第一章集合单元测试卷
数学高一必修1 第一章 集合 单元测试

(时间:100分钟,满分:120分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x |x (x +1)=0},那么下列结论正确的是( )A .0∈AB .1∈AC .-1∉AD .0∉A解析:选A.由于A ={0,-1},故选A.2.下列四种说法:①“所有很小的正数”能构成一个集合;②方程(x -1)2=0的解的集合是{1,1};③{1,3,5,7}与{3,7,5,1}表示同一个集合;④集合{(x ,y )|y =x 2-1}与{y |y =x 2-1}表示同一个集合,其中正确的是( )A .①④B .②③C .③D .③④解析:选C.对①,“很小的正数”无客观标准,不能构成集合,②不满足互异性,③中两集合所含元素完全相同,是同一个集合,④中一个集合为点集,一个为数集,两集合不同.3.设集合U ={1,2,3,4},S ={1,3},则∁U S =( )A .∅B .RC .UD .{2,4}解析:选D.因为U ={1,2,3,4},S ={1,3},所以∁U S ={2,4}.4.方程组⎩⎪⎨⎪⎧x +y =1,x -y =3的解集是( ) A .{2,-1} B .{x =2,y =-1}C .{(x ,y )|(2,-1)}D .{(2,-1)}解析:选D.由⎩⎪⎨⎪⎧x +y =1,x -y =3得⎩⎪⎨⎪⎧x =2,y =-1,所以方程组⎩⎪⎨⎪⎧x +y =1,x -y =3的解集为{(2,-1)}. 5.若集合M ={0,1,2,3,4},N ={1,3,5},P =M ∩N ,则P 的子集共有( )A .2个B .4个C .6个D .8个解析:选B.因为P =M ∩N ={1,3},所以P 的子集有22=4个.6.下列表示图形中的阴影部分的是( )A .(A ∪C )∩(B ∪C )B .(A ∪B )∩(A ∪C )C .(A ∪B )∩(B ∪C )D .(A ∪B )∩C解析:选A.阴影部分可表示为(A ∩B )∪C =(A ∪C )∩(B ∪C ).7.如果S ={1,2,3,4,5},M ={1,3,4},N ={2,4,5},那么(∁S M )∩(∁S N )等于( )A.∅B.{1,3}C.{4} D.{2,5}解析:选A.法一:∁S M={2,5},∁S N={1,3},(∁S M)∩(∁S N)={2,5}∩{1,3}=∅.法二:M∪N={1,2,3,4,5},(∁S M)∩(∁S N)=∁S(M∪N)=∅.8.在集合{a,b,c,d}上定义两种运算⊕和⊗如下:那么d⊗(a⊕c)=()A.a B.bC.c D.d解析:选A.由⊕定义知a⊕c=c,由⊗定义知d⊗c=a,即d⊗(a⊕c)=d⊗c=a.9.已知全集为U,集合M,N是U的子集,若M∩N=N,则()A.(∁U M)⊇(∁U N) B.M⊆(∁U N)C.(∁U M)⊆(∁U N) D.M⊇(∁U N)解析:选C.因为M∩N=N,所以N⊆M,借助Venn图易知∁U N⊇∁U M.10.已知全集U=A∪B中有m个元素,(∁U A)∪(∁U B)中有n个元素.若A∩B非空,则A∩B的元素个数为()A.mn B.m+nC.n-m D.m-n解析:选D.画出Venn图(图略).因为U=A∪B中有m个元素.(∁U A)∪(∁U B)=∁U(A∩B)中有n个元素,所以A∩B中有m-n个元素,故选D.二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11.已知A={x|-4≤x≤4},B={0,2,4,6},则A∪B=________.解析:A∪B={x|-4≤x≤4或x=6}.答案:{x|-4≤x≤4或x=6}12.已知全集U={1,2,3,4},集合A={1,2},B={2,3},则A∩(∁U B)等于________.解析:因为∁U B={1,4},所以A∩(∁U B)={1}.答案:{1}13.设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为________.解析:由题意可知,集合M={5,6,7,8},共4个元素.答案:414.设集合M={x|x=3k,k∈Z},P={x|x=3k+1,k∈Z},Q={x|x=3k-1,k∈Z},若a∈M,b∈P,c∈Q,则a+b-c∈________(填M,P,Q中的一个).解析:依据题意设a=3k,b=3t+1,c=3m-1(k,t,m∈Z),则a+b-c=3(k+t-m)+2,所以该元素具有集合Q中元素的特征性质,应属于集合Q.答案:Q15.已知-5∈{x |x 2-ax -5=0},则集合{x |x 2+ax +3=0}中所有元素之和为________. 解析:由题意知-5是方程x 2-ax -5=0的一个根,所以(-5)2+5·a -5=0,解得a =-4,则方程x 2+ax +3=0,即为x 2-4x +3=0,解得x 1=1,x 2=3,所以{x |x 2-4x +3=0}={1,3}.即所有元素之和为1+3=4.答案:4三、解答题(本大题共5小题,共55分.解答应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分10分)设A ={x ∈Z |-6≤x ≤6},B ={1,2,3},C ={3,4,5,6},求:(1)A ∪(B ∩C );(2)A ∩∁A (B ∪C ).解:因为A ={x ∈Z |-6≤x ≤6}={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6},B ={1,2,3},C ={3,4,5,6},所以B ∩C ={3},B ∪C ={1,2,3,4,5,6}.(1)A ∪(B ∩C )=A ={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}.(2)∁A (B ∪C )={-6,-5,-4,-3,-2,-1,0},所以A ∩∁A (B ∪C )=∁A (B ∪C )={-6,-5,-4,-3,-2,-1,0}.17.(本小题满分10分)已知集合A ={3,4,4a 2-6a -1},B ={4a ,-3},A ∩B ={-3},求实数a 的值及此时的A ∪B .解:由题意得4a 2-6a -1=-3,解得a =1或a =12, 当a =12时,A ={3,4,-3},B ={2,-3},满足要求,此时A ∪B ={2,3,4,-3}; 当a =1时,A ={3,4,-3},B ={4,-3},不满足要求,综上得,a =12,A ∪B ={2,3,4,-3}. 18.(本小题满分10分)设全集I =R ,已知集合M ={x |(x +3)2≤0},N ={x |x 2+x -6=0}.(1)求(∁I M )∩N ;(2)记集合A =(∁I M )∩N ,已知集合B ={x |a -1≤x ≤5-a ,a ∈R },若A ∪B =A ,求实数a 的取值范围.解:(1)因为M ={x |(x +3)2≤0}={-3},N ={x |x 2+x -6=0}={-3,2},所以∁I M ={x |x ∈R 且x ≠-3},所以(∁I M )∩N ={2}.(2)A =(∁I M )∩N ={2},因为A ∪B =A ,所以B ⊆A ,所以B =∅或B ={2},当B =∅时,a -1>5-a ,得a >3;当B ={2}时,⎩⎪⎨⎪⎧a -1=25-a =2,解得a =3, 综上所述,所求a 的取值范围为{a |a ≥3}.19.(本小题满分12分)设集合A ={x |x 是小于6的正整数},B ={x |(x -1)(x -2)=0},C ={x |(m -1)x -1=0}.(1)求A ∩B ,A ∪B ;(2)若B ∩C =C ,求由实数m 为元素所构成的集合M .解:(1)A ={x |x 是小于6的正整数}={1,2,3,4,5},B ={1,2},A ∩B ={1,2},A ∪B ={1,2,3,4,5}.(2)因为B ∩C =C ,所以C ⊆B ,当C =∅时,此时m =1,符合题意;当C ≠∅时,m ≠1,此时C ={x |x =1m -1},因为C ⊆B ,所以1m -1=1或2, 解得m =2或32. 综上所述:由实数m 为元素所构成的集合M ={1,2,32}. 20.(本小题满分13分)已知全集U =R ,A ={x ∈R |x 2-3x +b =0},B ={x ∈R |(x -2)(x 2+3x -4)=0}.(1)若b =4时,存在集合M 使得A M B ,求出所有这样的集合M ;(2)集合A ,B 是否能满足(∁U B )∩A =∅?若能,求实数b 的取值范围;若不能,请说明理由.解:(1)易知A =∅且B ={-4,1,2},由已知M 应该是一个非空集合,且是B 的一个真子集,所以用列举法可得这样的M 共有如下6个:{-4}、{1}、{2}、{-4,1}、{-4,2}、{1,2}.(2)由(∁U B )∩A =∅得A ⊆B ,当A =∅时,A 是B 的一个子集,此时Δ=9-4b <0,所以b >94; 当A ≠∅时,因为B ={-4,1,2},当-4∈A 时,b =-28,则得到A ={-4,7},不可能为B 的一个子集.当1∈A 时,b =2,此时A ={1,2},是B 的子集;当2∈A 时,b =2,此时A ={1,2},是B 的子集.综上可知:当且仅当A =∅或A ={1,2}时,(∁U B )∩A =∅,所以实数b 的取值范围是⎩⎨⎧b ⎪⎪⎭⎬⎫b >94或b =2.。
第一章 集合与常用逻辑用语 单元测试卷(Word版含答案)

《第一章集合与常用逻辑用语》单元测试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合U={1,2,3,4,5,6},A={1,3,4},B={1,3,5},则(∁U A)∪B=()A.{5}B.{1,3}C.{1,2,3,5,6}D.⌀2.命题“∀x∈Q,3x2+2x+1∈Q”的否定为()A.∀x∉Q,3x2+2x+1∉QB.∀x∈Q,3x2+2x+1∉QC.∃x∉Q,3x2+2x+1∉QD.∃x∈Q,3x2+2x+1∉Q3.已知集合A={0,1,2},B={1,m}.若B⊆A,则m=()A.0B.0或1C.0或2D.1或24.设全集U=R,M={x|x<-3或x>3},N={x|2≤x≤4},如图,阴影部分所表示的集合为()A.{x|-3≤x<2}B.{x|-3≤x≤4}C.{x|x≤2或x>3}D.{x|-3≤x≤3}5. “|x|≠|y|”是“x≠y”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.设集合A={x|2a<x<a+2},B={x|x<-3或x>5},若A∩B=⌀,则实数a的取值范围为()A.{a|a≥-32} B.{a|a>-32}C.{a|a≤-32} D.{a|a<-32}7.若p:x2+x-6=0是q:ax-1=0(a≠0)的必要不充分条件,则实数a的值为()A.-12B.-12或13C.-13D.12或-138.已知集合A中有10个元素,B中有6个元素,全集U有18个元素,A∩B≠⌀.设集合(∁U A)∩(∁U B)中有x个元素,则x的取值范围是()A.{x|3≤x≤8,且x∈N}B.{x|2≤x≤8,且x∈N}C.{x|8≤x≤12,且x∈N}D.{x|10≤x≤15,且x∈N}二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知命题p:∃x∈R,x2+2x+2-a=0为真命题,则实数a的值可以是()A.1B.0C.3D.-310.图中阴影部分表示的集合是()A.N∩(∁U M)B.M∩(∁U N)C.[∁U(M∩N)]∩ND.(∁U M)∩(∁U N)11.设全集为U,下列选项中,是“B⊆A”的充要条件的是()A.A∪B=AB.A∩B=AC.(∁U A)⊆(∁U B)D.A∪(∁U B)=U12.整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},其中k∈{0,1,2,3,4}.以下判断正确的是()A.2 022∈[2]B.-2∈[2]C.Z=[0]∪[1]∪[2]∪[3]∪[4]D.若a-b∈[0],则整数a,b属于同一“类”三、填空题:本题共4小题,每小题5分,共20分.13.设集合M={2,3,a2+1},N={a2+a,a+2,-1},且M∩N={2},则实数a的值为.14.写出一个使得命题“∀x∈R,ax2-2x+3>0恒成立”是假命题的实数a的值:.15.若p:m-1≤x≤2m+1,q:2≤x≤3,q是p的充分不必要条件,则实数m的取值范围是.16.已知有限集合A={a1,a2,a3,…,a n},定义集合B={a i+a j|1≤i<j≤n,i,j∈N*}中的元素的个数为集合A的“容量”,记为L(A).若集合A={x∈N*|1≤x≤3},则L(A)=;若集合A={x∈N*|1≤x≤n},且L(A)=4 041,则正整数n的值是.(本题第一空2分,第二空3分.)四、解答题:本题共2小题,共20分.解答应写出文字说明、证明过程或演算步骤.≤x≤2}.17.(10分)已知集合A={x|2-b≤ax≤2b-2}(a>0),B={x|-12(1)当a=1,b=3时,求A∪B和∁R B.(2)是否存在实数a,b,使得A=B?若存在,求出a,b的值;若不存在,请说明理由.18.(10分)在①A∪B=B,②“x∈A”是“x∈B”的充分条件,③“x∈∁R A”是“x∈∁R B”的必要条件这三个条件中任选一个,补充到本题第(2)问的横线处,并求解下列问题.问题:已知集合A={x|a≤x≤a+2},B={x|-1<x<3}.(1)当a=2时,求A∩B;(2)若,求实数a的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.参考答案一、单项选择题1.C2.D3.C4.A5.A6.A7.D8.A二、多项选择题9.AC 10.AC 11.ACD 12.ACD三、填空题13.-2或014.-1(答案不唯一)15.{m|1≤m≤3}16.3 2 022四、解答题17. 解:(1)当a =1,b =3时,A ={x |-1≤x ≤4}.又B ={x |-12≤x ≤2},所以 A ∪B ={x |-1≤x ≤4},(2分) ∁R B ={x |x <-12或x >2}.(4分)(2)假设存在实数a ,b 满足条件.因为a >0,所以由2-b ≤ax ≤2b -2,得2−b a ≤x ≤2b−2a .(6分) 由A =B ,得{2−b a =−12,2b−2a =2, 解得{a =2,b =3.(9分) 故存在a =2,b =3,使得A =B.(10分)18. 解:(1)当a =2时,A ={x |2≤x ≤4}, 所以A ∩B ={x |2≤x <3}.(4分)(2)方案一 选条件①.因为A ∪B =B ,所以A ⊆B ,(7分)所以{a >−1,a +2<3,解得-1<a <1.(10分) 方案二 选条件②.因为“x ∈A ”是“x ∈B ”的充分条件, 所以A ⊆B ,(7分)所以{a >−1,a +2<3,解得-1<a <1.(10分) 方案三 选条件③.因为“x ∈∁R A ”是“x ∈∁R B ”的必要条件,所以A ⊆B ,(7分)所以{a >−1,a +2<3,解得-1<a <1.(10分)。
【高一】高一数学上册第一章集合单元测试题(附答案)

