黄冈2018-2019中考数学试题分类解析专项05数量和位置变化

合集下载

最新湖北省黄冈市年中考数学试题(Word版,含解析)

最新湖北省黄冈市年中考数学试题(Word版,含解析)

湖北省黄冈市2019年中考数学试题(Word 版,含解析)第Ⅰ卷(选择题共18分)一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算:13-=() A .13B .13-C .3D .-3 【考点】绝对值.【分析】根据绝对值的性质解答,当a 是负有理数时,a 的绝对值是它的相反数-a . 【解答】 解:13-=13故选A .【点评】本题考查了绝对值的性质,如果用字母a 表示有理数,则数a 绝对值要由字母a 本身的取值来确定:①当a 是正有理数时,a 的绝对值是它本身a ; ②当a 是负有理数时,a 的绝对值是它的相反数-a ; ③当a 是零时,a 的绝对值是零. 2.下列计算正确的是()A .235x y xy +=B .()2239m m +=+C .()326xyxy =D .1055a a a ÷=3.已知:如图,直线0//,150,23a b ∠=∠=∠,则2∠的度数为()A.50°B.60°C.65°D.75°【考点】平行线性质.∠=65°【分析】根据两直线平行,同旁内角互补,得∠2+∠3=130°,再2【解答】解:∵a∥b∴∠1+∠2+∠3=180°∵∠1=50°∴∠2+∠3=130°∵∠2=∠3∠=65°∴2故选C.【点评】理解掌握平行线性质①两直线平行,同位角相等②两直线平行,同旁内角互补③两直线平行,内错角相等.4.已知:如图,是一几何体的三视图,则该几何体的名称为()A.长方体B.正三棱柱C.圆锥D.圆柱【考点】简单几何体的三视图.【分析】根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图,可知该几何体为圆柱.21世纪有【解答】解:A、从上面看得到的图形是俯视图,故A错误;B 、从上面看得到的图形是俯视图,所以B 错误;C 、从正面看得到的视图是主视图,从左边看得到的图形是左视图,故C 错误;D 、故D 正确; 故选:D .【点评】本题考查了简单组合体的三视图,从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图.5.某校10名篮球运动员的年龄情况,统计如下表:11则这10名篮球运动员年龄的中位数为() A .12B .13C.13.5D .14 【考点】中位数;统计表.【分析】按大小顺序排列这组数据,最中间那个数或两个数的平均数是中位数.【解答】解:从小到大排列此数据为:12,12,13,13,13,13,14,14,14,15位置处于最中间的两个数是:13,:13所以组数据的中位数是13. 故选B .【点评】此题主要考查了中位数.找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.6.已知:如图,在O 中,0,70OA BC AOB ⊥∠=,则ADC ∠的度数为()A .30°B .35°C.45°D .70° 【考点】垂径定理;圆心角定理.【分析】根据垂径定理,可得弧BC=弧AC ,再利用圆心角定理得答案. 【解答】 解:∵OA ⊥BC ∴弧BC=弧AC ∵∠AOB=70°∴∠ADC=21∠AOB=35° 故选:B .【点评】本题考查了垂径定理,利用圆心角,垂径定理是解题关键.第Ⅱ卷(非选择题共102分)二、填空题(每小题3分,满分24分,将答案填在答题纸上)7.16的算术平方根是___________. 【考点】算术平方根.【分析】16的算术平方根是16正的平方根. 【解答】解:16的算术平方根是4【点评】本题考查了算术平方根:一个正数有两个平方根,它们互为相反数,其中正的平方根也叫算术平方根.8.分解因式:22mn mn m -+=____________. 【考点】分解因式.【分析】先提取公因式法,再公式法. 【解答】解:22mn mn m -+=()()22112-=+-n m n n m【点评】本题考查了分解因式,必须理解好完全平方公式:()2222b a b ab a ±=+±9. -的结果是____________. 【考点】实数的运算. 【分析】3327=,3331= 【解答】-=3323333633=-=⨯- 【点评】本题考查了实数的运算,必须牢记公式:b a ab ⨯=,a a =210.自中国提出“一带一路·合作共赢”的倡议以来,一大批中外合作项目稳步推进.其中,由中国承建的蒙内铁路(连接肯尼亚首都罗毕和东非第一大港蒙巴萨港),是首条海外中国标准铁路,已于2019年5月31日正式投入运营.该铁路设计运力为25000000吨,将25000000吨用科学记数法表示,记作_________吨.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是非负数;当原数的绝对值<1时,n 是负数.【解答】解:25000000=2.5×107,【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.化简:23332x xx x x-⎛⎫+=⎪---⎝⎭_____________.12.已知:如图,在正方形ABCD的外侧,作等边三角形ADE,则BED∠=__________度.【考点】正方形,等边三角形.【分析】原式变形后,利用乘法对加法分配律,再约分化简即可得到结果.【解答】解:∵在正方形ABCD的外侧,作等边三角形ADE∴AB=AD=AE,∠BAD=90°,∠DAE=∠AED=60°∴∠BAE=150°∴∠AEB=15°∴BED∠=45°【点评】此题考查了正方形,等边三角形,熟练掌握正方形和等边三角形性质是解本题的关键13.已知:如图,圆锥的底面直径是10cm,高为12cm,则它的侧面展开图的面积是2cm.【考点】圆锥【分析】由勾股定理,确定圆锥的母线长,再由表面积=πrl 确定其表面积. 【解答】解:如图作辅助线,由题意知:BC=12,AC=5 ∴AB=13,即圆锥的母线长l=13cm ,底面半径r=5cm , ∴表面积=πrl=π×5×13=65πcm 2. 故答案为:65πcm 2.【点评】考查学生对圆锥体面积及体积计算,必须牢记公式表面积=πrl .14.已知:如图,在AOB ∆中,090,3,4AOB AO cm BO cm ∠===,将AOB ∆绕顶点O ,按顺时针方向旋转到11AOB ∆处,此时线段1OB 与AB 的交点D 恰好为AB 的中点,则线段1B D =cm .【考点】直角三角形,勾股定理,旋转【分析】由勾股定理,确定圆锥的母线长,再由表面积=πrl 确定其表面积. 【解答】解:∵090,3,4AOB AO cm BO cm ∠=== ∴AB=5,∵D 恰好为AB 的中点 ∴OD=2.5∵将AOB ∆绕顶点O ,按顺时针方向旋转到11AOB ∆处 ∴OB 1=OB=4 ∴1B D =1.5 故答案为:1.5.【点评】考查学生对直角三角形性质掌握,必须牢记知识点:直角三角形斜边的中线等于斜边的一半.三、解答题(共78分.解答应写出文字说明、证明过程或演算步骤.)15.解不等式组:3523212x x x -<-⎧⎪⎨+≥⎪⎩①②.【考点】解不等式组【分析】由①得x <1;由②得x ≥0,∴0≤x <1 【解答】 解:【点评】考查解不等式组,如何确定不等式组解集,可用口诀法:同大取大,同小取小,大小取中,矛盾无解.16.已知:如图,,,BAC DAM AB AN AD AM ∠=∠==.求证:B ANM ∠=∠.【考点】三角形全等【分析】利用SAS 证明△ABD ≌△ANM,从而得B ANM ∠=∠ 【解答】 解:【点评】考查三角形全等,应理解并掌握全等三角形的判定定理:SSS,SAS,ASA,AAS,HL 17.已知关于x 的一元二次方程()22210x k x k +++=①有两个不相等的实数根.(1)求k 的取值范围;(2)设方程①的两个实数根分别为12,x x ,当1k =时,求2212x x +的值.【考点】一元二次方程【分析】(1)利用△>0,求k 的取值范围;(2)利用一元二次方程根与系数关系,求2212x x +的值.【解答】 解:【点评】考查一元二次方程,必须牢记知识点:(1)一元二次方程根的判别方法:①△>02个不相等实数根;②△=02个相等实数根;③△<00个实数根;(2)韦达定理:acx x a b x x =-=+2121, 18.黄麻中学为了创建全省“最美书屋”,购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元.已知学校用12000元购买的科普类图书的本数与用9000元购买的文学类图书的本数相等,求学校购买的科普图书和文学类图书平均每本的价格各是多少元?【考点】列分式方程解应用题【分析】利用等量关系:学校用12000元购买的科普类图书的本数=用9000元购买的文学类图书的本数,列方程【解答】 解:【点评】列分式方程解应用题,解分式方程时必须验根19.我市东坡实验中学准备开展“阳光体育活动”,决定开设足球、篮球、乒乓球、羽毛球、排球等球类活动.为了了解学生对这五项活动的喜爱情况,随机调查了m名学生(每名学生必选且只能选择这五项活动中的一种).根据以下统计图提供的信息,请解答下列问题:(1)m=__________,n=____________;(2)补全上图中的条形统计图;(3)若全校共有2000名学生,请求出该校约有多少名学生喜爱打乒乓球;(4)在抽查的m名学生中,有小薇、小燕、小红、小梅等10名学生喜欢羽毛球活动,学校打算从小薇、小燕、小红、小梅这4名女生中,选取2名参加全市中学生女子羽毛球比赛,请用列表法或画树状图A B C D代法,求同时选中小红、小燕的概率.(解答过程中,可将小薇、小燕、小红、小梅分别用字母,,,表)【考点】统计图以及列表或画树状图求概率【分析】条形统计图和扇形统计图对比找出相关联数量关系,求m,n,补全图形,用部分估计整体,并列表或画树状图求概率【解答】解:【点评】此题主要考查了统计图以及列表或画树状图求概率,利用图表获取正确信息是解题关键.20.已知:如图,MN为O的直径,ME是O的弦,MD垂直于过点的直线DE,垂足为点D,且ME 平分DMN ∠.求证:(1)DE 是O 的切线;(2)2ME MD MN =. 【考点】圆,相似三角形【分析】(1)利用知识点:知半径,证垂直,证明DE 是O 的切线;(2)证明△DME ≌△EMN ,再证明2ME MD MN = 【解答】 解:【点评】本题考查切线的判定、直径的性质、相似三角形的判定及性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.21.已知:如图,一次函数21y x =-+与反比例函数k y x=的图象有两个交点()1,A m -和B ,过点A 作AE x ⊥轴,垂足为点E ;过点作B 作BD y ⊥轴,垂足为点D ,且点D 的坐标为()0,2-,连接DE .(1)求k 的值;(2)求四边形AEDB 的面积.【考点】反比例函数与一次函数的交点问题;平面直角坐标系中面积问题.【分析】(1)根据()1,A m -利用一次函数21y x =-+可求出点m=3,根据点A 的坐标 利用待定系数法即可求出反比例函数k y x=的解析式; (2)思路:MDE AEDM AEDB S S S 三角形四边形四边形+=求面积,方法多种,可灵活选择。

2019年黄冈市中考数学试题、答案(解析版)

2019年黄冈市中考数学试题、答案(解析版)

2019年黄冈市中考数学试题、答案(解析版)(本试卷满分120分,考试时间120分钟)第I 卷(选择题 共24分)一、选择题(本题共8小题,每小题3分,共24分.每小题给出的4个选项中,只有一项是符合题目要求的) 1.3-的绝对值是( )A .3-B .13-C .3D .2.为纪念中华人民共和国成立70周年,我市各中小学积极开展了以“祖国在我心中”为主题的各类教育活动,全市约有550 000名中小学生参加,其中数据550 000用科学记数法表示为( ) A .65.510⨯ B .55.510⨯ C .45510⨯ D .60.5510⨯ 3.下列运算正确的是( )A .22a a a ⋅=B .555a b ab ⋅=C .532a a a ÷=D .235a b ab +=4.若12x x ,是一元一次方程2450x x --=的两根,则12x x ⋅的值为( )A.5- B .5C .4-D .45.已知点A 的坐标为21(,),将点A 向下平移4个单位长度,得到的点'A 的坐标是( ) A .61(,) B .21-(,)C .25(,)D .23-(,)6.如图,是有棱长都相等的四个小正方体组成的几何体。

该几何体的左视图是( )7.如图,一条公路的转弯处是一段圆弧(AB ),点O 是这段弧所在圆的圆心,40 m AB =,点C 是AB 的中点,且10 m CD =则这段弯路所在圆的半径为( )A .25 mB .24 mC .30 mD .60 m8.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家,图中x 表示时间,y 表示林茂离家的距离。

依据图中的信息,下列说法错误的是 ( )A .体育场离林茂家2.5 kmB .体育场离文具店1 kmC .林茂从体育场出发到文具店的平均速度是50 m/minD .林茂从文具店回家的平均速度是60 m/min第II 卷(非选择题 共96分)二、填空题(本大题共8小题,每小题3分,共24分.请把答案填在题中的横线上)9.计算21+的结果是 .10.212x y -是 次单项式. 11.分解因式22327x y -= .12.一组数据1,7,8,5,4的中位数是a ,则a 的值是 .13.如图,直线AB CD ∥,直线EC 分别与AB CD ,相交于点A 、点C AD ,平分BAC ∠,已知80ACD ∠=︒,则DAC ∠的度数为 .14.用一个圆心角为120°,半径为6的扇形做一个圆锥的侧面,则这个圆锥的底面圆的面积为 . 15.如图,一直线经过原点O ,且与反比例函数(0)ky k x=>相交于点A 、点B ,过点A 作AC y ⊥轴,垂足为C ,连接BC .若ABC △面积为8,则k = .16.如图,AC BD ,在AB 的同侧,288AC BD AB ===,,,点M 为AB 的中点,若120CMD ∠=︒,则CD 的最大值是 .三、解答题(本大题共9小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分6分) 先化简,再求值.2222225381a b b a b b a a b ab+⎛⎫+÷ ⎪+--⎝⎭ 其中a=2, b=1.18.(本小题满分6分)解不等式组515264253(5).x x x x -+⎧+>⎪⎨⎪+<-⎩,19.(本小题满分6分)如图,ABCD 是正方形,E 是CD 边上任意一点,连接AE ,作、BF AE ⊥,DG AE ⊥,垂足分别为F G ,.求证:BF DG FG -=.20.(本小题满分7分)为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动。

2019年湖北省黄冈市中考数学试卷附分析答案

2019年湖北省黄冈市中考数学试卷附分析答案
第 5页(共 18页)
2019 年湖北省黄冈市中考数学试卷
参考答案与试题解析
一、选择题(本题共 8 小题,每小题 3 分,共 24 分,每小题给出的 4 个选项中,有且只有 一个答案是正确的) 1.(3 分)﹣3 的绝对值是( )
A.﹣3
B.
C.3
D.±3
【解答】解:﹣3 的绝对值是 3.
故选:C.
D.(2,﹣3)
【解答】解:∵点 A 的坐标为(2,1), ∴将点 A 向下平移 4 个单位长度,得到的点 A′的坐标是(2,﹣3), 故选:D. 6.(3 分)如图,是由棱长都相等的四个小正方体组成的几何体.该几何体的左视图是( )
A.
B.
C.
D.
【解答】解:该几何体的左视图只有一列,含有两个正方形.
2.(3 分)为纪念中华人民共和国成立 70 周年,我市各中小学积极开展了以“祖国在我心
中”为主题的各类教育活动,全市约有 550000 名中小学生参加,其中数据 550000 用科
学记数法表示为( )
A.5.5×106
B.5.5×105
C.55×104
D.0.55×106
【解答】解:将 550000 用科学记数法表示为:5.5×105.

