江川区三中2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江川区三中2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 若向量(1,0,x )与向量(2,1,2)的夹角的余弦值为,则x 为( )
A .0
B .1
C .﹣1
D .2
2. 若全集U={﹣1,0,1,2},P={x ∈Z|x 2<2},则∁U P=( )
A .{2}
B .{0,2}
C .{﹣1,2}
D .{﹣1,0,2}
3. 一个骰子由1~6六个数字组成,请你根据图中三种状态所显示的数字,推出“”处的数字是( ) A .6 B .3 C .1 D .2
4. 已知向量(,2)a m =,(1,)b n =-(0n >),且0a b ⋅=,点(,)P m n 在圆225x y +=上,则
|2|a b +=( )
A B . C . D .5. 用反证法证明命题:“已知a 、b ∈N *,如果ab 可被5整除,那么a 、b 中至少有一个能被5整除”时,假设的内容应为( )
A .a 、b 都能被5整除
B .a 、b 都不能被5整除
C .a 、b 不都能被5整除
D .a 不能被5整除
6. 根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20﹣80mg/100ml (不含80)之间,属于酒后驾车;血液酒精浓度在80mg/100ml (含80)以上,属于醉酒驾车.据《法制晚报》报道,2011年3月15日至3月28日,全国查处酒后驾车和醉酒驾车共28800人,如下图是对这28800人酒后驾车血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为( )
A .2160
B .2880
C .4320
D .8640
7. 已知函数f(x)是定义在R 上的奇函数,当x ≥0时,.若
,f(x-1)≤f(x),则实数a 的取值范围为
A[] B[]
C[]
D[
]
8. 已知集合23111
{1,(
),,}122
i A i i i i -=-+-+(其中为虚数单位),2{1}B x x =<,则A B =( ) A .{1}- B .{1} C .{1,
}2- D .{}2
9. 空间直角坐标系中,点A (﹣2,1,3)关于点B (1,﹣1,2)的对称点C 的坐标为( ) A .(4,1,1) B .(﹣1,0,5)
C .(4,﹣3,1)
D .(﹣5,3,4)
10.(2015秋新乡校级期中)已知x+x ﹣1=3,则x 2+x ﹣2等于( )
A .7
B .9
C .11
D .13
11.执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k 的最大值为( ) A .4
B .5
C .6
D .7
12.函数f (x )=e ln|x|+的大致图象为( )
A .
B .
C .
D .
二、填空题
13.曲线y =x 2+3x 在点(-1,-2)处的切线与曲线y =ax +ln x 相切,则a =________.
14.将一个半径为3和两个半径为1的球完全装入底面边长为6的正四棱柱容器中,则正四棱柱容器的高的最小值为 .
15.如图所示,正方体ABCD ﹣A ′B ′C ′D ′的棱长为1,E 、F 分别是棱AA ′,CC ′的中点,过直线EF 的平面分别与棱BB ′、DD ′交于M 、N ,设BM=x ,x ∈[0,1],给出以下四个命题: ①平面MENF ⊥平面BDD ′B ′;
②当且仅当x=时,四边形MENF 的面积最小; ③四边形MENF 周长l=f (x ),x ∈0,1]是单调函数; ④四棱锥C ′﹣MENF 的体积v=h (x )为常函数; 以上命题中真命题的序号为 .
16.已知复数
,则1+z 50+z 100
= .
17.如图,在三棱锥P ABC -中,PA PB PC ==,PA PB ⊥,PA PC ⊥,PBC △为等边三角形,则PC 与平面ABC 所成角的正弦值为______________.
【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力. 18.已知变量x ,y ,满足,则z=log 4(2x+y+4)的最大值为
.
三、解答题
19.(本小题满分10分)选修4-5:不等式选讲 已知函数()()f x x a a R =-∈.
(1)当1a =时,解不等式()211f x x <--;
(2)当(2,1)x ∈-时,121()x x a f x ->---,求的取值范围.