【高一】高一数学上册第一章集合单元测试题(附答案)第一单元集合1、头衔1.集合{1,2,3}的真子集共有______________。
(a) 5(b)6(c)7(d)82.已知集合a={}b={}则a=______________。
3.如果a={1,2,a2-3a-1},B={1,3},a{3,1},那么。
(a)-4或1(b)-1或4(c)-1(d)44.设u={0,1,2,3,4},a={0,1,2,3},B={2,3,4},然后(CUA)(cub)=。
5.设s、t是两个非空集合,且st,ts,令x=s那么sx=____________。
6.设a={x}和B={x}。
如果AB={2,3,5},那么a和B是。
7.设一元二次方程ax2+bx+c=0(a<0)的根的判别式,则不等式ax2+bx+c0的解集为____________。
8.如果={},n={Z},那么n=_______;。
9.已知u=n,a={},则cua等于_______________。
10.如果二次函数的图像与x轴不相交,则的值范围为______。
11.不等式<x2-4的解集是_______________。
12.将整组设为,并使用集合a、B和C的交集、并集和补集在表中阴影部分签名。
(1)(2)(3)13.若方程8x2+(k+1)x+k-7=0有两个负根,则k的取值范围是14.设a={},B={x},AB,则实数k的取值范围为。
三、解答题15.让完整的集合u={1,2,3,4},和={x2-5x+=0,Xu}如果CUA={1,4},则找到的值。
16.已知集合a={a关于x的方程x2-ax+1=0,有实根},b={a不等式ax2-x+1>0对一切xr成立},求ab。
17.如果你知道集合a={A2,a+1,-3},B={a-3,2a-1,A2+1},如果AB={3},找到实数a。
18.设a={x,其中xr,如果ab=b,求实数a的取值范围。
第一章:集合与常用逻辑用语单元测试

第一章:集合与常用逻辑用语小结与测试一、单选题(共40分)1.已知集合{}0,1,2,3A =,{}2,3,4,5B =,记集合Q A B =⋂,则( ) A .4Q ∉B .1Q ∈C .5Q ∈D .3Q ∉2.已知全集{}0,1,2,3U =,集合{}{}0,1,3,0,2,3A B ==,则()UA B =( )A .{}0,1B .{}1,2C .{}0,2D .{}0,33.已知集合{}13A x x =∈-<<N ,2,1,0,1,2U ,则U A( )A .{}0,1,2B .{}1,2C .{}2,1,0--D .{}2,1--4.用图形直观表示集合的运算关系,最早是由瑞士数学家欧拉所创,故将表示集合运算关系的图形称为“欧拉图”.后来,英国逻辑学家约翰•韦恩在欧拉图的基础上创建了世人所熟知的“韦恩图”.则图中的阴影部分表示的集合为( ) A .A B C ⋂⋂ B .()U A B C C .()U A B C ⋂⋂D .()UA BC5.已知集合{1,0,1,2}A =-,{}*2N 90B x x =∈-≥,则A B ⋃=( )A .{1,2}B .{0,1,2}C .{1,0,1,2}-D .{1,0,1,2,3}- 6.“1m ≥-”是“2m ≥-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件7.命题“x ∀∈R ,210x -<”的否定是( ) A .x ∀∈R ,210x - B .x ∃∈R ,210x - C .x ∃∈R ,210x -D .x ∀∈R ,210x -<8.王昌龄是盛唐著名的边塞诗人,被誉为“七绝圣手”,其《从军行》传诵至今"青海长云暗雪山,孤城遥望玉门关黄沙百战穿金甲,不破楼兰终不还",由此推断,最后一句“不返家乡"是“不破楼兰"的( ) A .必要条件 B .充分条件C .充要条件D .既不充分也不必要二、多选题(共20分)9.设全集{1,2,3,4,5}U =,集合{1,2,3,4}S =,则U S 的子集为( ) A .{5}B .{1,2,5}C .{2,3,4}D .∅10.(多选)已知集合{}21,3,A m =,{}1,B m =.若A B A ⋃=,则实数m 的值为( ) A .0 B .1 C .2D .311.下列四个命题中,是真命题的有( ) A .没有一个无理数不是实数 B .空集是任何一个集合的真子集C .112+≤D .至少存在一个正数x ,使得21x x -+是正数12.下列命题中,真命题是( )A .若,R x y ∈且2x y +>,则,x y 至少有一个大于1B .2R,2x x x ∀∈<C .0a b +=的充要条件是1ab=- D .命题“21,1x x ∀<<”的否定形式是“2001,1x x ∃<≥” 三、填空题(共20分)13.“R x ∃∈,210ax ax -+<”是假命题,则实数a 的取值范围为 _________ .14.已知集合[)3,6A =-,(),B a =-∞,若A B =∅是假命题,则实数a 的取值范围是______.15.若“11x -<<”是“11x m -<-<”的充要条件,则实数m 的取值是_________.16.有下列各组对象: (1)某校的年轻教师;(2)被5除余数是2的所有整数; (3)著名数学家; (4)直线l 上的所有点;(5)大于1且小于2的所有有理数.其中能构成集合的对象有_________(填写序号)四、解答题(共70分)(10分)17.已知集合{}42A x x =-<<,{5B x x =<-或}1x >.求A B ,()RA B ;(12分)18.设A ={x |x 是小于11的正整数},{}1,2,3,4B =,{}3,4,5,6,7C =.求A C ,A B ,()AB C ,()AB C .(12分)19.判断下列命题是全称量词命题还是存在量词命题,并判断其真假. (1)至少有一个整数,既能被11整除,又能被9整除; (2)R x ∀∈,2460x x -+>; (3)N x ∃∈,2x x ≤;(4)N x *∃∈,使x 为29的约数; (5)N x ∀∈,20x >.(12分)20.已知集合{}|310A x x =≤<,集合{}|(2)(4)0B x x x =--<, (1)求A B ; (2)求()A B R ∩.(12分)21.已知集合A ={x |2≤x <4},B ={x |a +2≤x ≤3a }.(1)当a =2时,求A ∩B ;(2)若B ⊆A ,求实数a 的取值范围.(12分)22.已知集合{}121A x a x a =-≤≤+,集合{}2310B x x x =-<.(1)若x A ∈是x B ∈的必要条件,求实数a 的取值范围; (2)若A B A =,求实数a 的取值范围.第一章:集合与常用逻辑用语小结与测试参考答案:1.A 【分析】根据集合的交集运算求出Q ,再由元素与集合的关系求解. 【详解】由{2,3}Q A B ==知,4Q ∉正确,1Q ∈,5Q ∈,3Q ∉均是错误的, 故选:A2.B 【分析】先求出A B ,再求其补集【详解】因为{}0,3A B ⋂=,又全集{}0,1,2,3U =, 所以(){}1,2UA B ⋂=.故选:B3.D 【分析】先求出集合A ,再由补集的定义即可得出答案. 【详解】因为{}N 13A x x =∈-<< {}0,1,2=, 所以UA ={}2,1--.故选:D.4.D 【分析】根据阴影部分在集合AB 的公共部分,且不在集合C 中可得答案. 【详解】解:由图可知,阴影部分在集合AB 的公共部分,且不在集合C 中, 故图中的阴影部分表示的集合为()UA B C .故选:D.5.D 【分析】先确定集合B ,再根据集合并集的定义计算.【详解】{1,0,1,2}A =-,{N*|33}{1,2,3}B x x =∈-≤≤=,A B ⋃={1,0,1,2,3}-. 故选:D .6.A 【分析】根据“1m ≥-”和“2m ≥-”的逻辑推理关系,即可判断答案.【详解】由1m ≥-可以推出2m ≥-,但反之不成立,故“1m ≥-”是“2m ≥-”的充分不必要条件,故选:A7.B 【分析】全称量词命题的否定,是把全称量词改成存在量词,并把后面的结论否定. 【详解】根据全称命题的否定是特称命题可得,命题“x ∀∈R ,210x -<”的否定是“x ∃∈R ,210x -”.故选:B.8.A 【分析】先阅读理解题意,再利用充分条件、必要条件的判定方法,即可求解. 【详解】由题意知,“不破楼兰”则可推得“不返家乡”,即必要条件成立, 反之“不返家乡”不一定是“不破楼兰”,即充分条件不成立, 故“不返家乡"是“不破楼兰"的必要不充分条件. 故选:A.9.AD 【分析】根据补集和子集的定义即可求出答案. 【详解】因为{}5U C S =,集合{}5的子集有:∅,{5}. 故选:AD.10.AD 【分析】依题意可得B A ⊆,即可得到2m m =或3m =,即可求出m ,再代入检验即可;【详解】解:因为A B A ⋃=,所以B A ⊆.因为{}21,3,A m =,{}1,B m =,所以2m m =或3m =,解得0m =或1m =或3m =.当0m =时,{}1,3,0A =,{}1,0B =,符合题意;当1m =时,集合A 不满足集合元素的互异性,不符合题意; 当3m =时,{}1,3,9A =,{}1,3B =,符合题意.综上,0m =或3; 故选:AD11.ACD 【分析】根据命题的等价性可判断A ;由真子集的概念可判断B ;由“或”命题真假判断方法可判断C ;由特称命题的真假判断方法可判断D. 【详解】A,该命题等价于所有无理数都是实数,为真命题; B,该命题为假命题,空集是任何非空集合的真子集; C,该命题显然成立,为真命题;D,取1x =,能使21x x -+是正数,为真命题. 故选:ACD12.AD 【分析】根据不等式的性质,以及实数的运算性质,以及含有一个量词的否定的概念,逐项判定,即可求解.【详解】对于A 中,若实数,x y 都小于等于1,那么可以推出2x y +≤,所以A 正确; 对于B 中,当2x =时,22x x =,所以B 错误; 对于C 中,当0a b 时,满足0a b +=,但1ab=-不成立,所以C 错误;对于D 中,由含有一个量词的否定的概念,可得命题“21,1x x ∀<<”的否定形式是“2001,1x x ∃<≥”,所以D 是正确的. 故选:AD.13.04a ≤≤【分析】存在量词命题是假命题,则其否定全称量词命题是真命题,写出其全称量词命题,是一个二次不等式恒成立问题,分情况讨论,求a 的范围. 【详解】由题意可知,“R x ∃∈,210ax ax -+<”的否定是真命题, 即“R x ∀∈,210ax ax +≥-”是真命题, 当0a =时,10≥,不等式显然成立,当0a ≠时,由二次函数的图像及性质可知,2Δ40a a a >⎧⎨=-≤⎩,解得04a <≤, 综上,实数a 的取值范围为04a ≤≤. 故答案为:04a ≤≤.14.()3,-+∞【分析】考虑A B =∅是真命题,列不等式求实数a 的取值范围,取其在R 中的补集可得实数a 的取值范围.【详解】若A B =∅是真命题,则3a ≤-, ∴当A B =∅是假命题时,3a >-. 故答案为:()3,-+∞.15.0【分析】根据充要条件的定义即可求解. 【详解】1111x m m x m -<-<⇒-<<+, 则{x |11x -<<}={x |11m x m -<<+},即11011m m m -=-⎧⇒=⎨+=⎩. 故答案为:0.16.(2)(4)(5).【分析】可看出(1)所说的“某校”和(3)所说的“著名”都不能确定,从而都不能构成集合的对象.而(2)(4)(5)所说的对象是可确定的,能构成集合的对象. 【详解】(1)“某校”不确定,不能构成集合的对象;(2)”被5除余数是2的所有整数”是确定的,可以构成集合的对象; (3)“著名”是不确定的,不能构成集合的对象;(4)“直线l 上的所有点”是确定的,能构成集合的对象;(5)“大于1且小于2的所有有理数”是确定的,能构成集合的对象. 故答案为:(2)(4)(5).【点睛】本题考查元素是否可以构成集合的判断,注意确定性的应用,属简单题.17.{5A B x x ⋃=<-或}4x >-;(){}41A B x x ⋂=-<≤R 【分析】由并集、补集和交集定义直接求解即可.【详解】由并集定义知:{5A B x x ⋃=<-或}4x >-; {}51B x x =-≤≤R ,(){}41A B x x ∴⋂=-<≤R .18.{}3,4,5,6,7A C ⋂=,{}5,6,7,8,9,10A B =,(){}8,9,10AB C ⋃=,(){}1,2,3,4,5,6,7,8,9,10A B C ⋃⋂=【分析】先得出{}1,2,3,4,5,6,7,8,9,10A =,再利用集合的交集,并集,和补集的运算公式进行求解.【详解】{}1,2,3,4,5,6,7,8,9,10A =,则{}3,4,5,6,7A C ⋂=;{}5,6,7,8,9,10AB =;{}1,2,3,4,5,6,7B C ⋃=,故(){}8,9,10AB C ⋃=;{}3,4B C=⋂,所以(){}1,2,3,4,5,6,7,8,9,10A B C ⋃⋂=19.(1)存在量词命题,真命题 (2)全称量词命题,真命题 (3)存在量词命题,真命题 (4)存在量词命题,真命题 (5)全称量词命题,假命题【分析】利用全称量词命题与存在量词命题的概念,及不等式的性质,举例子分别判断各命题. (1)命题中含有存在量词“至少有一个”,因此是存在量词命题,99既能被11整除,又能被9整除,故该命题为真命题.(2)命题中含有全称量词“∀”,故是全称量词命题,因为()2246222x x x -+=-+≥,所以2460x x -+>恒成立,故该命题为真命题. (3)命题中含有存在量词“∃”,故是存在量词命题, 当0x =或1x =时,2x x =,故该命题为真命题. (4)命题中含有存在量词“∃”,故是存在量词命题, 当1x =时,x 为29的约数,所以该命题为真命题. (5)命题中含有全称量词“∀”,故是全称量词命题, 当0x =时,20x =,所以该命题为假命题. 20.(1){}0|21x x << (2){}|23x x <<【分析】(1)由一元二次不等式的解法可求得集合B ,再由集合的并集定义,计算即可; (2)先根据全集R 和集合A 求出集合A 的补集,然后再求出集合A 的补集与B 的交集. (1)由题意得,{}|24B x x =<<,{}|210A B x x ∴=<<.(2){}310A x x =<≥R或,∴(){}|23A B x x =<<R . 21.(1)A ∩B =∅(2)(﹣∞,43)【分析】(1)利用交集及其运算求解即可. (2)利用集合间的关系列出不等式组,求解即可. (1)当a =2时,B ={x |a +2≤x ≤3a }={x |4≤x ≤6}, ∵A ={x |2≤x <4},∴A ∩B =∅. (2) 若B ⊆A ,①当B =∅时,则a +2>3a ,∴a <1, ②当B ≠∅时,则232234a aa a +≤⎧⎪+≥⎨⎪<⎩,∴1≤a 43<,综上,实数a 的取值范围为(﹣∞,43).22.(1)3a ≥; (2)2a <.【分析】(1)解一元二次不等式求集合B ,由题设有B A ⊆可得12{215a a -≤-+≥求范围即可. (2)由题设有A B ⊆,讨论A =∅、A ≠∅求a 的取值范围. (1)由2310x x -<,有2310(5)(2)0x x x x --=-+<,解得25x -<<, ∴{|25}B x x =-<<,又{}121A x a x a =-≤≤+, 由题设,易知B A ⊆,则12{215a a -≤-+≥,解得3a ≥.(2)由题设,A B ⊆,当A =∅时,121a a ->+,可得0a <; 当A ≠∅时,12112215a a a a -≤+⎧⎪->-⎨⎪+<⎩,可得02a ≤<;综上,2a <.。
完整版第一章集合单元测试题

