苏教版 五年级下册数学应用题及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏教版五年级下册数学应用题及答案
一、苏教小学数学解决问题五年级下册应用题
1.把的分子、分母加上同一个数以后,正好可以约成。

这个加上去的数是多少?2.桑老师买来48本笔记本和36支铅笔作“经典诵读”活动的奖品,每样都平均分给每一个获奖同学,而且都正好分完.最多有多少个同学获奖?每个同学获得多少本笔记本和多少支铅笔?
3.把一张长15厘米,宽9厘米的长方形纸裁成同样大的正方形,如果要求纸没有剩余,裁出的正方形边长最大是多少厘米?一共可以裁出多少个这样的正方形?(在图中画一画,再解答)
4.新华书店新到了三百本多本书打算分发给各个学校,每18本捆成一捆少1本;每24本捆成一捆也少1本。

这批书共有多少本?
5.长75厘米、宽60厘米的长方形纸,要把它裁成同样大小的正方形,边长为整厘米,且没有剩余,裁成的正方形边长最大是多少厘米?至少可以裁成多少个这样的正方形?6.下面是某市一个月天气变化情况统计图。

(1)多云的天数是晴天的几分之几?
(2)阴天的天数是这个月总天数的几分之几?
7.把45厘米、60厘米的两根彩带剪成长度一样的短彩带且没有剩余。

(1)每根短彩带最长是多少厘米?
(2)一共可以剪成多少段?
8.用长5厘米、宽4厘米的长方形,照下图的样子拼成正方形。

拼成的正方形的边长最小
是多少厘米?需要几个长方形?
9.AB两地相距384千米,甲乙两辆汽车同时从A地开往B地,当甲车到达B地时,乙车离B地还有60千米,已知乙车每小时行54千米,甲车每小时行多少千米?
10.小李和小赵在研究数的倍数时,发现这样的现象:18是3的倍数,也是6的倍数;36是3的倍数,也是6的倍数;54是3的倍数,也是6的倍数……小李说:“我发现凡是3的倍数,它一定是6的倍数。

”小赵说:“我发现凡是6的倍数,它一定是3的倍数。

”他们的说法对吗?请你说明理由。

11.姐妹俩同时从家出发去少年宫,妹妹步行每分钟走65米,姐姐骑车每分钟行155米。

姐姐到达少年宫立即返回,途中与妹妹相遇,她们从出发到相遇共用了5分钟。

她们家距少年宫有多少米?
12.一个长方体的体积是441立方厘米,如果它的高减少2厘米,它就变成一个正方体。

这个正方体的棱长是多少厘米?
13.体育课上,30名学生站成一排,按老师口令从左到右报数:1,2,3,4 (30)
(1)老师先让所报的数是2的倍数的学生去跑步,参加跑步的有多少人?
(2)让余下学生中所报的数是3的倍数的学生进行跳绳训练,参加跳绳的有多少人?(3)两批学生离开后,再让余下学生中所报的数是5的倍数的同学去器材室拿篮球,有几人去拿篮球?
(4)现在队伍里还剩多少人?
14.池塘里有鸭子40只,比岸上鸭子只数的3倍少2只,岸上有多少只鸭子?(用方程解答)
15.爸爸的体重是75kg,比阳阳体重的3倍还多15kg。

阳阳的体重是多少千克?
16.下面两根小棒,要把它们截成同样长的小段,不能有剩余,每小段小棒最长是多少厘米?一共可以截成几小段?
17.青少年每天的睡眠时间不能少于全天时间的。

(1)它是把________看作“1”。

(2)画出线段图表示这个分数的意义。

(3)青少年每天睡眠的时间不能少于________小时。

18.甲乙两地间长480千米。

客车和货车同时从两地相对开出,已知客年每小时行65千米,货车每小时行55千米,经过几小时两车相遇?(列方程解答)
19.市场运来一批水果,其中苹果的重量是梨的3倍,已知苹果比梨重270千克,苹果和梨各重多少千克?(列方程解答)
20.人们知道废电池对环境和人类的危害,同学们为保护环境,举行收集废电池的活动。

