAB中,有多种方法和函数可以用于实现数据插值和拟合,本文将介绍其中的一些常用方法。

一、数据插值数据插值是指利用有限个数据点,通过某种方法构建一个连续的函数,以实现在这些点之间任意位置的数值估计。

在MATLAB中,常用的数据插值方法有线性插值、多项式插值、三次样条插值等。

1. 线性插值线性插值是最简单的插值方法之一,假设我们有两个数据点 (x1, y1) 和 (x2, y2),要在这两个点之间插值一个新的点 (x, y),线性插值即为连接 (x1, y1) 和 (x2, y2) 这两个点的直线上的点(x, y)。

在MATLAB中,可以通过interp1函数进行线性插值。

2. 多项式插值多项式插值是使用一个低次数的多项式函数来拟合数据的方法。

在MATLAB 中,可以通过polyfit函数进行多项式拟合,然后利用polyval函数来进行插值。

具体的插值效果与所选用的多项式阶数有关。

3. 三次样条插值三次样条插值算法利用相邻数据点之间的三次多项式来拟合数据,从而构成一条光滑的曲线。

在MATLAB中,可以通过spline函数进行三次样条插值。

二、数据拟合除了插值方法外,数据拟合也是处理实验或观测数据的常见方法之一。

数据拟合是指通过选择一个特定的数学模型,使该模型与给定的数据点集最好地拟合。

在MATLAB中,常用的数据拟合方法有多项式拟合、指数拟合、非线性最小二乘拟合等。

1. 多项式拟合在MATLAB中,可以使用polyfit函数进行多项式拟合。

该函数通过最小二乘法来拟合给定数据点集,并得到一个多项式函数。

根据所选用的多项式阶数,拟合效果也会有所不同。

2. 指数拟合指数拟合常用于具有指数关系的数据。

在MATLAB中,可以通过拟合幂函数的对数来实现指数拟合。

matlab实验报告 插值和拟合

matlab实验报告 插值和拟合

建模中数据处理和分析班级 学号 姓名 实验地点 完成日期 成绩(一)实验目的与要求应用matlab 处理数据并分析,主要学会并熟练掌握数据拟合和插值。

(二)实验内容1. 用下面一组数据拟合ktbea t c 02.0)(-+=中的参数a ,b ,k2.在某山区测得一些地点的高程如下表。

平面区域为 1200<=x<=4000,1200<=y<=3600) 试作出该山区的地貌图X Y 120016002000240028003200360040001200 1130 1250 1280 1230 1040 900 500 700 1600 1320 1450 1420 1400 1300 700 900 850 2000 1390 1500 1500 1400 900 1100 1060 950 2400 1500 1200 1100 1350 1450 1200 1150 1010 2800 1500 1200 1100 1550 1600 1550 1380 1070 3200 1500 1550 1600 1550 1600 1600 1600 1550 36001480 1500 1550 1510 1430 1300 1200 980(三)实验具体步骤 实验1要先建立一个M 文件,文件中代码如下: function F=myfun(x,xdata) F=x(1)+x(2)*exp(-0.02*x(3)*xdata) 接下来在command window 中输入如下代码: Clc Clearxdata=[100:100:1000];ydata=[4.54 4.99 5.35 5.65 5.90 6.10 6.26 6.39 6.50 6.59]/1000; x0=[0.2 0.05 0.05];[x,resnorm]=lsqcurvefit(@myfun,x0,xdata,ydata) 接着MATLAB 会进行若干次运算,并给出结果:所以拟合的结果是a=0.0063,b=-0.0034,c=0.2542 然后,我们作图看看拟合的结果,输入代码plot(xdata,0.0063-0.0034*exp(-0.02*0.2542*xdata),xdata,ydata,'o') 得到图像如下:实验二建立一个m 文件,在其中输入代码如下: x=1200:400:4000;y=1200:400:3600;100200300400500600700800900100044.555.566.57x 10-3temps=[1130 1250 1280 1230 1040 900 500 700;1320 1450 1420 1400 1300 700 900 850;1390 1500 1500 1400 900 1100 1060 950;1500 1200 1100 1350 1450 1200 1150 1010;1500 1200 1100 1550 1600 1550 1380 1070;1500 1550 1600 1550 1600 1600 1600 1550;1480 1500 1550 1510 1430 1300 1200 980];mesh(x,y,temps)xi=1200:30:4000;yi=1200:30:3600;zi=interp2(x,y,temps,xi',yi,'cubic');mesh(xi,yi,zi)meshz(xi,yi,zi)colordef black运行后打开图形窗口的属性设置对话框,对背景,颜色等属性进行设置,得到下图:(四)实验结果实验中顺利得到拟合结果以及一个三维图像,虽然过程艰辛,但结果十分美好。