13.(3 分)如图,直线 AB∥CD,直线 EC 分别与 AB,CD 相交于点 A、点 C,AD 平分∠
BAC,已知∠ACD=80°,则∠DAC 的度数为

14.(3 分)用一个圆心角为 120°,半径为 6 的扇形做一个圆锥的侧面,则这个圆锥的底面
圆的面积为

15.(3 分)如图,一直线经过原点 O,且与反比例函数 y (k>0)相交于点 A、点 B,

2019湖北黄冈中考数学解析

2019湖北黄冈中考数学解析

2019年湖北省黄冈市初中毕业、升学考试数学(满分120分,考试时间120分钟)一、选择题(本题共8小题,每小题3分,共24分.每小题给出的4个选项中,有且只有一个答案是正确的)1.(2019年湖北省黄冈市,第1题,3分)-3的绝对值是A.-3B.-13C.3D.±3【答案】C【解析】根据绝对值的概念知-3的绝对值是3,故选C.【知识点】绝对值2.(2019年湖北省黄冈市,第题,3分)为纪念中华人民共和国成立70周年,我市各中小学积极开展了以“祖国在我心中”为主题的各类教育活动,全市约有550000名中小学生参加.其中数据550000用科学记数法表示为A.5.5×106B.5.5×105C.55×104D.0.55×106【答案】B【解析】数据550000用科学记数法表示,正确的是5.5×105.故选:B.【知识点】科学记数法3.(2019年湖北省黄冈市,第3题,3分)下列运算正确的是A.a·a2=a2B.5a·5b=5abC.a5÷a3=a2D.2a+3b=5ab【答案】C【解析】选项A,由同底数幂的法则可知a·a2=a3,选项A错误;选项B,5a·5b=25ab,选项B错误;选项C由同底数幂的除法法则可知是正确的;选项D不是同类项,不能合并.【知识点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.4.(2019年湖北省黄冈市,第4题,3分)若x1,x2是一元一次方程x2-4x-5=0的两根,则x1·x2的值为A.-5B.5C.-4D.4【答案】A【解析】由根与系数的关系可知x1·x2=-5.【知识点】根与系数的关系5.(2019年湖北省黄冈市,第5题,3分)已知点A的坐标为(2,1),将点A向下平移4个单位长度,得到的点A'的坐标是A.(6,1)B.(-2,1)C.(2,5)D.(2,-3)【答案】D【解析】根据点的平移规律,左右移,横坐标减加,纵坐标不变;上下移,纵坐标加减,横坐标不变即可得:将点A(2,4)向下平移4个单位长度后,得到的点A′的坐标为(2,1-4),即(2,-3),故选:D.【知识点】坐标与图形的变化――平移6.(2019年湖北省黄冈市,第6题,3分)如图,是由棱长都相等的四个小正方体组成的几何体.该几何体的左视图是【答案】BDCBA【解析】直接利用三视图的画法,从左边观察,可画.【知识点】组合体的三视图7.(2019年湖北省黄冈市,第题,3分 )如图,一条公路的转弯处是一段圆弧(»AB ),点O 是这段弧所在圆的圆心,AB =40m ,点C 是»AB 的中点,点D 是AB 的中点,且CD =10m .则这段弯路所在圆的半径为 A.25mB.24mC.30mD.60m【答案】A【解析】连接OD ,由垂径定理可知O ,C ,D 在同一条直线上,OC ⊥AB ,设半径为r ,则OC =OA =r ,AD =20,OD =OA -CD =r -10,在Rt △ADO ,由勾股定理知:r 2=202+(r -10)2,解得r =25.【知识点】垂径定理8.(2019年湖北省黄冈市,第8题,3分 ) 已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是林凌从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家、图中x 表示时间,y 表示林茂离家的距离.依据图中的信息,下列说法错误的是A.体育场离林茂家2.5kmB.体育场离文具店1kmC.林茂从体育场出发到文具店的平均速度是50m/minD.林茂从文具店回家的平均速度是60m/minOD C C DOEDCBAy /km/min15651.52.50【答案】C【思路分析】观察图象可知体育场离林茂家2.5km ;观察函数图象找出体院馆和文具店离家的距离,二者的差即可结论;根据速度=路程÷时间,可判断选项C 和选项D 【解题过程】选项A ,林茂从家到体育场离林茂家2.5km ,正确; 选项B ,林茂从体育场到文具店的距离是2.5-1.5=1km ,正确; 选项C ,林茂从体育场出发到文具店的平均速度是-=-2500120020045303m/min ,错误; 选项D ,林茂从文具店回家的平均速度是-15009065=60m/min ,正确.【知识点】函数的图象二、填空题(本题共8小题,每小题3分,共24分)9.(2019年湖北省黄冈市,第9题,3分 ) 32+1的结果是 . 【答案】4【解析】原式=3+1=4,故答案为4. 【知识点】实数的运算10.(2019年湖北省黄冈市,第10题,3分 )-12x 2y 是 次单项式.【答案】3【解析】单项式中数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,故-12x 2y是3 次单项式. 【知识点】单项式11.(2019年湖北省黄冈市,第11题,3分 )分解因式3x 2-27y 2= .【答案】3(x+3y )(x-3y )【解析】先提取公因数3,然后利用平方差公式进行分解,即3x 2-27y 2=3(x 2-9y 2)=3(x+3y )(x-3y )。