会集一、填空题:1.已知全集 U={0 ,2,4,6,8,10} ,会集 A={2 ,4,6} ,B={1} ,则U A∪ B= ____________2.以下关系中正确的有 ________________________① 0∈ {0} ,②Φ{0} ,③ {0 , 1}{ (0,1)} ,④ { ( a, b)} ={ (b,a)}3.方程组x2 y4的解集为 _________________________ 2x y3( A){2,1}(B){1,2}(C)(,)(D)(,)x2{ 2 1 } 2 14.函数y=|-6x|的单调增区间为,单调减区间为____________________________________5.某学生从家里去学校上学,骑自行车一段时间,因自行车爆胎,今后推车步行,以以下图中横轴表示出发后的时间,纵轴表示该生离学校的距离,则较切合该学生走法的图是d d d dd0d00d dO t0tO0tO0tO0tt t t( A)( B)( C)( D)x 1 (x0).已知 f (x)=(x0) ,则f[f (-)=________________.6 2 ]0(x0)7.已知 M={x|2≤x≤5},N={x| a+1≤x≤2a 1} ,若 M N,则 a∈________________,若 M N,则 a∈________________8.函数 y=|x+1|+|x-2|的最小值为__________9.若函数 y=2x2 -ax-1 在区间 (- ∞ ,1] 上单调递减,则 a 的取值范围是 ________________ 10.二、解答题:11、已知 A={1 ,2,x2-5x+9} ,B={3 ,x2+ ax+a} ,假如 A={1 ,2,3} , 2 ∈B,务实数 a 的值 .17.已知会集 A { x | x 2 3x 2 0}, B { x | x 2 2x m 0} 且 A BA, 求 m 的取值范围。
高一数学第一章集合单元测试题

高一数学第一章集合单元测试题(一)班级__________ 学号___________姓名_____________一、选择题1、己知A= {x | x > - 1},那么正确的是 ( )(A )0⊆A (B){0}⊆A (C)A={0} (D)Φ∈A2、设U ={1,2,3,4,5,6,7,8},A={3,4,5},B={1,3,6} 则集合 {2,7,8}是 ( )(A )A B (B )A B(C )(C U A ) (C U B ) (D )(C U A ) (C U B )3、下列四个命题 :①空集没有子集 ②空集是任何一个集合的真子集 ③空集中元素个数为0 ④任一集合必有两个或两个以上的子集。
其中正确的有 ( )(A )0 (B )1 (C )2 (D )34、设A={y | y = -1 + x –2 x 2} ,若m∈A 则必有 ( ) (A )m∈{正有理数} (B )m ∈{负有理数} (C )m ∈{正实数} (D )m ∈{负实数}5、已知=>+-==M C x x x M R U U 则},044{,2( )(A ) R (B )Φ (C ) {2} (D ) {0}6、已知全集},4{},,2{,+++∈==∈===N n n x x B N n n x x A N U 则(A) B A U = (B) B A C U U =(C) )(B C A U U = (D) )()(B C A C U U U =7、已知集合N M y x y x N y x y x M 那么}4),{(},2),{(=-==+=为( )(A)1,3-==y x (B) (3,-1) (C) {3,-1} (D) {(3,-1)}8、已知集合}1{},3,2,1{==A B A 则B 的子集最多可能有( )(A) 5个 (B) 6个 (C) 7个 (D) 8个9、已知},,1{},4,3,2,1{A x x y y B A ∈-===则{0}与B 的关系是( )(A) B ∈}0{ (B) B ⊂}0{ (C) B ⊄}0{ (D) B ⊇}0{10、已知},,14{},,1{22+∈+-==∈+==N m m m x x Q N n n x x P 则P 与Q 的关系是( )(A) Q P = (B) Q P ⊂ (C) P Q ⊂ (D)以上答案都不对11、已知则},,1{},,1{22R x x y y N R x x y y M ∈+-==∈+== N M 是( )(A) {0,1} (B) {(0,1)} (C) {1} (D)C 以上答案均不对12、符合条件{a ,b ,c} ⊆ P ⊆ {a ,b ,c ,d ,e}的集合P 的个数是( )(A )2 (B )3 (C )4 (D )8二、填空题13、{(1,2),(-3,4)}的所有真子集是 ;14、设直线的32+=x y 点集为P =___________________,则点(2,7)与P 的关系为(2,7)____ P15、已知},{b a P =又P 的所有子集组成集合Q ,用列举法表示Q ,则Q =_____________________16、如图所示,阴影部分表示的集合为17、已知,.,},3),{(},12),{(B a A a x y y x B x y y x A ∈∈+==-==则______=a18、若},,34{},,42{22R b b b y y B R a a a x x A ∈+-==∈++==试确定A 与B 的关系为 __________.三、解答题19、已知B A b b B a a A ==++=若},,1{},21,1,1{2,求b a ,20、已知,}1{},62{P Q a x a x Q x x P ⊆+≤≤=≤≤=若求a 的范围21、已知集合},02{2=+-=k x x x P 若集合P 中的元素少于两个,求.k22、已知全集}4{≤=x x U 集合},33{},32{≤<-=<<-=x x B x x A 求B A C B A C B A U U )(),(,23、设A 是数集,满足A a ∈时,必有A a∈-11, (1)若A ∈2,问:①A 中至少有几个元素?并把它列举出来? ② A 中还可以有其它元素吗?(2)若A 中只能有一个元素且A ∉2,实数a 是否存在?。
高一数学第一章集合单元测试卷

高一数学集合单元测试卷(时间45分钟 满分100分) 一、选择题(每小题有且只有一个正确答案,8×4分=32分) 1.下列各项中不能组成集合的是 ( ) A .所有正三角形 B .《数学》教材中所有的习题 C .所有数学难题 D .所有无理数 2.若集合M =}{6|≤x x ,a =5,则下面结论中正确的是 ( ) A .}{M a ⊆ B .M a ⊆ C .}{M a ∈ D .M a ∉ 3.设集合S ={0,1,2,3,4},集合A ={1,2,3},集合B ={2,3},则 ( ) A .B A C S ⊆ B .A C B C S S ⊆ C .B C A C S S ⊆ D .A C S =B C S 4.已知集合A 中有10个元素,集合B 中有8个元素,集合A ∩B 中共有4个元素,则集合A ∪B 中共有( )个元素 ( ) A . 14 B . 16 C . 18 D .不确定 5.已知a ∈R ,集A =}{1|2=x x 与B =}{1|=ax x 若A B A ⋃=则实数a 所能取值为A .1B .-1C .-1或1D .-1或0或1 ( ) 6.如果集合A ={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 ( ) A .0 B .0 或1 C .1 D .不能确定 7. 满足{1,2,3} ⊆M ⊆{1,2,3,4,5,6}的集合M 的个数是 ( ) A .8 B .7 C .6 D .5 8.集合A ={x |x =2n +1,n ∈Z },B ={y |y =4k ±1,k ∈Z },则A 与B 的关系为 ( ) A .A =B B .A ⊆B C .A =B D .A ≠B 二.填空题(5×4分=20分) 9.集合{}23*<-∈x N x 用列举法表示应是 ; 10.设集合{}12|)(-==x y y x A ,,{}3|)(+==x y y x B ,,则A ∩B = . 11.某班有学生55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中即爱好体育又爱好音乐的有 人.12.已知全集{}{}=∈>-=≤≤-=A C U x x x A x x U U ,则,,31281________.姓名________________班级______________得分__________________ ———————————————————————————————————————————————————三.解答题(4⨯13分=52分)13.设集合A ={2,4,6,8,10},=A C U {1,3,5,7,9},=B C U {1,4,7,9},求集合B .14.若集合{}{}{}213113A x B x A B x ==⋃=,,,,,,,,求满足上述条件的实数x .15.设U ={1,2,3,4,5},若A ∩B ={2},(C U A )∩B ={4},(C U A )∩(C U B )={1,5},求A ,B .16.设集合A ={x |x 2+4x =0},B ={x |x 2+2(a +1)x +a 2-1=0},A ∩B =B ,求实数a 的值.。
高一数学必修1第一章集合与函数的概念单元测试题(含答案)