Matlab中的插值与拟合方法介绍

Matlab中的插值与拟合方法介绍

Matlab中的插值与拟合方法介绍在数据分析与处理的过程中,插值与拟合是非常重要的工具。

Matlab作为一种常用的数据处理与分析工具,提供了许多插值与拟合函数,方便用户进行数据处理和分析。

本文将介绍Matlab中的插值和拟合方法,并提供相应的示例和应用场景。

一、插值方法1. 线性插值线性插值是最简单的插值方法之一,通过连接已知数据点的直线进行插值。

在Matlab中,可以使用interp1函数进行一维线性插值。

下面以一个简单的例子来说明线性插值的应用:```x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];xi = 2.5;yi = interp1(x, y, xi)```在这个例子中,已知一组数据点(x, y),要求在x=2.5处的插值结果。

通过interp1函数,可以得到插值结果yi=5。

线性插值适用于数据点较少且近邻点的变化趋势比较明显的情况。

2. 三次样条插值三次样条插值是一种更精确的插值方法,它利用多个小区间的三次多项式进行插值。

在Matlab中,可以使用interp1函数的'spline'选项进行三次样条插值。

以下是一个示例:```x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];xi = 2.5;yi = interp1(x, y, xi, 'spline')```通过设置'spline'选项,可以得到插值结果yi=5.125。

三次样条插值适用于数据点较多且变化较为复杂的情况。

3. 二维插值除了一维插值,Matlab还提供了二维插值函数interp2,用于处理二维数据的插值问题。

以下是一个简单的二维插值示例:```x = 1:4;y = 1:4;[X, Y] = meshgrid(x, y);Z = X.^2 + Y.^2;xi = 2.5;yi = 2.5;zi = interp2(X, Y, Z, xi, yi)```在这个例子中,首先生成一个二维数据矩阵Z,然后利用interp2函数在给定的坐标(xi, yi)处进行插值,得到插值结果zi=12.25。

MATLAB拟合和插值

MATLAB拟合和插值

MATLAB拟合和插值定义插值和拟合:曲线拟合是指您拥有散点数据集并找到最适合数据⼀般形状的线(或曲线)。

插值是指您有两个数据点并想知道两者之间的值是什么。

中间的⼀半是他们的平均值,但如果你只想知道两者之间的四分之⼀,你必须插值。

拟合我们着⼿写⼀个线性⽅程图的拟合:y=3x^3+2x^2+x+2⾸先我们⽣成⼀组数据来分析:x=-5:0.5:5;e=50*rand(1,length(x))-25;%制造[-25,25]的随机数作为误差y=3*x.^3+2*x.^2+x+2+e;%得到y值plot(x,y,'.')x =Columns 1 through 6-5.0000 -4.5000 -4.0000 -3.5000 -3.0000 -2.5000Columns 7 through 12-2.0000 -1.5000 -1.0000 -0.5000 0 0.5000Columns 13 through 181.0000 1.50002.0000 2.50003.0000 3.5000Columns 19 through 214.0000 4.50005.0000y =Columns 1 through 6-350.0110 -248.6360 -169.3421 -89.5653 -88.2298 -57.7238Columns 7 through 12-32.5505 2.3308 11.5861 9.0123 -0.4538 5.7254Columns 13 through 18-2.1840 30.3596 20.4478 73.2138 88.1756 152.0492Columns 19 through 21236.2809 334.3864 411.0563这时候x,y作为已知数据存在,要求我们拟合x,y的散点图,这时候会⽤到这个函数。