2019年湖北省黄冈市中考数学试卷以及答案解析

2019年湖北省黄冈市中考数学试卷以及答案解析

2019年湖北省黄冈市中考数学试卷一、选择题(本题共8小题,每小题3分,共24分,每小题给出的4个选项中,有且只有一个答案是正确的)1.(3分)﹣3的绝对值是()A.﹣3B.C.3D.±32.(3分)为纪念中华人民共和国成立70周年,我市各中小学积极开展了以“祖国在我心中”为主题的各类教育活动,全市约有550000名中小学生参加,其中数据550000用科学记数法表示为()A.5.5×106B.5.5×105C.55×104D.0.55×1063.(3分)下列运算正确的是()A.a•a2=a2B.5a•5b=5ab C.a5÷a3=a2D.2a+3b=5ab 4.(3分)若x1,x2是一元二次方程x2﹣4x﹣5=0的两根,则x1•x2的值为()A.﹣5B.5C.﹣4D.45.(3分)已知点A的坐标为(2,1),将点A向下平移4个单位长度,得到的点A′的坐标是()A.(6,1)B.(﹣2,1)C.(2,5)D.(2,﹣3)6.(3分)如图,是由棱长都相等的四个小正方体组成的几何体.该几何体的左视图是()A.B.C.D.7.(3分)如图,一条公路的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,AB =40m,点C是的中点,点D是AB的中点,且CD=10m,则这段弯路所在圆的半径为()A.25m B.24m C.30m D.60m8.(3分)已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x 表示时间,y表示林茂离家的距离.依据图中的信息,下列说法错误的是()A.体育场离林茂家2.5kmB.体育场离文具店1kmC.林茂从体育场出发到文具店的平均速度是50m/minD.林茂从文具店回家的平均速度是60m/min二、填空题(本题共8小题,每小题3分,共24分)9.(3分)计算()2+1的结果是.10.(3分)﹣x2y是次单项式.11.(3分)分解因式3x2﹣27y2=.12.(3分)一组数据1,7,8,5,4的中位数是a,则a的值是.13.(3分)如图,直线AB∥CD,直线EC分别与AB,CD相交于点A、点C,AD平分∠BAC,已知∠ACD=80°,则∠DAC的度数为.14.(3分)用一个圆心角为120°,半径为6的扇形做一个圆锥的侧面,则这个圆锥的底面圆的面积为.15.(3分)如图,一直线经过原点O,且与反比例函数y=(k>0)相交于点A、点B,过点A作AC⊥y轴,垂足为C,连接BC.若△ABC面积为8,则k=.16.(3分)如图,AC,BD在AB的同侧,AC=2,BD=8,AB=8,点M为AB的中点,若∠CMD=120°,则CD的最大值是.三、解答题(本题共9题,满分72分)17.(6分)先化简,再求值.(+)÷,其中a=,b=1.18.(6分)解不等式组.19.(6分)如图,ABCD是正方形,E是CD边上任意一点,连接AE,作BF⊥AE,DG⊥AE,垂足分别为F,G.求证:BF﹣DG=FG.20.(7分)为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动.全校学生从学校同时出发,步行4000米到达烈士纪念馆.学校要求九(1)班提前到达目的地,做好活动的准备工作.行走过程中,九(1)班步行的平均速度是其他班的1.25倍,结果比其他班提前10分钟到达.分别求九(1)班、其他班步行的平均速度.21.(8分)某校开发了“书画、器乐、戏曲、棋类”四大类兴趣课程.为了解全校学生对每类课程的选择情况,随机抽取了若干名学生进行调查(每人必选且只能选一类),先将调查结果绘制成如下两幅不完整的统计图:(1)本次随机调查了多少名学生?(2)补全条形统计图中“书画”、“戏曲”的空缺部分;(3)若该校共有1200名学生,请估计全校学生选择“戏曲”类的人数;(4)学校从这四类课程中随机抽取两类参加“全市青少年才艺展示活动”,用树形图或列表法求处恰好抽到“器乐”和“戏曲”类的概率.(书画、器乐、戏曲、棋类可分别用字幕A,B,C,D表示)22.(7分)如图,两座建筑物的水平距离BC为40m,从A点测得D点的俯角α为45°,测得C点的俯角β为60°.求这两座建筑物AB,CD的高度.(结果保留小数点后一位,≈1.414,≈1.732.)23.(8分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于点D,过点D作⊙O的切线交BC于点E,连接OE.(1)求证:△DBE是等腰三角形;(2)求证:△COE∽△CAB.24.(10分)某县积极响应市政府加大产业扶贫力度的号召,决定成立草莓产销合作社,负责扶贫对象户种植草莓的技术指导和统一销售,所获利润年底分红.经市场调研发现,草莓销售单价y(万元)与产量x(吨)之间的关系如图所示(0≤x≤100).已知草莓的产销投入总成本p(万元)与产量x(吨)之间满足p=x+1.(1)直接写出草莓销售单价y(万元)与产量x(吨)之间的函数关系式;(2)求该合作社所获利润w(万元)与产量x(吨)之间的函数关系式;(3)为提高农民种植草莓的积极性,合作社决定按0.3万元/吨的标准奖励扶贫对象种植户,为确保合作社所获利润w′(万元)不低于55万元,产量至少要达到多少吨?25.(14分)如图①,在平面直角坐标系xOy中,已知A(﹣2,2),B(﹣2,0),C(0,2),D(2,0)四点,动点M以每秒个单位长度的速度沿B→C→D运动(M不与点B、点D重合),设运动时间为t(秒).(1)求经过A、C、D三点的抛物线的解析式;(2)点P在(1)中的抛物线上,当M为BC的中点时,若△P AM≌△PBM,求点P的坐标;(3)当M在CD上运动时,如图②.过点M作MF⊥x轴,垂足为F,ME⊥AB,垂足为E.设矩形MEBF与△BCD重叠部分的面积为S,求S与t的函数关系式,并求出S 的最大值;(4)点Q为x轴上一点,直线AQ与直线BC交于点H,与y轴交于点K.是否存在点Q,使得△HOK为等腰三角形?若存在,直接写出符合条件的所有Q点的坐标;若不存在,请说明理由.2019年湖北省黄冈市中考数学试卷答案与解析一、选择题(本题共8小题,每小题3分,共24分,每小题给出的4个选项中,有且只有一个答案是正确的)1.【分析】利用绝对值的定义求解即可.【解答】解:﹣3的绝对值是3.故选:C.【点评】本题主要考查了绝对值,解题的关键是熟记绝对值的定义.2.【分析】根据有效数字表示方法,以及科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将550000用科学记数法表示为:5.5×105.故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】直接利用单项式乘以单项式以及同底数幂的乘除运算法则、合并同类项法则分别化简得出答案.【解答】解:A、a•a2=a3,故此选项错误;B、5a•5b=25ab,故此选项错误;C、a5÷a3=a2,正确;D、2a+3b,无法计算,故此选项错误.故选:C.【点评】此题主要考查了单项式乘以单项式以及同底数幂的乘除运算、合并同类项,正确掌握相关运算法则是解题关键.4.【分析】利用根与系数的关系可得出x1•x2=﹣5,此题得解.【解答】解:∵x1,x2是一元二次方程x2﹣4x﹣5=0的两根,∴x1•x2==﹣5.故选:A.【点评】本题考查了根与系数的关系,牢记两根之积等于是解题的关键.5.【分析】将点A的横坐标不变,纵坐标减去4即可得到点A′的坐标.【解答】解:∵点A的坐标为(2,1),∴将点A向下平移4个单位长度,得到的点A′的坐标是(2,﹣3),故选:D.【点评】此题主要考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.正确掌握规律是解题的关键.6.【分析】左视图有1列,含有2个正方形.【解答】解:该几何体的左视图只有一列,含有两个正方形.故选:B.【点评】此题主要考查了简单组合体的三视图,关键是掌握左视图所看的位置.7.【分析】根据题意,可以推出AD=BD=20,若设半径为r,则OD=r﹣10,OB=r,结合勾股定理可推出半径r的值.【解答】解:∵OC⊥AB,∴AD=DB=20m,在Rt△AOD中,OA2=OD2+AD2,设半径为r得:r2=(r﹣10)2+202,解得:r=25m,∴这段弯路的半径为25m故选:A.【点评】本题主要考查垂径定理的应用、勾股定理的应用,关键在于设出半径为r后,用r表示出OD、OB的长度.8.【分析】从图中可得信息:体育场离文具店1000m,所用时间是(45﹣30)分钟,可算出速度.【解答】解:从图中可知:体育场离文具店的距离是:2.5﹣1.5=1km=1000m,所用时间是(45﹣30)=15分钟,∴体育场出发到文具店的平均速度==m/min故选:C.【点评】本题运用函数图象解决问题,看懂图象是解决问题的关键.二、填空题(本题共8小题,每小题3分,共24分)9.【分析】直接利用二次根式的性质化简得出答案.【解答】解:原式=3+1=4.故答案为:4.【点评】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.10.【分析】根据单项式次数的定义进行解答即可.【解答】解:∵单项式﹣x2y中所有字母指数的和=2+1=3,∴此单项式的次数是3.故答案为:3.【点评】本题考查的是单项式,熟知一个单项式中所有字母的指数的和叫做单项式的次数是解答此题的关键11.【分析】原式提取3,再利用平方差公式分解即可.【解答】解:原式=3(x2﹣9y2)=3(x+3y)(x﹣3y),故答案为:3(x+3y)(x﹣3y)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.【分析】先把原数据按从小到大排列,然后根据中位数的定义求解即可.【解答】解:先把原数据按从小到大排列:1,4,5,7,8,正中间的数5,所以这组数据的中位数a的值是5.故答案为:5.【点评】本题考查了中位数的概念:把一组数据按从小到大的顺序排列,最中间那个数或中间两个数的平均数就是这组数据的中位数.13.【分析】依据平行线的性质,即可得到∠BAC的度数,再根据角平分线的定义,即可得到∠DAC的度数.【解答】解:∵AB∥CD,∠ACD=80°,∴∠BAC=100°,又∵AD平分∠BAC,∴∠DAC=∠BAC=50°,故答案为:50°.【点评】本题主要考查了平行线的性质,以及角平分线的定义.解题时注意:两直线平行,同旁内角互补.14.【分析】易得扇形的弧长,除以2π即为圆锥的底面半径,从而可以计算面积.【解答】解:扇形的弧长==4π,∴圆锥的底面半径为4π÷2π=2.∴面积为:4π,故答案为:4π.【点评】考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.15.【分析】首先根据反比例函数与正比例函数的图象特征,可知A、B两点关于原点对称,则O为线段AB的中点,故△BOC的面积等于△AOC的面积,都等于4,然后由反比例函数y=的比例系数k的几何意义,可知△AOC的面积等于|k|,从而求出k的值.【解答】解:∵反比例函数与正比例函数的图象相交于A、B两点,∴A、B两点关于原点对称,∴OA=OB,∴△BOC的面积=△AOC的面积=8÷2=4,又∵A是反比例函数y=图象上的点,且AC⊥y轴于点C,∴△AOC的面积=|k|,∴|k|=4,∵k>0,∴k=8.故答案为8.【点评】本题考查的是反比例函数与一次函数的交点问题,涉及到反比例函数的比例系数k的几何意义:反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|.16.【分析】如图,作点A关于CM的对称点A′,点B关于DM的对称点B′,证明△A′MB′为等边三角形,即可解决问题.【解答】解:如图,作点A关于CM的对称点A′,点B关于DM的对称点B′.∵∠CMD=120°,∴∠AMC+∠DMB=60°,∴∠CMA′+∠DMB′=60°,∴∠A′MB′=60°,∵MA′=MB′,∴△A′MB′为等边三角形∵CD≤CA′+A′B′+B′D=CA+AM+BD=2+4+8=14,∴CD的最大值为14,故答案为14.【点评】本题考查翻折变换,等边三角形的判定和性质,两点之间线段最短等知识,解题的关键是学会添加常用辅助线,学会利用两点之间线段最短解决最值问题,属于中考常考题型.三、解答题(本题共9题,满分72分)17.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=÷=•ab(a+b)=5ab,当a=,b=1时,原式=5.【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.18.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.【解答】解:,解①得:x>﹣1,解②得:x≤2,则不等式组的解集是:﹣1<x≤2.【点评】本题主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).19.【分析】根据正方形的性质可得AB=AD,再利用同角的余角相等求出∠BAF=∠ADG,再利用“角角边”证明△BAF和△ADG全等,根据全等三角形对应边相等可得BF=AG,根据线段的和与差可得结论.【解答】证明:∵四边形ABCD是正方形,∴AB=AD,∠DAB=90°,∵BF⊥AE,DG⊥AE,∴∠AFB=∠AGD=∠ADG+∠DAG=90°,∵∠DAG+∠BAF=90°,∴∠ADG=∠BAF,在△BAF和△ADG中,∵,∴△BAF≌△ADG(AAS),∴BF=AG,AF=DG,∵AG=AF+FG,∴BF=AG=DG+FG,∴BF﹣DG=FG.【点评】本题考查了正方形的性质,全等三角形的判定与性质,证明△BAF≌△ADG是解题的关键.20.【分析】设其他班步行的平均速度为x米/分,则九(1)班步行的平均速度为1.25x米/分,根据时间=路程÷速度结合九(1)班比其他班提前10分钟到达,即可得出关于x 的分式方程,解之经检验后即可得出结论.【解答】解:设其他班步行的平均速度为x米/分,则九(1)班步行的平均速度为1.25x米/分,依题意,得:﹣=10,解得:x=80,经检验,x=80是原方程的解,且符合题意,∴1.25x=100.答:九(1)班步行的平均速度为100米/分,其他班步行的平均速度为80米/分.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21.【分析】(1)由器乐的人数及其所占百分比可得总人数;(2)总人数乘以书画对应百分比求得其人数,再根据各类型人数之和等于总人数求得戏曲人数,从而补全图形;(3)利用样本估计总体思想求解可得;(4)列表或树状图将所有等可能的结果列举出来后利用概率公式求解即可.【解答】解:(1)本次随机调查的学生人数为30÷15%=200(人);(2)书画的人数为200×25%=50(人),戏曲的人数为200﹣(50+80+30)=40(人),补全图形如下:(3)估计全校学生选择“戏曲”类的人数约为1200×=240(人);(4)列表得:A B C DA AB AC ADB BA BC BDC CA CB CDD DA DB DC∵共有12种等可能的结果,其中恰好抽到“器乐”和“戏曲”类的有2种结果,∴恰好抽到“器乐”和“戏曲”类的概率为=.【点评】本题考查的是用列表法或画树状图法求概率的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.22.【分析】延长CD,交过A点的水平线AE于点E,可得DE⊥AE,在直角三角形ABC 中,由题意确定出AB的长,进而确定出EC的长,在直角三角形AED中,由题意求出ED的长,由EC﹣ED求出DC的长即可【解答】解:延长CD,交AE于点E,可得DE⊥AE,在Rt△AED中,AE=BC=40m,∠EAD=45°,∴ED=AE tan45°=20m,在Rt△ABC中,∠BAC=30°,BC=40m,∴AB=40≈69.3m,则CD=EC﹣ED=AB﹣ED=40﹣20≈29.3m.答:这两座建筑物AB,CD的高度分别为69.3m和29.3m.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.23.【分析】(1)连接OD,由DE是⊙O的切线,得出∠ODE=90°,∠ADO+∠BDE=90°,由∠ACB=90°,得出∠CAB+∠CBA=90°,证出∠CAB=∠ADO,得出∠BDE=∠CBA,即可得出结论;(2)证出CB是⊙O的切线,得出DE=EC,推出EC=EB,再由OA=OC,得出OE∥AB,即可得出结论.【解答】证明:(1)连接OD,如图所示:∵DE是⊙O的切线,∴∠ODE=90°,∴∠ADO+∠BDE=90°,∵∠ACB=90°,∴∠CAB+∠CBA=90°,∵OA=OD,∴∠CAB=∠ADO,∴∠BDE=∠CBA,∴EB=ED,∴△DBE是等腰三角形;(2)∵∠ACB=90°,AC是⊙O的直径,∴CB是⊙O的切线,∵DE是⊙O的切线,∴DE=EC,∵EB=ED,∴EC=EB,∵OA=OC,∴OE∥AB,∴△COE∽△CAB.【点评】本题考查了切线的判定与性质、相似三角形的判定、等腰三角形的判定与性质、平行线的判定与性质等知识,熟练掌握切线的判定与性质是解题的关键.24.【分析】(1)分0≤x≤30;30≤x≤70;70≤x≤100三段求函数关系式,确定第2段利用待定系数法求解析式;(2)利用w=yx﹣p和(1)中y与x的关系式得到w与x的关系式;(3)把(2)中各段中的w分别减去0.3x得到w′与x的关系式,然后根据一次函数的性质和二次函数的性质求解.【解答】解:(1)当0≤x≤30时,y=2.4;当30≤x≤70时,设y=kx+b,把(30,2.4),(70,2)代入得,解得,∴y=﹣0.01x+2.7;当70≤x≤100时,y=2;(2)当0≤x≤30时,w=2.4x﹣(x+1)=1.4x﹣1;当30≤x≤70时,w=(﹣0.01x+2.7)x﹣(x+1)=﹣0.01x2+1.7x﹣1;当70≤x≤100时,w=2x﹣(x+1)=x﹣1;(3)当0≤x<30时,w′=1.4x﹣1﹣0.3x=1.1x﹣1,当x=30时,w′的最大值为32,不合题意;当30≤x≤70时,w′=﹣0.01x2+1.7x﹣1﹣0.3x=﹣0.01x2+1.4x﹣1=﹣0.01(x﹣70)2+48,当x=70时,w′的最大值为48,不合题意;当70≤x≤100时,w′=x﹣1﹣0.3x=0.7x﹣1,当x=100时,w′的最大值为69,此时0.7x﹣1≥55,解得x≥80,所以产量至少要达到80吨.【点评】本题考查了一次函数的应用:学会建立函数模型的方法;确定自变量的范围和利用一次函数的性质是完整解决问题的关键.25.【分析】(1)设函数解析式为y=ax2+bx+c,将点A(﹣2,2),C(0,2),D(2,0)代入解析式即可;(2)由已知易得点P为AB的垂直平分线与抛物线的交点,点P的纵坐标是1,则有1=﹣﹣x+2,即可求P;(3)S=(GM+BF)×MF=(2t﹣4+t)×(4﹣t)=﹣+8t﹣8=﹣(t ﹣)2+;(4)设点Q(m,0),直线BC的解析式y=x+2,直线AQ的解析式y=﹣(x+2)+2,求出点K(0,),H(﹣,),由勾股定理可得OK2=,OH2=+,HK2=+,分三种情况讨论△HOK 为等腰三角形即可.【解答】解:(1)设函数解析式为y=ax2+bx+c,将点A(﹣2,2),C(0,2),D(2,0)代入解析式可得,∴,∴y=﹣﹣x+2;(2)∵△P AM≌△PBM,∴P A=PB,MA=MB,∴点P为AB的垂直平分线与抛物线的交点,∵AB=2,∴点P的纵坐标是1,∴1=﹣﹣x+2,∴x=﹣1+或x=﹣1﹣,∴P(﹣1﹣,1)或P(﹣1+,1);(3)CM=t﹣2,MG=CM=2t﹣4,MD=4﹣(BC+CM)=4﹣(2+t﹣2)=4﹣t,MF=MD=4﹣t,∴BF=4﹣4+t=t,∴S=(GM+BF)×MF=(2t﹣4+t)×(4﹣t)=﹣+8t﹣8=﹣(t﹣)2+;当t=时,S最大值为;(4)设点Q(m,0),直线BC的解析式y=x+2,直线AQ的解析式y=﹣(x+2)+2,∴K(0,),H(﹣,),∴OK2=,OH2=+,HK2=+,①当OK=OH时,=+,∴3m2+12m+8=0,∴m=﹣2+或m=﹣2﹣;②当OH=HK时,+=+,∴3m2+12m+8=0,∴m=﹣2+或m=﹣2﹣;③当OK=HK时,=+,∴m2+4m﹣8=0,∴m=﹣2+2或m=﹣2﹣2;综上所述:Q(﹣2+2,0)或Q(﹣2﹣2,0)或Q(﹣2+,0)或Q(﹣2﹣,0);【点评】本题考查二次函数综合;熟练应用待定系数法求函数解析式,掌握三角形全等的性质,直线交点的求法是解题的关键.。