20.在某班级举行的“元旦联欢会”有奖答题活动中,主持人准备了两个问题,规定:被抽签抽到的答题同学,答对问题可获得分,答对问题可获得200分,答题结果相互独立互不影响,先回答哪个问题由答题同学自主决定;但只有第一个问题答对才能答第二个问题,否则终止答题.答题终止后,获得的总分决定获奖的等次.若甲是被抽到的答题同学,且假设甲答对
问题的概率分别为
.
(Ⅰ)记甲先回答问题再回答问题得分为随机变量,求的分布列和数学期望; (Ⅱ)你觉得应先回答哪个问题才能使甲的得分期望更高?请说明理由.
21.(本小题满分12分)求下列函数的定义域:
(1)()
f x=;
(2)()
f x=.
22.如图,点A是以线段BC为直径的圆O上一点,AD⊥BC于点D,过点B作圆O的切线,与CA的延长线相交于点E,点G是AD的中点,连接CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.(1)求证:BF=EF;
(2)求证:PA是圆O的切线.
23.已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.
(1)求椭圆C的方程;
(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,说明理由.
24.
(本小题满分10分)如图⊙O经过△ABC的点B,C与AB交于E,与AC交于F,且AE=AF.
(1)求证EF∥BC;
(2)过E作⊙O的切线交AC于D,若∠B=60°,EB=EF=2,求ED的长.
江川区三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1.【答案】A
【解析】解:由题意=,∴1+x=,解得x=0
故选A
【点评】本题考查空间向量的夹角与距离求解公式,考查根据公式建立方程求解未知数,是向量中的基本题型,此类题直接考查公式的记忆与对概念的理解,正确利用概念与公式解题是此类题的特点.
2.【答案】A
【解析】解:∵x2<2
∴﹣<x<
∴P={x∈Z|x2<2}={x|﹣<x<,x∈Z|}={﹣1,0,1},
又∵全集U={﹣1,0,1,2},
∴∁U P={2}
故选:A.
3.【答案】A
【解析】
试题分析:根据与相邻的数是1,4,3,而与相邻的数有1,2,5,所以1,3,5是相邻的数,故“?”表示的数是,故选A.
考点:几何体的结构特征.
4.【答案】A
【解析】
考点:1、向量的模及平面向量数量积的运算;2、点和圆的位置关系.
5.【答案】B
【解析】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.
命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除”的否定是“a,b都不能被5整除”.故选:B.
6.【答案】C
【解析】解:由题意及频率分布直方图的定义可知:属于醉酒驾车的频率为:(0.01+0.005)×10=0.15,又总人数为28800,故属于醉酒驾车的人数约为:28800×0.15=4320.
故选C
【点评】此题考查了学生的识图及计算能力,还考查了频率分布直方图的定义,并利用定义求解问题.
7.【答案】B
【解析】当x≥0时,
f(x)=,
由f(x)=x﹣3a2,x>2a2,得f(x)>﹣a2;
当a2<x<2a2时,f(x)=﹣a2;
由f(x)=﹣x,0≤x≤a2,得f(x)≥﹣a2。
∴当x>0时,。
∵函数f(x)为奇函数,
∴当x<0时,。
∵对∀x∈R,都有f(x﹣1)≤f(x),
∴2a2﹣(﹣4a2)≤1,解得:。
故实数a的取值范围是。
8.【答案】D
【解析】
考点:1.复数的相关概念;2.集合的运算
9.【答案】C
【解析】解:设C(x,y,z),
∵点A(﹣2,1,3)关于点B(1,﹣1,2)的对称点C,
∴,解得x=4,y=﹣3,z=1,
∴C(4,﹣3,1).
故选:C.
10.【答案】A
【解析】解:∵x+x﹣1=3,
则x2+x﹣2=(x+x﹣1)2﹣2=32﹣2=7.
故选:A.
【点评】本题考查了乘法公式,考查了推理能力与计算能力,属于中档题.