语法p = polyfit(x,y,n)[p,S] = polyfit(x,y,n)[p,S,mu] = polyfit(x,y,n)说明p = polyfit(x,y,n) 返回阶数为 n 的多项式 p(x) 的系数,该阶数是 y 中数据的最佳拟合(在最⼩⼆乘⽅式中)。

matlab数据插值与拟合实验

matlab数据插值与拟合实验

四、实验结果(包括程序或图表、结论陈述、数据记录及分析等,可附页)1.数据插值:(1)轮船的甲板成近似半椭圆面形为了得到甲板的面积,首先测量得到横向最大相间8.534米;然后等间距地测得纵向高度,自左向右分别为:0.914, 5.060, 7.772, 8.717, 9.083, 9.144, 9.083, 8.992, 8.687, 7.376, 2.073,计算甲板的面积。

解:输入程序:x=0:0.8534:8.534;y=[0.914,5.060,7.772,8.717,9.083,9.144,9.083,8.992,8.687,7.376,2.073];xi=0:0.001:8.534;yi=interp1(x,y,xi,'spline');plot(x,y,'o',xi,yi)S=trapz(xi,yi)则运行结果如右图,即面积S为65.2824平方米。

(2) 山区地貌图在某山区(平面区域(0,2800)(0,2400)内,单位:米)测得一些地点的高程(单位:米)如下表所示,试作出该山区的地貌图和等高线图。

○2输入程序:x=0:400:2800;y=0:400:2400;z=[1430,1450,1470,1320,1280,1200,1080,940;1450,1480,1500,1550,1510,1430,1300,12 00;1460,1500,1550,1600,1550,1600,1600,1600;1370,1500,1200,1100,1550,1600,1550,1 380;1270,1500,1200,1100,1350,1450,1200,1150;1230,1390,1500,1500,1400,900,1100,1060;1180,1320,1450,1420,1400,1300,700,900];[xi,yi]=meshgrid(0:10:2800,0:10:2400);zi=interp2(x,y,z,xi,yi,'spline');subplot(2,2,1)%在二维上标注等高线[C,H]=contour(xi,yi,zi);clabel(C,H)xlabel('x')ylabel('y')title('在二维上标注等高线')%在三维上标注等高线subplot(2,2,2)[C,H]=contour3(xi,yi,zi);clabel(C,H)xlabel('x')ylabel('y')zlabel('z')title('在三维上标注等高线')%带有基准平面的网格图subplot(2,2,3)meshz(xi,yi,zi)%axis off tight;xlabel('x')ylabel('y')zlabel('z')title('带有基准平面的网格图线')画出的等高线图为:2.数据拟合Malthus人口指数增长模型中参数从1790—1980年间美国每隔10年的人口记录如下表:。

MATLAB中的插值与拟合方法详解

MATLAB中的插值与拟合方法详解

MATLAB中的插值与拟合方法详解篇一:介绍插值与拟合的概念及应用领域在科学研究和工程应用中,我们经常会遇到需要通过有限个已知数据点来推算出其它位置或数值的问题。