一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={x|x2+2x=0,x∈R},N={x|x2-2x=0,x∈R},则M∪N=()A.{0} B.{0,2}C.{-2,0} D.{-2,0,2}解析M={x|x(x+2)=0.,x∈R}={0,-2},N={x|x(x-2)=0,x∈R}={0,2},所以M ∪N={-2,0,2}.答案 D2.设f:x→|x|是集合A到集合B的映射,若A={-2,0,2},则A∩B=()A.{0} B.{2}C.{0,2} D.{-2,0}解析依题意,得B={0,2},∴A∩B={0,2}.答案 C3.f(x)是定义在R上的奇函数,f(-3)=2,则下列各点在函数f(x)图象上的是() A.(3,-2) B.(3,2)C.(-3,-2) D.(2,-3)解析∵f(x)是奇函数,∴f(-3)=-f(3).又f(-3)=2,∴f(3)=-2,∴点(3,-2)在函数f(x)的图象上.答案 A4.已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是()A.1 B.3C.5 D.9解析逐个列举可得.x=0,y=0,1,2时,x-y=0,-1,-2;x=1,y=0,1,2时,x-y=1,0,-1;x=2,y=0,1,2时,x-y=2,1,0.根据集合中元素的互异性可知集合B的元素为-2,-1,0,1,2.共5个.答案 C6.设f(x)=x+3(x>10),f(x+5)(x≤10),则f(5)的值为()A.16 B.18C.21 D.24解析f(5)=f(5+5)=f(10)=f(15)=15+3=18.答案 B7.设T={(x,y)|ax+y-3=0},S={(x,y)|x-y-b=0},若S∩T={(2,1)},则a,b的值为()A.a=1,b=-1 B.a=-1,b=1C.a=1,b=1 D.a=-1,b=-1解析依题意可得方程组2a+1-3=0,2-1-b=0,⇒a=1,b=1.答案 C8.已知函数f(x)的定义域为(-1,0),则函数f(2x+1)的定义域为()A.(-1,1) B.-1,-12C.(-1,0) D.12,1解析由-1<2x+1<0,解得-1<x<-12,故函数f(2x+1)的定义域为-1,-12.答案 B9.已知A={0,1},B={-1,0,1},f是从A到B映射的对应关系,则满足f(0)>f(1)的映射有()A.3个B.4个C.5个D.6个解析当f(0)=1时,f(1)的值为0或-1都能满足f(0)>f(1);当f(0)=0时,只有f(1)=-1满足f(0)>f(1);当f(0)=-1时,没有f(1)的值满足f(0)>f(1),故有3个.答案 A10.定义在R上的偶函数f(x)满足:对任意的x1,x2∈(-∞,0](x1≠x2),有(x2-x1)[f(x2)-f(x1)]>0,则当n∈N*时,有()A.f(-n)<f(n-1)<f(n+1)B.f(n-1)<f(-n)<f(n+1)C.f(n+1)<f(-n)<f(n-1)D.f(n+1)<f(n-1)<f(-n)解析由题设知,f(x)在(-∞,0]上是增函数,又f(x)为偶函数,∴f(x)在[0,+∞)上为减函数.∴f(n+1)<f(n)<f(n-1).又f(-n)=f(n),∴f(n+1)<f(-n)<f(n-1).答案 C11.函数f(x)是定义在R上的奇函数,下列说法:①f(0)=0;②若f(x)在[0,+∞)上有最小值为-1,则f(x)在(-∞,0]上有最大值为1;③若f(x)在[1,+∞)上为增函数,则f(x)在(-∞,-1]上为减函数;④若x>0时,f(x)=x2-2x,则x<0时,f(x)=-x2-2x.其中正确说法的个数是()A.1个B.2个C.3个D.4个解析①f(0)=0正确;②也正确;③不正确,奇函数在对称区间上具有相同的单调性;④正确.12.f(x)满足对任意的实数a,b都有f(a+b)=f(a)•f(b)且f(1)=2,则f(2)f(1)+f(4)f(3)+f(6)f(5)+…+f(2014)f(2013)=()A.1006 B.2014C.2012 D.1007解析因为对任意的实数a,b都有f(a+b)=f(a)•f(b)且f(1)=2,由f(2)=f(1)•f(1),得f(2)f(1)=f(1)=2,由f(4)=f(3)•f(1),得f(4)f(3)=f(1)=2,……由f(2014)=f(2013)•f(1),得f(2014)f(2013)=f(1)=2,∴f(2)f(1)+f(4)f(3)+f(6)f(5)+…+f(2014)f(2013)=1007×2=2014.答案 B二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.函数y=x+1x的定义域为________.解析由x+1≥1,x≠0得函数的定义域为{x|x≥-1,且x≠0}.答案{x|x≥-1,且x≠0}14.f(x)=x2+1(x≤0),-2x(x>0),若f(x)=10,则x=________.解析当x≤0时,x2+1=10,∴x2=9,∴x=-3.当x>0时,-2x=10,x=-5(不合题意,舍去).∴x=-3.答案-315.若函数f(x)=(x+a)(bx+2a)(常数a,b∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式f(x)=________.解析f(x)=(x+a)(bx+2a)=bx2+(2a+ab)x+2a2为偶函数,则2a+ab=0,∴a=0,或b=-2.又f(x)的值域为(-∞,4],∴a≠0,b=-2,∴2a2=4.∴f(x)=-2x2+4.答案-2x2+416.在一定范围内,某种产品的购买量y吨与单价x元之间满足一次函数关系,如果购买1000吨,每吨为800元,购买2000吨,每吨为700元,那么客户购买400吨,单价应该是________元.解析设一次函数y=ax+b(a≠0),把x=800,y=1000,和x=700,y=2000,代入求得a=-10,b=9000.∴y=-10x+9000,于是当y=400时,x=860.三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.(1)求A∪B,(∁UA)∩B;(2)若A∩C≠∅,求a的取值范围.解(1)A∪B={x|2≤x≤8}∪{x|1<x<6}={x|1<x≤8}.∁UA={x|x<2,或x>8}.∴(∁UA)∩B={x|1<x<2}.(2)∵A∩C≠∅,∴a<8.18.(本小题满分12分)设函数f(x)=1+x21-x2.(1)求f(x)的定义域;(2)判断f(x)的奇偶性;(3)求证:f1x+f(x)=0.解(1)由解析式知,函数应满足1-x2≠0,即x≠±1.∴函数f(x)的定义域为{x∈R|x≠±1}.(2)由(1)知定义域关于原点对称,f(-x)=1+(-x)21-(-x)2=1+x21-x2=f(x).∴f(x)为偶函数.(3)证明:∵f1x=1+1x21-1x2=x2+1x2-1,f(x)=1+x21-x2,∴f1x+f(x)=x2+1x2-1+1+x21-x2=x2+1x2-1-x2+1x2-1=0.19.(本小题满分12分)已知y=f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2-2x.(1)求当x<0时,f(x)的解析式;(2)作出函数f(x)的图象,并指出其单调区间.解(1)当x<0时,-x>0,∴f(-x)=(-x)2-2(-x)=x2+2x.又f(x)是定义在R上的偶函数,∴f(-x)=f(x).∴当x<0时,f(x)=x2+2x.(2)由(1)知,f(x)=x2-2x(x≥0),x2+2x(x<0).作出f(x)的图象如图所示:由图得函数f(x)的递减区间是(-∞,-1],[0,1].f(x)的递增区间是[-1,0],[1,+∞).20.(本小题满分12分)已知函数f(x)=2x+1x+1,(1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论.(2)求该函数在区间[1,4]上的最大值与最小值.解(1)函数f(x)在[1,+∞)上是增函数.证明如下:任取x1,x2∈[1,+∞),且x1<x2,f(x1)-f(x2)=2x1+1x1+1-2x2+1x2+1=x1-x2(x1+1)(x2+1),∵x1-x2<0,(x1+1)(x2+1)>0,所以f(x1)-f(x2)<0,即f(x1)<f(x2),所以函数f(x)在[1,+∞)上是增函数.(2)由(1)知函数f(x)在[1,4]上是增函数,最大值f(4)=95,最小值f(1)=32.21.(本小题满分12分)已知函数f(x)的定义域为(0,+∞),且f(x)为增函数,f(x•y)=f(x)+f(y).(1)求证:fxy=f(x)-f(y);(2)若f(3)=1,且f(a)>f(a-1)+2,求a的取值范围.解(1)证明:∵f(x)=fxy•y=fxy+f(y),(y≠0)∴fxy=f(x)-f(y).(2)∵f(3)=1,∴f(9)=f(3•3)=f(3)+f(3)=2.∴f(a)>f(a-1)+2=f(a-1)+f(9)=f[9(a-1)].又f(x)在定义域(0,+∞)上为增函数,∴a>0,a-1>0,a>9(a-1),∴1<a<98.22.(本小题满分12分)某商场经销一批进价为每件30元的商品,在市场试销中发现,此商品的销售单价x(元)与日销售量y(件)之间有如下表所示的关系:x 30 40 45 50y 60 30 15 0(1)在所给的坐标图纸中,根据表中提供的数据,描出实数对(x,y)的对应点,并确定y与x的一个函数关系式.(2)设经营此商品的日销售利润为P元,根据上述关系,写出P关于x的函数关系式,并指出销售单价x为多少元时,才能获得最大日销售利润?解(1)由题表作出(30,60),(40,30),(45,15),(50,0)的对应点,它们近似地分布在一条直线上,如图所示.设它们共线于直线y=kx+b,则50k+b=0,45k+b=15,⇒k=-3,b=150.∴y=-3x+150(0≤x≤50,且x∈N*),经检验(30,60),(40,30)也在此直线上.∴所求函数解析式为y=-3x+150(0≤x≤50,且x∈N*).(2)依题意P=y(x-30)=(-3x+150)(x-30)=-3(x-40)2+300.∴当x=40时,P有最大值300,故销售单价为40元时,才能获得最大日销售利润.。
高一数学第1章集合单元测试题

集合单元测试题(时间90分钟;满分150分)一、选择题:(每小题5分;共计60分)1、如果集合{}8,7,6,5,4,3,2,1=U ;{}8,5,2=A ;{}7,5,3,1=B ;那么(A U)B 等于( )(A){}5 (B) {}8,7,6,5,4,3,1 (C) {}8,2 (D) {}7,3,1 2、如果U 是全集;M ;P ;S 是U 的三个子集;则阴影部分所表示的集合为 ( )(A )(M ∩P )∩S ; (B )(M ∩P )∪S ;(C )(M ∩P )∩(C U S ) (D )(M ∩P )∪(C U S )3、已知集合{(,)|2},{(,)|4}M x y x y N x y x y =+==-=;那么集合MN 为( )A 、3,1x y ==-B 、(3,1)-C 、{3,1}-D 、{(3,1)}- 4. 2{4,21,}A a a =--;B={5,1,9},a a --且{9}A B ⋂=;则a 的值是 ( ) A. 3a = B. 3a =- C. 3a =± D. 53a a ==±或2{440,}A x kx x x R =++=∈中只有一个元素;则实数k 的值为 ( )A.0B. 1C. 0或1D. 1k < 6. 集合2{4,,}A y y x x N y N ==-+∈∈的真子集的个数为 ( ) A. 9 B. 8 C. 7 D. 67. 符号{}a ⊂≠{,,}P a b c ⊆的集合P 的个数是 ( ) A. 2 B. 3 C. 4 D. 58. 已知2{1,},{1,}M y y x x R P x x a a R ==-∈==-∈;则集合M 与P 的关系是( )A. M=PB. P R ∈ C . M ⊂≠P D. M ⊃≠P9. 设P 、Q 为两个非空实数集合;定义集合P+Q=},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ; 则P+Q 中元素的个数是( )A .9B .8C .7D .610. 设全集{(,),},I x y x y R =∈集合3{(,)1},{(,)1}2y M x y N x y y x x -===≠+-;那么()()I I C M C N ⋂等于 ( )A. ∅B.{(2,3)}C. (2;3)D. {(,)1}x y y x ≠+ 11. 2{60},{10}A x x x B x mx =+-==+=;且A B A ⋃=;则m 的取值范围是( )A.11{,}32-B. 11{0,,}32--C. 11{0,,}32-D. 11{,}32二、选择题:(每小题5分;满分20分)13. 设集合{=M 小于5的质数};则M 的真子集的个数为 .14. 设{1,2,3,4,5,6,7,8}U =;{3,4,5},{4,7,8}.A B ==则:()()U U C A C B ⋂= ; ()()U U C A C B ⋃= .15. 已知{15},{4}A x x x B x a x a =<->=≤<+或;若A ⊃≠B ;则实数a 的取值范围是 .16. 已知集合22{31},{31}P x x m m T x x n n ==++==-+;有下列判断:①5{}4P T y y ⋂=≥- ②5{}4P T y y ⋃=≥- ③ P T ⋂=∅ ④P T = 其中正确的是 . 三、解答题17. (本题满分15分)已知含有三个元素的集合2{,,1}{,,0},ba a ab a=+求20082007b a +的值.18. (本题满分15分)若集合}10{的正整数小于=S ;S B S A ⊆⊆,;且}8,6,4{)()(},2{},9,1{)(=⋂=⋂=⋂B C A C B A B A C S S S ;求A 和B 。
高中数学必修一 第一章测试题(含答案)