2018湖北省黄冈市中考数学试卷(含答案解析版)资料讲解

2018湖北省黄冈市中考数学试卷(含答案解析版)资料讲解

2018年湖北省黄冈市中考数学试卷一、选择题(本题共6小题,每小题3分,共18分.每小题给出的4个选项中,有且只有一个案是正确的)1.(3分)(2018•黄冈)﹣的相反数是()A.﹣ B.﹣ C.D.2.(3分)(2018•黄冈)下列运算结果正确的是()A.3a3•2a2=6a6B.(﹣2a)2=﹣4a2C.tan45°=D.cos30°=3.(3分)(2018•黄冈)函数y=中自变量x的取值范围是()A.x≥﹣1且x≠1 B.x≥﹣1 C.x≠1 D.﹣1≤x<14.(3分)(2018•黄冈)如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为()A.50°B.70°C.75°D.80°5.(3分)(2018•黄冈)如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=5,则CD=()A.2 B.3 C.4 D.26.(3分)(2018•黄冈)当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.﹣1 B.2 C.0或2 D.﹣1或2二、填空题(本题共8小题,每题小3分,共24分7.(3分)(2018•黄冈)实数16800000用科学记数法表示为.8.(3分)(2018•黄冈)因式分解:x3﹣9x=.9.(3分)(2018•黄冈)化简(﹣1)0+()﹣2﹣+=.10.(3分)(2018•黄冈)则a﹣=,则a2+值为.11.(3分)(2018•黄冈)如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=.12.(3分)(2018•黄冈)一个三角形的两边长分别为3和6,第三边长是方程x2﹣10x+21=0的根,则三角形的周长为.13.(3分)(2018•黄冈)如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).14.(3分)(2018•黄冈)在﹣4、﹣2,1、2四个数中、随机取两个数分别作为函数y=ax2+bx+1中a,b的值,则该二次函数图象恰好经过第一、二、四象限的概率为.三、解答题(本题共10题,满分78分(x-2)≤815.(5分)(2018•黄冈)求满足不等式组的所有整数解.16.(6分)(2018•黄冈)在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.17.(8分)(2018•黄冈)央视“经典咏流传”开播以来受到社会广泛关注我市某校就“中华文化我传承﹣﹣地方戏曲进校园”的喜爱情况进行了随机调查.对收集的信息进行统计,绘制了下面两副尚不完整的统计图.请你根据统计图所提供的信息解答下列问题:图中A表示“很喜欢”,B表示“喜欢”、C表示“一般”,D表示“不喜欢”.(1)被调查的总人数是人,扇形统计图中C部分所对应的扇形圆心角的度数为;(2)补全条形统计图;(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中A类有人;(4)在抽取的A类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率.18.(7分)(2018•黄冈)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C.(1)求证:∠CBP=∠ADB.(2)若OA=2,AB=1,求线段BP的长.19.(6分)(2018•黄冈)如图,反比例函数y=(x>0)过点A(3,4),直线AC与x轴交于点C(6,0),过点C作x轴的垂线BC交反比例函数图象于点B.(1)求k的值与B点的坐标;(2)在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,试写出符合条件的所有D点的坐标.20.(8分)(2018•黄冈)如图,在▱ABCD中,分别以边BC,CD作等腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,连接AF,AE.(1)求证△ABF≌△EDA;(2)延长AB与CF相交于G.若AF⊥AE,求证BF⊥BC.21.(7分)(2018•黄冈)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.(1)求坡底C点到大楼距离AC的值;(2)求斜坡CD的长度.22.(8分)(2018•黄冈)已知直线l:y=kx+1与抛物线y=x2﹣4x.(1)求证:直线l与该抛物线总有两个交点;(2)设直线l与该抛物线两交点为A,B,O为原点,当k=﹣2时,求△OAB的面积.23.(9分)(2018•黄冈)我市某乡镇在“精准扶贫”活动中销售一农产品,经分析发现月销售量y(万件)与月份x(月)的关系为:y=,每件产品的利润z(元)与月份x(月)的关系如下表:x123456789101112 z191817161514131211101010(1)请你根据表格求出每件产品利润z(元)与月份x(月)的关系式;(2)若月利润w(万元)=当月销售量y(万件)×当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式;(3)当x为何值时,月利润w有最大值,最大值为多少?24.(14分)(2018•黄冈)如图,在直角坐标系xOy中,菱形OABC的边OA在x轴正半轴上,点B,C在第一象限,∠C=120°,边长OA=8.点M从原点O出发沿x轴正半轴以每秒1个单位长的速度作匀速运动,点N从A出发沿边AB﹣BC﹣CO以每秒2个单位长的速度作匀速运动,过点M作直线MP垂直于x轴并交折线OCB于P,交对角线OB于Q,点M和点N同时出发,分别沿各自路线运动,点N运动到原点O时,M和N两点同时停止运动.(1)当t=2时,求线段PQ的长;(2)求t为何值时,点P与N重合;(3)设△APN的面积为S,求S与t的函数关系式及t的取值范围.2018年湖北省黄冈市中考数学试卷参考答案与试题解析一、选择题(本题共6小题,每小题3分,共18分.每小题给出的4个选项中,有且只有一个案是正确的)1.(3分)(2018•黄冈)﹣的相反数是()A.﹣ B.﹣ C.D.【考点】14:相反数.【专题】11 :计算题.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣的相反数是.故选:C.【点评】本题考查了相反数,关键是在一个数的前面加上负号就是这个数的相反数.2.(3分)(2018•黄冈)下列运算结果正确的是()A.3a3•2a2=6a6B.(﹣2a)2=﹣4a2C.tan45°=D.cos30°=【考点】49:单项式乘单项式;47:幂的乘方与积的乘方;T5:特殊角的三角函数值.【专题】11 :计算题.【分析】根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.【解答】解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.故选:D.【点评】考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.3.(3分)(2018•黄冈)函数y=中自变量x的取值范围是()A.x≥﹣1且x≠1 B.x≥﹣1 C.x≠1 D.﹣1≤x<1【考点】E4:函数自变量的取值范围.【专题】53:函数及其图象.【分析】根据分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分.【解答】解:根据题意得到:,解得x≥﹣1且x≠1,故选:A.【点评】本题考查了函数自变量的取值范围问题,判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母不等于0混淆.4.(3分)(2018•黄冈)如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为()A.50°B.70°C.75°D.80°【考点】KG:线段垂直平分线的性质.【专题】17 :推理填空题.【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DAC=∠C,根据三角形内角和定理求出∠BAC,计算即可.【解答】解:∵DE是AC的垂直平分线,∴DA=DC,∴∠DAC=∠C=25°,∵∠B=60°,∠C=25°,∴∠BAC=95°,∴∠BAD=∠BAC﹣∠DAC=70°,故选:B.【点评】本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.5.(3分)(2018•黄冈)如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=5,则CD=()A.2 B.3 C.4 D.2【考点】KP:直角三角形斜边上的中线.【专题】55:几何图形.【分析】根据直角三角形的性质得出AE=CE=5,进而得出DE=3,利用勾股定理解答即可.【解答】解:∵在Rt△ABC中,∠ACB=90°,CE为AB边上的中线,CE=5,∴AE=CE=5,∵AD=2,∴DE=3,∵CD为AB边上的高,∴在Rt△CDE中,CD=,故选:C.【点评】此题考查直角三角形的性质,关键是根据直角三角形的性质得出AE=CE=5.6.(3分)(2018•黄冈)当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a 的值为()A.﹣1 B.2 C.0或2 D.﹣1或2【考点】H7:二次函数的最值.【专题】535:二次函数图象及其性质.【分析】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x ≤a+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1,故选:D.【点评】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=1时x的值是解题的关键.二、填空题(本题共8小题,每题小3分,共24分7.(3分)(2018•黄冈)实数16800000用科学记数法表示为 1.68×107.【考点】1I:科学记数法—表示较大的数.【专题】17 :推理填空题.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:16800000=1.68×107.故答案为:1.68×107.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.8.(3分)(2018•黄冈)因式分解:x3﹣9x=x(x+3)(x﹣3).【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式x,再利用平方差公式进行分解.【解答】解:x3﹣9x,=x(x2﹣9),=x(x+3)(x﹣3).【点评】本题主要考查提公因式法分解因式和利用平方差公式分解因式,本题要进行二次分解,分解因式要彻底.9.(3分)(2018•黄冈)化简(﹣1)0+()﹣2﹣+=﹣1.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【专题】1 :常规题型.【分析】直接利用负指数幂的性质以及零指数幂的性质、算术平方根的性质分别化简得出答案.【解答】解:原式=1+4﹣3﹣3=﹣1.故答案为:﹣1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.10.(3分)(2018•黄冈)则a﹣=,则a2+值为8.【考点】6B:分式的加减法.【专题】11 :计算题.【分析】根据分式的运算法则即可求出答案.【解答】解:∵a﹣=∴(a﹣)2=6∴a2﹣2+=6∴a2+=8故答案为:8【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.11.(3分)(2018•黄冈)如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=2.【考点】MA:三角形的外接圆与外心;M5:圆周角定理.【专题】559:圆的有关概念及性质.【分析】连接BD.在Rt△ADB中,求出AB,再在Rt△ACB中求出AC即可解决问题;【解答】解:连接BD.∵AB是直径,∴∠C=∠D=90°,∵∠CAB=60°,AD平分∠CAB,∴∠DAB=30°,∴AB=AD÷cos30°=4,∴AC=AB•cos60°=2,故答案为2.【点评】本题考查三角形的外接圆与外心,圆周角定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.12.(3分)(2018•黄冈)一个三角形的两边长分别为3和6,第三边长是方程x2﹣10x+21=0的根,则三角形的周长为16.【考点】A8:解一元二次方程﹣因式分解法;K6:三角形三边关系.【专题】11 :计算题;523:一元二次方程及应用;552:三角形.【分析】首先求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长.【解答】解:解方程x2﹣10x+21=0得x1=3、x2=7,∵3<第三边的边长<9,∴第三边的边长为7.∴这个三角形的周长是3+6+7=16.故答案为:16.【点评】本题考查了解一元二次方程和三角形的三边关系.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.13.(3分)(2018•黄冈)如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为20 cm(杯壁厚度不计).【考点】KV:平面展开﹣最短路径问题.【专题】27 :图表型.【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【解答】解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===20(cm).故答案为20.【点评】本题考查了平面展开﹣﹣﹣最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.14.(3分)(2018•黄冈)在﹣4、﹣2,1、2四个数中、随机取两个数分别作为函数y=ax2+bx+1中a,b的值,则该二次函数图象恰好经过第一、二、四象限的概率为.【考点】X6:列表法与树状图法;H3:二次函数的性质.【专题】11 :计算题.【分析】画树状图展示所有12种等可能的结果数,根据二次函数的性质,找出满足a<0,b>0的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有12种等可能的结果数,满足a<0,b>0的结果数为4,但a=1,b=﹣2和a=2,b=﹣2时,抛物线不过第四象限,所以满足该二次函数图象恰好经过第一、二、四象限的结果数为2,所以该二次函数图象恰好经过第一、二、四象限的概率==.故答案为.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了一次函数的性质.三、解答题(本题共10题,满分78分(x-2)≤815.(5分)(2018•黄冈)求满足不等式组的所有整数解.【考点】CC:一元一次不等式组的整数解.【专题】1 :常规题型.【分析】先求出不等式组的解集,然后在解集中找出所有的整数即可.【解答】解:解不等式x﹣3(x﹣2)≤8,得:x≥﹣1,解不等式x﹣1<3﹣x,得:x<2,则不等式组的解集为﹣1≤x<2,所以不等式组的整数解为﹣1、0、1.【点评】本题主要考查了一元一次不等式组的解法,难度一般,关键是会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.16.(6分)(2018•黄冈)在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.【考点】9A:二元一次方程组的应用.【专题】1 :常规题型.【分析】订购了A型粽子x千克,B型粽子y千克.根据B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元列出方程组,求解即可.【解答】解:设订购了A型粽子x千克,B型粽子y千克,根据题意,得,解得.答:订购了A型粽子40千克,B型粽子60千克.【点评】本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组再求解.17.(8分)(2018•黄冈)央视“经典咏流传”开播以来受到社会广泛关注我市某校就“中华文化我传承﹣﹣地方戏曲进校园”的喜爱情况进行了随机调查.对收集的信息进行统计,绘制了下面两副尚不完整的统计图.请你根据统计图所提供的信息解答下列问题:图中A表示“很喜欢”,B表示“喜欢”、C表示“一般”,D表示“不喜欢”.(1)被调查的总人数是50人,扇形统计图中C部分所对应的扇形圆心角的度数为216°;(2)补全条形统计图;(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中A类有180人;(4)在抽取的A类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率.【考点】X6:列表法与树状图法;V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【专题】1 :常规题型;54:统计与概率.【分析】(1)由A类别人数及其所占百分比可得总人数,用360°乘以C部分人数所占比例可得;(2)总人数减去其他类别人数求得B的人数,据此即可补全条形图;(3)用总人数乘以样本中A类别人数所占百分比可得;(4)用树状图或列表法即可求出抽到性别相同的两个学生的概率.【解答】解:(1)被调查的总人数为5÷10%=50人,扇形统计图中C部分所对应的扇形圆心角的度数为360°×=216°,故答案为:50、216°;(2)B类别人数为50﹣(5+30+5)=10人,补全图形如下:(3)估计该校学生中A类有1800×10%=180人,故答案为:180;(4)列表如下:女1女2女3男1男2女1﹣﹣﹣女2女1女3女1男1女1男2女1女2女1女2﹣﹣﹣女3女2男1女2男2女2女3女1女3女2女3﹣﹣﹣男1女3男2女3男1女1男1女2男1女3男1﹣﹣﹣男2男1男2女1男2女2男2女3男2男1男2﹣﹣﹣所有等可能的结果为20种,其中被抽到的两个学生性别相同的结果数为8,∴被抽到的两个学生性别相同的概率为=.【点评】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图的应用.解题时注意:概率=所求情况数与总情况数之比.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.18.(7分)(2018•黄冈)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C.(1)求证:∠CBP=∠ADB.(2)若OA=2,AB=1,求线段BP的长.【考点】MC:切线的性质;M5:圆周角定理.【专题】14 :证明题.【分析】(1)连接OB,如图,根据圆周角定理得到∠ABD=90°,再根据切线的性质得到∠OBC=90°,然后利用等量代换进行证明;(2)证明△AOP∽△ABD,然后利用相似比求BP的长.【解答】(1)证明:连接OB,如图,∵AD是⊙O的直径,∴∠ABD=90°,∴∠A+∠ADB=90°,∵BC为切线,∴OB⊥BC,∴∠OBC=90°,∴∠OBA+∠CBP=90°,而OA=OB,∴∠A=∠OBA,∴∠CBP=∠ADB;(2)解:∵OP⊥AD,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠A,∴△AOP∽△ABD,∴=,即=,∴BP=7.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和相似三角形的判定与性质.19.(6分)(2018•黄冈)如图,反比例函数y=(x>0)过点A(3,4),直线AC与x轴交于点C(6,0),过点C作x轴的垂线BC交反比例函数图象于点B.(1)求k的值与B点的坐标;(2)在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,试写出符合条件的所有D点的坐标.【考点】GB:反比例函数综合题.【专题】153:代数几何综合题.【分析】(1)将A点的坐标代入反比例函数y=求得k的值,然后将x=6代入反比例函数解析式求得相应的y的值,即得点B的坐标;(2)使得以A、B、C、D为顶点的四边形为平行四边形,如图所示,找出满足题意D的坐标即可.【解答】解:(1)把点A(3,4)代入y=(x>0),得k=xy=3×4=12,故该反比例函数解析式为:y=.∵点C(6,0),BC⊥x轴,∴把x=6代入反比例函数y=,得y==6.则B(6,2).综上所述,k的值是12,B点的坐标是(6,2).(2)①如图,当四边形ABCD为平行四边形时,AD∥BC且AD=BC.∵A(3,4)、B(6,2)、C(6,0),∴点D的横坐标为3,y A﹣y D=y B﹣y C即4﹣y D=2﹣0,故y D=2.所以D(3,2).②如图,当四边形ACBD′为平行四边形时,AD′∥CB且AD′=CB.∵A(3,4)、B(6,2)、C(6,0),∴点D的横坐标为3,y D′﹣y A=y B﹣y C即y D﹣4=2﹣0,故y D′=6.所以D′(3,6).③如图,当四边形ACD″B为平行四边形时,AC=BD″且AC=BD″.∵A(3,4)、B(6,2)、C(6,0),∴x D″﹣x B=x C﹣x A即x D″﹣6=6﹣3,故x D″=9.y D″﹣y B=y C﹣y A即y D″﹣2=0﹣4,故y D″=﹣2.所以D″(9,﹣2).综上所述,符合条件的点D的坐标是:(3,2)或(3,6)或(9,﹣2).【点评】此题考查了反比例函数综合题,涉及的知识有:待定系数法确定函数解析式,平行四边形的判定与性质,解答(2)题时,采用了“数形结合”和“分类讨论”的数学思想.20.(8分)(2018•黄冈)如图,在▱ABCD中,分别以边BC,CD作等腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,连接AF,AE.(1)求证△ABF≌△EDA;(2)延长AB与CF相交于G.若AF⊥AE,求证BF⊥BC.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【专题】552:三角形.【分析】(1)想办法证明:AB=DE,FB=AD,∠ABF=∠ADE即可解决问题;(2)只要证明FB⊥AD即可解决问题;【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠ABC=∠ADC,∵BC=BF,CD=DE,∴BF=AD,AB=DE,∵∠ADE+∠ADC+∠EDC=360°,∠ABF+∠ABC+∠CBF=360°,∠EDC=∠CBF,∴∠ADE=∠ABF,∴△ABF≌△EDA.(2)证明:延长FB交AD于H.∵AE⊥AF,∴∠EAF=90°,∵△ABF≌△EDA,∴∠EAD=∠AFB,∵∠EAD+∠FAH=90°,∴∠FAH+∠AFB=90°,∴∠AHF=90°,即FB⊥AD,∵AD∥BC,∴FB⊥BC.【点评】本题考查平行四边形的性质、全等三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找全等三角形全等的条件,学会添加常用辅助线,属于中考常考题型.21.(7分)(2018•黄冈)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.(1)求坡底C点到大楼距离AC的值;(2)求斜坡CD的长度.【考点】TA:解直角三角形的应用﹣仰角俯角问题;T9:解直角三角形的应用﹣坡度坡角问题.【专题】552:三角形.【分析】(1)在直角三角形ABC中,利用锐角三角函数定义求出AC的长即可;(2)由相似三角形△ABC∽△ECD的对应边成比例解答.【解答】解:(1)在直角△ABC中,∠BAC=90°,∠BCA=60°,AB=60米,则AC===20(米)答:坡底C点到大楼距离AC的值是20米.(2)设CD=2x,则DE=x,CE=x,在Rt△ABC中,∠ABC=30°,则BC===60(米),在Rt△BDF中,∵∠BDF=45°,∴BF=DF,∴60﹣x=20+x,∴x=40﹣60.∴CD的长为(80﹣120)米.【点评】此题考查了解直角三角形﹣仰角俯角问题,坡度坡角问题,熟练掌握勾股定理是解本题的关键.22.(8分)(2018•黄冈)已知直线l:y=kx+1与抛物线y=x2﹣4x.(1)求证:直线l与该抛物线总有两个交点;(2)设直线l与该抛物线两交点为A,B,O为原点,当k=﹣2时,求△OAB的面积.【考点】H5:二次函数图象上点的坐标特征;F8:一次函数图象上点的坐标特征.【专题】15 :综合题.【分析】(1)联立两解析式,根据判别式即可求证;(2)画出图象,求出A、B的坐标,再求出直线y=﹣2x+1与x轴的交点C,然后利用三角形的面积公式即可求出答案.【解答】解:(1)联立化简可得:x 2﹣(4+k )x ﹣1=0, ∴△=(4+k )2+4>0,故直线l 与该抛物线总有两个交点; (2)当k=﹣2时, ∴y=﹣2x +1过点A 作AF ⊥x 轴于F ,过点B 作BE ⊥x 轴于E , ∴联立解得:或∴A (1﹣,2﹣1),B (1+,﹣1﹣2)∴AF=2﹣1,BE=1+2易求得:直线y=﹣2x +1与x 轴的交点C 为(,0)∴OC=∴S △AOB =S △AOC +S △BOC=OC•AF +OC•BE=OC (AF +BE )=××(2﹣1+1+2)=【点评】本题考查二次函数的综合问题,涉及解一元二次方程组,根的判别式,三角形的面积公式等知识,综合程度较高.23.(9分)(2018•黄冈)我市某乡镇在“精准扶贫”活动中销售一农产品,经分析发现月销售量y(万件)与月份x(月)的关系为:y=,每件产品的利润z(元)与月份x(月)的关系如下表:x123456789101112 z191817161514131211101010(1)请你根据表格求出每件产品利润z(元)与月份x(月)的关系式;(2)若月利润w(万元)=当月销售量y(万件)×当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式;(3)当x为何值时,月利润w有最大值,最大值为多少?【考点】HE:二次函数的应用.【专题】12 :应用题.【分析】(1)根据表格中的数据可以求得各段对应的函数解析式,本题得以解决;(2)根据题目中的解析式和(1)中的解析式可以解答本题;(3)根据(2)中的解析式可以求得各段的最大值,从而可以解答本题.【解答】解;(1)当1≤x≤9时,设每件产品利润z(元)与月份x(月)的关系式为z=kx+b,,得,即当1≤x≤9时,每件产品利润z(元)与月份x(月)的关系式为z=﹣x+20,当10≤x≤12时,z=10,由上可得,z=;(2)当1≤x≤8时,w=(x+4)(﹣x+20)=﹣x2+16x+80,当x=9时,w=(﹣9+20)×(﹣9+20)=121,当10≤x≤12时,w=(﹣x+20)×10=﹣10x+200,由上可得,w=;(3)当1≤x≤8时,w=﹣x2+16x+80=﹣(x﹣8)2+144,∴当x=8时,w取得最大值,此时w=144;当x=9时,w=121,当10≤x≤12时,w=﹣10x+200,则当x=10时,w取得最大值,此时w=100,由上可得,当x为8时,月利润w有最大值,最大值144万元.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.24.(14分)(2018•黄冈)如图,在直角坐标系xOy中,菱形OABC的边OA在x轴正半轴上,点B,C在第一象限,∠C=120°,边长OA=8.点M从原点O出发沿x轴正半轴以每秒1个单位长的速度作匀速运动,点N从A出发沿边AB﹣BC﹣CO以每秒2个单位长的速度作匀速运动,过点M作直线MP垂直于x轴并交折线OCB于P,交对角线OB于Q,点M和点N同时出发,分别沿各自路线运动,点N运动到原点O时,M和N两点同时停止运动.(1)当t=2时,求线段PQ的长;(2)求t为何值时,点P与N重合;(3)设△APN的面积为S,求S与t的函数关系式及t的取值范围.【考点】LO:四边形综合题.【专题】25 :动点型.【分析】(1)解直角三角形求出PM,QM即可解决问题;(2)根据点P、N的路程之和=24,构建方程即可解决问题,;(3)分三种情形考虑问题即可解决问题;【解答】解:(1)当t=2时,OM=2,在Rt△OPM中,∠POM=60°,∴PM=OM•tan60°=2,在Rt△OMQ中,∠QOM=30°,∴QM=OM•tan30°=,∴PQ=CN﹣QM=2﹣=.(2)由题意:8+(t﹣4)+2t=24,解得t=.(3)①当0<x<4时,S=•2t•4=4t.②当4≤x<时,S=×[8﹣(t﹣4)﹣(2t﹣8)]×4=40﹣6t.③当≤x<8时.S=×[(t﹣4)+(2t﹣8)﹣8]×4=6t﹣40.④当8≤x ≤12时,S=S 菱形ABCO ﹣S △AON ﹣S △ABP =32﹣•(24﹣2t )•4﹣•[8﹣(t ﹣4)]•4=6t ﹣40.【点评】本题考查四边形综合题、解直角三角形、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.。