这种问题的解决方法通常可以分为两种:插值和拟合。

插值是指根据已知的离散数据点,在未知位置或数值上推算出一个函数值;而拟合则是根据已知的离散数据点,寻找一个函数模型来近似表示这些数据。

插值方法适用于数据点之间具有明显的数值关系的情况,如各种物理现象的测量数据、曲线绘制等。

拟合方法则适用于数据点之间存在较大离散度或复杂的关联关系的情况,例如统计分析、数据回归、信号处理等。

MATLAB作为一种强大的数值计算和可视化工具,提供了丰富的插值和拟合方法函数,使得我们能够更加高效地进行数据处理和分析。

接下来我们将详细介绍MATLAB中常用的插值和拟合方法。

篇二:插值方法详解插值方法在MATLAB中有多种实现方式,常用的有线性插值、多项式插值和样条插值。

1.线性插值线性插值是一种简单直接的插值方法,在已知的数据点间通过直线的插值来估计未知点的数值。

在MATLAB中,可以使用interp1函数来进行线性插值的计算。

该函数利用输入的数据点和未知点的坐标,返回未知点的插值结果。

2.多项式插值多项式插值是一种通过多项式函数来拟合数据点的插值方法。

MATLAB中的polyfit函数可以用来进行多项式的拟合计算。

这个函数通过最小二乘法来寻找一个多项式函数,使得该函数与给定的数据点最为接近。

3.样条插值样条插值是一种更加精确的插值方法,在MATLAB中可以使用interp1函数的'spline'选项来进行样条插值的计算。

样条插值通过分段函数形式来拟合数据,可以得到更加平滑和连续的插值结果。

篇三:拟合方法详解拟合方法主要有线性拟合、非线性拟合以及多项式拟合等。

1.线性拟合线性拟合是一种基于线性模型的拟合方法,它适用于数据点之间存在明确线性关系的情况。

在MATLAB中,可以使用polyfit函数来进行线性拟合计算。

matlab 拟合函数用法

matlab 拟合函数用法

MATLAB提供了多种拟合函数,用于对数据进行曲线拟合。

以下是matlab拟合函数的用法及其例子。

1. 多项式拟合:MATLAB中,多项式拟合函数为`polyfit`。

其调用格式为:```matlaby = polyfit(x, y, n)```其中,x和y分别为拟合数据的自变量和因变量,n为多项式的阶数。

例子:```matlabx = 0:0.1:10; % 生成x轴数据y = sin(x); % 生成y轴数据n = 3; % 设定多项式阶数为3y_fit = polyfit(x, y, n); % 进行多项式拟合plot(x, y, 'o', x, y_fit, '-'); % 绘制原始数据和拟合曲线```2. 最小二乘拟合:MATLAB中,最小二乘拟合函数为`polyfit`和`regress`。

`polyfit`函数用于一维数据拟合,而`regress`函数用于多维数据拟合。

调用格式如下:```matlaby = polyfit(x, y, n)```或```matlab[y, ~] = regress(X, Y)```其中,x、y和n的含义同上。

X和Y分别为拟合数据的自变量和因变量。

例子:```matlabx = 1:10; % 生成x轴数据y = [3 5 7 9 11 13 15 17 19 21]; % 生成y轴数据n = 2; % 设定多项式阶数为2y_fit = polyfit(x, y, n); % 进行最小二乘拟合plot(x, y, 'o', x, y_fit, '-'); % 绘制原始数据和拟合曲线```3. 插值拟合:MATLAB中,插值拟合函数为`interp1`、`interp2`和`interp3`。

这些函数根据给定的数据点拟合线性、二次或三次插值曲线。

调用格式如下:```matlaby = interp1(x, y, x0, y0)y = interp2(x, y, x0, y0, x1, y1)y = interp3(x, y, x0, y0, x1, y1, x2, y2)```其中,x和y分别为拟合数据的自变量和因变量。

matlab 插值拟合

matlab 插值拟合

matlab 插值拟合摘要:一、插值与拟合的基本概念二、MATLAB 中的插值函数1.线性插值2.最邻近插值3.三次样条插值4.多项式插值三、MATLAB 中的拟合函数四、MATLAB 插值与拟合的应用实例五、总结正文:一、插值与拟合的基本概念插值是一种通过已知的数据点来预测未知数据点的方法。

