3.7数学公式

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常用数学公式汇总
一、基础代数公式
1. 平方差公式:(a +b )³(a -b )=a 2-b 2
2. 完全平方公式:(a±b)2=a 2±2ab +b 2
完全立方公式:(a ±b )3=(a±b)(a 2 ab+b 2)
3. 同底数幂相乘: a m ³a n =a m +n
(m 、n 为正整数,a≠0)
同底数幂相除:a m ÷a n =a m -n (m 、n 为正整数,a≠0)
a 0=1(a≠0) a -p =p a
1(a≠0,p 为正整数) 4. 等差数列:
(1)s n =2
)(1n a a n ⨯+=na 1+21n(n-1)d ; (2)a n =a 1+(n -1)d ;
(3)n =d
a a n 1-+1; (4)若a,A,
b 成等差数列,则:2A =a+b ;
(5)若m+n=k+i ,则:a m +a n =a k +a i ;
(其中:n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和)
5. 等比数列:
(1)a n =a 1q -1;
(2)s n =q
q a n -11 ·1)-((q ≠1) (3)若a,G,b 成等比数列,则:G 2=ab ;
(4)若m+n=k+i ,则:a m ²a n =a k ²a i ;
(5)a m -a n =(m-n)d
(6)n
m a a =q (m-n) (其中:n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等比数列前n 项的和)
6.一元二次方程求根公式:ax 2+bx+c=a(x-x 1)(x-x 2)
其中:x 1=a ac b b 242-+-;x 2=a
ac b b 242---(b 2-4ac ≥0) 根与系数的关系:x 1+x 2=-a b ,x 1²x 2=a
c 二、基础几何公式
1. 三角形:不在同一直线上的三点可以构成一个三角形;三角形内角和等于180°;三角形中任两 边之和大于第三边、任两边之差小于第三边;
(1)角平分线:三角形一个的角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段,叫做三角形的角的平分线。

(2)三角形的中线:连结三角形一个顶点和它对边中点的线段叫做三角形的中线。

(3)三角形的高:三角形一个顶点到它的对边所在直线的垂线段,叫做三角形的高。

(4)三角形的中位线:连结三角形两边中点的线段,叫做三角形的中位线。

(5)内心:角平分线的交点叫做内心;内心到三角形三边的距离相等。

重心:中线的交点叫做重心;重心到每边中点的距离等于这边中线的三分之一。

垂线:高线的交点叫做垂线;三角形的一个顶点与垂心连线必垂直于对边。

外心:三角形三边的垂直平分线的交点,叫做三角形的外心。

外心到三角形的三个顶点的距离相等。

直角三角形:有一个角为90度的三角形,就是直角三角形。

直角三角形的性质:
(1)直角三角形两个锐角互余;
(2)直角三角形斜边上的中线等于斜边的一半;
(3)直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半;
(4)直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角是30°;
(5)直角三角形中,c 2=a 2+b 2(其中:a 、b 为两直角边长,c 为斜边长);
(6)直角三角形的外接圆半径,同时也是斜边上的中线;
直角三角形的判定:
(1)有一个角为90°;
(2)边上的中线等于这条边长的一半;
(3)若c 2=a 2+b 2,则以a 、b 、c 为边的三角形是直角三角形;
2. 面积公式:
正方形=边长³边长;
长方形= 长³宽;
三角形=2
1³ 底³高; 梯形 =2
高(上底+下底)⨯; 圆形 =πR 2
平行四边形=底³高
扇形 =0360
n πR 2 正方体=6³边长³边长
长方体=2³(长³宽+宽³高+长³高);
圆柱体=2πr 2+2πrh ;
球的表面积=4πR 2
3. 体积公式
正方体=边长³边长³边长;
长方体=长³宽³高;
圆柱体=底面积³高=Sh =πr 2h
圆锥 =
3
1πr 2h 球 =334R π 4. 与圆有关的公式
设圆的半径为r ,点到圆心的距离为d ,则有:
(1)d ﹤r :点在圆内(即圆的内部是到圆心的距离小于半径的点的集合);
(2)d =r :点在圆上(即圆上部分是到圆心的距离等于半径的点的集合);
(3)d ﹥r :点在圆外(即圆的外部是到圆心的距离大于半径的点的集合);
线与圆的位置关系的性质和判定:
如果⊙O 的半径为r ,圆心O 到直线l 的距离为d ,那么:
(1)直线l 与⊙O 相交:d ﹤r ;
(2)直线l 与⊙O 相切:d =r ;
(3)直线l 与⊙O 相离:d ﹥r ;
圆与圆的位置关系的性质和判定:
设两圆半径分别为R 和r ,圆心距为d ,那么:
(1)两圆外离:r R d +>;
(2)两圆外切:r R d +=;
(3)两圆相交:r R d r R +<<-(r R ≥);
(4)两圆内切:r R d -=(r R >);
(5)两圆内含:r R d -<(r R >).
圆周长公式:C =2πR =πd (其中R 为圆半径,d 为圆直径,π≈3.1415926≈10);
n 的圆心角所对的弧长l 的计算公式:l =
180
R n π; 扇形的面积:(1)S 扇=360n πR 2;(2)S 扇=21l R ; 若圆锥的底面半径为r ,母线长为l ,则它的侧面积:S 侧=πr l ;
圆锥的体积:V =31Sh =3
1πr 2h 。