必修一 第一章 集合与简易逻辑单元测试学校:___________姓名:___________班级:___________考号:___________一、单选题 1.已知全集U ={1,2,3,4,5,6,7},A ={2,3,5,7},B ={1,3,6,7},则∁U (A ∩B )=( ) A .{4}B .∅C .{1,2,4,5,6}D .{1,2,3,5,6}2.A ={2,3},B ={x ∈N|x 2−3x <0},则A ∪B =( ) A .{1,2,3}B .{0,1,2,}C .{0,2,3}D .{0,1,2,3}3.下列各组集合表示同一集合的是( ) A .M ={(3,2)},N ={(2,3)} B .M ={(x,y)|x +y =1},N ={y |x +y =1} C .M ={4,5},N ={5,4}D .M ={1,2},N ={(1,2)}4.已知全集U =Z ,集合M ={x|−1<x <2,x ∈Z},N ={−1,0,1,2},则()C U M N ⋂=( ) A .{−1,2}B .{−1,0}C .{0,1}D .{1,2}5.设集合U ={1,2,3,4},M ={1,2,3},N ={2,3},则∁U (M ∩N )=( ) A .{4}B .{1,2}C .{}2,3D .{1,4}6.下列各式中:①{0}∈{0,1,2};②{0,1,2}⊆{2,1,0};③∅⊆{0,1,2};④∅={0};⑤{0,1}={(0,1)};⑥0={0}.正确的个数是( ) A .1B .2C .3D .47.命题“∃x ∈R ,x 2−2x +2≤0”的否定是( ) A .∃x ∈R ,x 2−2x +2≥0 B .∃x ∈R ,2220x x -+> C .∀x ∈R ,2220x x -+>D .∀x ∈R ,x 2−2x +2≤08.王昌龄《从军行》中两句诗为“黄沙百战穿金甲,不破楼兰终不还”,其中后一句中“攻破楼兰”是“返回家乡”的( ) A .充分条件 B .必要条件C .充要条件D .既不充分也不必要条件9.若命题:“∃x ∈R ,使x 2−x −m =0”是真命题,则实数m 的取值范围是( ) A .[−14,0]B .10,4⎡⎤⎢⎥⎣⎦C .1,4⎡⎫-+∞⎪⎢⎣⎭D .1,4⎛⎤-∞ ⎥⎝⎦10.命题“∀x ∈[1,2],x 2-a ≤0”为真命题的一个充分不必要条件是( ) A .a ≥4B .a ≤4C .a ≥5D .a ≤511.已知集合A ={x|ax =x 2},B ={0,1,2},若A ⊆B ,则实数a 的值为( ) A .1或2B .0或1C .0或2D .0或1或212.已知集合A ={x|−2≤x ≤5},B ={x|m +1≤x ≤2m −1}.若B ⊆A ,则实数m 的取值范围为( ) A .m ≥3B .2≤m ≤3C .3m ≤D .m ≥2二、填空题 13.已知集合A ={−1,0,1},B ={0,a,a 2},若A =B ,则a =______.14.已知集合M ={(x,y)|x +y =2}、N ={(x,y)|x −y =4},那么集合M ∩N= 15.“方程220x x a --=没有实数根”的充要条件是________.16.已知A ,B 是两个集合,定义A −B ={x|x ∈A,x ∉B},若A ={x|−1<x <4},B ={x|x >2},则A −B =_______________.三、解答题 17.已知A ={a −1,2a 2+5a +1,a 2+1}, −2∈A ,求实数a 的值.18.已知集合A ={x |−4<x <2},B ={x |x <−5或x >1}.求A ∪B ,A ∩(∁R B ); 19.已知集合U ={1,2,3,4,5,6,7,8,9},A ={x|3≤x ≤7且x ∈U},B ={x|x =3n,n ∈Z 且x ∈U}.(1)写出集合B 的所有子集; (2)求A ∩B ,A ∪∁U B .20.已知全集U =R ,集合A ={x|−1≤x ≤3}. (1)求C U A ;(2)若集合B ={x |2x −a >0},且B ⊆(C U A ),求实数a 的取值范围.21.已知集合{}|123A x a x a =-≤≤+,{}|14B x x =-≤≤,全集U =R .(1)当a=1时,求(C U A)∩B;(2)若“x∈B”是“x∈A”的必要条件,求实数a的取值范围.22.命题p:“∀x∈[1,2],x2+x−a≥0”,命题q:“∃x∈R,x2+3x+2−a=0”.(1)写出命题p的否定命题¬p,并求当命题¬p为真时,实数a的取值范围;(2)若p和q中有且只有一个是真命题,求实数a的取值范围.参考答案:1.C【分析】先求交集,再求补集,即得答案.【详解】因为A={2,3,5,7},B={1,3,6,7},所以A∩B={3,7},A B={1,2,4,5,6}.又全集U={1,2,3,4,5,6,7},所以()U故选:C2.A【分析】根据一元二次不等式的运算求出集合B,再根据并集运算即可求出结果.【详解】因为B={x∈N|x2−3x<0},所以B={1,2},所以A∪B={1,2,3}.故选:A.【点睛】本题主要考查了集合的并集运算,属于基础题.3.C【分析】根据集合的表示法一一判断即可;【详解】解:对于A:集合M={(3,2)}表示含有点(3,2)的集合,N={(2,3)}表示含有点(2,3)的集合,显然不是同一集合,故A错误;对于B:集合M表示的是直线x+y=1上的点组成的集合,集合N=R为数集,故B错误;对于C:集合M、N均表示含有4,5两个元素组成的集合,故是同一集合,故C正确;对于D:集合M表示的是数集,集合N为点集,故D错误;故选:C4.A【解析】根据集合M,求出C U M,然后再根据交集运算即可求出结果.【详解】M={x|−1<x<2,x∈Z}={0,1}∴()C {1,2}U M N ⋂=-. 故选:A.【点睛】本题主要考查集合的交集和补集运算,属于基础题. 5.D【分析】根据交集、补集的定义计算可得;【详解】解:∵集合U ={1,2,3,4},M ={1,2,3},N ={2,3} ∴M ∩N ={2,3}, 则∁U (M ∩N)={1,4}. 故选:D . 6.B【分析】根据相等集合的概念,元素与集合、集合与集合之间的关系,空集的性质判断各项的正误.【详解】∈集合之间只有包含、被包含关系,故错误;②两集合中元素完全相同,它们为同一集合,则{0,1,2}⊆{2,1,0},正确; ③空集是任意集合的子集,故∅⊆{0,1,2},正确; ④空集没有任何元素,故∅≠{0},错误;⑤两个集合所研究的对象不同,故{0,1},{(0,1)}为不同集合,错误; ⑥元素与集合之间只有属于、不属于关系,故错误; ∈∈∈正确. 故选:B. 7.C【分析】根据存在量词命题的否定为全称量词命题判断即可;【详解】解:命题“∃x ∈R ,2220x x -+”为存在量词命题,其否定为:∀x ∈R ,2220x x -+>;故选:C 8.B【分析】“返回家乡”的前提条件是“攻破楼兰”,即可判断出结论. 【详解】“返回家乡”的前提条件是“攻破楼兰”, 故“攻破楼兰”是“返回家乡”的必要不充分条件 故选:B9.C【分析】利用判别式即可得到结果.【详解】∵“∃x∈R,使x2−x−m=0”是真命题,∴Δ=(−1)2+4m≥0,解得m≥−14.故选:C10.C【分析】先要找出命题为真命题的充要条件{a|a≥4},从集合的角度充分不必要条件应为{a|a≥4}的真子集,由选择项不难得出答案【详解】命题“∀x∈[1,2],x2-a≤0”为真命题,可化为∀x∈[1,2],a≥x2恒成立即只需a ≥(x2)max,即命题“∀x∈[1,2],x2-a≤0”为真命题的的充要条件为a≥4,而要找的一个充分不必要条件即为集合{a|a≥4}的真子集,由选择项可知C 符合题意.故选:C11.D【解析】先求出集合A,再根据A⊆B,即可求解.【详解】解:当a=0时,A={0},满足A⊆B,当a≠0时,A{0,a},若A⊆B,∴a=1或a=2,综上所述:a=0,1或a=2.故选:D.12.C【分析】讨论B=∅,B≠∅两种情况,分别计算得到答案.【详解】当B=∅时:m+1>2m−1∴m<2成立;当B≠∅时:{m+1≤2m−1m+1≥−22m−1≤5解得:2≤m≤3.综上所述:3m 故选C【点睛】本题考查了集合的关系,忽略掉空集的情况是容易发生的错误. 13.1-【分析】根据集合相等,元素相同,即可求得a 的值. 【详解】∵集合A ={−1,0,1},B ={0,a,a 2},A =B ,1a ∴=-,a 2=1.故答案是:1-. 14.{(3,1)}-【分析】确定集合中的元素,得出求交集就是由求得方程组的解所得. 【详解】因为M ={(x,y)|x +y =2}、N ={(x,y)|x −y =4}, 所以M ∩N ={(x,y)|{x +y =2x −y =4}={(3,−1)}.故答案为:{(3,1)}-. 15.a <−1【解析】利用判别式求出条件,再由充要条件的定义说明.【详解】解析因为方程220x x a --=没有实数根,所以有440a ∆=+<,解得a <−1,因此“方程220x x a --=没有实数根”的必要条件是a <−1.反之,若a <−1,则Δ<0,方程220x x a --=无实根,从而充分性成立.故“方程220x x a --=没有实数根”的充要条件是“a <−1”. 故答案为:a <−1【点睛】本题考查充要条件,掌握充要条件的定义是解题关键. 16.{x|−1<x ≤2}【分析】根据集合的新定义,结合集合A 、B 求A −B 即可.【详解】由题设,A −B ={x|x ∈A,x ∉B},又A ={x|−1<x <4},B ={x|x >2}, ∴A −B ={x|−1<x ≤2}. 故答案为:{x|−1<x ≤2} 17.−32【分析】由−2∈A ,有a −1=−2,或2a 2+5a +1=−2,显然a 2+1≠−2,解方程求出实数a 的值,但要注意集合元素的互异性.【详解】因为−2∈A ,所以有a −1=−2,或2a 2+5a +1=−2,显然a 2+1≠−2, 当a −1=−2时,a =−1,此时a −1=2a 2+5a +1=−2不符合集合元素的互异性,故舍去;当2a2+5a+1=−2时,解得a=−32,a=−1由上可知不符合集合元素的互异性,舍去,故a=−32.【点睛】本题考查了元素与集合之间的关系,考查了集合元素的互异性,考查了解方程、分类讨论思想.18.A∪B={x|x<−5或x>−4};A∩(∁R B)={x|−4<x≤1}【分析】由并集、补集和交集定义直接求解即可.【详解】由并集定义知:A∪B={x|x<−5或x>−4};∵∁R B={x|−5≤x≤1},∴A∩(∁R B)={x|−4<x≤1}.19.(1)∅,{3},{6},{9},{3,6},{3,9},{}6,9,{3,6,9};(2)A∩B={3,6},A∪∁U B={1,2,3,4,5,6,7,8}.【分析】(1)根据题意写出集合B,然后根据子集的定义写出集合B的子集;(2)求出集合A,利用交集的定义求出集合A∩B,利用补集和并集的定义求出集合A∪∁U B.【详解】(1)∵B={x|x=3n,n∈Z且x∈U},∴B={3,6,9},因此,B的子集有:∅,{3},{6},{9},{3,6},{3,9},{}6,9,{3,6,9};(2)由(1)知B={3,6,9},则∁U B={1,2,4,5,7,8},∵A={x|3≤x≤7且x∈U}={3,4,5,6,7},因此,A∩B={3,6},A∪∁U B={1,2,3,4,5,6,7,8}.【点睛】本题考查有限集合的子集,以及补集、交集和并集的运算,考查计算能力,属于基础题.20.(1) {x|x>3或x<−1};(2) a≥6.【分析】(1)利用数轴,根据补集的定义直接求出C U A;(2)解不等式化简集合B的表示,利用数轴根据B⊆(C U A),可得到不等式,解这个不等式即可求出实数a的取值范围.【详解】(1)因为集合A={x|−1≤x≤3}.所以C U A={x|x>3或x<−1};(2) B={x|2x−a>0}={x|x>a2}.因为B⊆(C U A),所以有362aa≤⇒≥.【点睛】本题考查了补集的定义,考查了已知集合的关系求参数问题,运用数轴是解题的关键. 21.(1)(C U A)∩B={x|−1≤x<0}(2)a <−4或0≤a ≤12【分析】(1)根据补集与交集的运算性质运算即可得出答案.(2)若“x ∈B ”是“x ∈A ”的必要条件等价于A ⊆B .讨论A 是否为空集,即可求出实数a 的取值范围.(1)当a =1时,集合{}|05A x x =≤≤,C U A ={x|x <0或x >5}, (C U A)∩B ={x|−1≤x <0}.(2)若“x ∈B ”是“x ∈A ”的必要条件,则A ⊆B , ①当A =∅时,a −1>2a +3,∴a <−4;②A ≠∅,则a ≥−4且a −1≥−1,2a +3≤4,∴0≤a ≤12. 综上所述,a <−4或0≤a ≤12. 22.(1)a >2 (2)a >2或a <−14【分析】(1)根据全称命题的否定形式写出¬p ,当命题¬p 为真时,可转化为(x 2+x −a)min ,当x ∈[1,2],利用二次函数的性质求解即可;(2)由(1)可得p 为真命题时a 的取值范围,再求解q 为真命题时a 的取值范围,分p 真和q 假,p 假和q 真两种情况讨论,求解即可 (1)由题意,命题p :“∀x ∈[1,2],x 2+x −a ≥0”,根据全称命题的否定形式,¬p :“∃x ∈[1,2],x 2+x −a <0” 当命题¬p 为真时,(x 2+x −a)min ,当x ∈[1,2]二次函数y =x 2+x −a 为开口向上的二次函数,对称轴为x =−12 故当x =1时,函数取得最小值,即(x 2+x −a)min 故实数a 的取值范围是a >2 (2)由(1)若p 为真命题a ≤2,若p 为假命题a >2 若命题q :“∃x ∈R ,x 2+3x +2−a =0” 为真命题 则Δ=9−4(2−a)≥0,解得14a ≥-故若q 为假命题a <−14由题意,p 和q 中有且只有一个是真命题, 当p 真和q 假时,a ≤2且a <−14,故a <−14; 当p 假和q 真时,a >2且14a ≥-,故a >2;综上:实数a 的取值范围是a >2或a <−14。
人教A版数学必修一第一章《集合》单元测试卷.docx