它是基于已知数据点的函数值,通过一定的算法来预测未知数据点上的函数值。

拟合则是一种更广义的概念,它不仅包括插值,还包括了通过已知数据点来确定函数的形式,如多项式、指数、对数等。

在实际应用中,拟合常常用来解决数据点的预测和预测模型的选择问题。

二、MATLAB 中的插值函数MATLAB 提供了多种插值函数,包括线性插值、最邻近插值、三次样条插值和多项式插值等。

下面我们逐一介绍这些函数。

1.线性插值线性插值是最简单的插值方法,它通过计算已知数据点之间的直线来预测未知数据点上的函数值。

在MATLAB 中,线性插值的函数是`yinterp1`,其用法如下:```matlabyinterp1(x0,y0,xq,method,extrapolation)```其中,`x0`和`y0`分别是已知数据点的横纵坐标,`xq`是要预测的数据点的横坐标,`method`指定插值的方法,默认为线性插值("linear"),`extrapolation`指定是否进行外推,默认为关闭("off")。

2.最邻近插值最邻近插值是一种基于距离的插值方法,它通过找到距离未知数据点最近的已知数据点来预测未知数据点上的函数值。

在MATLAB 中,最邻近插值的函数是`yinterp2`,其用法如下:```matlabyinterp2(x0,y0,xq,method)```其中,`x0`和`y0`分别是已知数据点的横纵坐标,`xq`是要预测的数据点的横坐标,`method`指定插值的方法,默认为最邻近插值("nearest")。

matlab拟合函数并插值

matlab拟合函数并插值

matlab拟合函数并插值在MATLAB中进行拟合函数并插值可以通过以下步骤实现:1. 准备数据:首先,您需要准备要进行拟合和插值的数据。

这可以是一组x和y值,其中x是输入数据,y是对应的目标输出数据。

2. 拟合函数:使用MATLAB中的拟合函数来对数据进行拟合。

例如,您可以使用`fit`函数来拟合一组数据。

以下是一个简单的例子:```matlabx = [1, 2, 3, 4, 5]; % 输入数据y = [2, 3, 5, 7, 11]; % 输出数据fitresult = fit(x', y', 'poly1'); % 拟合一个一次多项式函数```在这个例子中,我们使用了`fit`函数来拟合一组输入数据`x`和输出数据`y`,并指定了要拟合的函数类型为一次多项式。

`fit`函数将返回拟合的结果,其中包含了拟合的函数表达式和拟合参数等信息。

3. 进行插值:一旦您完成了拟合,您可以使用插值方法来预测新的输入数据对应的输出值。

在MATLAB中,插值可以通过使用`interp1`函数来实现。

以下是一个简单的例子:```matlabxnew = [1.5, 2.5, 3.5, 4.5]; % 新的输入数据ynew = interp1(fitresult, xnew); % 使用拟合结果进行插值```在这个例子中,我们使用了`interp1`函数来对新的输入数据进行插值,并使用了之前拟合的结果作为插值函数的参数。

`interp1`函数将返回对应于新的输入数据`xnew`的插值结果`ynew`。

在MATLAB中进行拟合函数并插值需要准备数据、使用拟合函数进行拟合、使用插值函数进行插值。

这些步骤可以帮助您在MATLAB中实现拟合和插值的功能。

2-matlab_多项式、插值与数据拟合(1)

2-matlab_多项式、插值与数据拟合(1)