三、其他常用知识
1. 2X 、3X 、7X 、8X 的尾数都是以4为周期进行变化的;4X 、9X 的尾数都是以2为周期进行变化的;
另外5X 和6X 的尾数恒为5和6,其中x 属于自然数。

2. 对任意两数a 、b ,如果a -b >0,则a >b ;如果a -b <0,则a <b ;如果a -b =0,则a =b 。

当a 、b 为任意两正数时,如果a/b >1,则a >b ;如果a/b <1,则a <b ;如果a/b =1,则a =b 。

当a 、b 为任意两负数时,如果a/b >1,则a <b ;如果a/b <1,则a >b ;如果a/b =1,则a =b 。

对任意两数a 、b ,当很难直接用作差法或者作商法比较大小时,我们通常选取中间值C ,如果
a >C ,且C >
b ,则我们说a >b 。

3. 工程问题:
工作量=工作效率³工作时间;工作效率=工作量÷工作时间;
工作时间=工作量÷工作效率;总工作量=各分工作量之和;
注:在解决实际问题时,常设总工作量为1。

4. 方阵问题:
(1)实心方阵:方阵总人数=(最外层每边人数)2
最外层人数=(最外层每边人数-1)³4
(2)空心方阵:中空方阵的人数=(最外层每边人数)2-(最外层每边人数-2³层数)
2 =(最外层每边人数-层数)³层数³4=中空方阵的人数。

例:有一个3层的中空方阵,最外层有10人,问全阵有多少人?
解:(10-3)×3×4=84(人)
5. 利润问题:
(1)利润=销售价(卖出价)-成本; 利润率=成本利润=成本销售价-成本=成本
销售价-1;
销售价=成本³(1+利润率);成本=+利润率
销售价1。

(2)单利问题
利息=本金³利率³时期;
本利和=本金+利息=本金³(1+利率³时期);
本金=本利和÷(1+利率³时期)。

年利率÷12=月利率;
月利率³12=年利率。

例:某人存款2400元,存期3年,月利率为10.2‰(即月利1分零2毫),三年到期后,本利和共是多少元?” 解:用月利率求。

3年=12月×3=36个月
∴2400×(1+10.2%×36) =2400×1.3672 =3281.28(元)
6. 排列数公式:P m n =n (n -1)
(n -2)…(n -m +1),(m≤n) 组合数公式:C m n =P m n ÷P m m
=(规定0n C =1)。

“装错信封”问题:D 1=0,D 2=1,D 3=2,D 4=9,D 5=44,D 6=265,
7. 年龄问题:关键是年龄差不变;
几年后年龄=大小年龄差÷倍数差-小年龄
几年前年龄=小年龄-大小年龄差÷倍数差
8. 日期问题:闰年是366天,平年是365天,其中:1、3、5、7、8、10、12月都是31天,4、6、9、11是30天,闰年时候2月份29天,平年2月份是28天。