(完整版)2018年湖北省黄冈市中考数学试卷含答案解析(Word版)

(完整版)2018年湖北省黄冈市中考数学试卷含答案解析(Word版)

黄冈市2018年初中毕业生学业水平和高中阶段学校招生考试数 学 试 题(考试时间120分钟 满分120分)第Ⅰ卷(选择题 共18分)一、选择题(本题共6小题,每小题3分,共18分。

每小题给出4个选项中,有且只有一个答案是正确的) 1. -32的相反数是A. -23B. -32C.32 D.232. 下列运算结果正确的是A. 3a 3·2a 2=6a 6B. (-2a)2= -4a 2C. tan45°=22 D. cos30°=233.函数y= 11-+x x 中自变量x 的取值范围是A .x ≥-1且x ≠1 B.x ≥-1 C. x ≠1 D. -1≤x <14.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为A.50°B.70°C.75°D.80°(第4题图)5.如图,在Rt △ABC 中,∠ACB=90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD=2,CE=5,则CD=A.2B.3C.4D.236.当a ≤x ≤a+1时,函数y=x 2-2x+1的最小值为1,则a 的值为 A.-1 B.2 C.0或2 D.-1或2第Ⅱ卷(非选择题 共102分)二、填空题(本题共8小题,每小题3分,共24分)7.实数16 800 000用科学计数法表示为______________________. 8.因式分解:x 3-9x=___________________________. 9.化简(2-1)0+(21)-2-9+327 =________________________. 10.若a-a1=6,则a 2+a21值为_______________________. 11.如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠CAB=60°,弦AD 平分∠CAB ,若AD=6,则AC=___________.(第11题图)12.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x+21=0的根,则三角形的周长为______________.13.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_________________cm (杯壁厚度不计).(第13题图)14. 在-4,-2,1,2四个数中,随机取两个数分别作为函数y=ax 2+bx+1中a ,b 的值,则该二次函数图像恰好经过第一、二、四象限的概率为___________.三、解答题 (本题共10题,满分78分)15.(本题满分5分)求满足不等式组: x-3(x-2)≤8 的所有整数解.21x-1<3 -23x16.(本题满分6分)在端午节来临之际,某商店订购了A 型和B 型两种粽子。

黄冈2018-2019中考数学试题分类解析专题05数量和位置变化

黄冈2018-2019中考数学试题分类解析专题05数量和位置变化

黄冈2018-2019中考数学试题分类解析专题05数量和位置变化1. (湖北省黄冈市2003年3分)在直角坐标系中,点P(2x-6,x-5)在第四象限,则x 旳取值范围是【】.A.3<x<5 B.-3<x<5 C.-5<x<3 D.-5<x<-32. (湖北省黄冈市2004年3分)某班同学在探究弹簧旳长度跟外力旳变化关系时,实验记录得到旳相应数据如下表,则y关于x旳函数图象是【】3. (湖北省黄冈市大纲卷2005年3分)有一个装有进、出水管旳容器,单位时间年7进、出旳水量都是一定旳。

已知容器旳容积为600升,又知单开进水管10分钟可把空容器注满,若同时打开进、出水管,20分钟可把满容器旳水放完,现已知水池内有水200升,先打开进水管5分钟后,再打开出水管,两管同时开放,直至把容器中旳水放完,则能正确反映这一过程中容器旳水量Q(升)随时间t(分)变化旳图象是【】4. (湖北省黄冈市课标卷2005年3分)有一个装有进、出水管旳容器,单位时间年7进、出旳水量都是一定旳。

已知容器旳容积为600升,又知单开进水管10分钟可把空容器注满,若同时打开进、出水管,20分钟可把满容器旳水放完,现已知水池内有水200升,先打开进水管5分钟后,再打开出水管,两管同时开放,直至把容器中旳水放完,则能正确反映这一过程中容器旳水量Q(升)随时间t(分)变化旳图象是【】5. (湖北省黄冈市大纲卷2006年3分)如图,在光明中学学生耐力测试比赛中,甲、乙两学生测试旳路程S(米)与时间t(秒)之间旳函数关系图像分别为折线OABC和线段OD,下列说法正确旳是【】A、乙比甲先到达终点B、乙测试旳速度随时间增加而增大C、比赛进行到29.4秒时,两人出发后第一次相遇D、比赛全程甲旳测试速度始终比乙旳测试速度快6. (湖北省黄冈市课标卷2006年3分)如图,在光明中学学生耐力测试比赛中,甲、乙两学生测试旳路程S(米)与时间t(秒)之间旳函数关系图像分别为折线OABC和线段OD,下列说法正确旳是【】A、乙比甲先到达终点B、乙测试旳速度随时间增加而增大C、比赛进行到29.4秒时,两人出发后第一次相遇D、比赛全程甲旳测试速度始终比乙旳测试速度快【答案】C。