11.【答案】A
解析:模拟执行程序框图,可得
S=0,n=0
满足条,0≤k,S=3,n=1
满足条件1≤k,S=7,n=2
满足条件2≤k,S=13,n=3
满足条件3≤k,S=23,n=4
满足条件4≤k,S=41,n=5
满足条件5≤k,S=75,n=6
…
若使输出的结果S不大于50,则输入的整数k不满足条件5≤k,即k<5,则输入的整数k的最大值为4.
故选:
12.【答案】C
【解析】解:∵f(x)=e ln|x|+
∴f (﹣x )=e
ln|x|
﹣
f (﹣x )与f (x )即不恒等,也不恒反,
故函数f (x )为非奇非偶函数,其图象不关于原点对称,也不关于y 轴对称, 可排除A ,D ,
当x →0+
时,y →+∞,故排除B
故选:C .
二、填空题
13.【答案】
【解析】由y =x 2+3x 得y ′=2x +3, ∴当x =-1时,y ′=1,
则曲线y =x 2+3x 在点(-1,-2)处的切线方程为y +2=x +1, 即y =x -1,设直线y =x -1与曲线y =ax +ln x 相切于点(x 0,y 0),
由y =ax +ln x 得y ′=a +1
x
(x >0),
∴⎩⎪⎨⎪
⎧a +1x 0
=1
y 0=x 0
-1y 0
=ax 0
+ln x
,解之得x 0
=1,y 0
=0,a =0. ∴a =0. 答案:0
14.【答案】
4+ .
【解析】解:作出正四棱柱的对角面如图, ∵底面边长为6,∴
BC=,
球O 的半径为3,球O 1 的半径为1,
则,
在Rt △OMO 1中,OO 1=4
,
,
∴
=
,
∴正四棱柱容器的高的最小值为
4+.
故答案为:
4+
.
【点评】本题考查球的体积和表面积,考查空间想象能力和思维能力,是中档题.
15.【答案】①②④.
【解析】解:①连结BD,B′D′,则由正方体的性质可知,EF⊥平面BDD′B′,所以平面MENF⊥平面BDD′B′,所以①正确.
②连结MN,因为EF⊥平面BDD′B′,所以EF⊥MN,四边形MENF的对角线EF是固定的,所以要使面积
最小,则只需MN的长度最小即可,此时当M为棱的中点时,即x=时,此时MN长度最小,对应四边形MENF的面积最小.所以②正确.
③因为EF⊥MN,所以四边形MENF是菱形.当x∈[0,]时,EM的长度由大变小.当x∈[,1]时,EM的长度由小变大.所以函数L=f(x)不单调.所以③错误.
④连结C′E,C′M,C′N,则四棱锥则分割为两个小三棱锥,它们以C′EF为底,以M,N分别为顶点的两个小棱锥.因为三角形C′EF的面积是个常数.M,N到平面C'EF的距离是个常数,所以四棱锥C'﹣MENF的体积V=h(x)为常函数,所以④正确.
故答案为:①②④.
【点评】本题考查空间立体几何中的面面垂直关系以及空间几何体的体积公式,本题巧妙的把立体几何问题和函数进行的有机的结合,综合性较强,设计巧妙,对学生的解题能力要求较高.
16.【答案】i.
【解析】解:复数,
所以z2=i,又i2=﹣1,所以1+z50+z100=1+i25+i50=1+i﹣1=i;
故答案为:i.
【点评】本题考查了虚数单位i的性质运用;注意i2=﹣1.
17.【答案】21 7
【解析】
18.【答案】
【解析】解:作的可行域如图:
易知可行域为一个三角形,
验证知在点A(1,2)时,
z1=2x+y+4取得最大值8,
∴z=log4(2x+y+4)最大是,
故答案为:.
【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.
三、解答题
19.【答案】(1){}
11x x x ><-或;(2)(,2]-∞-. 【解析】
试
题解析:(1)因为()211f x x <--,所以1211x x -<--, 即1211x x ---<-,
当1x >时,1211x x --+<-,∴1x -<-,∴1x >,从而1x >;
当
1
12x ≤≤时,1211x x --+<-,∴33x -<-,∴1x >,从而不等式无解; 当1
2
x <时,1211x x -+-<-,∴1x <-,从而1x <-;
综上,不等式的解集为{}11x x x ><-或.