甲组7人收集了6千克,乙组8人收集了7千克,丙组6人收集了5千克。

哪个小组平均每人收集的电池多?写出主要理由。

21.矫正与反思
A杯:把4克糖溶解在16克水中化成糖水;
B杯:把5克糖溶解在22克水中化成糖水。

这两杯糖水,哪一杯会更甜?
(1)请你在上面正确的做法后面()里打√。

(2)你喜欢谁的做法?请你解释其思路。

22.成渝高速路长330千米,一辆大客车从重庆开往成都,一辆小轿车同时从成都开往重庆.2小时在途中相遇,已知小轿车的速度是大客车的1.2倍.两车每小时各行多少千米?23.一辆汽车从甲地开往乙地,平均每小时行驶60km。

这辆汽车到达乙地后又以90千米时的速度返回甲地,往返一次共用2.5小时。

求甲、乙两地间的路程。

24.把下面两根彩带剪成同样长的短彩带且没有剩余。

每根短彩带最长是多少厘米?一共可以剪成多少根短彩带?
25.在下面一个边长为4厘米的正方形中画一个最大的圆。

如果将这个圆剪去,剩下图形的面积是多少平方厘米?
26.“植树节”到了,有25个小伙伴要分成甲、乙两个组去植树,如果甲队人数为奇数,那么乙队人数为奇数还是偶数?如果有1人请假未到,这时甲队人数为偶数,那么乙队人数
呢?
27.截止至2020年5月16日,我国有6个新冠肺炎确诊人数累计超过1000人的省级行
政区,占我国省级行政区总数的。

我国一共有多少个省级行政区?【列方程解答】28.有两根钢丝,长度分别是12cm、18cm。

现在要把他们截成长度相同的小段,但每一根都不能剩余,每小段最长多少米?一共可以截成多少段?
29.爱心书屋里的科技书的本数是故事书的1.5倍,科技书的本数比故事书多240本。

科技书和故事书各有多少本?(用方程解)
30.南海公园有一个近似圆形的湖面,它的直径大约1000米。

(1)沿湖的一周每隔5米栽一棵柳树,一共要栽多少棵柳树?
(2)在湖里养鱼,按每100平方米能养路60条鱼计算,湖里-共可养鱼多少条?
31.正方形,大三角形内的空白部分为一个正方形,三角形甲与三角形乙的面积和是39平方米。

求大三角形ABC的面积。

32.南湖小区准备修建一个长4m,宽2.5m,高3.6m的长方体小型蓄水池。

(1)给这个蓄水池的地面铺正方形地砖,要使铺的地砖都是整块,地砖的边长最长是多少?一共需要这样的地砖多少块?
(2)在蓄水池的四壁上贴2.4米高的瓷砖,需要多少平方米的瓷砖?
33.五(2)班的同学们分学习小组。

如果按3人一组分,多1人;如果按5人一组分也多1人。

已知五(2)班的人数在40-50人之间,五(2)班有多少人?
34.如图,一个圆形花圃的直径是20米,里面种植了3种不同的鲜花。

(1)先估计一下牡丹的种植面积占整个花圃的几分之几,再算出它的面积大约有多少平方米。

(2)沿着花圃的边线大约每隔0.4米种一棵月季花,一共要种多少棵月季花?
35.东风湖湿地公园绿化栽树,每12棵栽一行,或者每16棵栽一行,都正好栽完而没有剩余。

这些树不到50棵,这些树一共有多少棵?
36.学校环形跑道长480米,笑笑和淘气从跑道的同一地点同时出发,都按顺时针方向
跑,经过30分钟,笑笑第一次追上淘气。

淘气的速度是230米/分,笑笑每分跑多少米?(列方程解答)
37.有47块水果糖和38颗奶糖平均分给一个小组的同学,结果水果糖剩2块,奶糖剩3块,这个小组最多有几位同学?
38.一个直径为1米的圆形洞口,一个身高为1.45米的小女孩不能直身过去。

