数学公式大全
关于数学公式大全
三角函数公式 1.正弦定理:A a sin =B b sin =Cc sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cosbca cb A 2cos 222-+=3.S ⊿=21a a h ⋅=21ab C sin =21bc A sin =21ac B sin =Rabc 4=2R 2A sin B sin C sin=A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p ---(其中)(21c b a p ++=, r 为三角形内切圆半径)4.诱导公试三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限注释:xx tan 1cot =5.和差角公式①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③βαβαβαtan tan 1tan tan )tan(∙-+=+④βαβαβαtan tan 1tan -tan )tan(∙+=-6.二倍角公式:(含万能公式)①θθθcos sin 22sin =②θθθθθ2222sin 211cos 2sin cos 2cos -=-=-==θθ22tan 1tan 1+- ③θθθ2tan 1tan 22tan -=④ 22cos 1sin 2θθ-= ⑤ 22cos 1cos 2θθ+=⑥ Sin 2x+cos 2x=1 ⑦ 1+tan 2x=sec 2x ⑧ 1+cot 2x=csc 2x7.半角公式:(符号的选择由2θ所在的象限确定)①2cos 12sin θθ-±= ②2cos 12sin 2θθ-= ③2cos 12cos θθ+±=④2cos 12cos 2θθ+=⑤2sin 2cos 12θθ=- ⑥2cos 2cos 12θθ=+ ⑦2sin2cos )2sin 2(cos sin 12θθθθθ±=±=±8.积化和差公式:[])sin()sin(21cos sin βαβαβα-++=[])sin()sin(21sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(21sin sin9.和差化积公式:①2cos2sin2sin sin βαβαβα-+=+ ②2sin2cos2sin sin βαβαβα-+=-③2cos 2cos 2cos cos βαβαβα-+=+ ④2sin 2sin 2cos cos βαβαβα-+-=-高等数学必备公式1、指数函数(4个): 幂函数5-8(1)nm nmaa a +=⋅ (2)nm n m a aa -=(3)nmn ma a= (4)m m aa 1=- (5) nm n m xx x +=⋅2、对数函数(4个):(1)b a ab ln ln ln += (2)b a b a ln ln ln -=(3)a b a bln ln = (4)N N e e N ln ln ==3、三角函数(10个):(1)1cos sin 22=+x x (2)x x x cos sin 22sin =(3)x x x x x 2222sin 211cos 2sin cos 2cos -=-=-= (4)21cos 2sin 2x x -= (5)21cos 2cos 2xx +=(6)x x 22sec tan 1=+ (7) xx 22csc cot 1=+(8)x x csc 1sin =(9)x x sec 1cos = (10)xx cot 1tan =4、等价无穷小(11个):(等价无穷小量只能用于乘、除法)23330sin ~ arcsin ~ tan ~ arctan ~1~ln(1)~ 1cos ~11~20tan sin ~ tan ~ sin ~236n e nx x x x x x x x x x →-+-+-→---当时: 当时:幂函数:(1))('c =0 (2)1)(-='μμμx x(3)211x x '⎛⎫=-⎪⎝⎭(4)'=指数对数:(5)a a a xx ln )(=' (6)x x e e =')((7)a x x a ln 1)(log =' (8)x x 1)(ln ='三角函数:(9)x x cos )(sin =' (10)x x sin )(cos -='(11)x x 2sec )(tan =' (12)x x 2csc )(cot -=' (13)x x x tan sec )(sec =' (14)x x x cot csc )(csc -='反三角函数:(15)211)(arcsin x x -=' (16)211)(arccos x x --=' (17)211)(arctan x x +=' (18)211)cot (x x arc +-='求导法则: 设u=u(x),v=v(x)1. (u —+v )’=u ’—+v ’ 2. (cu)’=cu ’(c 为常数) 3. (uv)’=u ’v+uv ’ 4. (vu )’=2''u v uv v -幂函数:(1)⎰+=C kx kdx (2)⎰-≠++=+)1(11μμμμC x dx x(3)211dx C x x=-+⎰ (4)C =(5)C x dx x +=⎰ln 1指数函数:(6)C a a dx a xx+=⎰ln (7)⎰+=C e dx e x x三角函数:(8) ⎰+-=C x xdx cos sin (9) ⎰+=C x xdx sin cos (10) tan ln cos xdx x C =-+⎰ (11)cot ln sin xdx x C =+⎰ (12)⎰+=C x xdx x sec tan sec (13)⎰+-=C x xdx x csc cot csc (14)⎰⎰+==Cx xdx xdxtan sec cos22(15)⎰⎰+-==Cx xdx dx x cot csc sin 122(16)sec ln sec tan xdx x x C =++⎰ (17)csc ln csc cot xdx x x C =-+⎰(18)Cx dx x +=-⎰arcsin 112(19)arcsinx C a=+(20)Cx dx x +=+⎰arctan 112 (21)2211arctan xdx C a x a a =++⎰(22)Ca x x dx a x +++=+⎰2222ln 1 (23)Ca x x dx ax +-+=-⎰2222ln 1 (24)2211ln 2x a dx C xa a x a -=+-+⎰补充:完全平方差:222)(b ab a b a +-=- 完全平方和:222)(b ab a b a ++=+ 平方差:))((22b a b a b a +-=- 立方差:))((2233b ab a b a b a ++-=- 立方和:))((2233b ab a b a b a +-+=+常见的三角函数值奇/偶函的班别方法:偶函数:f(-x )= f(x) 奇函数:f(-x)= -f(x)常见的奇函数:Sinx , arcsinx , tanx , arctanx , cotx , x2n+1常见的有界函数:Sinx , cosx , arcsinx , arccosx , arctanx , arccotx极限运算法则:若lim f(x)=A,lim g(x)=B,则有:1. lim [f(x)—+g(x)]=lim f(x)—+lim g(x)=A —+B 2. lim [f(x).g(x)]=lim f(x).—+lim g(x)=A .B3. 又B 不等于0,则BAx g x f x f ==)(lim )(lim g(x))(lim两个重要极限:11sin lim 0=→x x x 1)()(s i n l i m 0)(=−−→−→x g x g x g 推广 2.e x g e x e xx g x xx x x =+−−→−=+=+∞→∞→∞→)(11))(1(lim )1(lim )11(lim 推广;;.