2019年湖北省黄冈市中考数学试卷-解析版

2019年湖北省黄冈市中考数学试卷-解析版

2019年湖北省黄冈市中考数学试卷一、选择题(本大题共8小题,共24.0分)1.−3的绝对值是()C. 3D. ±3A. −3B. −132.为纪念中华人民共和国成立70周年,我市各中小学积极开展了以“祖国在我心中”为主题的各类教育活动,全市约有550000名中小学生参加,其中数据550000用科学记数法表示为()A. 5.5×106B. 5.5×105C. 55×104D. 0.55×1063.下列运算正确的是()A. a⋅a2=a2B. 5a⋅5b=5abC. a5÷a3=a2D. 2a+3b=5ab4.若x1,x2是一元二次方程x2−4x−5=0的两根,则x1⋅x2的值为()A. −5B. 5C. −4D. 45.已知点A的坐标为(2,1),将点A向下平移4个单位长度,得到的点A'的坐标是()A. (6,1)B. (−2,1)C. (2,5)D. (2,−3)6.如图,是由棱长都相等的四个小正方体组成的几何体.该几何体的左视图是()A. B. C. D.7.如图,一条公路的转弯处是一段圆弧(AB⏜),点O是这段弧所在圆的圆心,AB=40m,点C是AB⏜的中点,点D是AB的中点,且CD=10m,则这段弯路所在圆的半径为()A. 25mB. 24mC. 30mD. 60m8.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x表示时间,y表示林茂离家的距离.依据图中的信息,下列说法错误的是()A. 体育场离林茂家2.5kmB. 体育场离文具店1kmC. 林茂从体育场出发到文具店的平均速度是50m/minD. 林茂从文具店回家的平均速度是60m/min二、填空题(本大题共8小题,共24.0分)9.计算(√3)2+1的结果是______.x2y是______次单项式.10.−1211.分解因式3x2−27y2=______.12.一组数据1,7,8,5,4的中位数是a,则a的值是______.13.如图,直线AB//CD,直线EC分别与AB,CD相交于点A、点C,AD平分∠BAC,已知∠ACD=80°,则∠DAC的度数为______.14. 用一个圆心角为120°,半径为6的扇形做一个圆锥的侧面,则这个圆锥的底面圆的面积为_____.15. 如图,一直线经过原点O ,且与反比例函数y =k x (k >0)相交于点A 、点B ,过点A 作AC ⊥y 轴,垂足为C ,连接BC.若△ABC 面积为8,则k =______.16. 如图,AC ,BD 在AB 的同侧,AC =2,BD =8,AB =8,点M 为AB 的中点,若∠CMD =120°,则CD 的最大值是__.三、解答题(本大题共9小题,共72.0分)17. 先化简,再求值.(5a+3b a 2−b 2+8b b 2−a 2)÷1a 2b+ab 2,其中a =√2,b =1.18. 解不等式组{5x−16+2>x+542x +5≤3(5−x).19. 如图,ABCD 是正方形,E 是CD 边上任意一点,连接AE ,作BF ⊥AE ,DG ⊥AE ,垂足分别为F ,G.求证:BF −DG =FG .20.为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动.全校学生从学校同时出发,步行4000米到达烈士纪念馆.学校要求九(1)班提前到达目的地,做好活动的准备工作.行走过程中,九(1)班步行的平均速度是其他班的1.25倍,结果比其他班提前10分钟到达.分别求九(1)班、其他班步行的平均速度.21.某校开发了“书画、器乐、戏曲、棋类”四大类兴趣课程.为了解全校学生对每类课程的选择情况,随机抽取了若干名学生进行调查(每人必选且只能选一类),先将调查结果绘制成如下两幅不完整的统计图:(1)本次随机调查了多少名学生?(2)补全条形统计图中“书画”、“戏曲”的空缺部分;(3)若该校共有1200名学生,请估计全校学生选择“戏曲”类的人数;(4)学校从这四类课程中随机抽取两类参加“全市青少年才艺展示活动”,用树形图或列表法求出恰好抽到“器乐”和“戏曲”类的概率.(书画、器乐、戏曲、棋类可分别用字幕A,B,C,D表示)22.如图,两座建筑物的水平距离BC为40m,从A点测得D点的俯角α为45°,测得C点的俯角β为60°.求这两座建筑物AB,CD的高度.(结果保留小数点后一位,√2≈1.414,√3≈1.732.)23.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于点D,过点D作⊙O的切线交BC于点E连接OE.(1)求证:△DBE是等腰三角形;(2)求证:△COE∽△CAB.24.某县积极响应市政府加大产业扶贫力度的号召,决定成立草莓产销合作社,负责扶贫对象户种植草莓的技术指导和统一销售,所获利润年底分红.经市场调研发现,草莓销售单价y(万元)与产量x(吨)之间的关系如图所示(0≤x≤100).已知草莓的产销投入总成本p(万元)与产量x(吨)之间满足p=x+1.(1)直接写出草莓销售单价y(万元)与产量x(吨)之间的函数关系式;(2)求该合作社所获利润w(万元)与产量x(吨)之间的函数关系式;(3)为提高农民种植草莓的积极性,合作社决定按0.3万元/吨的标准奖励扶贫对象种植户,为确保合作社所获利润w′(万元)不低于55万元,产量至少要达到多少吨?25.如图①,在平面直角坐标系xOy中,已知A(−2,2),B(−2,0),C(0,2),D(2,0)四点,动点M以每秒√2个单位长度的速度沿B→C→D运动(M不与点B、点D重合),设运动时间为t(秒).(1)求经过A、C、D三点的抛物线的解析式;(2)点P在(1)中的抛物线上,当M为BC的中点时,若△PAM≌△PBM,求点P的坐标;(3)当M在CD上运动时,如图②.过点M作MF⊥x轴,垂足为F,ME⊥AB,垂足为E.设矩形MEBF与△BCD重叠部分的面积为S,求S与t的函数关系式,并求出S的最大值;(4)点Q为x轴上一点,直线AQ与直线BC交于点H,与y轴交于点K.是否存在点Q,使得△HOK为等腰三角形?若存在,直接写出符合条件的所有Q点的坐标;若不存在,请说明理由.答案和解析1.【答案】C【解析】【分析】本题主要考查了绝对值,解题的关键是熟记绝对值的定义.利用绝对值的定义求解即可.【解答】解:−3的绝对值是3.故选C.2.【答案】B【解析】解:将550000用科学记数法表示为:5.5×105.故选:B.根据有效数字表示方法,以及科学记数法的表示形式为a×10n的形式,其中1≤|a|< 10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】C【解析】解:A、a⋅a2=a3,故此选项错误;B、5a⋅5b=25ab,故此选项错误;C、a5÷a3=a2,正确;D、2a+3b,无法计算,故此选项错误.故选:C.直接利用单项式乘以单项式以及同底数幂的乘除运算法则、合并同类项法则分别化简得出答案.此题主要考查了单项式乘以单项式以及同底数幂的乘除运算、合并同类项,正确掌握相关运算法则是解题关键.4.【答案】A【解析】解:∵x1,x2是一元二次方程x2−4x−5=0的两根,=−5.∴x1⋅x2=ca故选:A.利用根与系数的关系可得出x1⋅x2=−5,此题得解.本题考查了根与系数的关系,牢记两根之积等于c是解题的关键.a5.【答案】D【解析】解:∵点A的坐标为(2,1),∴将点A向下平移4个单位长度,得到的点A′的坐标是(2,−3),故选:D.将点A的横坐标不变,纵坐标减去4即可得到点A′的坐标.此题主要考查了坐标与图形变化−平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.正确掌握规律是解题的关键.6.【答案】B【解析】解:该几何体的左视图只有一列,含有两个正方形.故选:B.左视图有1列,含有2个正方形.此题主要考查了简单组合体的三视图,关键是掌握左视图所看的位置.7.【答案】A【解析】【分析】本题主要考查垂径定理的应用、勾股定理的应用,关键在于设出半径为r后,用r表示出OD的长度.根据题意,可以推出AD=BD=20,若设半径为r,则OD=r−10,OA=r,结合勾股定理可求出半径r的值.【解答】解:连接OC,∵点C是AB⏜的中点,点D是AB的中点,∴OC⊥AB,O,D,C三点共线,∴AD=DB=20m,在Rt△AOD中,OA2=OD2+AD2,设半径为r得:r2=(r−10)2+202,解得:r=25m,∴这段弯路的半径为25m.故选A.8.【答案】C【解析】解:从图中可知:体育场离文具店的距离是:2.5−1.5=1km=1000m,所用时间是(45−30)=15分钟,∴体育场出发到文具店的平均速度=100015=2003m/min,故选:C.从图中可得信息:体育场离文具店1000m,所用时间是(45−30)分钟,可算出速度.本题运用函数图象解决问题,看懂图象是解决问题的关键.9.【答案】4【解析】解:原式=3+1=4.故答案为:4.直接利用二次根式的性质化简得出答案.此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.10.【答案】3【解析】解:∵单项式−12x2y中所有字母指数的和=2+1=3,∴此单项式的次数是3.故答案为:3.根据单项式次数的定义进行解答即可.本题考查的是单项式,熟知一个单项式中所有字母的指数的和叫做单项式的次数是解答此题的关键11.【答案】3(x+3y)(x−3y)【解析】解:原式=3(x2−9y2)=3(x+3y)(x−3y),故答案为:3(x+3y)(x−3y)原式提取3,再利用平方差公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.【答案】5【解析】解:先把原数据按从小到大排列:1,4,5,7,8,正中间的数5,所以这组数据的中位数a的值是5.故答案为:5.先把原数据按从小到大排列,然后根据中位数的定义求解即可.本题考查了中位数的概念:把一组数据按从小到大的顺序排列,最中间那个数或中间两个数的平均数就是这组数据的中位数.13.【答案】50°【解析】【解答】解:∵AB//CD,∠ACD=80°,∴∠BAC=100°,又∵AD平分∠BAC,∴∠DAC=1∠BAC=50°,2故答案为:50°.【分析】依据平行线的性质,即可得到∠BAC的度数,再根据角平分线的定义,即可得到∠DAC的度数.本题主要考查了平行线的性质,以及角平分线的定义.解题时注意:两直线平行,同旁内角互补.14.【答案】4π【解析】【分析】本题考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.易得扇形的弧长,除以2π即为圆锥的底面半径,从而可以计算面积.【解答】=4π,解:扇形的弧长=120π×6180∴圆锥的底面半径为4π÷2π=2.∴面积为:4π,故答案为:4π.15.【答案】8【解析】解:∵反比例函数与正比例函数的图象相交于A、B两点,∴A、B两点关于原点对称,∴OA=OB,∴△BOC的面积=△AOC的面积=8÷2=4,又∵A是反比例函数y=kx图象上的点,且AC⊥y轴于点C,∴△AOC的面积=12|k|,∴12|k|=4,∵k>0,∴k=8.故答案为8.首先根据反比例函数与正比例函数的图象特征,可知A、B两点关于原点对称,则O为线段AB的中点,故△BOC的面积等于△AOC的面积,都等于4,然后由反比例函数y=kx的比例系数k的几何意义,可知△AOC的面积等于12|k|,从而求出k的值.本题考查的是反比例函数与一次函数的交点问题,涉及到反比例函数的比例系数k的几何意义:反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=12|k|.16.【答案】14【解析】【分析】本题考查翻折变换,等边三角形的判定和性质,两点之间线段最短等知识,解题的关键是学会添加常用辅助线,学会利用两点之间线段最短解决最值问题,属于中考常考题型.【解答】解:如图,作点A关于CM的对称点A′,点B关于DM的对称点B′.∵∠CMD=120°,∴∠AMC+∠DMB=60°,∴∠CMA′+∠DMB′=60°,∴∠A′MB′=60°,∵MA′=MB′,∴△A′MB′为等边三角形∵CD≤CA′+A′B′+B′D=CA+AM+BD=2+4+8=14,∴CD的最大值为14,故答案为14.如图,作点A关于CM的对称点A′,点B关于DM的对称点B′,证明△A′MB′为等边三角形,即可解决问题.17.【答案】解:原式=5a+3b−8ba2−b2÷1ab(a+b)=5(a−b)(a+b)(a−b)⋅ab(a+b)=5ab,当a=√2,b=1时,原式=5√2.【解析】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.根据分式的运算法则即可求出答案.18.【答案】解:{5x−16+2>x+54①2x+5≤3(5−x)②,解①得:x>−1,解②得:x≤2,则不等式组的解集是:−1<x≤2.【解析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.本题主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).19.【答案】证明:∵四边形ABCD是正方形,∴AB=AD,∠DAB=90°,∵BF⊥AE,DG⊥AE,∴∠AFB=∠AGD=∠ADG+∠DAG=90°,∵∠DAG+∠BAF=90°,∴∠ADG=∠BAF,在△BAF和△ADG中,∵{∠ BAF=∠ADG ∠AFB=∠AGD AB=AD,∴△BAF≌△ADG(AAS),∴BF=AG,AF=DG,∵AG=AF+FG,∴BF=AG=DG+FG,∴BF−DG=FG.【解析】本题考查了正方形的性质,全等三角形的判定与性质,证明△BAF≌△ADG是解题的关键.根据正方形的性质可得AB=AD,再利用同角的余角相等求出∠BAF=∠ADG,再利用“角角边”证明△BAF和△ADG全等,根据全等三角形对应边相等可得BF=AG,根据线段的和与差可得结论.20.【答案】解:设其他班步行的平均速度为x米/分,则九(1)班步行的平均速度为1.25x 米/分,依题意,得:4000x −40001.25x=10,解得:x=80,经检验,x=80是原方程的解,且符合题意,∴1.25x=100.答:九(1)班步行的平均速度为100米/分,其他班步行的平均速度为80米/分.【解析】设其他班步行的平均速度为x米/分,则九(1)班步行的平均速度为1.25x米/分,根据时间=路程÷速度结合九(1)班比其他班提前10分钟到达,即可得出关于x的分式方程,解之经检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21.【答案】解:(1)本次随机调查的学生人数为30÷15%=200(人);(2)书画的人数为200×25%=50(人),戏曲的人数为200−(50+80+30)=40(人),补全图形如下:(3)估计全校学生选择“戏曲”类的人数约为1200×40200=240(人);(4)列表得:A B C DA AB AC ADB BA BC BDC CA CB CDD DA DB DC∵共有12种等可能的结果,其中恰好抽到“器乐”和“戏曲”类的有2种结果,∴恰好抽到“器乐”和“戏曲”类的概率为212=16.【解析】(1)由器乐的人数及其所占百分比可得总人数;(2)总人数乘以书画对应百分比求得其人数,再根据各类型人数之和等于总人数求得戏曲人数,从而补全图形;(3)利用样本估计总体思想求解可得;(4)列表或树状图将所有等可能的结果列举出来后利用概率公式求解即可.本题考查的是用列表法或画树状图法求概率的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.22.【答案】解:延长CD,交AE于点E,可得DE⊥AE,在Rt△AED中,AE=BC=40m,∠EAD=45°,∴ED=AEtan45°=40m,在Rt△ABC中,∠BAC=30°,BC=40m,∴AB=40√3≈69.3m,则CD=EC−ED=AB−ED=40√3−40≈29.3m.答:这两座建筑物AB ,CD 的高度分别为69.3m 和29.3m .【解析】延长CD ,交过A 点的水平线AE 于点E ,可得DE ⊥AE ,在直角三角形ABC 中,由题意确定出AB 的长,进而确定出EC 的长,在直角三角形AED 中,由题意求出ED 的长,由EC −ED 求出DC 的长即可此题考查了解直角三角形的应用−仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.23.【答案】证明:(1)连接OD ,如图所示:∵DE 是⊙O 的切线,∴∠ODE =90°,∴∠ADO +∠BDE =90°,∵∠ACB =90°,∴∠CAB +∠CBA =90°,∵OA =OD ,∴∠CAB =∠ADO ,∴∠BDE =∠CBA ,∴EB =ED ,∴△DBE 是等腰三角形;(2)∵∠ACB =90°,AC 是⊙O 的直径,∴CB 是⊙O 的切线,∵DE 是⊙O 的切线,∴DE =EC ,∵EB =ED ,∴EC =EB ,∵OA =OC ,∴OE//AB ,∴△COE∽△CAB .【解析】本题考查了切线的判定与性质、相似三角形的判定、等腰三角形的判定与性质、平行线的判定与性质等知识,熟练掌握切线的判定与性质是解题的关键.(1)连接OD ,由DE 是⊙O 的切线,得出∠ODE =90°,∠ADO +∠BDE =90°,由∠ACB =90°,得出∠CAB +∠CBA =90°,证出∠CAB =∠ADO ,得出∠BDE =∠CBA ,即可得出结论;(2)证出CB 是⊙O 的切线,得出DE =EC ,推出EC =EB ,再由OA =OC ,得出OE//AB ,即可得出结论.24.【答案】解:(1)当0≤x ≤30时,y =2.4;当30<x ≤70时,设y =kx +b ,把(30,2.4),(70,2)代入得{30k +b =2.470k +b =2,解得{k =−0.01b =2.7, ∴y =−0.01x +2.7;当70<x ≤100时,y =2;(2)当0≤x ≤30时,w =2.4x −(x +1)=1.4x −1;当30<x ≤70时,w =(−0.01x +2.7)x −(x +1)=−0.01x 2+1.7x −1;当70<x ≤100时,w =2x −(x +1)=x −1;(3)当0≤x ≤30时,w′=1.4x −1−0.3x =1.1x −1,当x =30时,w′的最大值为32,不合题意;当30<x ≤70时,w′=−0.01x 2+1.7x −1−0.3x =−0.01x 2+1.4x −1=−0.01(x −70)2+48,当x =70时,w′的最大值为48,不合题意;当70<x ≤100时,w′=x −1−0.3x =0.7x −1,当x =100时,w′的最大值为69,此时0.7x −1≥55,解得x ≥80,所以产量至少要达到80吨.【解析】(1)分0≤x ≤30;30<x ≤70;70<x ≤100三段求函数关系式,确定第2段利用待定系数法求解析式;(2)利用w =yx −p 和(1)中y 与x 的关系式得到w 与x 的关系式;(3)把(2)中各段中的w 分别减去0.3x 得到w′与x 的关系式,然后根据一次函数的性质和二次函数的性质求解.本题考查了一次函数的应用:学会建立函数模型的方法;确定自变量的范围和利用一次函数的性质是完整解决问题的关键.25.【答案】解:(1)设函数解析式为y =ax 2+bx +c ,将点A(−2,2),C(0,2),D(2,0)代入解析式可得{2=4a −2b +c 2=c 0=4a +2b +c,∴{a =−14b =−12c =2,∴y =−14x 2−12x +2;(2)∵△PAM≌△PBM ,∴PA =PB ,MA =MB ,∴点P 为AB 的垂直平分线与抛物线的交点,∵AB =2,∴点P 的纵坐标是1,∴1=−14x 2−12x +2, ∴x =−1+√5或x =−1−√5,∴P(−1−√5,1)或P(−1+√5,1);(3)CM =√2t −2√2,MG =√2CM =2t −4,MD =4√2−(BC +CM)=4√2−(2√2+√2t −2√2)=4√2−√2t ,MF =√22MD =4−t ,∴BF =4−4+t =t ,∴S =12×(GM +BF)×MF =12×(2t −4+t)×(4−t)=−32t 2+8t −8=−32(t −83)2+83;当t =83时,S 最大值为83;(4)设点Q(m,0),直线BC 的解析式y =−x +2,直线AQ 的解析式y =−2m+2(x +2)+2,∴K(0,2m m+2),H(4m ,2m−4m ), ∴OK 2=(2m m+2)2,OH 2=(4m )2+(2m−4m)2,HK 2=(4m )2+(2m−4m −2m m+2)2, ①当OK =OH 时,(2m m+2)2=(4m )2+(2m−4m )2, ∴m 2−4m −8=0,∴m =2+2√3或m =2−2√3;②当OH =HK 时,(4m )2+(2m−4m )2=(4m )2+(2m−4m −2m m+2)2, ∴m 2−8=0,∴m =2√2或m =−2√2; ③当OK =HK 时,(2m m+2)2=(4m )2+(2m−4m −2m m+2)2,不成立; 综上所述:Q(2+2√3,0)或Q(2−2√3,0)或Q(2√2,0)或Q(−2√2,0);【解析】本题考查二次函数综合;熟练应用待定系数法求函数解析式,掌握三角形全等的性质,直线交点的求法是解题的关键.(1)设函数解析式为y =ax 2+bx +c ,将点A(−2,2),C(0,2),D(2,0)代入解析式即可;(2)由已知易得点P 为AB 的垂直平分线与抛物线的交点,点P 的纵坐标是1,则有1=−14x 2−12x +2,即可求P ;(3)设点Q(m,0),直线BC 的解析式y =−x +2,直线AQ 的解析式y =−2m+2(x +2)+2,求出点K(0,2m m+2),H(4m,2m−4m ),由勾股定理可得OK 2=(2m m+2)2,OH 2=(4m )2+(2m−4m )2,HK 2=(4m )2+(2m−4m −2m m+2)2,分三种情况讨论△HOK 为等腰三角形即可;(4)设点Q(m,0),直线BC 的解析式y =−x +2,分不同情况求得符合条件的所有Q 点的坐标.。