例: y ( x 1)6 x6 6x5 15x4 20x3 15x2 6x 1
>> r=roots([1 -6 15 -20 15 -6 1]) r= 1.0042 + 0.0025i 1.0042 - 0.0025i 1.0000 + 0.0049i 1.0000 - 0.0049i 0.9958 + 0.0024i 0.9958 - 0.0024i 舍入误差的影响,与计算精度有关。
• poly_add.m function p3=poly_add(p1,p2) n1=length(p1); n2=length(p2); if n1==n2 p3=p1+p2;end if n1>n2 p3=p1+[zeros(1,n1-n2),p2];end if n1<n2 p3=[zeros(1,n2-n1),p1]+p2;end
2.2 Hermite插值
• 方法介绍 不少实际问题不但要求在节点上函数值相等,而且 要求导数值也相等,甚至要求高阶导数值也相等,满足 这一要求的插值多项式就是Hermite插值多项式。下面 只讨论函数值与一阶导数值个数相等且已知的情况。 已知n个插值点 x1 , x2 , , xn 及对应的函数值 y1 , y2 , , yn 和一阶导数值 y1' , y2' , , y'n 。则对插值区间 内任意x的函数值y的Hermite插值公式:
• m阶多项式与n阶多项式的乘积是d=m+n阶的多项式:
ya a1x a2 x
m
m1

am x am1 bn x bn1
d 1
yb b1xn b2 xn1

Matlab插值与拟合教程

Matlab插值与拟合教程

也可由函数给出数据。 例 3:x=1:20,y=x+3*sin(x) 程序: x=1:20; y=x+3*sin(x); p=polyfit(x,y,6) xi=1inspace(1,20,100); z=poyval(p,xi); %多项式求值函数 plot(x,y,’o’,xi,z,’k:’,x,y,’b’) legend(‘原始数据’,’6 阶曲线’) 结果: p= 0.0000 -0.0021 0.0505 -0.5971 3.6472 -9.7295 11.3304
分析:稳健拟合(实线)对数据的拟合程度好些,忽略了异常值。最小二乘拟合(点线)则
受到异常值的影响,向异常值偏移。 6. 6. 向自定义函数拟合 对于给定的数据,根据经验拟合为带有待定常数的自定义函数。 所用函数:nlinfit( ) 调用格式: [beta,r,J]=nlinfit(X,y,’fun’,betao) 说明:beta 返回函数’fun’中的待定常数;r 表示残差;J 表示雅可比矩阵。X,y 为数据; ‘fun’自定义函数;beta0 待定常数初值。 例 6:在化工生产中获得的氯气的级分 y 随生产时间 x 下降,假定在 x≥8 时,y 与 x 之间有如下形式的非线性模型:
MATLAB插值与拟合
§1 曲线拟合
实例:温度曲线问题 气象部门观测到一天某些时刻的温度变化数据为: t 0 1 2 3 4 5 6
7
8
9
10
T 13 15 17 14 16 19 26 24 26 27 29 试描绘出温度变化曲线。 曲线拟合就是计算出两组数据之间的一种函数关系, 由此可描绘其变化曲线及估计非采 集数据对应的变量信息。 曲线拟合有多种方式,下面是一元函数采用最小二乘法对给定数据进行多项式曲线拟 合,最后给出拟合的多项式系数。 1. 1. 线性拟合函数:regress() 调用格式: b=regress(y,X) [b,bint,r,rint,stats]= regress(y,X) [b,bint,r,rint,stats]= regress(y,X,alpha) 说明:b=regress(y,X)返回 X 处 y 的最小二乘拟合值。该函数求解线性模型: y=Xβ+ε β是 p1 的参数向量;ε是服从标准正态分布的随机干扰的 n1 的向量;y 为 n1 的向 量;X 为 np 矩阵。 bint返回β的 95%的置信区间。 r中为形状残差, rint中返回每一个残差的 95%置信区间。 2 Stats向量包含R 统计量、回归的F值和p值。 例 1:设 y 的值为给定的 x 的线性函数加服从标准正态分布的随机干扰值得到。即 y=10+x+ε ;求线性拟合方程系数。 程序: x=[ones(10,1) (1:10)’] y=x*[10;1]+normrnd(0,0.1,10,1) [b,bint]=regress(y,x,0.05) 结果: x = 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 y = 10.9567 11.8334
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 一个多项式的幂级数形式可表示为:
y c1x c2 x
n
n1

cn x cn1
cn ) x cn1
( x rn )
• 也可表为嵌套形式
y ( ((c1x c2 ) x c3 ) x
• 或因子形式
y c1 ( x r1 )( x r2 )
n阶多项式n个根,其中包含重根和复根。若多项 式所有系数均为实数,则全部复根都将以共轭对的 形式出现