无穷小的比较: 设:lim α=0,lim β=01. 若lim αβ=0,则称β是比α较高价的无穷小量2. 若lim αβ=c ,(c 不等于0),则称β是比α是同阶的无穷小量3. 若lim αβ=1,则称β是比α是等价的无穷小量4. 若lim αβ=∞,则称β是比α较低价的无穷小量抓大头公式:mm m mn n n n b x b a x a a xx xx +⋯⋯++++⋯⋯++----11101110b b a lim={mn mn mn b >∞<=,,0,a 0积分:1.直接积分(带公式)2.换元法:① 简单根式代换a. 方程中含nb ax +,令nb ax +=t b.方程中含ndcx b ax ++,令ndcx b ax ++=tc. 方程中含nb ax +和mb ax +,令pb ax +(其中p 为n,m 的最小公倍数)② 三角代换: a. 方程中含22a x -,令X=asint; t ⊂(-2π,2π)b. 方程中含22a x +,令X=atant; t ⊂(-2π,2π)c. 方程中含22x a -,令X=asect; t ⊂(0,2π)③ 分部积分∫uv ’ dx=uv-∫u ’v dx反(反三角函数)对幂指三,谁在后面,谁为v ’,根据v ’求出v.无穷级数:1. 等比级数:∑∞=1n n aq ,{发散收敛,1q ,1q ≥<2. P 级数:∑∞=11n pn,{发散收敛,1p ,1p ≤>3. 正项级数:nn n u u 1lim+→=ρ,{判别法,无法判断,改用比较发散收敛1,1,1=><ρρρ4. 比较判别法:重找一个V n (一般为p 级数),敛散性一致与,∑∑∞=∞=∞→=1n 1n n lim n n v u A nnv u5. 交错级数:)0()1(1>-∑∞=n n n n u u ,莱布尼茨判别法:{0lim 1=∞→+≥u n n n u u ,则级数收敛。
数学计算公式大全
数学计算公式大全1.代数:- 二次方程求根公式: $x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}$ -平方差公式:$(a-b)(a+b)=a^2-b^2$- 平方和公式: $(a+b)^2 = a^2 + 2ab + b^2$-余式定理:当整数a被整数b除时,余数等于被除数a与除数b的最小公倍数2.几何:- 三角形周长公式: $Perimeter = a + b + c$,其中a,b,c为三角形的三边长度3.概率与统计:-加法原理:如果两个事件A与B互斥,则它们同时发生的概率等于各自发生的概率之和-乘法原理:如果事件A与B相互独立,则它们同时发生的概率等于各自发生的概率的乘积- 排列公式: $P(n,r) = \frac{n!}{(n-r)!}$,其中n为总数,r为选取的数目,!表示阶乘- 组合公式: $C(n,r) = \frac{n!}{r!(n-r)!}$,其中n为总数,r 为选取的数目- 期望值计算公式: $E(X) = \sum x \cdot P(x)$,其中X为随机变量,x为可能的取值,P(x)为随机变量X取值为x的概率4.微积分:- 导数公式: $\frac{d}{dx} (x^n) = n \cdot x^{n-1}$,其中n为常数,x为变量- 积分公式: $\int x^n \,dx = \frac{1}{n+1} \cdot x^{n+1} +C$,其中n为常数,C为常数项- 微分公式: $\frac{d}{dx} (f(g(x))) = f'(g(x)) \cdot g'(x)$,其中f(x)和g(x)为函数,f'(x)和g'(x)为它们的导数- 牛顿-莱布尼兹公式: $\int_a^b f(x) \,dx = F(b) - F(a)$,其中F(x)为f(x)的不定积分- 泰勒展开公式: $f(x) = f(a) + \frac{f'(a)}{1!}(x-a) +\frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \cdots$,用于近似计算函数在特定点的值这只是数学计算公式中的一小部分,数学是一个广泛的学科,涉及到更多的公式和定理。
数学所有的公式大全
数学所有的公式大全
以下是一些数学公式:
1. 加法公式:加数+加数=和,和-一个加数=另一个加数。
2. 减法公式:被减数-减数=差,被减数-差=减数,差+减数=被减数。
3. 乘法公式:每份数×份数=总数,总数÷每份数=份数,总数÷份数=每份数。
4. 除法公式:被除数÷除数=商,被除数÷商=除数,商×除数=被除数。
5. 正方体体积和表面积公式:体积V=棱长^3,表面积S=6×棱长^2。
6. 三角形面积公式:面积S=底×高÷2。
7. 圆柱体体积公式:体积V=底面积S×高h。
8. 圆柱体表面积公式:表面积S=2πr^2+2πrh(其中r是底面半径,h是高)。
9. 圆周长公式:周长C=2πr(其中r是半径)。
10. 圆面积公式:面积S=πr^2(其中r是半径)。
11. 指数公式:a^n=b(其中a是底数,n是指数,b是结果)。
12. 对数公式:log_a(b)=n(其中a是底数,b是对数,n是指数)。
13. 三角函数公式:sin(A+B)=sinAcosB+cosAsinB,
cos(A+B)=cosAcosB-sinAsinB等。
14. 代数公式:x^2-bx+c=0(其中x是未知数,b和c是常数)。
15. 几何公式:平行四边形面积S=底×高,梯形面积S=(上底+下底)×高÷2等。
以上是一些常见的数学公式,它们在数学和科学领域中有着广泛的应用。
(完整版)数学公式大全
三角函数公式 1.正弦定理:A a sin =B b sin =Cc sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cosbca cb A 2cos 222-+=3.S ⊿=21a a h ⋅=21ab C sin =21bc A sin =21ac B sin =R abc 4=2R 2A sin B sin C sin=AC B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p ---(其中)(21c b a p ++=, r 为三角形内切圆半径)4.诱导公试三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限注释:xx tan 1cot =5.和差角公式①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③βαβαβαtan tan 1tan tan )tan(•-+=+④βαβαβαtan tan 1tan -tan )tan(•+=-6.二倍角公式:(含万能公式)①θθθcos sin 22sin =公式七:②θθθθθ2222sin 211cos 2sin cos 2cos -=-=-==θθ22tan 1tan 1+- ③θθθ2tan 1tan 22tan -=④ 22cos 1sin 2θθ-= ⑤ 22cos 1cos 2θθ+=⑥ Sin 2x+cos 2x=1 ⑦ 1+tan 2x=sec 2x ⑧ 1+cot 2x=csc 2x7.半角公式:(符号的选择由2θ所在的象限确定)①2cos 12sinθθ-±= ②2cos 12sin 2θθ-= ③2cos 12cos θθ+±= ④2cos 12cos 2θθ+=⑤2sin 2cos 12θθ=- ⑥2cos 2cos 12θθ=+ ⑦2sin2cos )2sin 2(cos sin 12θθθθθ±=±=±8.积化和差公式:[])sin()sin(21cos sin βαβαβα-++=[])sin()sin(21sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(21sin sin9.