如果把这个洞口的周长增加1.57米,请你计算这个小女孩能否直身通过。

39.甲、乙两人到体育馆健身,甲每6天去一次.乙每9天去一次,如果6月5日他们两人在体育馆相遇。

(1)那么下一次两人都到体育馆的时间是几月几日?
(2)如果丙6月5日也去了体育馆,他每4天去一次,他们三人下一次都到体育馆的时间是几月几日?
40.车站的4路电车每隔8分钟发一趟车,5路电车每隔12分钟发一趟车。

上午8时整4路电车和5路电车同时出发,再过多长时间两车又同时从车站出发?是几时几分?
【参考答案】***试卷处理标记,请不要删除
一、苏教小学数学解决问题五年级下册应用题
1.解:设加上去的数是x。

3×(5+x)=2×(23+x)
15+3x=46+2x
3x-2x=46-15
x=31
答:加上去的数是31。

【解析】【分析】等量关系:的分子分母都加上x,等于,根据等量关系列方程,根据等式性质解方程。

2.解:48=2×2×2×2×3
36=2×2×3×3,
48和36的最大公因数数2×2×3=12,即最多12人获奖,
每人获笔记本:48÷12=4(本);
笔:35÷12=3(支);
答:最多12个同学获奖,每人获得的笔记本4本,铅笔3支。

【解析】【分析】根据题意可得求最多有多少个同学获奖即是求48和36的最大公因数,将48和36分解质因数,找出相同部分,相乘即可得出最大公因数;接下来用笔记本的数量÷最大公因数即可得出每人获笔记本的数量;用铅笔的数量÷最大公因数即可得出每人获
铅笔的支数。

3.如图:
15和9的最大公因数是3,所以裁出的正方形边长最大是3厘米;
15÷3=5(块)
9÷3=3(块)
5×3=15(块)
答:裁出的正方形边长最大是3厘米,一共可以裁出15个这样的正方形.
【解析】【分析】15和9的最大公因数就是裁出的正方形最大的边长;计算出长和宽分别可以裁几块,它们的积就是可以裁出的最多数。

4.解:18=2×3×3
24=2×2×2×3
所以它们的最小公倍数是2×2×2×3×3=72
72的倍数有72、144、216、288、360、432等
360-1=359(本)
答:这批书共有359本。

【解析】【分析】此题主要考查了最小公倍数的应用,先把18和24分别分解质因数,然后求出它们的最小公倍数,根据条件“ 新华书店新到了三百本多本书”可知,把它们的最小公倍数分别扩大1倍、2倍、3倍……,找出符合条件的三百多的数,最后用这个数减去1即可得到这批书的本数,据此解答。

5.解:75=3×5×5
60=2×2×3×5
75与60的最大公因数是3×5=15
75×60÷(15×15)
=4500÷225
=20(个)
答:正方形的边长是15厘米。

至少可以裁成20个这样的正方形。

【解析】【分析】此题主要考查了最大公因数的应用,要求把长方形纸裁成同样大小的正方形,边长为整厘米,且没有剩余,要求裁成的正方形边长最大是多少厘米?就是求长与宽的最大公因数,据此利用分解质因数的方法,求出长与宽的最大公因数,就是裁成的正方形最大边长;
要求至少可以裁成多少个这样的正方形?依据长方形的面积÷小正方形的面积=可以裁的个数,据此列式解答。

6.(1)解: 9÷10=
答:多云的天数是晴天的。

(2)解: 7÷(10+7+5+9)
=7÷31
=
答:阴天的天数是这个月总天数的。

【解析】【分析】(1)根据题意可知,多云的天数÷晴天的天数=多云的天数是晴天的几分之几,据此列式计算;
(2)根据题意可知,阴天的天数÷这个月的总天数=阴天的天数占这个月总天数的几分之几,据此列式解答。