• 算例:对给定数据,试构造Hermite多项式求出 sin0.34的近似值。 >> x0=[0.3,0.32,0.35]; >> y0=[0.29552,0.31457,0.34290]; >> y1=[0.95534,0.94924,0.93937]; >> y=hermite(x0,y0,y1,0.34) y= 0.3335 >> sin(0.34) %与精确值比较 ans = 0.3335
例: >> r=roots(p) 得到 r= 0.2500 + 1.5612i 0.2500 - 1.5612i -1.0000 所有零点由一个列向量给出。
• Poly: 由零点可得原始多项式的各系数,但可能相差 一个常数倍。 例: >> poly(r)
ans = 1.0000 0.5000 2.0000 2.5000 注意:若存在重根,这种转换可能会降低精度。
• 幂系数:在MATLAB里,多项式用行向量表示,其 元素为多项式的系数,并从左至右按降幂排列。
例:
ቤተ መጻሕፍቲ ባይዱ
y 2x x 4x 5
3 2
被表示为 >> p=[2 1 4 5] >> poly2sym(p) ans = 2*x^3+x^2+4*x+5
• Roots: 多项式的零点可用命令roots求的。
2 插值
2.1 Lagrange插值
• 方法介绍 对给定的n个插值点 x1, x2 , , xn 及对应的函 数值 y1, y2 , , yn ,利用构造的n-1次Lagrange插 值多项式,则对插值区间内任意x的函数值y 可通过下式求的:
y ( x) yk (
k 1 j 1 j k n n
ya a1x a2 x
m n
m1 n1