和差化积公式:①2cos2sin2sin sin βαβαβα-+=+ ②2sin2cos2sin sin βαβαβα-+=-③2cos 2cos 2cos cos βαβαβα-+=+ ④2sin 2sin 2cos cos βαβαβα-+-=-高等数学必备公式1、指数函数(4个): 幂函数5-8(1)nm n m aa a +=⋅ (2)nm n m a aa -=(3)nmn ma a= (4)m m aa 1=- (5) nm n m xx x +=⋅2、对数函数(4个):(1)b a ab ln ln ln += (2)b a b a ln ln ln -=(3)a b a bln ln = (4)N N e e N ln ln ==3、三角函数(10个):(1)1cos sin 22=+x x (2)x x x cos sin 22sin = (3)x x x x x 2222sin 211cos 2sin cos 2cos -=-=-= (4)21cos 2sin 2x x -= (5)21cos 2cos 2xx +=(6)x x 22sec tan 1=+ (7) xx 22csc cot 1=+(8)x x csc 1sin = (9)x x sec 1cos =(10)xx cot 1tan =4、等价无穷小(11个):(等价无穷小量只能用于乘、除法)23330sin ~ arcsin ~ tan ~ arctan ~1~ln(1)~ 1cos ~11~20tan sin ~ tan ~ sin ~236n e nx x x x x x x x x x →-+-+-→---当时: 当时:幂函数:(1))('c =0 (2)1)(-='μμμx x(3)211x x '⎛⎫=-⎪⎝⎭(4)'指数对数:(5)a a a xx ln )(=' (6)x x e e =')((7)a x x a ln 1)(log =' (8)x x 1)(ln ='三角函数:(9)x x cos )(sin =' (10)x x sin )(cos -='(11)x x 2sec )(tan =' (12)x x 2csc )(cot -='(13)x x x tan sec )(sec =' (14)x x x cot csc )(csc -='反三角函数:(15)211)(arcsin x x -=' (16)211)(arccos x x --=' (17)211)(arctan x x +=' (18)211)cot (x x arc +-='求导法则: 设u=u(x),v=v(x)1. (u —+v )’=u ’—+v ’ 2. (cu)’=cu ’(c 为常数) 3. (uv)’=u ’v+uv ’ 4. (vu )’=2''u v uv v -幂函数:(1)⎰+=C kx kdx (2)⎰-≠++=+)1(11μμμμC x dx x(3)211dx C x x=-+⎰ (4)C =(5)C x dx x +=⎰ln 1指数函数:(6)C a a dx a xx+=⎰ln (7)⎰+=C e dx e x x三角函数:(8) ⎰+-=C x xdx cos sin (9) ⎰+=C x xdx sin cos (10) tan ln cos xdx x C =-+⎰ (11)cot ln sin xdx x C =+⎰ (12)⎰+=C x xdx x sec tan sec (13)⎰+-=C x xdx x csc cot csc (14)⎰⎰+==Cx xdx xdxtan sec cos22(15)⎰⎰+-==Cx xdx dx x cot csc sin 122(16)sec ln sec tan xdx x x C =++⎰ (17)csc ln csc cot xdx x x C =-+⎰(18)Cx dx x +=-⎰arcsin 112(19)arcsinx C a=+(20)Cx dx x +=+⎰arctan 112 (21)2211arctan xdx C ax a a =++⎰(22)Ca x x dx a x +++=+⎰2222ln 1 (23)Ca x x dx ax +-+=-⎰2222ln 1 (24)2211ln 2x a dx C xa a x a-=+-+⎰补充:完全平方差:222)(b ab a b a +-=- 完全平方和:222)(b ab a b a ++=+ 平方差:))((22b a b a b a +-=- 立方差:))((2233b ab a b a b a ++-=- 立方和:))((2233b ab a b a b a +-+=+常见的三角函数值奇/偶函的班别方法:偶函数:f(-x )= f(x) 奇函数:f(-x)= -f(x)常见的奇函数:Sinx , arcsinx , tanx , arctanx , cotx , x2n+1常见的有界函数:Sinx , cosx , arcsinx , arccosx , arctanx , arccotx极限运算法则:若lim f(x)=A,lim g(x)=B,则有:1. lim [f(x)—+g(x)]=lim f(x)—+lim g(x)=A —+B 2. lim [f(x).g(x)]=lim f(x).—+lim g(x)=A .B3. 又B 不等于0,则BAx g x f x f ==)(lim )(lim g(x))(lim两个重要极限:11sin lim 0=→x x x 1)()(sin lim 0)(=−−→−→x g x g x g 推广 2.e x g e x e xx g x xx x x =+−−→−=+=+∞→∞→∞→)(11))(1(lim )1(lim )11(lim 推广;;.无穷小的比较: 设:lim α=0,lim β=01. 若lim αβ=0,则称β是比α较高价的无穷小量2. 若lim αβ=c ,(c 不等于0),则称β是比α是同阶的无穷小量3. 若lim αβ=1,则称β是比α是等价的无穷小量4. 若lim αβ=∞,则称β是比α较低价的无穷小量抓大头公式:mm m mn n n n b x b a x a a xx xx +⋯⋯++++⋯⋯++----11101110b b a lim={mn m n mn b >∞<=,,0,a 0积分:1.直接积分(带公式)2.换元法:① 简单根式代换a. 方程中含nb ax +,令nb ax +=t b.方程中含ndcx b ax ++,令ndcx b ax ++=tc. 方程中含nb ax +和mb ax +,令pb ax +(其中p 为n,m 的最小公倍数)② 三角代换: a. 方程中含22a x -,令X=asint; t ⊂(-2π,2π)b. 方程中含22a x +,令X=atant; t ⊂(-2π,2π)c. 方程中含22x a -,令X=asect; t ⊂(0,2π)③ 分部积分∫uv ’ dx=uv-∫u ’v dx反(反三角函数)对幂指三,谁在后面,谁为v ’,根据v ’求出v.无穷级数:1. 等比级数:∑∞=1n n aq ,{发散收敛,1q ,1q ≥<2. P 级数:∑∞=11n pn,{发散收敛,1p ,1p ≤>3. 正项级数:nn n uu 10lim +→=ρ,{判别法,无法判断,改用比较发散收敛1,1,1=><ρρρ4.比较判别法:重找一个V n (一般为p 级数),敛散性一致与,∑∑∞=∞=∞→=1n 1n n lim n n v u A nnv u5. 交错级数:)0()1(1>-∑∞=n n n n u u ,莱布尼茨判别法:{0lim 1=∞→+≥u n n n u u ,则级数收敛。
数学计算公式表大全
数学计算公式表大全一、小学数学计算公式。
1. 加法交换律。
- 公式:a + b=b + a- 示例:3+5 = 5+3=82. 加法结合律。