7.(1)解:45=5×3×3
60=2×5×2×3
45和60的最大公因数是5×3=15,每根短彩带最长是15厘米。

答:每根短彩带最长是15厘米。

(2)解:45÷15+60÷15
=3+4
=7(段)
答:一共可以剪成7段。

【解析】【分析】(1)根据条件“ 把45厘米、60厘米的两根彩带剪成长度一样的短彩带且没有剩余”可知,要求每根短彩带最长是多少,就是求45和60的最大公因数,据此解答;
(2)根据题意,每根彩带的长度÷每根短彩带最长的长度=每根彩带可以剪的段数,然后相加即可。

8.解:4×5=20,即拼成的正方形的边长最小是20厘米;
20÷4×(20÷5)
=5×4
=20(个)
答:拼成的正方形的边长最小是20厘米,需要20个长方形。

【解析】【分析】此题主要考查了最小公倍数的应用,根据题意可知,拼成的正方形的边长最小是小长方形长与宽的最小公倍数,据此计算;
要求需要几个长方形,分别用除法求出长、宽部分需要的长方形个数,然后相乘即可,据此列式解答。

9.解:设甲车每小时行x千米,则
384÷x=(384-60)÷54
384÷x=324÷54
384÷x=6
x=384÷6
x=64
答:甲车每小时行64千米。

【解析】【分析】设甲车每小时行x千米,根据甲车和乙车行驶的时间相同即可得出等量关系式“甲车行驶的路程÷甲车的速度=乙车行驶的路程÷乙车的速度”,可列出方程384÷x=(384-60)÷54,根据等式的基本性质求解即可得出x的值。

10.解:小赵说得对,因为6=3×2,所以一个数是6的倍数,它一定是3的倍数。

小李说得不对,因为9是3的倍数,但9不是6的倍数。

【解析】【分析】因为6是3的倍数,所以是6的倍数的数一定是3的倍数;但是3的倍数不一定是6的倍数。

11.解:设她们家距少年宫有x米,则
2x=(65+155)×5
2x=220×5
2x=1100
2x÷2=1100÷2
x=550
答:她们家距少年宫有550米。

【解析】【分析】设她们家距少年宫有x米,分析题意可得姐姐和妹妹两人行驶的总路程(两人的速度和×行驶的时间)=她们家距少年宫距离的2倍,则可列出方程2x=(65+155)×5,根据等式的基本性质求解即可。

12.解:441=3×3×7×7=7×7×9,
9-2=7(厘米)
答:正方体的棱长是7厘米。

【解析】【分析】长方体的高减少2厘米后是正方体,所以长方体的长和宽相等,而长方体的体积=长×宽×高,所以可以先把长方体的体积分解质因数,只需要有两个数值相等,另一个数值比这两个值小2,那么相等的这个数值就是正方体的棱长。

13.(1)解:30÷2=15(人)
答:参加跑步的有15人。

(2)解:余下的数是1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,其中3的倍数有:3,9,15,21,27,共5人。

答:参加跳绳的有5人。

(3)解:余下的数是1,5,7,11,13,17,19,23,25,29,其中5的倍数有:5,25,共2人。

答:有2人去拿篮球。

(4)解:30-15-5-2=8(人)
答:现在队伍里还剩8人。

【解析】【分析】(1)2的倍数都是偶数,30个数中,有15个奇数,15个偶数;
(2)求参加跳绳的人数就是求30以内的奇数中,3的倍数有几个;
(3)求去拿篮球的人数就是求余下的数中,5的倍数有几个;
(4)总人数-参加跑步的人数-参加跳绳的人数-去拿篮球的人数=现在队伍里还剩人数。