(2)由121()x x a f x ->---,得121x x a x a -+->--, 因为1121x x a x a x x a -+-≥-+-=--,
所以当(1)()0x x a --≥时,121x x a x a -+-=--; 当(1)()0x x a --<时,121x x a x a -+->--
记不等式(1)()0x x a --<的解集为A ,则(2,1)A -⊆,故2a ≤-,
所以的取值范围是(,2]-∞-.
考点:1.含绝对值的不等式;2.分类讨论. 20.【答案】
【解析】【知识点】随机变量的期望与方差随机变量的分布列 【试题解析】(Ⅰ)的可能取值为
.
,
,
分布列为:
(Ⅱ)设先回答问题,再回答问题
得分为随机变量,则的可能取值为.
,
,
,
分布列为:
.
应先回答所得分的期望值较高. 21.【答案】(1)()[),11,-∞-+∞;(2)[)(]1,23,4-.
【解析】
考点:函数的定义域. 1
【方法点晴】本题主要考查了函数的定义域的求解,其中解答中涉及到分式不等式的求解、一元二次不等式的求解、集合的交集运算等综合考查,着重考查了学生的推理与运算能力,属于中档试题,本题的解答中正确把握函数的定义域,列出相应的不等式或不等式组是解答的关键,同时理解函数的定义域的概念,也是解答的一个重要一环.
22.【答案】
【解析】证明:(1)∵BC是圆O的直径,BE是圆O的切线,∴EB⊥BC.
又∵AD⊥BC,∴AD∥BE.
可得△BFC∽△DGC,△FEC∽△GAC.
∴,得.
∵G是AD的中点,即DG=AG.
∴BF=EF.
(2)连接AO,AB.
∵BC是圆O的直径,∴∠BAC=90°.
由(1)得:在Rt△BAE中,F是斜边BE的中点,
∴AF=FB=EF,可得∠FBA=∠FAB.
又∵OA=OB,∴∠ABO=∠BAO.
∵BE是圆O的切线,
∴∠EBO=90°,得∠EBO=∠FBA+∠ABO=∠FAB+∠BAO=∠FAO=90°,
∴PA⊥OA,由圆的切线判定定理,得PA是圆O的切线.
【点评】本题求证直线是圆的切线,着重考查了直角三角形的性质、相似三角形的判定与性质和圆的切线判定定理等知识,属于中档题.
23.【答案】
【解析】解:(1)依题意,可设椭圆C的方程为(a>0,b>0),且可知左焦点为
F(﹣2,0),从而有,解得c=2,a=4,
又a2=b2+c2,所以b2=12,故椭圆C的方程为.
(2)假设存在符合题意的直线l,其方程为y=x+t,
由得3x2+3tx+t2﹣12=0,
因为直线l与椭圆有公共点,所以有△=(3t)2﹣4×3(t2﹣12)≥0,解得﹣4≤t≤4,
另一方面,由直线OA与l的距离4=,从而t=±2,
由于±2∉[﹣4,4],所以符合题意的直线l不存在.
【点评】本小题主要考查直线、椭圆等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想.
24.【答案】
【解析】解:(1)证明:∵AE=AF,
∴∠AEF=∠AFE.
又B,C,F,E四点共圆,
∴∠ABC=∠AFE,
∴∠AEF=∠ACB,又∠AEF=∠AFE,∴EF∥BC. (2)由(1)与∠B=60°知△ABC为正三角形,又EB=EF=2,
∴AF=FC=2,
设DE=x,DF=y,则AD=2-y,
在△AED中,由余弦定理得
DE2=AE2+AD2-2AD·AE cos A.
即x2=(2-y)2+22-2(2-y)·2×1
,
2
∴x2-y2=4-2y,①
由切割线定理得DE2=DF·DC,
即x2=y(y+2),
∴x2-y2=2y,②
由①②联解得y=1,x=3,∴ED= 3.。