- 公式:(a + b)+c=a+(b + c)- 示例:(2 + 3)+4=2+(3 + 4)=93. 乘法交换律。
- 公式:a× b = b× a- 示例:2×3=3×2 = 64. 乘法结合律。
- 公式:(a× b)× c=a×(b× c)- 示例:(2×3)×4=2×(3×4)=245. 乘法分配律。
- 公式:a×(b + c)=a× b+a× c- 示例:2×(3 + 4)=2×3+2×4 = 6 + 8=146. 减法的性质。
- 公式:a - b - c=a-(b + c)- 示例:10-3 - 2=10-(3 + 2)=57. 除法的性质。
- 公式:a÷ b÷ c=a÷(b× c)(b≠0,c≠0)- 示例:12÷2÷3 = 12÷(2×3)=28. 长方形的周长公式。
- 公式:C=(a + b)×2(a为长,b为宽)- 示例:长为5厘米,宽为3厘米的长方形,周长C=(5 + 3)×2=16厘米。
9. 长方形的面积公式。
- 公式:S = a× b- 示例:长为6厘米,宽为4厘米的长方形,面积S=6×4 = 24平方厘米。
10. 正方形的周长公式。
- 公式:C = 4× a(a为边长)- 示例:边长为5厘米的正方形,周长C=4×5=20厘米。
11. 正方形的面积公式。
- 公式:S=a^2- 示例:边长为4厘米的正方形,面积S = 4^2=16平方厘米。
常见数学公式大全
常见数学公式大全一、代数公式1. 二次方程求根公式对于一元二次方程$ax^2+bx+c=0$,求解公式为:$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$2. 双曲函数公式对于双曲正弦函数$\sinh(x)$和双曲余弦函数$\cosh(x)$,它们之间的关系为:$$\cosh^2(x)-\sinh^2(x)=1$$3. 指数函数公式对于指数函数$e^x$,其级数展开式为:$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots =\sum_{n=0}^{\infty}\frac{x^n}{n!}$$二、几何公式1. 三角函数公式对于角度为$\theta$的直角三角形,其三角函数关系如下:- 正弦函数:$\sin(\theta) = \frac{\text{对边}}{\text{斜边}}$ - 余弦函数:$\cos(\theta) = \frac{\text{邻边}}{\text{斜边}}$ - 正切函数:$\tan(\theta) = \frac{\text{对边}}{\text{邻边}}$2. 球体体积公式对于半径为$r$的球体,其体积公式为:$$V = \frac{4}{3}\pi r^3$$三、微积分公式1. 导数定义函数$f(x)$在点$x=a$处的导数定义为:$$f'(a) = \lim_{h\to0}\frac{f(a+h)-f(a)}{h}$$2. 积分基本公式对于函数$f(x)$,其在区间$[a,b]$上的定积分为:$$\int_{a}^{b}f(x)dx$$四、概率统计公式1. 期望值公式随机变量$X$的期望值计算公式为:$$E(X) = \sum{X \cdot P(X)}$$2. 方差公式随机变量$X$的方差计算公式为:$$Var(X) = E(X^2) - [E(X)]^2$$以上是常见数学公式的一部分,仅供参考。
数学运算常用公式大全
数学运算常用公式大全1.加法和减法公式:-加法交换律:a+b=b+a-加法结合律:(a+b)+c=a+(b+c)-加法逆元(减法):a+(-a)=0-加法消去律:a+b=a+c,则b=c2.乘法和除法公式:-乘法交换律:a×b=b×a-乘法结合律:(a×b)×c=a×(b×c)-乘法逆元(倒数):a×(1/a)=1,其中a≠0-乘法消去律:a×b=a×c,则b=c3.指数公式:-幂的乘法:a^m×a^n=a^(m+n)-幂的除法:a^m÷a^n=a^(m-n)-幂的乘方:(a^m)^n=a^(m×n)-幂的零次方:a^0=1,其中a≠04.对数公式:- 对数的乘法:loga (xy) = loga x + loga y- 对数的除法:loga (x/y) = loga x - loga y- 对数的幂:loga (x^n) = n loga x5.三角函数公式:- 正弦定理:a/sinA = b/sinB = c/sinC- 余弦定理:a^2 = b^2 + c^2 - 2bc cosA- 正切定理:tanA = sinA/cosA- 和差化积公式:sin(A ± B) = sinA cosB ± cosA sinB6.二次方程公式:- 一元二次方程:ax^2 + bx + c = 0,其中a≠0- 解的公式:x = (-b ± √(b^2 - 4ac)) / 2a- 判别式:Δ = b^2 - 4ac,若Δ > 0,则有两个不相等的实根;若Δ = 0,则有两个相等的实根;若Δ < 0,则没有实根。
7.统计学公式:-平均数:平均数=总和/数据个数-中位数:将数据从小到大排列,如果数据个数为奇数,中位数为中间的那个数;如果数据个数为偶数,中位数为中间两个数的平均数。
世界上所有的数学公式大全
世界上所有的数学公式大全01工作效率×工作时间=工作总量工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作效率=工作效率02单价×数量=总价通过单价×数量=总价,我们可以将数学中的计算公式应用到实际问题中。
03速度×时间=路程速度×时间=路程÷速度=时间路程÷时间=速度04被减数-减数=差被减数-减数=差,即被减数和减数分别相减,得到差。
05被除数÷除数=商被除数÷除数=商06一元一次方程式一元一次方程式是指含有一个未知数,并且未知数的次数是一次的等式。
例如,ax+by+cz=d,其中a、b、c为已知数,x、y、z为未知数,且满足a+bx=d。
07V=ShV=Sh是圆柱的体积的计算公式,其中底面面积和体积是圆柱的侧面积和底面高。
通过将底面面积乘以高,可以得到圆柱的总体积。
这个公式可以用来计算圆柱的体积。
08S=a×a长方体的体积=长×宽×高公式:V=abh 长方体(或正方体)的体积=底面积×高公式:V=abh 正方体的体积=棱长×棱长×棱长公式:V=aaa 圆的周长=直径×π公式:L=πd=2πr 圆的面积=半径×半径×π公式:S=πr209S=ch=πdh=2πrh圆柱的表面积等于底面的周长乘以高再加上两头的圆的面积。
表面积等于底面的周长乘以高,再加上两头的圆的面积。
10带分数带分数是指将假分数写成整数和真分数的形式。
通过将分数的分母化为相同的数位,然后对分子进行约分,可以得到带分数。
11V=abh长方体的体积=长×宽×高。
在这个公式中,长方体的长度和宽度分别表示长和宽的长度,高度表示长的高度。
长方体的体积可以通过将底面积乘以高来计算。
12V=aaaV=aaa是长方体的体积公式,其中a表示长方体的长度,b表示宽,高表示长方体的宽度和高度。
数学公式大全
数学公式大全数学公式是数学领域中用来表达数学关系的符号和语言。
它们被广泛应用于科学、工程、经济和其他领域的解决问题中。
下面将为你介绍一些基本的数学公式。
一、代数公式1. 一元二次方程的根公式:设一元二次方程为ax²+bx+c=0,其根公式为:\[ x = \frac{-b \pm \sqrt{b^2-4ac}}{2a} \]2. 二项式定理:二项式定理用来展开二项式的幂,它表示为:\[ (a+b)^n = C_0 a^n b^0 + C_1 a^{n-1} b^1 + \cdots + C_n a^0 b^n \]其中,各个系数Cn可以通过组合数表达。