14.解:设岸上有x只鸭子,
答:岸上有14只鸭子。

【解析】【分析】设岸上有x只鸭子,根据“岸上鸭子的只数×倍数-池塘的鸭子比岸上的鸭子3倍少的只数=池塘鸭子的只数”即可列出方程,求解即可得出答案。

15.解:设阳阳的体重是x千克,
3x+15=75
3x+15-15=75-15
3x=60
3x÷3=60÷3
x=20
答:阳阳的体重是20千克。

【解析】【分析】此题主要考查了列方程解决问题,找准等量关系是关键,设阳阳的体重是x千克,阳阳体重×3+15=爸爸的体重,据此列方程解答。

16.解:16=2×2×2×2,44=2×2×2,
所以16和44的最大公因数是2×2=4,
所以每小段木棒最长是4厘米。

16÷4+44÷4
=4+11
=15(小段)
答:每小段木棒最长是4厘米,一共可以截成15小段。

【解析】【分析】求每小段木棒最长的厘米数,即是求16和44的最大公因数,先将16和44分解质因数,再找出公共因数,公共因数的乘积即为16和44的最大公因数(每小段木棒最长的厘米数);一共可以截成的段数=第一根木棒的总长度÷每小段木棒最长的厘米数+第二根木棒的总长度÷每小段木棒最长的厘米数。

17.(1)全天时间
(2)解:
(3)8
【解析】【解答】解:(1)是把全天时间看作“1”;
(3)24÷3=8(小时)。

故答案为:(1)全天时间;(3)8。

【分析】(1)把全天时间平均分成3份,睡眠时间不少于其中的3份,是把全天时间看
作单位“1”;
(2)画出一条线段表示全天时间,把全天时间平均分成3份,其中的一份就表示每天睡眠最少的时间;
(3)用全天的小时数除以3即可求出每天最少的睡眠时间。

18.解:设经过x小时两车相遇,则
(65+55)×x=480
120x=480
x=480÷120
x=4
答:经过4小时两车相遇。

【解析】【分析】设经过x小时两车相遇,根据“(客车速度+货车速度)×两车相遇的时间=甲乙两地相距的路程”列出方程,求解即可得出答案。

19.解:设梨的重量是x千克,则苹果的重量是3x千克,故有
3x-x=270
2x=270
x=135
苹果的重量=135×3=405(千克)
答:苹果重405千克,梨重135千克。

【解析】【分析】设梨的重量是x千克,则苹果的重量是3x千克,根据“ 苹果比梨重270千克”即可列出方程,求解即可得出答案。

20.解:甲:6÷7= (千克/人)
乙:7÷8= (千克/人)
丙:5÷6= (千克/人)
>>
答:乙小组平均每人收集的电池多。

【解析】【分析】根据题意可知,分别用除法求出每个小组平均每人收集的电池质量,然后对比即可解答。

21.(1)
(2)解:我喜欢小华的做法,糖的质量÷糖水的质量=糖水的含糖量,哪个杯子中含糖量高,那个杯子中的糖水就甜。

【解析】【分析】糖的质量+水的质量=糖水的质量;糖的质量÷糖水的质量=糖水的含糖量;糖水的含糖量越高,糖水就越甜。

22.解:设大客车每小时行x千米,则小轿车每小时行1.2x千米。

(1.2x+x)×2=330
2.2x×2=330
4.4x=330
x=330÷4.4
x=75
75×1.2=90(千米)
答:大客车每小时行75千米,小轿车每小时行90千米。

【解析】【分析】本题属于相遇问题,等量关系:(大客车的速度+小客车的速度)×行驶时间=行驶路程,根据等量关系列方程,根据等式性质解方程。

23.解:设去时时间为x小时,则返回时间为(2.5-x)小时,
60x=90×(2.5-x)
60x=90×2.5-90x
60x+90x=90×2.5-90x+90x
150x=225
150x÷150=225÷150
x=1.5
1.5×60=90(千米)
答:甲、乙两地间的路程是90千米。

【解析】【分析】此题主要考查了列方程解决问题,去时与返回时的路程不变,设去时时间为x小时,则返回时间为(2.5-x)小时,去时速度×去时用的时间=返回速度×返回用的时间,据此列方程解答,然后用速度×时间=路程,据此列式解答。