9. 植树问题
(1)线形植树:棵数=总长÷间隔+1
(2)环形植树:棵数=总长÷间隔
(3)楼间植树:棵数=总长÷间隔-1
(4)剪绳问题:对折N 次,从中剪M 刀,则被剪成了(2N ³M +1)段
10. 鸡兔同笼问题:
鸡数=(兔脚数³总头数-总脚数)÷(兔脚数-鸡脚数)
(一般将“每”量视为“脚数” )
得失问题(鸡兔同笼问题的推广):
不合格品数=(1只合格品得分数³产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数) =总产品数-(每只不合格品扣分数³总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)
例:“灯泡厂生产灯泡的工人,按得分的多少给工资。

每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。

某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”
解:(4×1000-3525)÷(4+15) =475÷19=25(个)
对了,给大家推荐一下:最后和大家说:我想,每一次都推荐一下对大家都非常有用的信息,只推荐三个有用的,其他的我觉得都没什么意思,每一次推荐都不容易,希望大家珍惜。

大家有选择性的看,都是个人觉得非常好的。

一切都做了,离成功就近了,好运与机遇就会降临。

请大家多关注,我常常会推荐一些很好用的东西给大家。

1、推荐快速学习一下思维导图法与快速阅读法,对理解与记忆的帮助十分之大,里面有针对公务员版本,对于时间不够用,效率低的同学特别适用,本人切身体验,没用不会推荐希望对大家也有帮助!建议练上30小时足矣。

已经给大家找好了下载的地址,先按住键盘最左下角的“Ctrl ”按键,请直接点击这里下载。

)2、QZZN 公考论坛,是国内最知名的公务员考试论坛和公务员论坛。

3、鲤鱼资料下载网,各种资料都有下载。

11.盈亏问题:
(1)一次盈,一次亏:(盈+亏)÷(两次每人分配数的差)=人数
(2)两次都有盈: (大盈-小盈)÷(两次每人分配数的差)=人数
(3)两次都是亏: (大亏-小亏)÷(两次每人分配数的差)=人数
(4)一次亏,一次刚好:亏÷(两次每人分配数的差)=人数
(5)一次盈,一次刚好:盈÷(两次每人分配数的差)=人数
例:“小朋友分桃子,每人10个少9个,每人8个多7个。

问:有多少个小朋友和多少个桃子?” 解(7+9)÷(10-8)=16÷2=8(个)………………人数
10×8-9=80-9=71(个)………………桃子
12.行程问题:
(1)平均速度:平均速度=2
1212v v v v (2)相遇追及:
相遇(背离):路程÷速度和=时间
追及:路程÷速度差=时间
(3)流水行船:
顺水速度=船速+水速;
逆水速度=船速-水速。

两船相向航行时,甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度
两船同向航行时,后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。

(4)火车过桥:
列车完全在桥上的时间=(桥长-车长)÷列车速度
列车从开始上桥到完全下桥所用的时间=(桥长+车长)÷列车速度
(5)多次相遇:
相向而行,第一次相遇距离甲地a 千米,第二次相遇距离乙地b 千米,则甲乙两地相距 S =3a-b (千米)
(6)钟表问题:
钟面上按“分针”分为60小格,时针的转速是分针的
121,分针每小时可追及1211 时针与分针一昼夜重合22次,垂直44次,成180o 22次。

13.容斥原理:
A +B=
B A +B A
A+B+C=C B A +B A +C A +C B -C B A
其中,C B A =E
14.牛吃草问题:
原有草量=(牛数-每天长草量)³天数,其中:一般设每天长草量为X
★【速算技巧九:增长率相关速算法】
要点:
计算与增长率相关的数据是做资料分析题当中经常遇到的题型,而这类计算有一些
常用的速算技巧,掌握这些速算技巧对于迅速解答资料分析题有着非常重要的辅助
作用。