二、几何公式1. 三角形面积公式:对于已知三角形的底和高,可以使用以下公式计算其面积:\[ A = \frac{1}{2} \times \text{底} \times \text{高} \]2. 圆的周长和面积:圆的周长(C)和面积(A)可以通过半径(r)或直径(d)计算,公式如下:\[ C = 2\pi r = \pi d \]\[ A = \pi r^2 \]三、微积分公式1. 导数公式:导数用于描述函数在某个点的变化率,以下是一些常见函数的导数公式:- 常数函数的导数为0- 幂函数的导数为该函数的指数乘以常数- 指数函数的导数等于该函数自身乘以常数ln(x)- 对数函数的导数等于1/x- 三角函数的导数可以根据具体函数类型进行计算2. 积分公式:积分是导数的逆运算,以下是一些基本的积分公式:- 幂函数的积分等于该函数的幂次加1再除以新的幂次- 指数函数的积分等于该函数除以常数ln(x)- 对数函数的积分等于该函数自身乘以常数- 三角函数的积分可以根据具体函数类型进行计算四、概率与统计公式1. 期望值公式:期望值是一个随机变量的平均值,对于离散型随机变量X,其期望值计算公式为:\[ E(X) = \sum x P(X=x) \]其中,x表示随机变量的可能取值,P(X=x)表示该取值的概率。
数学公式大全
数学公式大全数学公式是数学中重要的概念和工具,用于描述和解决各种数学问题。
下面是数学公式的大全,包括代数、几何、概率与统计、微积分等方面的公式。
一、代数公式1. 二次方程的求根公式:对于一般的二次方程ax²+bx+c=0,其解可以通过求根公式计算:x=(-b±√(b²-4ac))/(2a)2. 四则运算法则:加法:a+b=b+a乘法:a*b=b*a减法:a-b=-(b-a)除法:a/b=1/(b/a)3. 指数与对数的关系:指数和对数是互为反函数的,即:a^loga(x)=xloga(a^x)=x二、几何公式1. 三角形的面积:对于已知底和高的三角形,其面积可以计算为:A=1/2 * 底 * 高2. 圆的面积和周长:圆的面积可以计算为:A=πr²圆的周长可以计算为:C=2πr3. 直角三角形的勾股定理:直角三角形的三边满足勾股定理:a²+b²=c²三、概率与统计公式1. 期望值的计算公式:对于一个离散型随机变量X,其期望值可以计算为:E(X)=∑(xP(X=x)),即各个取值x乘以相应的概率的加和2. 标准差的计算公式:标准差是描述变量离散程度的指标,可以计算为:σ=√(∑((x-μ)²P(X=x))),其中μ为随机变量X的期望值四、微积分公式1. 导数的定义:导数是函数在某一点处切线的斜率,可以定义为:f'(x)=lim(h→0) (f(x+h)-f(x))/h2. 求导法则:常见函数的求导法则包括:常数函数导数为0幂函数求导为幂次减1乘以导数指数函数求导为指数乘以导数对数函数求导为倒数乘以导数三角函数求导可以利用导数的定义累加求导数公式等以上是数学公式的部分内容,其中涵盖了代数、几何、概率与统计、微积分等方面的公式。
数学公式在数学领域中具有重要的应用价值和意义,可以帮助我们描述、分析和解决各种数学问题。
很好用的数学公式大全
很好用的数学公式大全1.代数- 一次方程:ax + b = 0,解为x = -b/a。
- 二次方程:ax^2 + bx + c = 0,解为x = (-b ± √(b^2 - 4ac)) / (2a)。
- 二次根式:√a x √b = √(ab)。
-二项式定理:(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)b+...+C(n,n)b^n。
-欧拉公式:e^(iπ)+1=0。
2.几何-勾股定理:a^2+b^2=c^2,其中a、b为直角边,c为斜边。
-面积公式:-三角形:S=1/2*底边长*高。
-矩形:S=长*宽。
-圆:S=πr^23.微积分- 导数定义:f'(x) = lim(h→0) [f(x+h) - f(x)] / h。
-常用导数:-常数函数:(c)'=0。
- 幂函数:(x^n)' = nx^(n-1)。
-指数函数:(e^x)'=e^x。
- 对数函数:(ln(x))' = 1/x。
- 积分定义:∫f(x)dx = F(x) + C,其中F'(x) = f(x),C为常数。
-常用积分:- 幂函数:∫x^n dx = (1/(n+1))x^(n+1) + C,其中n≠-1- 指数函数:∫e^x dx = e^x + C。
- 对数函数:∫(1/x) dx = ln,x, + C。
4.统计学-均值:平均数为数据值的和除以数据个数。
-方差:平均离差平方和除以数据个数。
-标准差:方差的平方根。
-正态分布概率密度函数:f(x)=(1/√(2πσ^2))*e^(-(x-μ)^2/(2σ^2)),其中μ为均值,σ为标准差。
5.概率-事件概率:P(A)=(A的可能数)/(总的可能数)。
- 互斥事件概率:P(A or B) = P(A) + P(B)。
- 独立事件概率:P(A and B) = P(A) * P(B)。
- 条件概率:P(A,B) = P(A and B) / P(B)。
大学数学所有公式
大学数学所有公式1. 代数公式- 一元二次方程求根公式: $x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}$- 二次根式乘法公式: $\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$- 二次根式除法公式: $\frac{\sqrt{a}}{\sqrt{b}} =\sqrt{\frac{a}{b}}$- 二次根式的分子有理化公式: $\frac{a}{\sqrt{b}} =\frac{a\sqrt{b}}{b}$2. 微积分公式- 导数定义: $f'(x) = \lim_{h \to 0}\frac{f(x+h) - f(x)}{h}$- 和差法则: $(f \pm g)'(x) = f'(x) \pm g'(x)$- 积法则: $(f \cdot g)'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$- 商法则: $\left(\frac{f}{g}\right)'(x) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g(x)^2}$- 定积分定义: $\int_a^b f(x) \,dx = \lim_{n \to \infty}\sum_{i=1}^n f(x_i) \Delta x$- 基本积分法则: $\int f(x) \, dx = F(x) + C$, where $F'(x) = f(x)$3. 概率公式- 加法概率公式: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$- 乘法概率公式: $P(A \cap B) = P(A) \cdot P(B|A)$, where$P(B|A)$ represents the probability of event B occurring given that event A has already occurred.4. 矩阵公式- 矩阵加法: $C = A + B$, where $C_{ij} = A_{ij} + B_{ij}$- 矩阵乘法: $C = AB$, where $C_{ij} = \sum_{k=1}^nA_{ik}B_{kj}$以上是一些大学数学中常见的公式,希望对您有帮助。
数学总结—公式大全
数学总结—公式大全1.代数方面的公式1.1 一次方程:ax + b = 0,其中a≠0。
1.2 二次方程:ax² + bx + c = 0,其中a≠0。
1.3 一元二次不等式:ax² + bx + c > 0或ax² + bx + c < 0。
1.4勾股定理:a²+b²=c²,其中a、b为直角三角形的两条直角边,c 为斜边。
1.5 二项式定理:(a + b)ⁿ = C(n,0)aⁿ + C(n,1)aⁿ⁻¹b + ... +C(n,n-1)abⁿ⁻¹ + C(n,n)bⁿ,其中C(n,k)表示组合数。
1.6四则运算规则:加法:a+b=b+a,乘法:a×b=b×a。