24.解:48=12×4;36=12×3;
48和36的最大公因数是12;
每根短彩带最长是多少12厘米;
48÷12+36÷12=4+3=7(根)。

答:每根短彩带最长是多少12厘米,一共可以剪成7根短彩带。

【解析】【分析】48和36的最大公因数就是每根短彩带最长的长度;彩带的长度÷每根短彩带最长的长度=可以剪成短彩带的根数,据此解答。

25.解:4×4-3.14×(4÷2)2
=16-3.14×4
=16-12.56
=3.44(平方厘米)
答:剩下图形的面积是3.44平方厘米。

【解析】【分析】正方形的面积-圆的面积=剩余图形的面积。

26.解:25-奇数=偶数;
25-1=24,
24-偶数=偶数。

答:有25个小伙伴要分成甲、乙两个组去植树,如果甲队人数为奇数,那么乙队人数为偶数;如果有1人请假未到,这时甲队人数为偶数,那么乙队人数为偶数。

【解析】【分析】此题主要考查了奇数和偶数的应用,奇数-奇数=偶数,奇数-偶数=奇数,偶数-偶数=偶数,据此解答。

27.解:设我国一共有x个省级行政区。

x=6
x=6÷
x=6×
x=34
答:我国一共有34个省级行政区。

【解析】【分析】等量关系:我国省级行政区总数× =6个省级行政区;根据等量关系列方程,根据等式性质解方程。

28.解:12=3×2×2,
18=2×3×3,
12和18的最大公因数是3×2=6,所以每小段最长是6米;
12÷6+18÷6
=2+3
=5(段)
答:每小段最长是6米,一共可以截成5段。

【解析】【分析】此题主要考查了最大公因数的应用,用分解质因数的方法求两个数的最大公因数,先把每个数分别分解质因数,再把两个数中的全部公有质因数提取出来连乘,所得的积就是这两个数的最大公因数;
然后用长÷每段的长度+宽÷每段的长度=一共可以截的段数,据此列式解答。

29.解:设故事书有x本,则科技书有1.5x本,
1.5x-x=240
0.5x÷0.5=240÷0.5
x=480
科技书:480×1.5=720(本)
答:科技书有720本,故事书有480本。

【解析】【分析】此题主要考查了列方程解决问题,设故事书有x本,则科技书有 1.5x 本,科技书的本数-故事书的本数=240,据此列方程解答。

30.(1)解:3.14×1000÷5
=3.14×200
=628(棵)
答:一共要栽628棵。

(2)解:半径:1000÷2=500(米)
面积:3.14×500×500
=3.14÷250000
=785000(平方米)
785000÷100×60
=7850×60
=471000(条)
答:湖里一共养471000条鱼。

【解析】【分析】(1)3.14×直径=圆的周长,圆的周长÷间距=栽树棵树;
(2)直径÷2=半径,3.14×半径的平方=面积,面积÷100×60=湖里-共可养鱼条数。

31.解:设正方形边长为a,根据等量关系列式:
4a÷2+9a÷2=39
2a+4.5a=39
6.5a=39
a=39÷6.5
a=6
正方形面积:6×6=36(平方米),所以大三角形面积为:36+39=75(平方米)
答:大三角形ABC的面积75平方米。

【解析】【分析】看图可知,甲、乙都是直角三角形,一条直角边是正方形的边长,所以设正方形边长是a,等量关系:甲的面积+乙的面积=39,根据等量关系列出方程,解方程求出正方形的边长,然后用正方形面积加上甲、乙的面积和就是大三角形的面积。

32.(1)解:4m=40dm;2.5m=25dm,
因为40和25的最大公因数是5,所以地砖的边长最长是5dm,
所以一共需要这样的地砖的块数=(40÷5)×(25÷5)
=8×5
=40(块)
答:地砖的边长最长是0.5米;一共需要这样的地砖40块。

(2)解:需要瓷砖的面积=(4×2.4+2.5×2.4)×2
=(9.6+6)×2
=31.2(平方米)
答:需要31.2平方米的瓷砖。

【解析】【分析】(1)将4m和2.5m转化成dm,即4m=40dm;2.5m=25dm,地砖的边长最长是40和25的最大公因数,40和25的最大公因数是5dm,所以一共需要地砖的块数=(蓄水池的长÷最大公因数)×(蓄水池的宽÷最大公因数),代入数值计算即可;(2)需要瓷砖的面积=(蓄水池的长×四壁贴瓷砖的高度+蓄水池的宽×四壁贴瓷砖的高度)×2,代入数值计算即可。