2019年黄冈中考数学试题(解析版)

2019年黄冈中考数学试题(解析版)

{来源}2019黄冈市中考数学{适用范围:3.九年级}{标题}黄冈市二〇一九年初中学业水平考试考试时间:120分钟满分:150分{题型:1-选择题}一、选择题:本大题共12 小题,每小题4 分,合计48分.一、选择题(本题共8小题,每小题3分,共24分.每小题给出的4个选项中,有且只有一个答案是正确的){题目}1.-3的绝对值是A.-3B.-13C.3D.±3{答案}C.{解析}本题考查了绝对值的概念,-3的绝对值是3.{分值}3{章节:[1-1-2-3]相反数}{考点:相反数的定义}{类别:常考题}{难度:1-最简单}{题目}2.为纪念中华人民共和国成立70周年,我市各中小学积极开展了以“祖国在我心中”为主题的各类教育活动,全市约有550000名中小学生参加.其中数据550000用科学记数法表示为A.5.5×106B.5.5×105C.55×104D.0.55×106{答案}B{解析}本题考查了科学计数法,科学技术法的形式为a×10n(1≤│a│<10),550000=5.5×105.{分值}3{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法}{类别:常考题}{难度:1-最简单}{题目}3.下列运算正确的是A.a·a2=a2B.5a·5b=5abC.a5÷a3=a2D.2a+3b=5ab{答案}C{解析}本题考查了整式的运算,运算正确的选C.{分值}3{章节:[1-14-1]整式的乘法}{考点:合并同类项}{考点:单项式乘以单项式}{考点:单项式除法}{类别:常考题}{难度:2-最简}{题目}4.若x1,x2是一元一次方程x2-4x-5=0的两根,则x1·x2的值为A.-5B.5C.-4D.4{答案}A{解析}本题考查了一元二次方程根与系数的关系,选择A{分值}3{章节:[1-21-3] 一元二次方程根与系数的关系} {考点:根与系数关系} {类别:常考题} {难度:1-最简单}{题目}5.已知点A 的坐标为(2,1),将点A 向下平移4个单位长度,得到的点A '的坐标是A .(6,1)B .(-2,1)C .(2,5)D .(2,-3){答案}D{解析}本题考查了坐标系中点的平移,正确答案选择D.{分值}3{章节:[1-7-4] 用坐标表示平移} {考点:坐标系内图形的平移} {类别:常考题} {难度:1-最简单}{题目}6.如图,是由棱长都相等的四个小正方体组成的几何体.该几何体的左视图是{答案}B{解析}本题考查了三视图,选择B. {分值}3{章节:[1-29-2]三视图}{考点:简单组合体的三视图} {类别:常考题} {难度:1-最简单}{题目}7.如图,一条公路的转弯处是一段圆弧(AB ),点O 是这段弧所在圆的圆心,AB =40m ,点C 是AB 的中点,点D 是AB 的中点,且CD =10m .则这段弯路所在圆的半径为A .25mB .24mC .30mD .60m{答案}A{解析}本题考查了三视图,选择B. {解析}连接OD ,DC B A (第7题图)OD C BA由垂径定理可知O ,C ,D 在同一条直线上,OC ⊥AB ,设半径为r ,则OC =OA =r ,AD =20,OD =OA -CD =r -10,在Rt △ADO ,由勾股定理知:r 2=202+(r -10)2,解得r =25.{分值}3{章节:[1-24-1-3]弧、弦、圆心角} {考点:垂径定理的应用} {类别:常考题} {难度:3-中档难度}{题目}8.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家、图中x 表示时间,y 表示林茂离家的距离.依据图中的信息,下列说法错误的是A .体育场离林茂家2.5kmB .体育场离文具店1kmC .林茂从体育场出发到文具店的平均速度是50m /minD .林凌从文具店回家的平均速度是60m /min{答案}C . {解析}如下图:O →A :从跑步去体育场,跑了2.5千米,用时15min ,跑步速度为2.5÷15=5003m /min ; A →B :在体育场都锻炼,锻炼了30-15=15min ;B →C :从体育场步行至文具店,步行2.5-15=1km ,用时45-30=15min ,说明体育场距离文具店1km ,ABC DOy /kmx /min15304565901.52.50EDCBAy /kmx /min15304565901.52.50速度为1÷15=2003m/min;C→D:在文具店购买文具,用时65-45=20min;D→E:从文具店步行回家,步行1.5km,用时90-65=25m i n,速度为1.5÷25=60m/min. {分值}3{章节:[1-19-1-2] 函数的图象}{考点:函数的图象}{类别:常考题}{难度:3-中档难度}第Ⅱ卷(非选择题共96分)二、填空题(本题共8小题,每小题3分,共24分){题目}9.计算(3)2+1的结果是 .{答案}4.{解析}本题考查了数的运算,答案为4.{分值}3{章节:[1-6-1]平方根}{考点:平方根的定义}{类别:常考题}{难度:1-最简单}{题目}10.-12x2y是次单项式.{答案}三{解析}本题考查了单项式的命名.{分值}3{章节:[1-2-1]整式}{考点:单项式}{类别:常考题}{类别:易错题}{难度:1-最简单}{题目}11.分解因式3x2-27y2= . {答案}3(x+3y)(x-3y).{解析}本题考查了因式分解.{分值}3{章节:[1-14-3]因式分解}{考点:因式分解-提公因式法}{考点:因式分解-平方差}{类别:常考题}{难度:1-最简单}{题目}12.一组数据1,7,8,5,4的中位数是a,则a的值是 .{答案}5{解析}本题考查了中位数的定义.{分值}3{章节:[1-20-1-2]中位数和众数}{考点:中位数}{类别:常考题}{难度:1-最简单}{题目}13.如图,直线AB∥CD,直线EC分别与AB,CD相交于点A,点C.AD平分∠BAC,已知∠ACD=80°,则∠DAC的度数为 .{答案}50°{解析}本题考查了平分线和角平分线的概念.∵AB∥CD,∠ACD=80°,∴∠BAC=180°-80°=100°,又∵AD平分∠BAC,∴∠DAC=40°.{分值}3{章节:[1-5-3]平行线的性质}{考点:角平分线的定义}{考点:两直线平行同旁内角互补}{类别:常考题}{难度:2-简单}{题目}14.用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,则这个圆锥的底面圆的面积为 .{答案}4π{解析}由题可知,一个圆心角为120°,半径为6的扇形的弧长为120180×π×6=4π,设圆锥的底面圆的半径为r,则2πr=4π,r=2,故面积4π. {章节:[1-24-4]弧长和扇形面积}{考点:圆锥侧面展开图}{类别:常考题}{类别:易错题}{难度:2-简单}{题目}15.如图,一直线经过原点O,且与反比例函数y=kx(k>0)相交于点A,点B,过点A作AC⊥y轴,垂足为C.连接B C.若△ABC的面积为8,则k= .{答案}8{解析}本题考查了反比例函数与一次函数的交点,反比例函数k的含义。

2019年湖北省黄冈中考数学试卷及答案解析

2019年湖北省黄冈中考数学试卷及答案解析

湖北省黄冈市2019年初中毕业生学业水平和高中阶段学校招生考试数 学(本试卷满分120分,考试时间120分钟)第I 卷(选择题 共24分)一、选择题(本题共8小题,每小题3分,共24分.每小题给出的4个选项中,只有一项是符合题目要求的) 1.3-的绝对值是( )A.3-B.13-C.3D.2.为纪念中华人民共和国成立70周年,我市各中小学积极开展了以“祖国在我心中”为主题的各类教育活动,全市约有550 000名中小学生参加,其中数据550 000用科学记数法表示为 ( ) A.65.510⨯ B.55.510⨯ C.45510⨯ D.60.5510⨯3.下列运算正确的是( )A.22a a a ⋅=B.555a b ab ⋅=C.532a a a ÷=D.235a b ab +=4.若12x x ,是一元一次方程2450x x --=的两根,则12x x ⋅的值为( )A.5-B.5C.4-D.4 5.已知点A 的坐标为21(,),将点A 向下平移4个单位长度,得到的点'A 的坐标是( )A.61(,)B.21-(,)C.25(,)D.23-(,) 6.如图,是有棱长都相等的四个小正方体组成的几何体。

该几何体的左视图是( )7.如图,一条公路的转弯处是一段圆弧(»AB ),点O 是这段弧所在圆的圆心,40 m AB =,点C 是AB 的中点,且10 m CD =则这段弯路所在圆的半径为( )A.25 mB.24 mC.30 mD.60 m8.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家,图中x 表示时间,y 表示林茂离家的距离。

依据图中的信息,下列说法错误的是( )A.体育场离林茂家2.5 kmB.体育场离文具店1 kmC.林茂从体育场出发到文具店的平均速度是50 m/minD.林茂从文具店回家的平均速度是60 m/min第II 卷(非选择题 共96分)二、填空题(本大题共8小题,每小题3分,共24分.请把答案填在题中的横线上) 9.计算21+的结果是 .10.212x y -是 次单项式. 11.分解因式22327x y -= .12.一组数据1,7,8,5,4的中位数是a ,则a 的值是 .13.如图,直线AB CD ∥,直线EC 分别与AB CD ,相交于点A 、点C AD ,平分BAC ∠,已知80ACD ∠=︒,则DAC ∠的度数为.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________14.用一个圆心角为120°,半径为6的扇形做一个圆锥的侧面,则这个圆锥的底面圆的面积为 .15.如图,一直线经过原点O ,且与反比例函数(0)ky k x=>相交于点A 、点B ,过点A 作AC y ⊥轴,垂足为C ,连接BC .若ABC △面积为8,则k = .16.如图,AC BD ,在AB 的同侧,288AC BD AB ===,,,点M 为AB 的中点,若120CMD ∠=︒,则CD 的最大值是 .三、解答题(本大题共9小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分6分)先化简,再求值.2222225381a b b a b b a a b ab +⎛⎫+÷ ⎪+--⎝⎭ 其中a=2, b=1.18.(本小题满分6分)解不等式组515264253(5).x x x x -+⎧+>⎪⎨⎪+<-⎩,19.(本小题满分6分)如图,ABCD 是正方形,E 是CD 边上任意一点,连接AE ,作、BF AE ⊥,DG AE ⊥,垂足分别为F G ,.求证:BF DG FG -=.20.(本小题满分7分)为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动。