& 鑫达捷致力于精品文档 精心制作仅供参考 &鑫达捷必修一第一章《集合》单元测试卷一、选择题:(共12小题,每小题5分,合计60分)1.方程组⎩⎨⎧-=-=+13y x y x ,的解集不可表示为( )A.()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎩⎨⎧-=-=+13,y x y x y xB.()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎩⎨⎧==21,y x y xC.{1,2}D.{(1,2)} 2.若A ={0,2,4,6},B ={0,3,6,9},则A ∩B=( )A .{0}B .{6}C .{0,6}D .{0,3,6} 3.已知集合A ={x |-3≤x <3},B ={ x |2<x ≤5},则A ∪B =( ) A .{ x |2<x <3} B .{ x |-3≤x ≤5} C .{ x |-3<x <5} D .{ x |-3<x ≤5}4.设集合U ={1,2,3,4,5,6,7},M ={1,2,4,7},则 U M ð=( ) A .U B .{1,3,5} C .{3,5,6} D .{2,4,6}5.已知I ={0,1,2,3,4,5,6,7,8},M ={1,2,4,5},N ={0,3,5,7},则()I M N U ð=( ) A.{6,8} B.{5,7} C.{4,6,7} D.{1,3,5,6,8}6.已知集合{}20,,33A m m m =-+且1A ∈,则实数m 的值为( )A.2B.1 C .1或2 D.0,1,2均可 7若{1,2,3}⊆ A ⊆{1,2,3,4,5},则集合A 的个数为( ) A .2 B .3 C .4 D .58.已知集合A ={x |x 2-3x +2=0,x ∈R},B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A.1B.2C.3D.4 9.已知集合A={2,9},B={m 2,2},若A=B,则实数m 的值为 ( ) A.3 B.-3 C.9 D.±3 10.已知集合P ={1,3},则满足P ∪Q ={1,2,3,4}的集合Q 的个数是( ) A.1 B.2 C.3 D.411.已知全集R U =,{}{}1,0)3(-<=<+=x x M x x x N ,则图中阴影部分表示的集合是( )A.{}13-<<-x x B.{}03<<-x xC.{}01<≤-x x D.{}3-<x12.已知集合A ={x |a -1≤x ≤a +2},B ={x |3<x <5},则能使A ⊇B 成立的实数a 的取值范围是( ) A .{a |3<a ≤4} B .{a |3≤a ≤4} C .{a |3<a <4} D .∅ 二、填空题(共4小题,每小题5分,合计20分)13.已知集合{}{}2104M x x ,N x x ,=+≥=<则M N =I ____.14.已知全集{}2,1,0,1,2,3U =--,{}1,0,1,3M =-,{}2,0,2,3N =-,则(∁U M )N I 为____. 15.设集合{}1,2,4A =,集合{},,B x x a b a A b A ==+∈∈,则集合B 中有___个元素16.含有三个实数的集合既可表示成,,1b a a ⎧⎫⎨⎬⎩⎭,又可表示成{}2,,0a a b +,则20172018a b += .三、解答题(每题10分,合计40分)17.已知集合2{|2390}A x N x x =∈--<,{101}B =-,, 2{|320}C x x x =-+= 求A B I ,()A B C I U ,()Z C A C I .18.已知集合2{|0}A x ax ax =-= 中有且只有一个元素,求 实数a 的取值范围.19.已知集合P ={x |x 2+4x +3=0},Q ={x |x 2+6x +a =0},若P ∪Q =P ,求实数a 的取值范围.20.已知集合2{|340}A x x x =--> ,{|3}B x a x a =≤≤+ 且A B A =U ,求实数a 的取值范围.。
高中数学 第一章 集合与常用逻辑用语单元测试卷精品练习(含解析)新人教A版必修第一册-新人教A版高一

第一章单元测试卷一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中只有一个是符合题目要求的)1.已知集合A ={-1,0,1,2},B ={x |0≤x <2},则A ∩B =( ) A .{-1,0,1} B .{0,1,2} C .{0,1} D .{1,2}2.已知集合A ={1,2,3,4},B ={y |y =3x -2,x ∈A },则A ∩B =( ) A .{1} B .{4} C .{1,3} D .{1,4}3.命题“∃x 0∈(0,+∞),x 20+1≤2x 0”的否定为( ) A .∀x ∈(0,+∞),x 2+1>2x B .∀x ∈(0,+∞),x 2+1≤2x C .∀x ∈(-∞,0],x 2+1≤2x D .∀x ∈(-∞,0],x 2+1>2x4.集合A ={(x ,y )|y =3x -2},B ={(x ,y )|y =x +4},则A ∩B =( ) A .{3,7} B .{(3,7)} C .(3,7) D .{x =3,y =7}5.已知全集U ={0,1,2,3},∁U A ={0,2},则集合A 的真子集共有( ) A .3个 B .4个 C .5个 D .6个6.设x ∈R ,则“x >1”是“x 3>1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件7.已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值X 围是( ) A .{a |a ≤-1} B .{a |a ≥1}C .{a |-1≤a ≤1} D.{a |a ≤-1或a ≥1}8.已知a ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a,1={a 2,a +b,0},则a 2 019+b 2 019的值为( )A .1B .0C .-1D .±1二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.下面四个说法中错误的是( )18.(本小题满分12分)已知集合A={x|-2<x<4},B={x|-1<x≤5},U=R.(1)求A∩B,A∪B;(2)求(∁R A)∩B.19.(本小题满分12分)设集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.(1)若A={x∈Z|-2≤x≤5},求A的非空真子集的个数;(2)若A∩B=B,某某数m的取值X围.20.(本小题满分12分)设集合A={x|x2-3x+2=0},B={x|ax=1}.“x∈B”是“x∈A”的充分不必要条件,试求满足条件的实数a组成的集合.21.(本小题满分12分)是否存在实数p,使“4x+p<0”是“x2-x-2>0”的充分条件?如果存在,求出p的取值X围.22.(本小题满分12分)设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}.(1)若-1∈B,求a的值;(2)若B⊆A,求a的值.第一章单元测试卷1.解析:A ={-1,0,1,2},B ={x |0≤x <2},∴A ∩B ={0,1}.故选C. 答案:C2.解析:由题意得,B ={1,4,7,10},所以A ∩B ={1,4}. 答案:D3.解析:由存在量词命题的否定为全称量词命题,可得命题“∃x 0∈(0,+∞),x 20+1≤2x 0”的否定为“∀x ∈(0,+∞),x 2+1>2x ”,故选A.答案:A4.解析:联立A 与B 中方程得:⎩⎪⎨⎪⎧y =3x -2,y =x +4,消去y 得:3x -2=x +4,解得:x =3, 把x =3代入得:y =9-2=7,∴方程组的解为⎩⎪⎨⎪⎧x =3,y =7,∵A ={(x ,y )|y =3x -2},B ={(x ,y )|y =x +4}, ∴A ∩B ={(3,7)},故选B. 答案:B5.解析:全集U ={0,1,2,3},∁U A ={0,2},则A ={1,3},故集合A 的真子集共有22-1=3个.故选A.答案:A6.解析:∵x >1,∴x 3>1.又x 3-1>0,即(x -1)(x 2+x +1)>0,解得x >1,∴“x >1”是“x 3>1”的充要条件,故选C.答案:C7.解析:由P ∪M =P ,可知M ⊆P ,即a ∈P ,因为集合P ={x |-1≤x ≤1},所以-1≤a ≤1. 答案:C8.解析:∵ba为分式,∴a ≠0,∵⎩⎨⎧⎭⎬⎫a ,b a,1={a 2,a +b,0},∴b a=0,即b =0,∴{a,0,1}={a 2,a,0},∴当⎩⎪⎨⎪⎧a 2=1,a =a 时,a =-1或a =1,当a =1时,即得集合{1,0,1},不符合元素的互异性,故舍去,当a =-1时,即得集合{-1,0,1},满足.当⎩⎪⎨⎪⎧a =1a 2=a 时,a =1,即得集合{1,0,1},不符合元素的互异性,故舍去,综上,a =-1, b =0.∴a2 019+b2 019=(-1)2 019+02 019=-1,故选C.答案:C9.解析:10以内的质数组成的集合是{2,3,5,7},故A 正确;由集合中元素的无序性知{1,2,3}和{3,1,2}表示同一集合,故B 正确;方程x 2-2x +1=0的所有解组成的集合是{1},故C 错误;由集合的表示方法知0不是集合,故D 错误.故选CD.答案:CD10.解析:∵A ⊆B ,A ⊆C ,B ={2,0,1,8},C ={1,9,3,8}, ∴B ∩C ={1,8}∴A ⊆(B ∩C )⇒A ⊆(1,8),故选AC. 答案:AC11.解析:根据venn 图,可直接得出结果.由venn 图可知,ABCD 都是充要条件.故选ABCD. 答案:ABCD12.解析:A 中,-1∈B,1∈B ,但是-1-1=-2∉B ,B 不是“完美集”,故A 说法不正确;B 中,有理数集满足“完美集”的定义,故B 说法正确;C 中,0∈A ,x 、y ∈A ,∴0-y =-y ∈A ,那么x -(-y )=x +y ∈A ,故C 说法正确;D 中,对任意一个“完美集”A ,任取x 、y ∈A ,若x 、y 中有0或1时,显然xy ∈A ,若x 、y 均不为0、1,而1xy =12xy +12xy=1x +y2-x 2-y2+1x +y2-x 2-y2,x 、x -1∈A ,那么1x -1-1x =1x x -1∈A ,∴x (x -1)∈A ,进而x (x -1)+x =x 2∈A .同理,y 2∈A ,则x 2+y 2∈A ,(x +y )2∈A , ∴2xy =(x +y )2-(x 2+y 2)∈A .∴1x +y2-x 2-y2∈A ,结合前面的算式,知xy ∈A ,故D 说法正确;故选:BCD. 答案:BCD13.解析:因为A ={x |-1<x <2},B ={x |x >0},所以A ∩B ={x |0<x <2},(∁R B )∪A ={x |x <2}.答案:{x |0<x <2} {x |x <2} 14.答案:必要不充分15.解析:因为集合A ={m +2,2m 2+m },且3∈A ,所以⎩⎪⎨⎪⎧m +2=3,2m 2+m ≠3,或⎩⎪⎨⎪⎧2m 2+m =3,m +2≠3.解得m =-32.答案:-3216.解析:由M ∪N =M 得N ⊆M ,当N =∅时,2t +1≤2-t ,即t ≤13,此时M ∪N =M 成立.当N ≠∅时,由下图可得⎩⎪⎨⎪⎧2-t <2t +1,2t +1≤5,2-t ≥-2,解得13<t ≤2.综上可知,实数t 的取值X 围是{t |t ≤2}. 答案:{t |t ≤2}17.解析:(1)由于命题中含有全称量词“任意的”,因而是全称量词命题;又由于“任意的”的否定为“存在一个”,因此,綈p :存在一个x ∈R ,使x 2+x +1≠0成立,即“∃x ∈R ,使x 2+x +1≠0成立”;(2)由于“∃x ∈R ”表示存在一个实数x ,即命题中含有存在量词“存在一个”,因而是存在量词命题;又由于“存在一个”的否定为“任意一个”,因此,綈p :对任意一个x 都有x 2+2x +5≤0,即“∀x ∈R ,x 2+2x +5≤0”. 18.解析:(1)由题意,集合A ={x |-2<x <4},B ={x |-1<x ≤5}, 所以A ∩B ={x |-1<x <4},A ∪B ={x |-2<x ≤5}.(2)由题意,可得∁R A ={x |x ≤-2或x ≥4},所以(∁R A )∩B ={x |4≤x ≤5}.19.解析:(1)∵A ={-2,-1,0,1,2,3,4,5},∴A 的非空真子集有28-2=254(个). (2)∵A ∩B =B ,∴B ⊆A .当B =∅时,m +1>2m -1,∴m <2;当B ≠∅时,⎩⎪⎨⎪⎧m +1≤2m -1,m +1≥-2,2m -1≤5,∴⎩⎪⎨⎪⎧m ≥2,m ≥-3,m ≤3,∴2≤m ≤3.综上可知,实数m 的取值X 围是{m |m ≤3}. 20.解析:∵A ={x |x 2-3x +2=0}={1,2}, 又“x ∈B ”是“x ∈A ”的充分不必要条件,∴B A .当B =∅时,得a =0;当B ≠∅时,由题意得B ={1}或B ={2}. 则当B ={1}时,得a =1;当B ={2}时,得a =12.综上所述,实数a 组成的集合是⎩⎨⎧⎭⎬⎫0,1,12.21.解析:x 2-x -2>0的解集是{x |x >2或x <-1}, 由4x +p <0得x <-p4.要想使x <-p4时,x >2或x <-1成立,必须有-p4≤-1,即p ≥4.所以p ≥4时,“4x +p <0”是“x 2-x -2>0”的充分条件.22.解析:(1)由题意,因为-1∈B ,即x =-1是方程x 2+2(a +1)x +a 2-1=0的根, 可得1-2(a +1)+a 2-1=0,即a 2-2a -2=0,解得a =1±3; (2)由题意,集合A ={x |x 2+4x =0}={0,-4},因为B ⊆A ,可得①当B =∅时,则Δ=4(a +1)2-4(a 2-1)<0,解得a <-1; ②当B ={0}或{-4}时,则Δ=4(a +1)2-4(a 2-1)=0,解得a =-1, 此时B ={x |x 2=0}={0}满足题意;③当B ={0,-4}时,则⎩⎪⎨⎪⎧-2a +1=-4a 2-1=0,解得a =1,综上可得,a =1或a ≤-1.。
新课程北师大版高中数学必修1第一章《集合》单元测试题(含解答)