33.解:3和5的公倍数是15;
在40-50人之间,15的倍数有45;
45+1=46(人)
答:五(2)班有46人。

【解析】【分析】五(2)班的人数=3和5的公倍数+1人,五(2)班的人数在40-50人之间,据此解答。

34.(1)解:牡丹的种植面积占整个花圃的,
牡丹的种植面积:3.14×(20÷2)²÷4
=3.14×100÷4
=78.5(平方米)
答:牡丹的种植面积占整个花圃的,大约有78.5平方米。

(2)解:3.14×20÷0.4=157(棵)
答:一共要种157棵月季花。

【解析】【分析】(1)通过观察可知牡丹的种植面积占整个花圃的,所以:牡丹的种植面积=圆形花圃面积÷4,据此解题;
(2)月季花棵数=圆形花圃周长÷0.4,据此解题。

35.解:12的倍数有:12、24、36、48、60……
16的倍数有:16、32、48、64……
既是12的倍数,又是16的倍数,且在50以内的数是48,
所以这些树一共有48棵。

答:这些树一共有48棵。

【解析】【分析】每12棵栽一行,或者每16棵栽一行,都正好栽完而没有剩余,说明这些树的棵树是12和16的倍数,再分别列出12和16的倍数,然后找到既是12的倍数,又是16的倍数,并且比50小的数就是答案了。

36.解:设笑笑每分跑x米。

30x-230×30=480
30x-6900=480
30x-6900+6900=480+6900
30x=7380
x=246
答:笑笑每分跑246米。

【解析】【分析】此题主要考查了追及问题,可以列方程解答,设笑笑每分跑x米,笑笑跑的路程-淘气跑的路程=追及时相差的路程,据此列方程解答。

37.解:水果糖、奶糖分别分出:47-2=45(块),38-3=35(块)
把45、35分解质因数:45=3×3×5,35=5×7
45、35的最大公因数:5。

答:这个小组最多有5位同学。

【解析】【分析】用“分出块数=原有块数-剩余块数”,分别求出水果糖、奶糖分出块数;再求出二者的最大公因数,此题得解。

38.解:1.57÷3.14=0.5(米)
1+0.5=1.5(米)
1.5米>1.45米
答:小女孩能直身通过。

【解析】【分析】根据题意可知,先求出增加部分的直径,增加部分的周长÷π=增加的直径,然后用原来的直径+增加部分的直径=现在圆的直径,最后对比,现在圆的直径与小女孩的身高,如果大于或等于小女孩的身高,就够,如果小于小女孩的身高,就不够,据此列式解答。

39.(1)解:6和9的最小公倍数是18,
6月5日向后推18天是6月23日。

答:下一次两人都到体育馆的时间是6月23日。

(2)解:4、6、9的最小公倍数是36,6月5日向后推36天是7月11日。

答:他们三人下一次都到体育馆的时间是7月11日。

【解析】【分析】(1)他们两人下一次都到体育馆经过的时间一定是6和9的最小公倍数,由此确定两个数的最小公倍数,在从6月5日向后推算时间即可;
(2)他们三人下一次都到体育馆经过的时间一定是4、6、9的最小公倍数,三个数的最小公倍数是36。

6月是小月共30天,6月5日过25天是6月30日,再过11天就是7月11日。

40.解:8=2×2×2,12=2×2×3,
所以8和12的最小公倍数是:2×2×2×3=24,8时+24分=8时24分。

答:再过24分钟两车又同时从车站出发,是8时24分。

【解析】【分析】求两辆电车同时发车的两次之间的间隔时间就是两辆电车分别发车的间隔时间的最小公倍数;
第二次同时发车的时间=第一次同时发车的时间+两辆电车同时发车的两次之间的间隔时间,据此代入数值解答即可。

相关文档
最新文档