2.几何方面的公式2.1 三角形面积公式:S = 1/2bh,其中S表示三角形的面积,b表示底边的长度,h表示高。
2.2直角三角形三边关系:a²+b²=c²,其中a、b为直角三角形的两条直角边,c为斜边。
2.3 正弦定理:a/sinA = b/sinB = c/sinC = 2R,其中a、b、c为三角形的边长,A、B、C为对应的内角,R为三角形外接圆的半径。
2.4 余弦定理:c² = a² + b² - 2abcosC,其中a、b、c为三角形的边长,C为对应的内角。
2.5 面积公式:三角形面积S = 1/2absinC,其中a、b为三角形的两条边,C为对应的夹角。
2.6弧长公式:L=rθ,其中L表示弧长,r表示弧的半径,θ表示圆心角的度数。
3.微积分方面的公式3.1 导数定义:f'(x) = lim (f(x + h) - f(x))/h,其中f'(x)表示函数f(x)在x处的导数。
3.2导数的基本运算法则:常数法则、乘法法则、除法法则、链式法则等。
3.3反函数导数:(f⁻¹)'(y)=1/f'(x),其中f⁻¹表示f的反函数。
数学公式大全
数学公式大全1、圆锥:V=1/3底面积*高2、圆柱:V=底面积*高3、球:V=4/3*派*R³S=4*派*R*R4、S菱形=对角线乘积的一半5、圆柱体侧面积公式:S侧面积=底面周长×高6、圆柱体的表面积公式:表面积=2πr2+底面周长×高7、台体体积公式:V=[ S 上+√(S 上S 下)+S 下]h÷38、圆台体积公式:V=(R²+Rr+r²)hπ÷39、球缺体积公式=πh²(3R-h)÷310、球体积公式:V=4πR³÷311、圆锥体: 表面积:πRR+πR[(hh+RR)的平方根]12、三角形a,b,c -三边长h-a 边上的高s-周长的一半A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2·sinC =[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)13、四边形d,D-对角线长α-对角线夹角S=dD/2·sinα14、平行四边形a,b-边长h-a 边的高α-两边夹角S=ah=absinα15、菱形a-边长α-夹角D-长对角线长d-短对角线长S=Dd/2=a2sinα16、扇形r—扇形半径a—圆心角度数C=2r+2πr×(a/360) S=πr2×(a/360)17、弓形L-弧长b-弦长h-矢高r-半径α-圆心角的度数S=r2/2·(πα/180-sinα)=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2 =παr2/360 - b/2·[r2-(b/2)2]1/2=r(l-b)/2 + bh/2 ≈2bh/318、圆环R-外圆半径r-内圆半径S=π(R2-r2) =π(D2-d2)/4D-外圆直径d-内圆直径19、椭圆D-长轴d-短轴S=πDd/4和差问题的公式(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数) 差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数) 植树问题1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)长度单位换算1千米=1000 米 1 米=10 分米 1 分米=10 厘米1 米=100 厘米 1 厘米=10 毫米面积单位换算1 平方千米=100 公顷 1 公顷=10000 平方米=15亩1 平方米=100 平方分米 1 平方分米=100 平方厘米1 平方厘米=100 平方毫米1平方米=0.0015亩体(容)积单位换算1 立方米=1000 立方分米 1 立方分米=1000 立方厘米 1 立方分米=1 升 1 立方厘米=1 毫升 1 立方米=1000 升 1 亩=666.666 平方米(6)1 升=1 立方分米=1000 毫升1毫升=1 立方厘米重量单位换算1 吨=1000 千克1 千克=1000 克1 千克=1 公斤分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
数学公式大全
数学公式大全一、代数公式1. 一次方程的解:对于方程ax + b = 0,其解为x = -b/a。
2. 二次方程的解:对于方程ax² + bx + c = 0,其解为x = (-b ± √(b² - 4ac)) / (2a)。
3.二次根式的求和与差:a) √a ± √b = (√2 ± 1) * √(a ± √ab + b)b)√a±√b=(√a+√b)*(√a-√b)二、几何公式1.周长和面积:a) 矩形:周长P = 2(l + w),面积A = lwb)正方形:周长P=4s,面积A=s²c)圆:周长C=2πr,面积A=πr²d)三角形:周长P=a+b+c,海伦公式:A=√(s(s-a)(s-b)(s-c)),其中s=(a+b+c)/2为半周长e)梯形:面积A=(a+b)h/2,其中a和b为上下底边长,h为高f) 平行四边形:面积A = bh,其中b为底边长,h为高2.三角函数:a) 正弦定理:a/sinA = b/sinB = c/sinCb) 余弦定理:c² = a² + b² - 2ab*cosCc) 正弦、余弦和正切值:sin²θ+ cos²θ = 1,tanθ =sinθ/cosθ三、微积分公式1.导数与微分:a)基本导数:-常数函数:(c)'=0- 幂函数:(x^n)' = nx^(n-1)-指数函数:(e^x)'=e^x- 对数函数:(lnx)' = 1/xb)基本微分:- 常数函数积分:∫c dx = cx + C- 幂函数积分:∫x^n dx = (x^(n+1))/(n+1) + C,其中n ≠ -1- e^x函数积分:∫e^x dx = e^x + C- 对数函数积分:∫1/x dx = ln,x, + C2.积分法则:a) 线性法则:∫(cf(x) + dg(x)) dx = c∫f(x) dx + d∫g(x) dxb) 乘法法则:∫(f(x)*g'(x)) dx = f(x)*g(x) - ∫(f'(x)*g(x)) dxc) 代换法则:∫f(g(x))g'(x) dx = ∫f(u) du,其中u = g(x)四、概率与统计公式1.排列组合:a)排列公式:An=n!b)组合公式:C(n,r)=n!/[(n-r)!r!]2.期望与方差:a)期望:E(X)=∑(xP(x)),其中x为随机变量的取值,P(x)为该取值发生的概率b) 方差:Var(X) = ∑((x-E(X))²P(x))以上是一些常见的数学公式,在数学的各个领域中都有广泛的应用。
(完整版)数学公式大全
三角函数公式1.正弦定理a=b=c= 2R (R 为三角形外接圆半径):sin A sin B sin C2.余弦定理 :a 2 =b 2 +c 2 -2bc cos Ab 2 =a 2 +c 2 -2ac cosB c 2 =a 2 +b 2 -2ab cosCcos A b 2c 2 a 22bc3. ⊿ = 1 a h a = 1 ab sinC = 1 bc sin A = 1 ac sin B = abc=2R 2 sin A sin B sinCS2224R2= a 2 sin Bsin C = b 2 sin Asin C = c 2 sin Asin B =pr= p( p a)( p b)( p c)2sin A2 sin B 2sin C( 此中 p1(a bc) , r为三角形内切圆半径 )24.引诱公试公式七:三角函数值等于的同名三角函数值,前方加上一个把看作锐角时,原三角函数值的符号;即:函数名1不变,符号看象限说明:cot xtan x5.和差角公式① sin()sin cos cos sin② cos()cos cos sin sin③ tan()tan tan1tan? tan④ tan()tan- tantan? tan16.