两年混合增长率公式:
如果第二期与第三期增长率分别为r1与r2,那么第三期相对于第一期的增长率为:
r1+r2+r1× r2
增长率化除为乘近似公式:
如果第二期的值为A,增长率为r,则第一期的值A':
A'=A/(1+r)≈A×(1-r)
(实际上左式略大于右式,r越小,则误差越小,误差量级为r^2)
平均增长率近似公式:
如果N年间的增长率分别为r1、r2、r3……rn,则平均增长率:
r≈上述各个数的算术平均数
(实际上左式略小于右式,增长率越接近,误差越小)
求平均增长率时特别注意问题的表述方式,例如:
1、"从2004年到2007年的平均增长率"一般表示不包括2004年的增长率;
2、"2004、2005、2006、2007年的平均增长率"一般表示包括2004年的增长率。

"分子分母同时扩大/缩小型分数"变化趋势判定:
1、A/B中若A与B同时扩大,则①若A增长率大,则A/B扩大②若B增长率大,则A/B缩小;A/B中若A与B同时缩小,则①若A减少得快,则A/B缩小②若B减少得快,则A/B扩大。

2、A/(A+B)中若A与B同时扩大,则①若A增长率大,则A/(A+B)扩大②若B增长率大,
则A/(A+B)缩小;A/(A+B)中若A与B同时缩小,则①若A减少得快,则A/(A+B)缩小②
若B减少得快,则A/(A+B)扩大。

多部分平均增长率:
如果量A与量B构成总量"A+B",量A增长率为a,量B增长率为b,量"A+B"的增长率
为r,则A/B=(r-b)/(a-r),一般用"十字交叉法"来简单计算。

注意几点问题:
1、r一定是介于a、b之间的,"十字交叉"相减的时候,一个r在前,另一个r在后;
2、算出来的比例是未增长之前的比例,如果要计算增长之后的比例,应该在这个
比例上再乘以各自的增长率。

等速率增长结论:
如果某一个量按照一个固定的速率增长,那么其增长量将越来越大,并且这个量的
数值成"等比数列",中间一项的平方等于两边两项的乘积。

★【速算技巧十:综合速算法】
要点:
"综合速算法"包含了我们资料分析试题当中众多体系性不如前面九大速算技巧的速
算方式,但这些速算方式仍然是提高计算速度的有效手段。

平方数速算:
牢记常用平方数,特别是11-30以内数的平方,可以很好提高计算速度:
121、144、169、196、225、256、289、324、361、400
441、484、529、576、625、676、729、784、841、900
尾数法速算:
因为资料分析试题当中牵涉到的数据几乎都是通过近似后得到的结果,所以一般我们计算的时候多强调首位估算,而尾数往往是微不足道的。

因此资料分析当中的尾数法只适用于未经近似或者不需要近似的计算之中。

历史数据证明,国考试题资料分析基本上不能用到尾数法,但在地方考题的资料分析当中,尾数法仍然可以有效的简化计算。

错位相加/减:
A×9型速算技巧:A×9= A×10- A;如:743×9=7430-743=6687
A×9.9型速算技巧:A×9.9= A×10+A÷10;如:743×9.9=7430-74.3=7355.7
A×11型速算技巧:A×11= A×10+A;如:743×11=7430+743=8173
A×101型速算技巧:A×101= A×100+A;如:743×101=74300+743=75043
乘/除以5、25、125的速算技巧:
A× 5型速算技巧:A×5= 10A÷2;A÷ 5型速算技巧:A÷5= 0.1A×2
例8739.45×5=87394.5÷2=43697.25
36.843÷5=3.6843×2=7.3686
A× 25型速算技巧:A×25= 100A÷4;A÷ 25型速算技巧:A÷25= 0.01A×4
例7234×25=723400÷4=180850
3714÷25=37.14×4=148.56
A×125型速算技巧:A×125= 1000A÷8;A÷125型速算技巧:A÷125= 0.001A×8 例8736×125=8736000÷8=1092000
4115÷125=4.115×8=32.92
减半相加:
A×1.5型速算技巧:A×1.5= A+A÷2;
例3406×1.5=3406+3406÷2=3406+1703=5109
"首数相同尾数互补"型两数乘积速算技巧:
积的头=头×(头+1);积的尾=尾×尾。

相关文档
最新文档