高中数学必修1第一章《集合》单元测试题一、选择题(本大题共12小题,每小题5分,共60分)1.设集合A ={}|12,x x x N -<≤∈,集合B ={}3,2,则A B 等于 ( )A.{}1,2,3B.{}0,1,2,3C.{}2D.{}1,0,1,2,3-2.设集合U ={}1,2,3,4,5,A {}1,2,3=,B {}2,3,4=,则U (A B )等于 ( )A.{}2,3B.{}1,4,5C.{}4,5D.{}1,53.设全集U ={}1,3,5,7,集合M ={}1,|5|a -,M ⊆U ,U M ={}5,7,则a 的值为( )A.2或-8B.-8或-2C.-2或8D.2或84.满足M ⊆{}1234,,,a a a a ,且M {}{}12312,,,a a a a a =的集合M 的个数是 ( )A.1B.2C.3D.45.已知全集U =R ,集合A ={x |-2≤x ≤3},B ={x |x <-1或x >4},那么集合A ∩(u B )等于( )A.{}|24x x -≤<B. {}|34x x x ≤≥或C. {}|21x x -≤<-D. {}|13x x -≤≤6.设集合S ={x |15x x <->或},T ={x |a <x <a +8}, S ∪T =R ,则a 的取值范围是( )A. -3<a <-1B. -3≤a ≤-1C. a ≤-3或a ≥-1D. a <-3或a >-17.已知U =R ,A ={x |x >0},B ={x |x ≤-1},则(A ∩U B )∪(BU A )等于 ( ) A.∅ B.{x |x ≤0} C.{x |x >-1} D.{x |x >0或x ≤-1}8. 已知集合 },61|{Z m m x x M ∈+==,},312|{Z n n x x N ∈-==, =P x x |{+=2p },61Z p ∈,则P N M ,,的关系 ( ) A .N M =P B .M P N = C .M N P D . N P M9.设全集U =R ,集合M ={x |x ≤1或x ≥3},集合P ={}|1,R x k x k k <<+∈,且 U M P ≠∅,则实数k 的取值范围是 ( )A.k <0或k >3B.1<k <2C.0<k <3D.-1<k <310.定义集合运算:A *B ={}|,,.z z xy x A y B =∈∈设A ={},2,1B {},2,0=则集合 A *B 的所有元素之和为 ( )A.0 B.2 C.3 D.611.设U 为全集,非空集合A 、B 满足A B ,则下列集合为空集的是 ( )A.A BB.A ( U B )C.B ( U A )D.(U A ) (U B )12. 下面关于集合的表示正确的个数是 ( )①}2,3{}3,2{≠;②}1|{}1|),{(=+==+y x y y x y x ;③}1|{>x x =}1|{>y y ; ④}1|{}1|{=+==+y x y y x x ; A .0 B .1 C .2 D .3二、填空题(本大题共4小题,每小题5分,共20分)13.已知A ={a +2,(a +1)2,a 2+3a +3},若1∈A ,则a = ;14.集合P =(){},0x y x y +=,Q =(){},2x y x y -=,则P ∩Q = ;15.已知集合A =126x NN x ⎧⎫∈∈⎨⎬-⎩⎭,用列举法表示集合A = ; 16.设P 是一个数集,且至少含有两个数.若对任意a 、b ∈P ,都有a +b 、a -b 、ab 、a b∈P (除数b ≠0),则称P 是一个数域。
人教版高一上学期数学第一章《集合》单元测试卷

个数为( )
A.1
B.2
C.3
D.4
7.(5 分)已知集合 A={x|x<a},B={x|x2﹣3x+2<0},若 A∩B=B,则实数 a 的取值范围是( )
A.(﹣∞,1]
B.(﹣∞,1)
C.[2,+∞)
ቤተ መጻሕፍቲ ባይዱ
D.(2,+∞)
8.(5 分)已知集合 A={x|x2﹣2tx+t+6=0},B={x|x<0},若 A∩B≠∅,则实数 t 的取值范围是( )
A.0
B.1
C.2
D.0 或 1 或 2
10.(5 分)已知 A={x|2x2﹣ax+b=0},B={x|6x2+(a+2)x+5+b=0},且
,则 A∪B 中的元素
是( )
第 1页(共 2页)
A.﹣4
B.1
C.
D.
11.(5 分)已知集合 A={x∈Z|x2﹣x﹣2≥0},则∁ZA 中的元素是( )
20.已知集合 A={x∈R|ax2﹣3x﹣4=0}. (1)若 A 中有两个元素,求实数 a 的取值范围; (2)若 A 中至多有一个元素,求实数 a 的取值范围.
21.设集合 A={x|x2+4x=0},B={x|x2+2(a+1)x+a2﹣1=0}. (1)若 A∩B=B,求实数 a 的值; (2)若 A∪B=B,求实数 a 的值.
A.(﹣6,﹣2) B.[﹣6,﹣2]
C.(﹣∞,﹣2] D.(﹣∞,﹣6]
二、多项选择题:(本题共 4 小题,每小题 5 分,共 20 分。在每小题给出的选项中,有多项符合题目要求。
全部选对的得 5 分,有选错的得 0 分,部分选对的得 3 分。)
苏教版数学必修一《第1章集合》单元测试(附详细答案)

(时间:120分钟;满分:160分)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填在题中横线上)1.下列六个关系式:①{a ,b }⊆{b ,a };②{a ,b }={b ,a };③{0}=∅;④0∈{0};⑤∅∈{0};⑥∅⊆{0}.其中正确的个数为________.解析:①②④⑥是正确的.答案:42.下列各对象可以组成集合的是________.①与1非常接近的全体实数;②某校2013~2014学年度第一学期全体高一学生;③高一年级视力比较好的同学;④与无理数π相差很小的全体实数.解析:据集合的概念判断,只有②可以组成集合.答案:②3.已知全集U ={-1,0,1,2},集合A ={-1,2},B ={0,2},则(∁U A )∩B =________.解析:∁U A ={0,1},故(∁U A )∩B ={0}.答案:{0}4.集合A ={0,2,a },B ={1,a 2}.若A ∪B ={0,1,2,4,16},则a 的值为________.解析:∵A ∪B ={0,1,2,a ,a 2},又A ∪B ={0,1,2,4,6},∴{a ,a 2}={4,16},∴a =4.答案:45.设集合A ={-1,4,8},B ={-1,a +2,a 2+4},若A =B ,则实数a 的值为________.解析:∵A =B ,∴①⎩⎨⎧a +2=4a 2+4=8或②⎩⎨⎧a +2=8a 2+4=4, 由①得a =2,此时B ={-1,4,8}满足题意,②无解,∴a =2.答案:26.已知集合A ={3,m 2},B ={-1,3,2m -1},若A ⊆B ,则实数m 的值为________.解析:∵A ⊆B ,∴A 中元素都是B 的元素,即m 2=2m -1,解得m =1.答案:17.若集合A ={x |x ≥3},B ={x |x <m }满足A ∪B =R ,A ∩B =∅,则实数m =________.解析:结合数轴知,当且仅当m =3时满足A ∪B =R ,A ∩B =∅.答案:38.设集合A ={1,4,x },B ={1,x 2},且A ∪B ={1,4,x },则满足条件的实数x 的个数是________. 解析:由题意知x 2=4或x 2=x ,所以x =0,1,2,-2,经检验知x =0,2,-2符合题意,x =1不符合题意,故有3个.答案:39.已知集合M ⊆{4,7,8},且M 中至多有一个偶数,则这样的集合共有________个.解析:M 可以为∅,{4},{4,7},{8},{8,7},{7}.答案:610.已知集合A ={x |y = 1-x 2,x ∈Z },B ={y |y =x 2+1,x ∈A },则A ∩B 为________.解析:由1-x 2≥0得,-1≤x ≤1,∵x ∈Z ,∴A ={-1,0,1}.当x ∈A 时,y =x 2+1∈{2,1},即B ={1,2},∴A ∩B ={1}.答案:{1}11.集合P ={(x ,y )|x +y =0},Q ={(x ,y )|x -y =2},则P ∩Q =________.解析:P∩Q={(x ,y )|⎩⎨⎧x +y =0,x -y =2,}={(x ,y )|⎩⎨⎧x =1,y =-1,}={(1,-1)}. 答案:{(1,-1)}12.设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P,且x ∉Q},若P ={1,2,3,4},Q ={x |x +12<2,x ∈R },则P -Q =________.解析:由定义P -Q ={x |x ∈P,且x ∉Q},求P -Q 可检验P ={1,2,3,4}中的元素在不在Q ={x |x +12<2,x ∈R }中,所有在P 中不在Q 中的元素即为P -Q 中的元素,故P -Q ={4}. 答案:{4}13.设P 、Q 为两个非空实数集合,定义集合P*Q ={z |z =ab ,a ∈P ,b ∈Q},若P ={-1,0,1},Q ={-2,2},则集合P*Q 中元素的个数是________.解析:按P*Q 的定义,P*Q 中元素为2,-2,0,共3个.答案:314.设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A 且k +1∉A ,那么k 是A 的一个“孤立元”,给定S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.解析:不含“孤立元”的集合就是在集合中有与k 相邻的元素,故符合题意的集合有:{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8},共6个.答案:6二、解答题(本大题共6小题,共90分,解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分14分)已知全集U =R ,A ={x |2≤x <5},集合B ={x |3<x <9}.求(1)∁U (A ∪B );(2)A ∩∁U B .解:(1)∵A ∪B ={x |2≤x <9},∴∁U (A ∪B )={x |x <2或x ≥9}.(2)∵∁U B ={x |x ≤3或x ≥9},∴A ∩∁U B ={x |2≤x ≤3}.16.(本小题满分14分)设全集U ={2,4,-(a -3)2},集合A ={2,a 2-a +2},若∁U A ={-1},求实数a 的值.解:由∁U A ={-1},可得⎩⎨⎧-1∈U ,-1∉A , 所以⎩⎨⎧-(a -3)2=-1,a 2-a +2≠-1,解得a =4或a =2. 当a =2时,A ={2,4},满足A ⊆U ,符合题意;当a =4时,A ={2,14},不满足A ⊆U ,故舍去.综上,a 的值为2.17.(本小题满分14分)已知集合A ={x |x 2-3x -10≤0},集合B ={x |p +1≤x ≤2p -1}.若B ⊆A ,求实数p 的取值范围.解:由x 2-3x -10≤0得-2≤x ≤5,故A ={x |-2≤x ≤5}.①当B ≠∅时,即p +1≤2p -1⇒p ≥2.由B ⊆A 得:-2≤p +1且2p -1≤5,解得-3≤p ≤3.∴2≤p ≤3.②当B =∅时,即p +1>2p -1⇒p <2.由①②得p 的取值范围是p ≤3.18.(本小题满分16分)已知集合A ={x ∈R |ax 2-3x +2=0,a ∈R }.(1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值;(3)若A 中至多只有一个元素,求a 的取值范围.解:(1)若A 是空集,则方程ax 2-3x +2=0没有根,则a ≠0且Δ=9-8a <0,即a >98. (2)若A 中只有一个元素,则方程ax 2-3x +2=0有一个根,①当a ≠0且Δ=9-8a =0时,则a =98; ②当a =0时,方程为-3x +2=0,只有一个根.综上,a =0或98. (3)若A 中至多只有一个元素,则A 是空集或A 只有一个元素,故a =0或a ≥98. 19.(本小题满分16分)某班50名学生中,会讲英语的有36人,会讲日语的有20人,既会讲英语又会讲日语的有14人,问既不会讲英语又不会讲日语的有多少人?解:设全集U ={某班50名学生},A ={会讲英语的学生},B ={会讲日语的学生},A ∩B ={既会讲英语又会讲日语的学生},则由韦恩图知,既不会英语又不会日语的学生有:50-22-14-6=8(人).20.(本小题满分16分)已知集合A ={x |x 2-2x -8=0},B ={x |x 2+ax +a 2-12=0},若A ∪B ≠A ,求实数a 的取值范围.解:若B ∪A =A ,则B ⊆A ,又A ={x |x 2-2x -8=0}={-2,4},所以集合B 有以下三种情况:①当B =∅,有Δ=a 2-4(a 2-12)<0⇒a 2>16⇒a <-4或a >4;②当B 是单元素集合时,有Δ=0⇒a 2=16⇒a =-4或a =4.若a =-4,则B ={2}⊄A ,若a =4,则B ={-2}⊆A ;③当B ={-2,4}时,有-2,4是关于x 的方程x 2+ax +a 2-12=0的两根 ⇒⎩⎨⎧-2+4=-a (-2)×4=a 2-12⇒a =-2. 此时,B ={x |x 2-2x -8=0}={-2,4}⊆A .综上可知,B ∪A =A 时,实数a 的取值范围是a <-4或a ≥4或a =-2. 所以B ∪A ≠A 时,实数a 的取值范围为-4≤a <4,且a ≠-2.。
高中数学单元测试题必修1第一章《集合》