二倍角公式:( 含全能公式 )① sin 2 2 sin cos② cos 2cos2sin22 cos21 12 sin2=1tan1 tan③ tan 22tan1 tan222④ sin 21 cos 22 ⑤ cos 21 cos 22⑥ Sin 2x+cos 2x=1⑦ 1+tan 2x=sec 2x⑧ 1+cot 2x=csc 2x7.半角公式:(符号的选择由2所在的象限确立)① sin1 cos② s in 21 cos ③ cos1 cos222 222 ④ cos 21 cos⑤1cos2 sin 2⑥1 cos2 cos 22222⑦1 sin(cossin ) 2cos 2 sin2228.积化和差公式:sin cos1 sin() sin() cos sin1 sin( ) sin()22cos cos1 cos( ) cos() sin sin1 cos( ) cos229.和差化积公式:① sinsin 2 sincos② sin sin 2 cossin2222③ coscos2 coscos④ coscos2 sinsin2222高等数学必备公式1、指数函数( 4 个):幂函数 5-8( 1)a m a n a m n(2) a m a m na nnm mm1( 3)n(4)aa a a m( 5)x m x n x m n( 6)x mx m n nx( 7)n x mm( 8)x m1 x nx m2、对数函数( 4 个):( 1)ln ab ln a ln b( 2)ln aln a ln bb( 3)ln a b b ln a( 4)N ln e N e ln N3、三角函数( 10 个):( 1)sin2x cos2 x1( 2)sin 2x2sin x cosx ( 3)cos2x cos2 x sin 2 x 2 cos2 x 1 1 2sin 2 x2x 1cos2x21cos 2x( 4)sin2( 5)cos x2(6)1tan2 x sec2 x(7)1cot 2 x csc2 x( 8)sin x1( 9)cos x1 csc x secx( 10)tan x1 cot x4、等价无量小( 11 个 ) :(等价无量小量只好用于乘、除法)当W时:sinW~W arcsinW~W tanW~W arctanW~W 021 ~We W 1 ~ln(1) ~ 1 cos ~ W n 1WW W W Wn2当x时:x3tan x x3x x3tan x sin x ~ ~sin x ~236幂函数:( 1)( c) =0(2)( x ) x1(3)11( 4)x1 x x2 2 x 指数对数:(5) ( a x )a x ln a(7) (log a x)1 x ln a三角函数:(6) (e x )e x (8) (ln x)1x(9) (sin x)cos x(11) (tan x)sec2 x(13) (sec x)secx tan x 反三角函数:(10) (cos x)(12) (cot x)(14) (csc x)sin xcsc2 xcsc x cot x(arcsin x)1(arccos x)1( 15) 1 x 2( 16) 1 x 2(17) (arctan x)1(18) (arc cot x)1 1 x2 1 x2求导法例:设 u=u(x),v=v(x)1.(u —v)’=u’— v’2.(cu)’=cu’(c 为常数 )3.(uv) ’=u’v+uv’4.( u)’=u' v2uv' v v幂函数:(1)(3)(5)kdx kx C11x 2 dx x C1dx ln x C(2)(4)1x dx x1)C (11dx 2 x Cxx ax(7) e x dx e x指数函数:( 6)a dx ln a C C 三角函数:(8)(10)(12)(14)(16)(18)(20)(22)(23)sin xdx cos x C( 9)cosxdx sin x Ctan xdx ln cos x C(11) cot xdx ln sin x Csec x tan xdx sec x C(13) csc x cot xdx csc x C dx212cos2x sec xdx tan x C( 15)sin2x dx csc xdx cot x C secxdx ln secx tan x C(17) cscxdx ln cscx cot x C 1dx arcsin x C1dx arcsinxC( 19)1 x 2a2x 2a11x2dx1x1x2dxarctan x C( 21)a2a arctan a C1dx ln x x2a2Cx2a21dx ln x x2a2C1a2dx1lnx aCx2a2(24) x22a x a增补:完整平方差:完整平方和:(a b) a 2 2ab b 2 (a b)a 2 2ab b 2平方差:立方差:a 2b 2( a b)(a b)a 3b 3( a )( 2ab b 2 )b a立方和 : a 3b 3 ( a b)( a 2 ab b 2 )常有的三角函数值奇 /偶函的班别方法:偶函数: f(-x)= f(x)奇函数: f(-x)= -f(x)常有的奇函数:2n+1 Sinx , arcsinx , tanx , arctanx , cotx , x常有的有界函数:Sinx , cosx , arcsinx , arccosx , arctanx , arccotx极限运算法例:若 lim f(x)=A, lim g(x)=B, 则有:1. lim [f(x)—g(x)]= lim f(x)—lim g(x)=A—B2. lim [f(x). g(x)]= lim f(x).—lim g(x)=A.Bf ( x) lim f ( x)A3. 又 B 不等于 0,则limg(x) lim g (x)B两个重要极限:sinx推行lim sin g(x)11lim x01g(x)x g( x)01x;1;1lim (1x)x推行lim (1g(x))g ( x)e.2.) e lim (1exx x x无量小的比较:设: lim=0,lim =01. 若lim=0,则称是比 较高价的无量小量2. 若lim=c ,(c 不等于 0) ,则称是比 是同阶的无量小量3. 若lim=1,则称是比 是等价的无量小量4. 若lim=,则称是比 较廉价的无量小量抓大头公式:a0 ,nmnn 1={b 0lim a 0x ma 1x m 1a n 1 x a n0, nmb 0x b1xb m 1x b m, nm积分:1.直接积分(带公式)2.换元法:① 简单根式代换a.b.方程中含 naxb ,令 naxb=tnax b,n axb方程中含cxd令cxd =tc. 方程中含 nax b 和 maxb ,令 paxb (此中p 为 n,m 的最小公倍数)② 三角代换:a. 方程中含 a 2x 2 b. 方程中含 a 2x 2 c. 方程中含 x 2a2,令 X=asint; t(- 2,2),令 X=atant;t (-2,2),令 X=asect;t(0, )2③ 分部积分∫ uv ’dx=uv-∫u ’v dx反(反三角函数)对幂指三, 谁在后边,谁为 v ’,依据 v ’求出 v.无量级数:1.等比级数 :aqnq 1,收敛,{1, 发散n 1q2.P 级数:1p ,{p1, 收敛n 1 np 1,发散3.limun 11,收敛正项级数:,{1,发散n 0u n1,没法判断,改用比较 鉴别法4.比较鉴别法:重找一个 V n (一般为 p 级数),limu nA , u n 与v n 敛散性一致v nn 1n 1n5. 交织级数:( 1) nu n (u n0),莱布尼茨鉴别法:{u nu n 1,n1lim n u则级数收敛。
小学数学公式大全(完整版)
小学数学公式大全(完整版) 以下是小学数学公式大全:1、长方形的周长=(长+宽)×2,表示为C=(a+b)×2.2、正方形的周长=边长×4,表示为C=4a。