2019年湖北省黄冈市中考数学试题(word版,含答案)

2019年湖北省黄冈市中考数学试题(word版,含答案)

黄冈市2019年初中毕业生学业水平和高中阶段学校招生考试数学试题(考试时间120分钟满分120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

答在试题卷上无效。

3.非选择题的作答:用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。

答在试题卷上无效。

4.考生必须保持答题卡的整洁。

考试结束后,请将本试题卷和答题卡一并上交。

第I卷(选择题共24分)一、选择题(本题共8小题,每小题3分,共24分,每小题给出的4个选项中,有且只有一个答案是正确的)1.的绝对值是A. B. C. D.2.为纪念中华人民共和国成立70周年,我市各中小学积极开展了以“祖国在我心中”为主题的各类教育活动,全市约有550000名中小学生参加,其中数据550000用科学记数法表示为A. B. C. D.3.下列运算正确的是A. B. C. D.4.若1,2是一元一次方程的两根,则12的值为A.-5B.5C.-4D.45.已知点A的坐标为(2,1),将点A向下平移4个单位长度,得到的点A’的坐标是A.(6,1)B.(-2,1)C.(2,5)D.(2,-3)6.如图,是有棱长都相等的四个小正方体组成的几何体。

该几何体的左视图是7.如图,一条公路的转弯处是一段圆弧(AB),点O是这段弧所在圆的圆心,AB=40m,点C是AB的中点,且CD=10m,则这段弯路所在圆的半径为A.25mB.24mC.30mD.60m8.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家,图中表示时间,表示林茂离家的距离。

依据图中的信息,下列说法错误的是A.体育场离林茂家2.5kmB.体育场离文具店1kmC.林茂从体育场出发到文具店的平均速度是50m/minD.林茂从文具店回家的平均速度是60m/min第II卷(非选择题共96分)二、填空题(本题共8小题,每小题3分,共24分)9.计算的结果是_______________________.10.是________次单项式.11.分解因式_______________________.12.一组数据1,7,8,5,4的中位数是,则的值是___________________.13.如图,直线AB∥CD,直线EC分别与AB,CD相交于点A、点C,AD平分∠BAC,已知∠ACD=80°,则∠DAC 的度数为__________________.14.用一个圆心角为120°,半径为6的扇形做一个圆锥的侧面,则这个圆锥的底面圆的面积为_____________.15.如图,一直线经过原点0,且与反比例函数相交于点A、点B,过点A作AC⊥y轴,垂足为C,连接BC。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黄冈2018-2019中考数学试题分类解析专项05数量和位置变化1.〔湖北省黄冈市2003年3分〕在直角坐标系中,点P〔2x-6,x-5〕在第四象限,那么x的取值范围是【】、A、3<x<5B、-3<x<5C、-5<x<3D、-5<x<-32.〔湖北省黄冈市2004年3分〕某班同学在探究弹簧的长度跟外力的变化关系时,实验记录得到的相应数据如下表,那么y关于x的函数图象是【】指针位置〔y厘米〕 2 3 4 5 6 7 7.5 7.5 7.53.〔湖北省黄冈市大纲卷2005年3分〕有一个装有进、出水管的容器,单位时间年7进、出的水量基本上一定的。

容器的容积为600升,又知单开进水管10分钟可把空容器注满,假设同时打开进、出水管,20分钟可把满容器的水放完,现水池内有水200升,先打开进水管5分钟后,再打开出水管,两管同时开放,直至把容器中的水放完,那么能正确反映这一过程中容器的水量Q〔升〕随时间t〔分〕变化的图象是【】4.〔湖北省黄冈市课标卷2005年3分〕有一个装有进、出水管的容器,单位时间年7进、出的水量基本上一定的。

容器的容积为600升,又知单开进水管10分钟可把空容器注满,假设同时打开进、出水管,20分钟可把满容器的水放完,现水池内有水200升,先打开进水管5分钟后,再打开出水管,两管同时开放,直至把容器中的水放完,那么能正确反映这一过程中容器的水量Q〔升〕随时间t〔分〕变化的图象是【】5.〔湖北省黄冈市大纲卷2006年3分〕如图,在光明中学学生耐力测试竞赛中,甲、乙两学生测试的路程S(米)与时间t(秒)之间的函数关系图像分别为折线OABC和线段OD,以下说法正确的选项是【】A、乙比甲先到达终点B、乙测试的速度随时间增加而增大C、竞赛进行到29.4秒时,两人动身后第一次相遇D、竞赛全程甲的测试速度始终比乙的测试速度快6.〔湖北省黄冈市课标卷2006年3分〕如图,在光明中学学生耐力测试竞赛中,甲、乙两学生测试的路程S(米)与时间t(秒)之间的函数关系图像分别为折线OABC和线段OD,以下说法正确的选项是【】A、乙比甲先到达终点B、乙测试的速度随时间增加而增大C、竞赛进行到29.4秒时,两人动身后第一次相遇D、竞赛全程甲的测试速度始终比乙的测试速度快【答案】C。

【考点】函数的图象。

【分析】依照函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义7.〔湖北省黄冈市课标卷2006年4分〕以下说法正确的选项是【】A 、不等式-2x -4>0的解集为x <2B 、点(a ,b)关于点(a ,0)的对称点为(a ,-b)C 、方程2x 11x 2+=-的根为x=-3D 、中国的互联上用户数居世界第二位,用户已超过7800万,用科学记数法表示7800万那个数据为7.8×107万8.〔湖北省黄冈市2007年3分〕某种品牌电脑的显示器的寿命大约为4210⨯小时,这种显示器工作的天数为d 〔天〕,平均每天工作的时间为t 〔小时〕,那么能正确表示d 与t 之间的函数关系的图象是【】9.〔湖北省黄冈市2007年4分〕以下说法正确的选项是【】A 、9的算术平方根是3B 、设a 是实数,那么a a -的值可能是正数,也可能是负数C 、点P(2,3)-关于原点的对称点的坐标是(2,3)--D 、抛物线2y x x 6=--的顶点在第四象限选项AD 正确。

应选AD 。

10.〔湖北省黄冈市2017年3分〕以下说法中正确的选项是【】A是一个无理数B、函数y =的自变量x 的取值范围是x 1>C 、8的立方根是2±D 、假设点P(2a),和点Q(b 3)-,关于x 轴对称,那么a b +的值为511.〔湖北省黄冈市2017年3分〕假设函数2x 2(x 2)y 2x x 2>⎧+≤=⎨⎩ (),那么当函数值y =8时,自变量x 的值是【】AB 、4C或4D 、4【答案】D 。

【考点】求函数值,分类思想的应用。

12.〔湖北省黄冈市2017年3分〕如图,把Rt △ABC 放在直角坐标系内,其中∠CAB=90°,BC=5,点A 、B 的坐标分别为〔1,0〕、〔4,0〕,将△ABC 沿x 轴向右平移,当点C 落在直线y=2x﹣6上时,线段BC扫过的面积为【】A、4B、8C、16D、应选C。

【二】填空题x的限值范围是▲;近似数0.0201.〔湖北省黄冈市2001年3分〕函数y有▲个有效数字;某校办印刷厂今年四月份盈利6万元,记作+6元,五月份亏损了2.5万元,应计作▲万元、2.〔湖北省黄冈市课标卷2005年3分〕反比例函数y=k x的图象通过点〔tan30°,sin60°〕,那么k=▲。

3.〔湖北省黄冈市大纲卷2006年3分〕函数y =x 的取值范围是▲。

4.〔湖北省黄冈市课标卷2006年3分〕函数y =x 的取值范围是▲。

5.〔湖北省黄冈市2017年3分〕函数y x 1=+的自变量x 的取值范围是▲.6.〔湖北省黄冈市2018年3分〕在平面直角坐标系中,△ABC 的三个顶点的坐标分别是A 〔-2,3〕,B〔-4,-1〕,C 〔2,0〕,将△ABC 平移至△A 1B 1C 1的位置,点A 、B 、C 的对应点分别是A 1B 1C 1,假设点A 1的坐标为〔3,1〕.那么点C 1的坐标为▲.【三】解答题1.〔湖北省黄冈市2001年9分〕:如图,△ABC 中,AB =AC =10,BC =12,F 为BC 的中点,D 是FC 上的一点,过点D 作BC 的垂线交AC 于点G ,交BA 的延长线于点E ,假如设DC =x ,那么〔1〕图中哪些线段〔如线段BD 可记作y BD 〕能够看成是x 的函数[如y BD =12-x 〔0<x <6〕,y FD =6-x 〔0<x <6〕]请再写出其中的四个函数关系式:①_______;②_______;③____;④________、〔2〕图中哪些图形的面积〔如△CDG 的面积可记作S △CDG 〕能够看成是x 的函数[如S △CDG =232x 〔0<x <6〕],请再写出其中的两个函数关系式::①_______;②_______、⑥S四边形BEGC=43〔72-12x+x2〕=43x2+16x+96〔0<x<6〕等。

2.〔湖北省黄冈市大纲卷2005年16分〕如图,在直角坐标系中,O是原点,A、B、C三点的坐标分别为A〔18,0〕,B〔18,6〕,C〔8,6〕,四边形OABC是梯形,点P、Q同时从原点动身,分别坐匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位,点Q沿OC、CB向终点B运动,当这两点有一点到达自己的终点时,另一点也停止运动。

⑴求出直线OC的解析式及通过O、A、C三点的抛物线的解析式。

⑵试在⑴中的抛物线上找一点D,使得以O、A、D为顶点的三角形与△AOC全等,请直截了当写出点D的坐标。

⑶设从动身起,运动了t秒。

假如点Q的速度为每秒2个单位,试写出点Q的坐标,并写出如今t的取值范围。

⑷设从动身起,运动了t秒。

当P、Q两点运动的路程之和恰好等于梯形OABC的周长的一半,这时,直线PQ能否把梯形的面积也分成相等的两部分,如有可能,请求出t的值;如不可能,请说明理由。

综上所述,不存在如此的t值,使得P,Q两点同时平分梯形的周长和面积。

【考点】二次函数综合题,待定系数法,曲线上点的坐标与方程的关系,分类思想的应用。

【分析】〔1〕依照待定系数法就能够求出直线OC的解析式及通过O、A、C三点的抛物线的解析式。

〔2〕点D确实是抛物线与CB的另一个交点、在抛物线的解析式中令y=6,就能够求出D的坐标。

〔3〕分Q在OC上,和在CB上两种情况进行讨论、即0≤t≤5和5<t≤10两种情况。

〔4〕P、Q两点运动的路程之和能够用t表示出来,梯形OABC的周长就能够求得、当P、Q两点运动的路程之和恰好等于梯形OABC的周长的一半,就能够得到一个关于t的方程,能够解出t的值。

梯形OABC的面积能够求出,梯形OCQP的面积能够用t表示出来。

把t代入能够进行检验。

3.〔湖北省黄冈市课标卷2005年16分〕如图,在直角坐标系中,O是原点,A、B、C三点的坐标分别为A〔18,0〕,B〔18,6〕,C〔8,6〕,四边形OABC是梯形,点P、Q同时从原点动身,分别坐匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位,点Q沿OC、CB向终点B运动,当这两点有一点到达自己的终点时,另一点也停止运动。

⑴求出直线OC的解析式及通过O、A、C三点的抛物线的解析式。

⑵试在⑴中的抛物线上找一点D,使得以O、A、D为顶点的三角形与△AOC全等,请直截了当写出点D的坐标。

⑶设从动身起,运动了t秒。

假如点Q的速度为每秒2个单位,试写出点Q的坐标,并写出如今t的取值范围。

⑷设从动身起,运动了t秒。

当P、Q两点运动的路程之和恰好等于梯形OABC的周长的一半,这时,直线PQ能否把梯形的面积也分成相等的两部分,如有可能,请求出t的值;如不可能,请说明理由。

∴如此的t值不存在。

4.〔湖北省黄冈市大纲卷2006年14分〕如图,在平面直角坐标系中,四边形OABC 为矩形,点A 、B的坐标分别为(4,0)、(4,3),动点M 、N 分别从点O 、B 同时动身,以每秒1个单位的速度运动,其中点M 沿OA 向终点A 运动,点N 沿BC 向终点C 运动,过点N 作NP ⊥BC ,交AC 于点P ,连结MP ,当两动点运动了t 秒时。

〔1〕P 点的坐标为(,)(用含t 的代数式表示);〔2〕记△MPA 的面积为S ,求S 与t 的函数关系式(0<t <4);〔3〕当t=秒时,S 有最大值,最大值是;〔4〕假设点Q 在y 轴上,当S 有最大值且△QAN 为等腰三角形是,求直线AQ 的解析式。

【答案】解:〔1〕3t 4t 4-(,)。

〔2〕()21333S 4t t t t 0t 42482=-=-+(<<)。

【考点】二次函数综合题,曲线上点的坐标与方程的关系,二次函数的性质,勾股定理,等腰三角然后表示出NQ、NA、QA的长,依照上述三种情况中不同的等量关系可求出不同的Q点坐标,然后用待定系数法即可求出直线AQ的解析式。

5.〔湖北省黄冈市课标卷2006年14分〕如图,在平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(4,0)、(4,3),动点M、N分别从点O、B同时动身,以每秒1个单位的速度运动,其中点M沿OA向终点A运动,点N沿BC向终点C运动,过点N作NP⊥BC,交AC于点P,连结MP,当两动点运动了t秒时。

〔1〕P点的坐标为(,)(用含t的代数式表示);〔2〕记△MPA的面积为S,求S与t的函数关系式(0<t<4);〔3〕当t=秒时,S有最大值,最大值是;〔4〕假设点Q在y轴上,当S有最大值且△QAN为等腰三角形是,求直线AQ的解析式。

相关文档
最新文档