高中数学单元测试题必修1第一章《集合》一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共60分).1.下列集合的表示法正确的是( A )A .}1|{}1|{=+==+y x y y x xB .第二、四象限内的点集可表示为{}(,)0,,x y xy x R y R ≤∈∈;C .集合{}1,2,2,5,7;D .不等式14x -<的解集为{}5x <2.已知集合}1,1{-=A ,}1|{==mx x B ,且A B A = ,则m 的值为A .1B .1-C .1或1-D .1或1-或0 3.设全集}7,6,5,4,3,2,1{=U ,集合}5,3,1{=A ,集合}5,3{=B ,则A .U AB = B .()U U A B = ðC .()U U A B = ðD .()()U U U A B = 痧4.设U ={1,2,3,4} ,若A B ={2},(){4}U A B = ð,()(){1,5}U U A B = 痧, 则下列结论正确的是A .A ∉3且B ∉3 B .A ∈3且B ∉3C .A ∉3且B ∈3D .A ∈3且B ∈35.设全集是实数集R ,{|22}M x x =-≤≤,N x x =<{|}1,则R M N ð等于A .{|}x x <-2B .{|}x x -<<21C .{|}x x <1D .{|}x x -≤<216.设U 为全集,Q P ,为非空集合,且P ÜQ ÜU ,下面结论中不正确...的是 A .()U P Q U = ð B .()U P Q = ðφ C .P Q Q =D .()U Q P = ðφ7.下列四个集合中,是空集的是 A .}33|{=+x x B .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x x D .}01|{2=+-x x x8.设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则 A .M N = B .M ÜNC .N ÜMD .M N ϕ=9.表示图形中的阴影部分A .()()A CBC B .()()A B A CC .()()A B B CD .()A B C 10.已知全集{1,2,3,4,5,6,7},{3,4,5},{1,3,6}U M N ===,则集合{2,7}等于A .M NB .U U M N 痧C .U U M N 痧D .M N 11.满足{1,2,3} ÜM Ü{1,2,3,4,5,6}的集合M 的个数是A .8B .7C .6D .512.下列命题之中,U 为全集时,不正确的是A .若AB = φ,则()()U U A B U = 痧 B .若A B = φ,则A = φ或B = φC .若A B = U ,则()()U U A B = 痧φD .若A B = φ,则==B A φ 二、填空题:请把答案填在题中横线上(每小题5分,共20分).13.若集合{(,)|20240}{(,)|3}x y x y x y x y y x b +-=-+=⊆=+且,则b = .14.设集合}0|),{(111=++=c x b x a y x A ,}0|),{(222=++=c x b x a y x B ,则方程)(111c x b x a ++0)(222=++c x b x a 的解集为 .15.已知集合}023|{2=+-=x ax x A 至多有一个元素,则a 的取值范围 .16.设集合{|12},{|}M x x N x x a =-≤<=≤,若M N ≠∅ ,则a 范围是 .三、解答题:解答应写出文字说明、证明过程或演算步骤(共70分).17.(10分)已知集合A ={x |x =m 2-n 2,m ∈Z ,n ∈Z},求证:(1)3∈A ; (2)偶数4k -2 (k ∈Z)不属于A.CB A18.(12分)(1)P ={x |x 2-2x -3=0},S ={x |ax +2=0},S ⊆P ,求a 取值.(2)A ={-2≤x ≤5} ,B ={x |m +1≤x ≤2m -1},B ⊆A,求m 的取值范围.19.(12分)在1到100的自然数中有多少个能被2或3整除的数?20.(12分)已知集合22{|320},{|20}A x x x B x x x m =-+==-+=且=B A ,A 求m的取值范围.21.设}019|{22=-+-=a ax x x A ,}065|{2=+-=x x x B ,}082|{2=-+=x x x C .①当A B =A B 时,求a 的值;②当φÜA B ,且A C =φ时,求a 的值; ③当A B =A C ≠φ时,求a 的值;(12分)22.(12分)设1a ,2a ,3a ,4a ,5a 为自然数,A={1a ,2a ,3a ,4a ,5a }, B={21a ,22a ,23a ,24a ,25a },且1a <2a <3a <4a <5a ,并满足A ∩B={1a ,4a }, 1a +4a =10,A ∪B 中各元素之和为256,求集合A ?高中数学单元测试题必修1第一章《集合》一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共60分).1.下列集合的表示法正确的是( A )A .}1|{}1|{=+==+y x y y x xB .第二、四象限内的点集可表示为{}(,)0,,x y xy x R y R ≤∈∈;C .集合{}1,2,2,5,7;D .不等式14x -<的解集为{}5x <已知集合{(,)|2},{(,)|4}M x y x y N x y x y =+==-=,那么集合M N 为(D )A .3,1x y ==-B .(3,1)-C .{3,1}-D .{(3,1)}-2.已知集合}1,1{-=A ,}1|{==mx x B ,且A B A = ,则m 的值为(D ) A .1 B .1- C .1或1- D .1或1-或03.设全集}7,6,5,4,3,2,1{=U ,集合}5,3,1{=A ,集合}5,3{=B ,则(C ) A .U A B = B .()U U A B = ð C .()U U A B = ð D .()()U U U A B = 痧4.设U ={1,2,3,4} ,若A B ={2},(){4}U A B = ð,()(){1,5}U U A B = 痧,则下列结论正确的是 ( B )A .A ∉3且B ∉3 B .A ∈3且B ∉3C .A ∉3且B ∈3D .A ∈3且B ∈35.设全集是实数集R ,{|22}M x x =-≤≤,N x x =<{|}1,则R M N ð等于(A )A .{|}x x <-2B .{|}x x -<<21C .{|}x x <1D .{|}x x -≤<21 设集合{1,2,3,4,5,6},{|26}P Q x R x ==∈≤≤,那么下列结论正确的是(D )A .P Q P =B .P Q Q ÝC .P Q Q =D .P Q P Ü 集合{|22},{|13}A x x B x x =-<<=-≤<,那么A B = (A )A .{|23}x x -<<B .{|12}x x ≤<C .{|21}x x -<≤D .{|23}x x <<以下四个关系:φ}0{∈,∈0φ,{φ}}0{⊆,φÜ}0{,其中正确的个数是( A )A .1B .2C .3D .4 下列五个写法:①{}{}00,1,2;∈②{}0;∅⊆③{}{}0,1,21,2,0;⊆④0;∈∅⑤0 ∅.=∅ 其中错误..写法的个数为 (C ) A .1 B .2 C .3 D .4 如果集合{}1->=x x P ,那么 (D )A .P ⊆0B .{}P ∈0C .P ∈∅D .{}P ⊆06.设U 为全集,Q P ,为非空集合,且P ÜQ ÜU ,下面结论中不正确...的是 ( B ) A .()U P Q U = ð B .()U P Q = ðφ C .P Q Q =D .()U Q P = ðφ 7.下列四个集合中,是空集的是 ( D )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x xD .}01|{2=+-x x x8.设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则 ( B ) A .M N = B .M ÜNC .N ÜMD .M N ϕ= 已知集合 },61|{Z m m x x M ∈+==,},312|{Z n n x x N ∈-==, =P x x |{+=2p },61Z p ∈,则P N M ,,的关系 (B ) A .N M =ÜP B .M ÜP N = C .M ÜN ÜP D . N ÜP ÜM设集合},3|{Z k k x x M ∈==,},13|{Z k k x x P ∈+==,},13|{Z k k x x Q ∈-==,若Q c P b M a ∈∈∈,,,则∈-+c b a( C ) A .M B . P C .Q D .P M ⋃9.表示图形中的阴影部分( A )A .()()A CBC B .()()A B A CC .()()A B B CD .()A B CB A10.已知全集{1,2,3,4,5,6,7},{3,4,5},{1,3,6}U M N ===,则集合{2,7}等于( B )A .M NB .U U M N 痧C .U U M N 痧D .M N 11.满足{1,2,3} ÜM Ü{1,2,3,4,5,6}的集合M 的个数是(C ) A .8 B .7 C .6 D .5满足{,}M N a b = 的集合N M ,共有(C )A .7组B .8组C .9组D .10组 满足条件{1}{1,2,3}M = 的集合M 的个数是 ( C )A .4B .3C .2D .112.下列命题之中,U 为全集时,不正确的是 (B )A .若AB = φ,则()()U U A B U = 痧 B .若A B = φ,则A = φ或B = φC .若A B = U ,则()()U U A B = 痧φD .若A B = φ,则==B A φ 二、填空题:请把答案填在题中横线上(每小题5分,共20分).13.若集合{(,)|20240}{(,)|3}x y x y x y x y y x b +-=-+=⊆=+且,则b =2.14.设集合}0|),{(111=++=c x b x a y x A ,}0|),{(222=++=c x b x a y x B ,则方程)(111c x b x a ++0)(222=++c x b x a 的解集为A ∪B.15.已知集合}023|{2=+-=x ax x A 至多有一个元素,则a 的取值范围a =0或89≥a . 16.设集合{|12},{|}M x x N x x a =-≤<=≤,若M N ≠∅ ,则a 范围是{|1}a a -?设集合(]{}2,,|1,M m P y y x x R =-∞==-∈,若M P =∅ ,则实数m 范围是(D ) A .1m ≥- B .1m >- C .1m ≤- D .1m <-三、解答题:解答应写出文字说明、证明过程或演算步骤(共70分).17.(10分)已知集合A ={x |x =m 2-n 2,m ∈Z ,n ∈Z},求证:(1)3∈A ; (2)偶数4k -2 (k ∈Z)不属于A.证明:(1)3=22-12 ∴3∈A ;(2)设4k -2∈A,得存在m,n ∈Z,使4k -2=m 2-n 2成立.(m -n )(m +n )=4k -2,当m,n 同奇或同偶时,m -n,m +n 均为偶数.∴(m -n )(m +n )为4的倍数,与4k -2不是4 倍数矛盾.当m,n 同分别为奇,偶数时,m -n,m +n 均为奇数.(m -n)(m +n )为奇数,与4k -2是偶数矛盾.∴4k -2∉A18.(12分)(1)P ={x |x 2-2x -3=0},S ={x |ax +2=0},S ⊆P ,求a 取值.(2)A ={-2≤x ≤5} ,B ={x |m +1≤x ≤2m -1},B ⊆A,求m 的取值范围.解:(1)a =0,S =φ,φ⊆P 成立 a ≠0,S ≠φ,由S ⊆P ,P ={3,-1}得3a +2=0,a =23-或-a +2=0,a =2; ∴a 值为0或23-或2. (2)B =φ,即m +1>2m -1,m <2 φ⊆A 成立.B≠φ,由题得121,21,215m m m m +≤-⎧⎪-≤+⎨⎪-≤⎩得2≤m ≤3,∴m <2或2≤m ≤3 , 即m ≤3为取值范围.注:(1)特殊集合φ作用,常易漏掉;(2合思想常使集合问题简捷比. 用描述法表示图中的阴影部分(包括边界)解:}0,121,231|),{(≥≤≤-≤≤-xy y x y x19.(12分)在1到100的自然数中有多少个能被2或3整除的数?解:设集合A 为能被2整除的数组成的集合,集合B 为能被3整除的数组成的集合,则A B 为能被2或3整除的数组成的集合,A B 为能被2和3(也即6)整除的数组成的集合.显然集合A 中元素的个数为50,集合B 中元素的个数为33,集合A B 中元素的个数为16,可得集合A B 中元素的个数为50+33-16=67.某市数、理、化竞赛时,高一某班有24名学生参加数学竞赛,28名学生参加物理竞赛,19名学生参加化学竞赛,其中参加数、理、化三科竞赛的有7名,只参加数、物两科的有5名,只参加物、化两科的有3名,只参加数、化两科的有4名。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合单元测试题 一、选择题 1.下列表示①②③ ④中,正确的个数为 ( )A 、 1 B 、 2 C 、 3 D 、 4
2 50名同学参加跳远和铅球测验,跳远和铅球测验成绩分别为及格40人和31人,2项测验成绩均不及格的有4人,2项测验成绩都及格的人数是 ( )A 35 B 25 C 28 D 15
3.满足
的集合的个数为( )(A )6 (B ) 7 (C ) 8 (D )9 4.方程组⎩⎨⎧=-=+91
22y x y x 的解集是( )A .()5,4 B .()4,5- C .(){}4,5- D .(){}4,5-
5 设全集U =R ,集合A =(1,+∞),集合B =(-∞,2)。
则CU (A ∩B)= ( )
A .(-∞,1)∪(2,+∞)
B .(-∞,1)∪[2,+∞)
C .(-∞,1]∪(2,+∞)
D .(-∞,1]∪[2,+∞)
6.设集合},412|{Z k k x x M ∈+=
=,},214|{Z k k x x N ∈+==,则 ( )
A N M =
B M N
C N M
D M N φ= 7.设
,,若,则实数的取值范围是 ( ) (A )
(B ) (C ) (D ) 8. 如图所示,
,,是的三个子集,则阴影部分所表示的集合是( ) (A ) (B )
(C ) (D )
9.设I 为全集,S 1、S 2、S 3是I 上的三个非空子集,且S 1∪S 2∪S 3=I ,则下列论断正确
的是( )A 、 C I S 1∩(S 2∪S 3)=∅ B 、 S 1⊆(C I S 2∩C I S 3)
C 、 C I S 1∩C I S 2∩C I S 3=∅
D 、 S 1⊆(C I S 2∪C I S 3)
10. 设全集
,若,,,则下列结论正确的是( ) (A ) 且(B ) 且 (C ) 且(D )
且 11.设P 、Q 为两个非空实数集合,定义集合p+Q=},5,2,0{},,|{=∈∈+P Q b P a b a 若
}6,2,1{=Q ,则P+Q 中元素的个数是 ( ) A .9 B .8 C .7 D .6
12.设⊕是R 上的一个运算,A 是R 上的非空子集,若对任意的a 、b ∈A ,
有a ⊕b ∈A ,则称A 对运算⊕封闭,下列数集对加法、减法、乘法和除法(除数不等于0)四则运算都封闭的是( ) A 自然数集 B 整数集 C 有理数集 D 无理数集
二、填空题
13.A={a ²,a+1,-3},B={a -3,2a -1,a ²+1},若A∩B={-3},那么a =_______.
14.已知{}R x x x y y M ∈+-==,34|2,{}
R x x x y y N ∈++-==,82|2则__________=N M
15.若集合只有一个元素,则实数的值为 16.设全集{}(,),U x y x y R =∈,集合
2(,)12y M x y x ⎧+⎫==⎨⎬-⎩⎭,{}(,)4N x y y x =≠-, 那么
()()U U C M C N 等于________________ 三、解答题
17.设全集合
,,,
求
,, ,
18.已知集合{}2|0A x x px q =-+=,{}2|0B x x x r =++=,{}1A
B =,{}1,2A B =-,求,,p q r 的
值.
19.已知,}221{},102{P Q a x a x Q x x P ⊆+≤≤-=≤≤=若求a 的范围。
20.已知集合
,,,求实数的取值范围。
21.集合{}22|190A x x ax a =-+-=,{}2|560B x x x =-+=,{}2|280C x x x =+-=
满足,A B φ≠,,A C φ=求实数a 的值。
22.设S 为满足下列两个条件的实数所构成的集合:
①S 内不含1; ②若a S ∈,则11S a
∈- 解答下列问题:(Ⅰ)若2S ∈,则S 中必有其他两个元素,求出这时的集合S ;
(Ⅱ)有人断定集合S 可以是单元素的集合,请你判断他的断言是否正确,说明理由;
(III )若集合S ≠∅,试证集合S 中的元素个数必为3的整数倍,并给出除(Ⅰ)中以外的一个集合S .。