3、长方形的面积=长×宽,表示为S=ab。
4、正方形的面积=边长×边长,表示为S=a×a=a²。
5、三角形的面积=底×高÷2,表示为S=ah÷2.6、平行四边形的面积=底×高,表示为S=ah。
7、梯形的面积=(上底+下底)×高÷2,表示为S=(a+b)h÷2.8、直径=半径×2,表示为d=2r。
半径=直径÷2,表示为r=d÷2.9、圆的周长=圆周率×直径=圆周率×半径×2,表示为c=πd=2πr。
10、圆的面积=圆周率×半径×半径,表示为S=πr²。
11、长方体的表面积=(长×宽+长×高+宽×高)×2,表示为S=2(ab+ah+bh)。
12、长方体的体积=长×宽×高,表示为V=abh。
13、正方体的表面积=棱长×XXX×6,表示为S=6a²。
14、正方体的体积=棱长×XXX×棱长,表示为V=a³。
15、圆柱的侧面积=底面圆的周长×高,表示为S=ch。
16、圆柱的表面积=上下底面面积+侧面积,表示为S=2πr²+2πrh=2π(C÷2÷π)+Ch。
17、圆柱的体积=底面积×高,表示为V=Sh=πr²h=π(C÷2÷π)h。
18、圆锥的体积=底面积×高÷3,表示为V=Sh÷3=πr²h÷3=π(C÷2÷π)h÷3.此外,以下是小学数学图形计算公式:1、正方形:周长=边长×4,面积=边长×边长。
数学公式大全 全套
数学公式大全:全套数学是科学世界中的语言,而公式则是数学中的词汇和语法。
掌握数学公式是理解和应用数学的关键。
本文将为您呈现全套数学公式,帮助您系统地掌握数学基础。
一、代数公式1.乘法分配律:a(b+c) = ab + ac2.乘法结合律:(ab)c = a(bc)3.乘法交换律:ab = ba4.除法定义:a÷b = c 表示a = b × c5.指数法则:a^m × a^n = a^(m+n)6.根式性质:√a^2 = |a|二、几何公式1.勾股定理:直角三角形中,直角边的平方和等于斜边的平方,即a^2 + b^2= c^22.圆周率公式:π = 22/7 或π =3.141593.圆的面积公式:S = πr^24.圆柱的体积公式:V = πr^2h三、三角函数公式1.正弦函数公式:sin(x) = sin(x + 2kπ)2.余弦函数公式:cos(x) = cos(x + 2kπ)3.正切函数公式:tan(x) = tan(x + kπ)4.余切函数公式:cot(x) = 1/tan(x)5.反正弦函数公式:arsin(x) = -i(log(iz))6.反余弦函数公式:arccos(x) = π - arcsin(x)7.反正切函数公式:arctan(x) = π/2 - arcsin(x/√(1+x^2))8.反余切函数公式:arccot(x) = π/2 - arctan(x)四、微积分公式1.导数定义:f'(x) = lim (h->0) [f(x+h) - f(x)] / h2.积分基本公式:∫ a dx = ax + C3.定积分公式:∫ [a, b] f(x) dx = F(b) - F(a)4.微分方程公式:dy/dx = f(x, y)5.级数求和公式:∑ [n=1,∞] a_n = S - S_n (n->∞)6.级数收敛判别法:∑ [n=1,∞] a_n 收敛当且仅当lim (n->∞) a_n = 07.多重积分公式:∫ [a, b] f(x, y, z) dV = Σ [S_k] F_k (S_k为k维曲面上的小区元)8.傅里叶变换公式:f(t) = Σ [n=-∞, ∞] c_n e^(i n t) (c_n为傅里叶系数)9.拉普拉斯变换公式:f(t) = Σ [n=0, ∞] s^n * (f^{(n)}(0)/n!) (s为复数变换参数)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•1、长方形的周长=(长+宽)×2 C=(a+b)×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽S=ab4、正方形的面积=边长×边长S=a.a= a5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、圆的面积=圆周率×半径×半径?=πr11、长方体的表面积=(长×宽+长×高+宽×高)×212、长方体的体积=长×宽×高V =abh13、正方体的表面积=棱长×棱长×6 S =6a14、正方体的体积=棱长×棱长×棱长V=a.a.a= a15、圆柱的侧面积=底面圆的周长×高S=ch16、圆柱的表面积=上下底面面积+侧面积S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch17、圆柱的体积=底面积×高V=ShV=πr h=π(d÷2) h=π(C÷2÷π) h18、圆锥的体积=底面积×高÷3V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷319、长方体(正方体、圆柱体)的体1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1 、正方形C周长S面积a边长周长=边长×4 C=4a 面积=边长×边长S=a×a2 、正方体V:体积a:棱长表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a3 、长方形C周长S面积a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4 、长方体V:体积s:面积a:长b: 宽h:高(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5 三角形s面积a底h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积a底h高面积=底×高s=ah7 梯形s面积a上底b下底h高面积=(上底+下底)×高÷2s=(a+b)× h÷28 圆形S面积C周长∏ d=直径r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9 圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10 圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3总数÷总份数=平均数和差问题(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒积=底面积×高V=Sh第一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。
19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘以分数的倒数。
21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
22、什么叫比:两个数相除就叫做两个数的比。
如:2÷5或3:6或1/3比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
23、什么叫比例:表示两个比相等的式子叫做比例。
如3:6=9:1824、比例的基本性质:在比例里,两外项之积等于两内项之积。
25、解比例:求比例中的未知项,叫做解比例。
如3:χ=9:1826、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
如:y/x=k( k 一定)或kx=y27、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。
如:x×y = k( k 一定)或k / x = y28、百分数:表示一个数是另一个数的百分之几的数,叫做百分数。
百分数也叫做百分率或百分比。