am x am1 bn x bn1
yb b1x b2 x
命令poly_add:求两个多项式的和,其调用格式为: c= poly_add(a,b) 多项式a减去b,可表示为: c= poly_add(a,-b)
功能:两个多项式相加 调用格式:b=poly_add(p1,p2) b:求和后的系数数组
ya yq yb yr
其中 yq 是商, yr 是除法的余数。多项式 yq 和 yr 可由命令deconv算出。 例:[q, r]=deconv(a,b)
• 例 >> a=[2,-5,6,-1,9]; b=[3,-90,-18]; >> c=conv(a,b) c= 6 -195 432 -453 9 -792 -162 >> [q,r]=deconv(c,b) q= 2 -5 6 -1 9 r= 0 0 0 0 0 0 0 >> poly2sym(c) ans = 6*x^6-195*x^5+432*x^4-453*x^3+9*x^2-792*x-162
• 为解决Rung问题,引入分段插值。
2.4 分段插值
• 算法分析:所谓分段插值就是通过插值点用折 线或低次曲线连接起来逼近原曲线。 • MATLAB实现 可调用内部函数。
– 命令1 interp1
• 功能 : 一维数据插值(表格查找)。该命令对数据点之 间计算内插值。它找出一元函数f(x)在中间点的数值。其 中函数f(x)由所给数据决定。 • 格式1 yi = interp1(x,Y,xi) %返回插值向量yi,每一元素对应于参量xi,同时由向 量x与Y的内插值决定。参量x指定数据Y的点。若Y为一矩阵, 则按Y的每列计算。 • 算例 对于t,beta 、alpha分别有两组数据与之对应,用分段线 性插值法计算当t=321, 440, 571时beta 、alpha的值。
• poly_add.m function p3=poly_add(p1,p2) n1=length(p1); n2=length(p2); if n1==n2 p3=p1+p2;end if n1>n2 p3=p1+[zeros(1,n1-n2),p2];end if n1<n2 p3=[zeros(1,n2-n1),p1]+p2;end
x xj xk x j
)
• MATLAB实现
function y=lagrange(x0,y0,x) n n x xj ) ii=1:length(x0); y=zeros(size(x)); y ( x) yk ( k 1 j 1 xk x j for i=ii j k ij=find(ii~=i); y1=1; for j=1:length(ij), y1=y1.*(x-x0(ij(j))); end y=y+y1*y0(i)/prod(x0(i)-x0(ij)); end • 算例:给出f(x)=ln(x)的数值表,用Lagrange计算 ln(0.54)的近似值。 >> x=[0.4:0.1:0.8]; >> y=[-0.916291,-0.693147,-0.510826,-0.356675,-0.223144]; >> lagrange(x,y,[0.54,0.55,0.78]) ans = -0.6161 -0.5978 -0.2484 ( 精确解-0.616143)
多项式、插值与数据拟合
• 多项式MATLAB命令 • 插值
– – – – – Lagrange插值 Hermite插值 Runge现象和分段插值 分段插值 样条插值的MATLAB表示
• 数据拟合
–多项式拟合 –函数线性组合的曲线拟合方法 –最小二乘曲线拟合 –B样条函数及其MATLAB表示
1 关于多项式MATLAB命令
>> x=[-5:1:5]; y=1./(1+x.^2); x0=[-5:0.1:5]; >> y0=lagrange(x,y,x0); >> y1=1./(1+x0.^2); %绘制图形 >> plot(x0,y0,'--r') %插值曲线 >> hold on >> plot(x0,y1,‘-b') %原曲线
2.2 Hermite插值
• 方法介绍 不少实际问题不但要求在节点上函数值相等,而且 要求导数值也相等,甚至要求高阶导数值也相等,满足 这一要求的插值多项式就是Hermite插值多项式。下面 只讨论函数值与一阶导数值个数相等且已知的情况。 已知n个插值点 x1 , x2 , , xn 及对应的函数值 y1 , y2 , , yn 和一阶导数值 y1' , y2' , , y'n 。则对插值区间 内任意x的函数值y的Hermite插值公式:
功能:求多项式积分 调用格式:py=poly_itg(p) p:被积多项式的系数 py:求积后多项式的系数 poly_itg.m function py=poly_itg(p) n=length(p); py=[p.*[n:-1:1].^(-1),0] 不包括最后一项积分常数
多项式微分:
y c1x c2 x
>> x=[0.3:0.005:0.35];y=hermite(x0,y0,y1,x); >> plot(x,y) >> y2=sin(x); hold on >> plot(x,y2,'--r')
2.3 Runge现象
• 问题的提出:根据区间[a,b]上给出的节点做 插值多项式p(x)的近似值,一般总认为p(x)的 次数越高则逼近f(x)的精度就越好,但事实并 非如此。 1 f ( x) • 反例: 1 x2 在区间[-5,5]上的各阶导数存在,但在此 区间上取n个节点所构成的Lagrange插值多项 式在全区间内并非都收敛。 • 取n=10,用Lagrange插值法进行插值计算。
• m阶多项式与n阶多项式的乘积是d=m+n阶的多项式:
ya a1x a2 x
m
m1

am x am1 bn x bn1
d 1
yb b1xn b2 xn1
yc ya yb c1x c2 x
d

cd x cd 1
计算 yc 系数的MATLAB命令是:c=conv(a,b) • 多项式 yb 除多项式 ya 的除法满足:
多项式为 Polyfit的第三个参数是多项式的阶数。
y 0.2015x3 1.4385x2 2.7477x 5.4370
多项式积分:
y c1xn c2 xn1
c1 n 1 c2 n Y ydx x x n 1 n
cn x cn1
cn 2 x cn 1 x cn 2 2
n
n1

cn x cn1
n 2
y nc1x
'
n1
(n 1)c2 x

cn
• Polyder: 求多项式一阶导数的系数。 调用格式为: b=polyder(c ) c为多项式y的系数,b是微分后的系数, 其值为:
[nc1 , (n 1)c2 , , cn ]
相关文档
最新文档